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ABSTRACT 

As one of the major methods for location positioning, angle-of-arrival (AOA) estimation 

is a significant technology in radar, sonar, radio astronomy, and mobile communications. 

AOA measurements can be exploited to locate mobile units, enhance communication 

efficiency and network capacity, and support location-aided routing, dynamic network 

management, and many location-based services. In this paper, we propose an algorithm for 

AOA estimation in colored noise fields and harsh application scenarios. By modeling the 

unknown noise covariance as a linear combination of known weighting matrices, a maximum 

likelihood (ML) criterion is established, and a particle swarm optimization (PSO) paradigm is 

designed to optimize the cost function. Simulation results demonstrate that the paired 

estimator PSO-ML significantly outperforms other popular techniques and produces superior 

AOA estimates. 

 

Keywords: array signal processing; angle-of-arrival (AOA) estimation; location positioning, 

particle swarm optimization; smart antennas 

 

 

I. INTRODUCTION 

Estimation of the incident signals’ directions, or angle of arrival (AOA) estimation, is a 

fundamental problem in numerous applications such as radar, sonar, radio astronomy, and 

mobile communications. AOA measurements can locate mobile units, and thus support and 

enhance location-aided routing, dynamic network planning and management, and different 

types of location-based services and applications [1]; furthermore, it can improve 

communication efficiency and network capacity when integrated with adaptive array 

technology. 

In general, location estimates of mobile units are derived from two types of measurements: 

AOA and range. The widely used range estimation models include received signal strength 

(RSS), time of arrival (TOA) and time difference of arrival (TDOA), where cooperation and 

synchronization between the transmitter and receiver are required [1]. On the contrary, the 

AOA model can locate targets in a non-cooperative, stealthy and passive manner, which is 

highly desirable in military and surveillance applications. The benefits of AOA measurements 

for location estimation have been widely investigated, and many AOA-alone [2]-[4] and 

hybrid systems [5]-[8] have been proposed. 

A chief goal of wireless communication research has long been to enhance the network 

capacity, data rate and communication performance. In comparison with solutions of 
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increasing spectrum usage, smart antenna technology provides a more practical and 

cost-efficient solution. The benefits of using smart antennas are that the sender can focus the 

transmission energy towards the desired user while minimizing the effect of interference, and 

the receiver can form a directed beam towards the sender while simultaneously placing nulls 

in the directions of the other transmitters. This spatial filtering capability leads to increased 

user capacity, reduced power consumption, lower bit error rates (BER), and larger range 

coverage [9]-[10]. A key component that aids the array to be ‘smart’ and adaptive to the 

environment is AOA estimation of the desired signals and co-channel interferers. To fully 

exploit the AOA capability in mobile communications, various medium access control (MAC) 

protocols have been developed [11]-[13]. 

In recent years, AOA estimation has received considerable attention from radar and 

communication communities, and several high resolution algorithms have been proposed 

based on the white Gaussian noise model, such as multiple signal classification (MUSIC) [14], 

maximum likelihood (ML) [15], and others [16]-[17]. However, in many circumstances, the 

emitters reside in a “radio hostile” environment and the noise fields tend to be correlated 

along the array due to the dominant ambient noise [18]. Furthermore, the systems are often 

forced to work under unfavorable conditions involving low signal-to-noise ratio (SNR), 

highly correlated signals, and small array with few elements due to the cost, energy and size 

constraints. The standard AOA techniques become incompetent in such scenarios. 

In this paper, we propose an algorithm for accurate AOA measurement in colored noise 

fields and harsh application scenarios. By modeling the unknown noise covariance as a linear 

combination of known weighting matrices, a maximum likelihood criterion is derived with 

respect to AOA and unknown noise parameters. ML criteria may yield superior statistical 

performance, but the cost function is multimodal, nonlinear and high-dimensional. To tackle 

it efficiently, we propose to use the particle swarm optimization (PSO) paradigm as a robust 

and fast global search tool. PSO is a recent addition to evolutionary algorithms first 

introduced by Eberhart and Kennedy [19]. Most of the applications demonstrated that PSO 

could give competitive or even better results in a much faster and cheaper way, compared to 

other heuristic methods such as genetic algorithms (GA) [20]. 

The PSO is designed to combine the problem-independent kernel and problem-specific 

features, which make the algorithm highly flexible while being specific and effective in the 

current application. Via extensive numerical studies, we demonstrate that the proposed 

algorithm yields superior performance over other popular methods, especially in unfavorable 

scenarios involving low SNR, highly correlated signals, short data samples, and small arrays. 

The paper has been organized as follows. Section II describes mathematical models of the 

signal and noise, and derives the ML criterion function. In Section III, PSO-ML and the 

strategies for parameter selection are presented. Simulation results are given in Section IV, 

and Section V concludes the paper. 

 

II. DATA MODEL AND PROBLEM FORMULATION 

We consider an array of M elements arranged in an arbitrary geometry and N narrowband 

far-field sources at unknown locations. The complex M-vector of array outputs is modeled by 

the standard equation 
( ) ( ) ( ) ( ), 1, 2, ...,t t t t L  y A θ s n (1)
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where 1[ , , ]T
N θ   is the source AOA vector, and the kth column of the complex 

M N  matrix  A   is the so called steering vector  ka  for the angle k . The ith 

element  i ka   models the gain and phase adjustments of the kth signal at the ith element. 

Furthermore, the complex N-vector  ts  is composed of the emitter signals, and  tn  

models the additive noise. 

The vectors of signals and noise are assumed to be stationary, temporally white, 

zero-mean complex Gaussian random processes with second-order moments given by 
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where ts  is the Kronecker delta,  H  denotes complex conjugate transpose,  T  

denotes transpose, and  E   stands for expectation. Assuming that the noise and signals are 

independent, the data covariance matrix is given by 

    H HE t t  R y y APA Q . (3)

Moreover, it is assumed that the number of sources is known or has been estimated using 

techniques, e.g., in [21]. The problem addressed herein is the estimation of θ (and if 

necessary, along with the parameters in P and Q) from a batch of L measurements  1y , …, 

 Ly . 

Under the assumption of additive Gaussian noise and Gaussian distributed signals, the 

normalized (with L) negative log-likelihood function of the data vectors takes the form 

(ignoring the parameter independent terms) [22] 

   1 ˆ, , logI tr  P Q R R R , (4)

where  tr   stands for trace, log   denotes the natural logarithm of the determinant, and 

R̂  is the covariance matrix of the measured data 

1

1ˆ ( ) ( )
L

H

t

t t
L 

 R y y .        (5) 

In the follows, we focus on the ML criterion derived using parameterization of the noise 

covariance. Because this assumption applies no constraints to the signals, it is applicable to 

both cooperative and non-cooperative scenarios. 

Based on a Fourier series expansion of the spatial noise power density function, the noise 
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covariance Q is assumed to be modeled by the following linear parameterization [18]: 

 
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J

j j
j
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Q η Σ (6)

where  1, ,
T

J η   is a vector of unknown noise Fourier coefficients, jΣ  is a known 

function of the array geometry given by 
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0,1,2,l   . It is assumed that J is known or has been estimated [18], [21]. Similar 

descriptive models depicting the noise covariance as a linear combination of known 

weighting matrices are widely accepted in the literature [18], [21], [23], [29]. 

Following the derivation in [24], P can be solved in terms of  A θ  and  Q η , 

   1 1ˆ H H H H 
   P A A A RA A A A A , (9)

where 

1/ 2

1/ 2 1/ 2ˆ .


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
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R Q RQ
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By substituting (9) back to (3) and (4), the ML criterion function can be finally reduced to 

   1 , log logI tr   η Q GRG H HR , (11)

where 

  1

.
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
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H I G (12)
The ML estimates of   and η  are obtained by minimizing (11). Based on the data model, 

the Cramer-Rao bound (CRB) for AOA estimation can be derived [18], 

          
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where  Re   represents the real part,   denotes element-wise product, and 
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III. PSO-ML AOA ESTIMATION AND PARAMETER SELECTION 

Particle swarm optimization is a stochastic optimization paradigm, which mimics animal 

social behaviors such as flocking of birds and the methods by which they find roosting places 

or food sources [19]. PSO starts with the initialization of a population of individuals in the 

search space and works on the social behavior of the particles in the swarm. Each particle is 

assigned a position in the problem space, which represents a candidate solution to the problem 

under consideration. Each of these particle positions is scored to obtain a scalar cost, named 

fitness, based on how well it solves the problem. These particles then fly through the problem 

space subject to both deterministic and stochastic update rules to new positions, which are 

subsequently scored. Each particle adaptively updates its velocity and position according to 

its own flying experience and its companions’ flying experience, aiming at a better position 

for itself. As the particles traverse the search space, each particle remember its own personal 

best position that it has ever visited, and it also knows the best position found by any particle 

in the swarm. On successive iterations, each particle takes the path of a damped oscillatory 

movement towards its personal best and the global best positions. With the oscillation and 

stochastic adjustment, particles explore regions throughout the problem space and eventually 

settle down near a good solution. 

As illustrated in Fig. 1, the algorithm starts by initializing a population of particles in the 

“normalized” search space with random positions x and random velocities v, which are 

constrained between zero and one in each dimension. The position vector of the ith particle 

takes the form 1 1, , , ,i N J      x      , where 0 , 1n j    , 1, ,n N  , 1, ,j J  , 

1N  , 1J  . A particle position vector is converted to a candidate solution vector in the 

problem space through a mapping. The score of the mapped vector evaluated by the 

likelihood function  1 ,I η  (11) is regarded as the fitness of the corresponding particle. 

Fig. 1. Flowchart illustrating main steps of PSO-ML technique. 

The ith particle’s velocity is updated according to (15) 

   1
1 1 2 2

k k k k k k k k k
i i i i g ic c     v v r p x r p x  ,

(15)

where pi is the best previous position of the ith particle, pg is the best position found by any 
particle in the swarm, 1,2,k   , indicates the iterations,   is a parameter called the inertia 

weight, 1c  and 2c  are positive constants referred to as cognitive and social parameters 

respectively, 1r  and 2r  are independent random vectors. 

Three components typically contribute to the new velocity. The first part refers to the 

inertial effect of the movement. The inertial weight ω is considered critical for the 

convergence behavior of PSO [25]. A larger ω facilitates searching new area and global 

exploration while a smaller ω tends to facilitate fine exploitation in the current search area. In 

this study, ω is selected to decrease during the optimization process, thus PSO tends to have 

more global search ability at the beginning while having more local search ability near the 
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end. Given a maximum value max  and a minimum value min , ω is updated as follows: 

   

 

max min
max

min

1 , 1

, 1

k
k k rK

rK
rK k K
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


     
   

(16)

where [rK] is the number of iterations with time decreasing inertial weights, 0 1r   is a 

ratio, and K is the maximum iteration number. Based on empirical practice and extensive test 

runs, we select max 0.9  , min 0.4  , and 0.4 0.8r   . The second and third components 

introduce stochastic tendencies to return towards the particle’s own best historical position 

and the group’s best historical position. Constants c1 and c2 are used to bias the particle’s 

search towards the two locations. Following common practice in the literature [26], c1=c2=2, 

although these values could be fine-turned for the problem at hand. 

Since there was no actual mechanism for controlling the velocity of a particle, it is 

necessary to define a maximum velocity to avoid the danger of swarm explosion and 

divergence [27]. The velocity limit is applied to vi along each dimension separately by 

,

,
MAX id MAX

id
MAX id MAX

V v V
v

V v V


   

(17)

where d=1,…, N+J. Like the inertial weight, large values of VMAX encourage global search 

while small values enhance local search. In this study, VMAX is held constant at 0.5, the half 

dynamic range, throughout the optimization. 

The new particle position is calculated using (18), 

1 1k k k
i i i
  x x v .

(18)

If any dimension of the new position vector is less than zero or greater than one, it is clipped 

to stay within this range. It should be noted that, at any time of the optimization process, two 

components representing AOA in a position vector are not allowed to be equal. 

The final global best position pg is taken as the ML estimates of AOA and noise 

parameters. Some previous works demonstrate that the performance of PSO is not 

significantly affected by changing the swarm size P. The typical range of P is 20 to 50, which 

is sufficient for most problems to achieve good results [28]. In addition, PSO is robust to 

control parameters; and the convergence and stability analysis is presented in [27]. 

 

IV. SIMULATION RESULTS 

Two examples are presented to evaluate PSO-ML against the least square estimator (LSE) 

[29], MUSIC [14], and the unconditional maximum likelihood (UML) method [15]. LSE is a 

superior direction finding technique in colored noise fields established based on a similar 

noise model, MUSIC is one of the most popular techniques, and UML represents the best 

estimator under white Gaussian noise assumption [30]. 

The selected PSO parameters are summarized in Table 1. The PSO algorithm starts with 

random initialization, and is terminated if the maximum iteration number K is reached or the 

global best particle position is not updated in 20 successive iterations. We have performed 
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300 Monte Carlo experiments for each point of the plot. 

Table 1 Selected PSO parameters 

A. Example 1 

Assume that two equal-power correlated signals with the correlation factor r=0.95, 

impinge on a four-element uniform linear array (ULA) from 90 and 95. The number of 

snapshots is 80. The situation is challenging, since the separation of emitters is about 0.19 

beamwidth, the conventional resolution limit. The noise covariance is modeled as a linear 

combination of known matrices (6), J=3, and  1,1/ 4,1/ 9η . Similar noise models are used 

in the literature [29]. Fig. 2 depicts the combined AOA estimation root-mean-squared errors 

(RMSE) obtained using PSO-ML, LSE, MUSIC and UML as a function of SNR, and 

compares them with the corresponding CRB (13) (theoretically best performance). Fig. 3 

shows the resolution probabilities for the same methods. Two sources are considered to be 

resolved in an experiment if both estimation errors are less than the half of their angular 

separation. 

As can be seen from Fig. 2 and Fig. 3, PSO-ML yields significantly superior performance 

over LSE, MUSIC and UML as a whole, by demonstrating lower estimation RMSE and 

higher resolution probabilities. PSO-ML produces excellent AOA estimates with RMSE 

approaching and asymptotically attaining the theoretic lower bound. On the other hand, as a 

standard high-resolution method, MUSIC fails almost in the whole SNR range. Although 

UML is an optimal technique in white Gaussian noise, it completely fails when SNR is lower 

than 15dB and only produces acceptable estimates in high SNR region. It is worth noting that 

the advantages of PSO-ML over the other methods are more prominent when SNR is low, and 

the benefits can be extended to other unfavorable conditions. 

Fig. 2 AOA estimation RMSE of PSO-ML, LSE, MUSIC and UML versus SNR. Dashdot 

line represents theoretic CRB. Two correlated sources impinge on four-element ULA at 90 

and 95, r=0.95. Number of snapshots is 80. 

Fig. 3 Resolution probabilities of PSO-ML, LSE, MUSIC and UML versus SNR. Two 

correlated sources impinge on four-element ULA at 90 and 95, r=0.95. Number of snapshots 

is 80. 

B. Example 2 

In the second example, we consider an 8-element ULA. Two emitters are present at 80 

and 83 with a separation of 0.23 beamwidth, r=0.9. The number of snapshots is 30. In the 

noise model (6), J=5 and  1,0.75,0.5,0.25,0.1η . Fig. 4 illustrates the RMSE values 

obtained from PSO-ML, LSE, MUSIC and UML. The resolution probabilities for the same 

methods are shown in Fig. 5. 

As expected, PSO-ML significantly outperforms LSE, MUSIC and UML and produces 

more accurate estimates by showing lower RMSE and higher resolution probabilities. We 
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select a different scenario in this example, although the source separation in terms of array 

beamwidth is similar, the data sample is much shorter and there is more freedom in the noise 

model as compared with Example 1. As shown in Fig. 2 - Fig. 5, the benefits of PSO-ML 

over LSE with colored noise model and UML and MUSIC under white Gaussian noise 

assumption appear to be more prominent in unfavorable scenarios involving low SNR, short 

data samples, closely spaced and highly correlated sources, and unknown noise environment. 

Fig. 4. AOA estimation RMSE of PSO-ML, LSE, MUSIC and UML versus SNR. Dashdot 

line represents theoretic CRB. Two correlated sources impinge on eight-element ULA at 80 

and 83, r=0.9. Number of snapshots is 30. 

Fig. 5. Resolution probabilities of PSO-ML, LSE, MUSIC and UML versus SNR. Two 

correlated sources impinge on eight-element ULA at 80 and 83, r=0.9. Number of snapshots 

is 30. 

 

V. CONCLUSIONS 

Arising from the requirements of radio localization, efficient communication by 

directional transmission and interference suppression, and exploration of angular diversity for 

various benefits such as location-aided routing and network management, AOA measurement 

is an important technology of growing practical interest in numerous applications such as 

radar, radio astronomy, and mobile communications. In this paper, we propose an algorithm 

for AOA estimation in colored noise fields and unfavorable application scenarios based on the 

maximum likelihood principle and implemented using the PSO paradigm. Simulation results 

demonstrate that PSO-ML significantly outperforms other popular techniques and produces 

more accurate AOA estimates, especially in unfavorable scenarios. 
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Table 1 Selected PSO parameters 
 

Parameter Value 

c1 2.0 

c2 2.0 

P 20 

K 200 

MAXV  0.5 

max  0.9 

min  0.4 

r 0.5 
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Fig. 1. Flowchart illustrating main steps of PSO-ML technique. 
 

Repeat for each iteration 

Repeat for each particle 

Map particle position to solution vector in problem space 

Evaluate fitness 

Update personal best position pi and global best position pg 

Update particle velocity 

Limit particle velocity 

Update particle position 

Clip or adjust particle position if required 

Test termination criteria 

Setup problem: 

 Define problem space 

 Define fitness function 

 Select PSO parameters 

Initialize swarm: 

 Random normalized positions 

 Random velocities 

 

Solution is final global best position pg 
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Fig. 2 AOA estimation RMSE of PSO-ML, LSE, MUSIC and UML versus SNR. Dashdot 

line represents theoretic CRB. Two correlated sources impinge on four-element ULA at 90 

and 95, r=0.95. Number of snapshots is 80. 
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Fig. 3 Resolution probabilities of PSO-ML, LSE, MUSIC and UML versus SNR. Two 

correlated sources impinge on four-element ULA at 90 and 95, r=0.95. Number of snapshots 

is 80. 
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Fig. 4. AOA estimation RMSE of PSO-ML, LSE, MUSIC and UML versus SNR. Dashdot 

line represents theoretic CRB. Two correlated sources impinge on eight-element ULA at 80 

and 83, r=0.9. Number of snapshots is 30. 
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Fig. 5. Resolution probabilities of PSO-ML, LSE, MUSIC and UML versus SNR. Two 

correlated sources impinge on eight-element ULA at 80 and 83, r=0.9. Number of snapshots 

is 30. 

 


