9,051 research outputs found

    Autonomous resource-aware scheduling of large-scale media workflows

    Get PDF
    The media processing and distribution industry generally requires considerable resources to be able to execute the various tasks and workflows that constitute their business processes. The latter processes are often tied to critical constraints such as strict deadlines. A key issue herein is how to efficiently use the available computational, storage and network resources to be able to cope with the high work load. Optimizing resource usage is not only vital to scalability, but also to the level of QoS (e.g. responsiveness or prioritization) that can be provided. We designed an autonomous platform for scheduling and workflow-to-resource assignment, taking into account the different requirements and constraints. This paper presents the workflow scheduling algorithms, which consider the state and characteristics of the resources (computational, network and storage). The performance of these algorithms is presented in detail in the context of a European media processing and distribution use-case

    The Radon Monitoring System in Daya Bay Reactor Neutrino Experiment

    Full text link
    We developed a highly sensitive, reliable and portable automatic system (H3^{3}) to monitor the radon concentration of the underground experimental halls of the Daya Bay Reactor Neutrino Experiment. H3^{3} is able to measure radon concentration with a statistical error less than 10\% in a 1-hour measurement of dehumidified air (R.H. 5\% at 25^{\circ}C) with radon concentration as low as 50 Bq/m3^{3}. This is achieved by using a large radon progeny collection chamber, semiconductor α\alpha-particle detector with high energy resolution, improved electronics and software. The integrated radon monitoring system is highly customizable to operate in different run modes at scheduled times and can be controlled remotely to sample radon in ambient air or in water from the water pools where the antineutrino detectors are being housed. The radon monitoring system has been running in the three experimental halls of the Daya Bay Reactor Neutrino Experiment since November 2013

    Analysis of duopoly price competition between WLAN providers

    Get PDF
    Proceedings of the IEEE International Conference on Communications, 2009, p. 1-5With the rapid development of wireless Internet services, several WLAN service providers may coexist in one public hotspot to compete for the same group of customers, leading to an inevitable price competition. The charged price and the provisioned packet loss at each provider are major factors in determining users' demands and behaviors, which in turn will affect providers' revenue and social welfare. In this paper, we set up a novel game model to analyze a duopoly price competition. We first show the users' demands are distributed between providers according to a Wardrop Equilibrium and then prove the existence of a Nash equilibrium on providers' charged prices. Through analysis, we further find that in Nash equilibrium state the social welfare is very close to its maximal value in cooperative situation. Furthermore, the providers' aggregate revenues also do not decrease when the users have high sensitivity about the charged prices. Thus the competitive duopoly WLAN market can still run in an efficient way even in the absence of complex regulation schemes. ©2009 IEEE.published_or_final_versio

    Optically Thick Radio Cores of Narrow-Waist Bipolar Nebulae

    Full text link
    We report our search for optically thick radio cores in sixteen narrow-waist bipolar nebulae. Optically thick cores are a characteristic signature of collimated ionized winds. Eleven northern nebulae were observed with the Very Large Array (VLA) at 1.3 cm and 0.7 cm, and five southern nebulae were observed with the Australia Telescope Compact Array (ATCA) at 6 cm and 3.6 cm. Two northern objects, 19W32 and M 1-91, and three southern objects, He 2-25, He 2-84 and Mz 3, were found to exhibit a compact radio core with a rising spectrum consistent with an ionized jet. Such jets have been seen in M 2-9 and may be responsible for shaping bipolar structure in planetary nebulae.Comment: 29 pages, accepted for publication in Ap

    Regge calculus from a new angle

    Full text link
    In Regge calculus space time is usually approximated by a triangulation with flat simplices. We present a formulation using simplices with constant sectional curvature adjusted to the presence of a cosmological constant. As we will show such a formulation allows to replace the length variables by 3d or 4d dihedral angles as basic variables. Moreover we will introduce a first order formulation, which in contrast to using flat simplices, does not require any constraints. These considerations could be useful for the construction of quantum gravity models with a cosmological constant.Comment: 8 page

    Computationally efficient solutions for tracking people with a mobile robot: an experimental evaluation of Bayesian filters

    Get PDF
    Modern service robots will soon become an essential part of modern society. As they have to move and act in human environments, it is essential for them to be provided with a fast and reliable tracking system that localizes people in the neighbourhood. It is therefore important to select the most appropriate filter to estimate the position of these persons. This paper presents three efficient implementations of multisensor-human tracking based on different Bayesian estimators: Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF) and Sampling Importance Resampling (SIR) particle filter. The system implemented on a mobile robot is explained, introducing the methods used to detect and estimate the position of multiple people. Then, the solutions based on the three filters are discussed in detail. Several real experiments are conducted to evaluate their performance, which is compared in terms of accuracy, robustness and execution time of the estimation. The results show that a solution based on the UKF can perform as good as particle filters and can be often a better choice when computational efficiency is a key issue
    corecore