
5AF3--7T- qq3L 
CON k -490602. -- 

Path Planning for Complex Terrain Navigatio 
Via Dynamic Programming 

Kwan S. Kwok -______ 
Sandia National Laboratories, Albuquerque, NM 87 185-1003, kskwok@sandia.gov 

Brian J. Driessen 
Sandia National Laboratories, Albuquerque, NM 87 185-0439, bjdries0sandiagov 

Abstract. This work considers the problem of planning optimal paths for a mobile robot traversing 
complex terrain. In addition to the existing obstacles, locations in the terrain where the slope is too steep 
for the mobile robot to navigate safely without tipping over become mathematically equivdent to extra 
obstacles. To solve the optimal path problem, we use a dynamic programming approach. The dynamic 
programming approach utilized herein does not suffer the difficulties associated with spurious local 
minima that the artificial potential field approaches do. In fact, a globally optimal solution is guaranteed 
to be found if a feasible solution exists. The method is demonstrated on several complex examples 
including very complex terrains. 

1. Introduction 

Path planning for mobile robots has 
involved all of the extremes in terms of available 
environment information. The worst case is that 
in which the robot's collision-avoidance 
mechanism is simply to "repel" from obstacles 
that it comes very close to [Brooks, Arkin]. 
Sensors involved include proximity sensors. An 
intermediate case is one in which the robot has a 
camera or sonar [Cho and Lim 1, Cho and Lim 21 
and can "see ahead" a limited distance, much like 
a human would when driving an ATV though 
rough and/or obstacle-infested terrain. The best 
case is that in which knowledge of all obstacles is 
available so that the vehicle can be guaranteed to 
find an optimal path if a feasible path exists (see 
[Hou and Zheng] and the references cited 
therein). It is this latter best-case scenario that is 
of concern in this paper. 

All such problems can be reduced to that 
of finding an optimal path through a sequence of 
adjacent feasible or admissible locations, where 
the inadmissible or "forbidden" locations are 
obstacle locations. This work will focus on the 
problem of complex terrain navigation in which 
forbidden regions arise from not only obstacles 
such as buildings, fences, and bodies of water but 

also from excessively steep terrain that could 
cause the vehicle to tip over. This work will 
focus upon planning minimum-distance paths 
(which are essentially minimum-time paths) 
where it is reasonable to expect that travel-time 
has some correlation with probability of being 
detecteddestroyed by the enemy. The method 
used is a dynamic programming b s o n  and 
Casti] one which is guaranteed to produce a 
globally optimal solution. This globalness of 
solution contrasts with previous work that use 
artificial repulsive potentials for obstacles (see 
[Hou and Zheng] and the references cited therein) 
because these latter approaches can lead to not 
only suboptimal paths but can also completely 
fail to find a feasible path, even when one exists, 
both of these cases being related to the problem of 
spurious local minima. Despite these difficulties 
with the potential approach, it is of interest 
because it can be computationally cheaper; 
however we have found the cost of solving for 
globally optimal solutions to be trivial for the 
problems considered herein so that the 
computational consideration was not an issue. 

2. Problem Statement 

The problem considered herein is that of 
finding a minimum-distance, and hence 
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minimum-time, feasible path over complex 
terrain between a given starting position and 
given goal position. Many locations on the 
terrain are "forbidden" because the slope of the 
terrain is too steep for the mobile robot to 
navigate safely without tipping over. There exist 
other forbidden regions of the domain that act as 
additional obstacles. These may include bodies of 
water or regions where the probability of 
detection by the enemy is known to be high. 
Other cost functions, besides distance traveled, 
could also be considered. For example, the 
probability of being detected by the enemy could 
be used as a cost function, where each location in 
the terrain has an associated probability of 
detection. The cost function would then be 
multiplicative instead of additive but can still be 
handled by the dynamic programming approach 
utilized herein. 

3. Method of Solution 

The domain with hills defined by 
z = z(x, y )  and other obstacles will be gridded up 
into an array of equally-spaced grid points. Grid 
points are defined as forbidden if the grade 
(slope) of the terrain z = z(x, y )  is too large or if 
some other obstacle exists at that grid point. The 
rectangular array of grid points is enumerated the 
same way as the associated matrix. Let M denote 
such a matrix and let 

M,, = 0 if (ij] is forbidden (3.1) 
M,, = 1 if (ij] is not forbidden (3.2) 

Let tensor Ck,, denote the "cost to go" for the kth 
time step back from the final time at the (ij) grid 
location. In one time step, the vehicle can make 
one of the following 8 moves which constitute the 
set of all possible diagonal and non-diagonal 
moves 

( i t i + l , j c  j - I ) ,  ( i t i + l , j t j ) ,  
(i t i+ l , j  t j + I ) ,  ( i t i - l , j + j - l ) ,  
( i  t i- 1 , j  t j ) ,  ( i  t i - 1 , j  t j + 1) , 
( i  t i, j t j - l), ( i  t i, j t j +1) (3.3) 
If we let (icd,jcnti)  denote the final required 
destination, then clearly the "cost to go" for k=l 
is given by 

} (3.4) -1, if i f iend or j f jend 
' I r j .  = { 0, otherwise 

where a Ck,j = -1 will be used to indicate that 
location ( i j )  is not a valid location for the kth 
backward time step. Equation (3.4) simply states 

that the only valid location at the last time step is 
( i d , j c d ) ,  i.e., the vehicle must reach its 
destination. 

Let L,( f , j ,m)  be the i value the vehicle 
moves to from (i^,f)  using the mth (of 8) move 
type (of those indicated in (3.3)). Let &(i^,f,m) 
be t h e j  value the vehicle moves to from (i,f) 
using the mth (of 8) move type. Let ( i - , j - )  
denote the grid point in the lower-right-most 
position of Figure 1. Let the function F be 
defined as follows: 

F(i , j ,m, i - ,  j , )  = 
-1 if L, (i,j ,m) c (1 ,..., i-) or 

b ( i , j , m )  E ( ~ , . . . J - )  or 

distance between (it j) 
and (L,(i, j , m X L , ( i , j , m ) )  ' I ' otherwie 1 

integers m: 

M ( L , ( i , j , m ) , L , ( i , j , m ) ) =  0 (3.5) 

Let Skij denote the following set of 

(3.6) 
m: m ~ ( 1 ,  ..., 8), 

F(i,j,m,i-.i-) *-1 
C k . 4 ( i . j . m ) . h ( i . j . m )  f -1, 

Let Zh7 denote the optimal i location to move 

forward-in-time to from the position (?, j)  at 
backward time step k, and let Jh7 denote the 
optimal j location to move to from the position 
(f,j) at backward time step k. Then the Ck+lj, j ,  
Z k + , , i . j ,  and Jt+l.i,. (V i , j )  can be calculated from 
the C,, ( V i , j )  as follows: 

If Skij is an empty set, Ck+,*i*j = -1 (3.7) 
Else 

'k+l, i . j  = m d b j  min( F(i ,  j y  m 7  inlax 3 j- + 't.4 (i . j .m)&(i. j .m) 1 
mi+,,i,j a r ~ ~ n ( ~ ( i ~ j ~ m ~ i - , i - ) + ~ ~ . ~ ( i , j , m ~ , ~ ( i . j , m )  mEShi ) 

(3.8) 

(3.9) 
' k + l , i j  = 4 ( i t j9ml+ l , i . j )  (3.10) 
.h+, , ; , j  = 4 (i, j ,  4 + l , i . j  1 (3.1 1) 
Endif 

Let (is,,, ,jsru,) denote the starting location of the 
vehicle. We proceed in this manner for 
k=1,2,3,4, ... until one of two things happens: 

Case (1): Ck+l.;,,o,,,j=,m f -1 (3.12) 
Case (2): The set of Ck+lj,j values for 

which Ck+l.,,j #-1 has the same number of 
members as the set of CkU values for which 
Ckij # -1. (3.13) 
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In Case (I), an optimal solution has been 

(3.14) 
(3.15) 

i' = I  (3.16) 

j ' =  J (3.17) 

thus giving us an optimal sequence of k grid 
positions that move us from (i,,,,j,,,) to 

In Case (2), no feasible solution exists as 
moving back one time step has not increased the 
size of the set of valid grid locations. This means 
that no matter how many more time steps we step 
back, the set will remain the same so that it will 
clearly never contain (inn,, j,,,) . 

We should note that the cost to find the 
optimal sequence of moves is O(7iN) where 7i is 
the number of grid points in  the rectangular 
region and N the number of time steps (where N 
is not known a priori). 

obtained and is generated by .- . 
1 = 'sa, 
.* 

J = isan 
LOop~=l to k-1 

P1.1. 

P1.J' 

End Loop 

Ci, I j, ). 
8 -  

10- 

12 

14- 

4. Numerical Examples 
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Figure 1 below illustrates an optimal 
path. The solid dots denote grid points that are 
not forbidden. All other grid points are 
forbidden. The circle denotes the starting 
position and the 'I+" denotes the goal position. 
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Figure 1. Example Time-Optimal Solution, nz 
Denotes the Number of Admissible Locations or 

"Stepping Stones" 
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Figure 2 below illustrates a problem that 
is infeasible. The algorithm of Section 3 
recognizes the problem as infeasible at k=6 (the 
6th backward time step). 

16' I 
0 2 4 6 8 10 12 14 16 

TuS125 

Figure 2. Example of Infeasible Problem, 
Automatically Recognized as Infeasible by the 

Algorithm 

Figure 3 illustrates an optimal path for 
another case. 

We consider next a case in which the 
forbidden points are generated by an actual 
surface which is illustrated in Figure 4 below. 
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Figure 4. Illustration of a Surface Terrain 
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The allowable grade was set to 25 degrees. The 
starting point and goal point are illustrated in 
Figure 5 below. 

0.- 

5 -  

10 - 

In Figure 5 the upper left corner corresponds to 
the point (x,y)=(-3,-3) in Figure 4. We see 
then from Figure 5 that the robot's net travel is 
mostly in the +x direction. 

Finally Figure 6 and Figure 7 below 
show how the solution changes as the grid is 
made coarser and coarser. 
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Figure 7. Illustration of Time-Optimal Path 

5. Conclusion 

This work demonstrated that dynamic 
programming could be used to obtain optimal 
paths for a mobile robot traversing complex 
terrain. Locations in the terrain at which the 
slope is too steep for the robot to navigate safely 
without tipping over become mathematically 
equivalent to obstacle locations, which are added 
to the set of existing obstacle locations. With 
only two state variables ( X  and y position), 
dynamic programming is very effective and is 
guaranteed to find a globally optimal path. 
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