436 research outputs found

    Improving of the wear resistance of working parts agricultural machinery by the implementation of the effect of self-sharpening

    Get PDF
    The failure of the cutting elements of farm machinery is due to the blunting of cutting edges (increase of their radius) till the limit values. The most effective method for increasing the wear resistance of farm machinery is the realization of self-sharpening effect of the cutting elements. The testings took place in laboratory and field at the State Technical University of Kirovograd (Ukraine) in 2015. The technical equipment consists of the consolidated farmer plowshares by different methods as well as their samples, devicesfor measuring the wear resistance and thumbprint plowshares. It was determined the resistance to wear, the radius of curvature and the changing coefficient of the blades shape. The self-sharpening process was examined throughout the experiment.The results showed that the consolidated plowshares by the proposed technology (laser welding of the mixture (PS-14-60 + 6% В4С) compared to the traditional technology (volumetric heat treatment) have a blade radius 2.5 times lower, a wear 2.2 to 2.78 times lower and the self-sharpening process of the plowshares has been observed since the beginning of the wear until the time limit operation. The changing shape coefficient was respectively of 0.98 for the consolidated plowshares with alloy PS-14-60 + 6% B4C and 0.82 for those consolidated by volumetric heat treatment

    Using dark modes for high-fidelity optomechanical quantum state transfer

    Full text link
    In a recent publication [Y.D. Wang and A.A. Clerk, Phys. Rev. Lett. 108, 153603 (2012)], we demonstrated that one can use interference to significantly increase the fidelity of state transfer between two electromagnetic cavities coupled to a common mechanical resonator over a naive sequential-transfer scheme based on two swap operations. This involved making use of a delocalized electromagnetic mode which is decoupled from the mechanical resonator, a so-called "mechanically-dark" mode. Here, we demonstrate the existence of a new "hybrid" state transfer scheme which incorporates the best elements of the dark-mode scheme (protection against mechanical dissipation) and the double-swap scheme (fast operation time). Importantly, this new scheme also does not require the mechanical resonator to be prepared initially in its ground state. We also provide additional details on the previously-described interference-enhanced transfer schemes, and provide an enhanced discussion of how the interference physics here is intimately related to the optomechanical analogue of electromagnetically-induced transparency (EIT). We also compare the various transfer schemes over a wide range of relevant experimental parameters, producing a "phase diagram" showing the the optimal transfer scheme for different points in parameter space.Comment: 39 pages, 11 figures NJP 14 (Focus issue on Optomechanics

    Dielectrophoresis of nanoscale dsDNA and humidity effects on its electrical conductivity

    Get PDF
    The dielectrophoresis method for trapping and attaching nanoscale double-stranded DNA between nanoelectrodes was developed. The method gives a high yield of trapping single or a few molecules only which enables transport measurements at the single molecule level. Electrical conductivity of individual 140-nm-long DNA molecules was measured, showing insulating behavior in dry conditions. In contrast, clear enhancement of conductivity was observed in moist conditions, relating to the interplay between the conformation of DNA molecules and their conductivity.Comment: 4 pages, 2 figure

    АНАЛІЗ ФАКТОРІВ ВПЛИВУ НА ПОЖЕЖНІ РИЗИКИ У ЖИТЛОВОМУ СЕКТОРІ (НА ПРИКЛАДІ ЛЬВОВА)

    Get PDF
    Currently, issues of various factors on the impact of fire risks in residential sector are not studied. Existing methods of risk estimation calculates them for year, which does not take into account of their changes in time and space. Therefore more detailed analysis of fire risks and basic factors that have impact on them are urgent. We appraised in residential sector after the example of Lviv taking into account various factors: month in the year, season, administrative distribution, spatial structure of settlement in the town. Risks of fire in districts of Lviv are high and in some years are unacceptable, special in Galitskiy and Zaliznichniy districts. As a result of two-factor dispersive analysis is revealed, that season, location of building and both factors simultaneously have influence on risks of fire.На сьогодні питання впливу різноманітних факторів на пожежні ризики у житловому секторі ще не достатньо вивчені. Існуючі методики визначають ризики протягом року, що не дає змоги враховувати їх зміни в часі та просторі. Тому актуальним є більш детальний аналіз пожежних ризиків та основних факторів, що впливають на них. На прикладі м. Львова проведено оцінку ризиків у житловому секторі з урахуванням різноманітних факторів: місяця у році, пори року, адміністративного поділу, просторової структури заселення міста. Ризики виникнення пожеж в адміністративних районах Львова є високими, а в окремі роки – неприйнятними, особливо у Галицькому та Залізничному районах. За результатами двофакторного дисперсійного аналізу виявлено, що на ризики виникнення пожеж впливають: сезон, розташування будинків та обидва фактори одночасно

    Site-specific N-linked glycosylation analysis of human carcinoembryonic antigen by sheathless capillary electrophoresis-tandem mass spectrometry

    Get PDF
    With 28 potential N-glycosylation sites, human carcinoembryonic antigen (CEA) bears an extreme amount of N-linked glycosylation, and approximately 60% of its molecular mass can be attributed to its carbohydrates. CEA is often overexpressed and released by many solid tumors, including colorectal carcinomas. CEA displays an impressive heterogeneity and variability in sugar content, however site-specific distribution of carbohydrate structures has not been reported so far. The present study investigated CEA samples purified from human colon carcinoma and human liver metastases and enabled the characterization of 21 out of 28 potential N-glycosylation sites with respect to their occupancy. The coverage was achieved by a multi-enzymatic digestion approach with specific enzymes, such as trypsin, endoproteinase Glu-C, and the non-specific enzyme, pronase, followed by analysis using sheathless CE-MS/MS. In total, 893 different N-glycopeptides and 128 unique N-glycan compositions were identified. Overall, a great heterogeneity was found both within (micro) and in between (macro) individual N-glycosylation sites. Moreover, notable differences were found on certain N-glycosylation sites between primary adenocarcinoma and metastatic tumor in regard to branching, bisection, sialylation and fucosylation. Those features, if further investigated in a targeted manner, may pave the way towards improved diagnostics and monitoring of colorectal cancer progression and recurrence. Raw mass spectrometric data and Skyline processed data files that support the findings of this study are available in the MassIVE repository with the identifier MSV000086774 [https://doi.org/doi:10.25345/C5Z50X]

    Interaction of cyclin-dependent kinase 12/CrkRS with cyclin K1 is required for the phosphorylation of the C-terminal domain of RNA polymerase II

    Get PDF
    CrkRS (Cdc2-related kinase, Arg/Ser), or cyclin-dependent kinase 12 (CKD12), is a serine/threonine kinase believed to coordinate transcription and RNA splicing. While CDK12/CrkRS complexes were known to phosphorylate the C-terminal domain (CTD) of RNA polymerase II (RNA Pol II), the cyclin regulating this activity was not known. Using immunoprecipitation and mass spectrometry, we identified a 65-kDa isoform of cyclin K (cyclin K1) in endogenous CDK12/CrkRS protein complexes. We show that cyclin K1 complexes isolated from mammalian cells contain CDK12/CrkRS but do not contain CDK9, a presumed partner of cyclin K. Analysis of extensive RNA-Seq data shows that the 65-kDa cyclin K1 isoform is the predominantly expressed form across numerous tissue types. We also demonstrate that CDK12/CrkRS is dependent on cyclin K1 for its kinase activity and that small interfering RNA (siRNA) knockdown of CDK12/CrkRS or cyclin K1 has similar effects on the expression of a luciferase reporter gene. Our data suggest that cyclin K1 is the primary cyclin partner for CDK12/CrkRS and that cyclin K1 is required to activate CDK12/CrkRS to phosphorylate the CTD of RNA Pol II. These properties are consistent with a role of CDK12/CrkRS in regulating gene expression through phosphorylation of RNA Pol II

    The MRN complex is transcriptionally regulated by MYCN during neural cell proliferation to control replication stress

    Get PDF
    The MRE11/RAD50/NBS1 (MRN) complex is a major sensor of DNA double strand breaks, whose role in controlling faithful DNA replication and preventing replication stress is also emerging. Inactivation of the MRN complex invariably leads to developmental and/or degenerative neuronal defects, the pathogenesis of which still remains poorly understood. In particular, NBS1 gene mutations are associated with microcephaly and strongly impaired cerebellar development, both in humans and in the mouse model. These phenotypes strikingly overlap those induced by inactivation of MYCN, an essential promoter of the expansion of neuronal stem and progenitor cells, suggesting that MYCN and the MRN complex might be connected on a unique pathway essential for the safe expansion of neuronal cells. Here, we show that MYCN transcriptionally controls the expression of each component of the MRN complex. By genetic and pharmacological inhibition of the MRN complex in a MYCN overexpression model and in the more physiological context of the Hedgehog-dependent expansion of primary cerebellar granule progenitor cells, we also show that the MRN complex is required for MYCN-dependent proliferation. Indeed, its inhibition resulted in DNA damage, activation of a DNA damage response, and cell death in a MYCN- and replication-dependent manner. Our data indicate the MRN complex is essential to restrain MYCN-induced replication stress during neural cell proliferation and support the hypothesis that replication-born DNA damage is responsible for the neuronal defects associated with MRN dysfunctions.Cell Death and Differentiation advance online publication, 12 June 2015; doi:10.1038/cdd.2015.81

    Diquat Derivatives: Highly Active, Two-Dimensional Nonlinear Optical Chromophores with Potential Redox Switchability

    Get PDF
    In this article, we present a detailed study of structure−activity relationships in diquaternized 2,2′-bipyridyl (diquat) derivatives. Sixteen new chromophores have been synthesized, with variations in the amino electron donor substituents, π-conjugated bridge, and alkyl diquaternizing unit. Our aim is to combine very large, two-dimensional (2D) quadratic nonlinear optical (NLO) responses with reversible redox chemistry. The chromophores have been characterized as their PF_6^− salts by using various techniques including electronic absorption spectroscopy and cyclic voltammetry. Their visible absorption spectra are dominated by intense π → π^* intramolecular charge-transfer (ICT) bands, and all show two reversible diquat-based reductions. First hyperpolarizabilities β have been measured by using hyper-Rayleigh scattering with an 800 nm laser, and Stark spectroscopy of the ICT bands affords estimated static first hyperpolarizabilities β_0. The directly and indirectly derived β values are large and increase with the extent of π-conjugation and electron donor strength. Extending the quaternizing alkyl linkage always increases the ICT energy and decreases the E_(1/2) values for diquat reduction, but a compensating increase in the ICT intensity prevents significant decreases in Stark-based β_0 responses. Nine single-crystal X-ray structures have also been obtained. Time-dependent density functional theory clarifies the molecular electronic/optical properties, and finite field calculations agree with polarized HRS data in that the NLO responses of the disubstituted species are dominated by ‘off-diagonal’ β_(zyy) components. The most significant findings of these studies are: (i) β_0 values as much as 6 times that of the chromophore in the technologically important material (E)-4′-(dimethylamino)-N-methyl-4-stilbazolium tosylate; (ii) reversible electrochemistry that offers potential for redox-switching of optical properties over multiple states; (iii) strongly 2D NLO responses that may be exploited for novel practical applications; (iv) a new polar material, suitable for bulk NLO behavior

    Long-distance attachments and implications for tourism development: the case of the Western Ukrainian diaspora

    Get PDF
    This study analyzes the perspectives of roots tourism through the experiences of Western Ukrainian diaspora members. Their sense of attachment to the ancestral homeland and their visits to the places of origin are investigated, together with the views by tour operators specialized in roots tourism and public authorities dealing with tourism in the region, evaluating the actual or potential impact in terms of tourism development opportunities. The peculiar history of this territory makes it a distinct research target, with dynamics that are different from the rest of the country. The desire to turn Western Ukraine into a solid tourist destination and the aim of stimulating economic development in a region that is still struggling to re-emerge from its marginality are widespread and form a fertile basis for the growth of diaspora tourism as a solid asset. Lights and shadows emerge from the diaspora tourists’ experiences and perceptions. Specialized tour operators clearly see the enhancement of this form of tourism as an important business opportunity, while public authorities are not currently focusing on this segment, preferring general tourism promotion

    Sediment-laden sea ice in southern Hudson Bay: Entrainment, transport, and biogeochemical implications

    Get PDF
    During a research expedition in Hudson Bay in June 2018, vast areas of thick (>10 m), deformed sediment-laden sea ice were encountered unexpectedly in southern Hudson Bay and presented difficult navigation conditions for the Canadian Coast Guard Ship Amundsen. An aerial survey of one of these floes revealed a maximum ridge height of 4.6 m and an average freeboard of 2.2 m, which corresponds to an estimated total thickness of 18 m, far greater than expected within a seasonal ice cover. Samples of the upper portion of the ice floe revealed that it was isothermal and fresh in areas with sediment present on the surface. Fine-grained sediment and larger rocks were visible on the ice surface, while a pronounced sediment band was observed in an ice core. Initial speculation was that this ice had formed in the highly dynamic Nelson River estuary from freshwater, but δ^{18}O isotopic analysis revealed a marine origin. In southern Hudson Bay, significant tidal forcing promotes both sediment resuspension and new ice formation within a flaw lead, which we speculate promotes the formation of this sediment-laden sea ice. Historic satellite imagery shows that sediment-laden sea ice is typical of southern Hudson Bay, varying in areal extent from 47 to 118 km2 during June. Based on an average sediment particle concentration of 0.1 mg mL^{–1} in sea ice, an areal extent of 51,924 km2 in June 2018, and an estimated regional end-of-winter ice thickness of 1.5 m, we conservatively estimated that a total sediment load of 7.8 × 106 t, or 150 t km^{–2}, was entrained within sea ice in southern Hudson Bay during winter 2018. As sediments can alter carbon concentrations and light transmission within sea ice, these first observations of this ice type in Hudson Bay imply biogeochemical impacts for the marine system
    corecore