5,420 research outputs found

    Tectonics and volcanisms of Mars

    Get PDF
    Televised images of Mars transmitted from interplanetary stations are used to develop a theory of the structure and development of the planet. Crater chronology, the structure of planetary bodies in the Earth group, and a comparison of the Earth planetary bodies are among the factors included

    Ultrashort pulses and short-pulse equations in (2+1)−(2+1)-dimensions

    Full text link
    In this paper, we derive and study two versions of the short pulse equation (SPE) in (2+1)−(2+1)-dimensions. Using Maxwell's equations as a starting point, and suitable Kramers-Kronig formulas for the permittivity and permeability of the medium, which are relevant, e.g., to left-handed metamaterials and dielectric slab waveguides, we employ a multiple scales technique to obtain the relevant models. General properties of the resulting (2+1)(2+1)-dimensional SPEs, including fundamental conservation laws, as well as the Lagrangian and Hamiltonian structure and numerical simulations for one- and two-dimensional initial data, are presented. Ultrashort 1D breathers appear to be fairly robust, while rather general two-dimensional localized initial conditions are transformed into quasi-one-dimensional dispersing waveforms

    Is more memory in evolutionary selection (de)stabilizing?

    Get PDF
    We investigate the effects of memory on the stability of evolutionary selection dynamics based on a multi-nomial logit model in an asset pricing model with heterogeneous beliefs. Whether memory is stabilizing or destabilizing depends in general on three key factors: (1) whether or not the weights on past observations are normalized; (2) the ecology of forecasting rules, in particular the average strength of trend extrapolation and the spread in biased forecasts, and (3) whether or not costs for information gathering of economic fundamentals have to be incurred.

    A homoclinic tangle on the edge of shear turbulence

    Full text link
    Experiments and simulations lend mounting evidence for the edge state hypothesis on subcritical transition to turbulence, which asserts that simple states of fluid motion mediate between laminar and turbulent shear flow as their stable manifolds separate the two in state space. In this Letter we describe a flow homoclinic to a time-periodic edge state. Its existence explains turbulent bursting through the classical Smale-Birkhoff theorem. During a burst, vortical structures and the associated energy dissipation are highly localized near the wall, in contrast to the familiar regeneration cycle

    Internal and external factors of food security policy in Russia

    Get PDF
    The article substantiates that food security and food independence of Russia is accompanied by new internal and external factors. Counter-measures from Russia include quickened import substitution, modernization of agriculture, and investments for increase of efficiency and competitiveness under the conditions of growing economic, social, political, and natural & climatic turbulence. As to foreign policy, these counter-measures include membership in the WTO, integration into the Eurasian Economic Union, globalization of agricultural sphere, foreign sanctions against or limiting food import in Russia, and exchange of partners in export and import. Policy of food security and independence is conducted under the conditions of high inflation and is rather costly. Vectors of food security of Russia are differently directed, though there is economic growth of agriculture. Food security and food independence become a part of national security and independence. Innovational strategy of modernization of agriculture should be considered to be the highest priority of country’s development. Increase of support for Russian agriculture from state budget, regional budget, federal and regional programs, and subsidies are especially important.peer-reviewe

    Electron Mass Operator in a Strong Magnetic Field and Dynamical Chiral Symmetry Breaking

    Get PDF
    The electron mass operator in a strong magnetic field is calculated. The contribution of higher Landau levels of virtual electrons, along with the ground Landau level, is shown to be essential in the leading log approximation. The effect of the electron dynamical mass generation by a magnetic field is investigated. In a model with N charged fermions, it is shown that some critical number N_{cr} exists for any value of the electromagnetic coupling constant alpha, such that the fermion dynamical mass is generated with a doublet splitting for N < N_{cr}, and the dynamical mass does not arise at all for N > N_{cr}, thus leaving the chiral symmetry unbroken.Comment: 4 pages, REVTEX4, 3 figure

    B\"{a}cklund transformations for high-order constrained flows of the AKNS hierarchy: canonicity and spectrality property

    Full text link
    New infinite number of one- and two-point B\"{a}cklund transformations (BTs) with explicit expressions are constructed for the high-order constrained flows of the AKNS hierarchy. It is shown that these BTs are canonical transformations including B\"{a}cklund parameter η\eta and a spectrality property holds with respect to η\eta and the 'conjugated' variable μ\mu for which the point (η,μ)(\eta, \mu) belongs to the spectral curve. Also the formulas of m-times repeated Darboux transformations for the high-order constrained flows of the AKNS hierarchy are presented.Comment: 21 pages, Latex, to be published in J. Phys.

    Breathers on quantized superfluid vortices

    Get PDF
    We consider the propagation of breathers along a quantized superfluid vortex. Using the correspondence between the local induction approximation (LIA) and the nonlinear Schrödinger equation, we identify a set of initial conditions corresponding to breather solutions of vortex motion governed by the LIA. These initial conditions, which give rise to a long-wavelength modulational instability, result in the emergence of large amplitude perturbations that are localized in both space and time. The emergent structures on the vortex filament are analogous to loop solitons but arise from the dual action of bending and twisting of the vortex. Although the breather solutions we study are exact solutions of the LIA equations, we demonstrate through full numerical simulations that their key emergent attributes carry over to vortex dynamics governed by the Biot-Savart law and to quantized vortices described by the Gross-Pitaevskii equation. The breather excitations can lead to self-reconnections, a mechanism that can play an important role within the crossover range of scales in superfluid turbulence. Moreover, the observation of breather solutions on vortices in a field model suggests that these solutions are expected to arise in a wide range of other physical contexts from classical vortices to cosmological strings

    Universal behavior in populations composed of excitable and self-oscillatory elements

    Get PDF
    We study the robustness of self-sustained oscillatory activity in a globally coupled ensemble of excitable and oscillatory units. The critical balance to achieve collective self-sustained oscillations is analytically established. We also report a universal scaling function for the ensemble's mean frequency. Our results extend the framework of the `Aging Transition' [Phys. Rev. Lett. 93, 104101 (2004)] including a broad class of dynamical systems potentially relevant in biology.Comment: 4 pages; Changed titl
    • …
    corecore