In this paper, we derive and study two versions of the short pulse equation
(SPE) in (2+1)−dimensions. Using Maxwell's equations as a starting point, and
suitable Kramers-Kronig formulas for the permittivity and permeability of the
medium, which are relevant, e.g., to left-handed metamaterials and dielectric
slab waveguides, we employ a multiple scales technique to obtain the relevant
models. General properties of the resulting (2+1)-dimensional SPEs, including
fundamental conservation laws, as well as the Lagrangian and Hamiltonian
structure and numerical simulations for one- and two-dimensional initial data,
are presented. Ultrashort 1D breathers appear to be fairly robust, while rather
general two-dimensional localized initial conditions are transformed into
quasi-one-dimensional dispersing waveforms