24 research outputs found

    Phun With Phages: Discovering Novel Bacteriophages in the Soil

    Get PDF
    We used three bacterial hosts: Mycobacterium smegmatis, Microbacterium foliorum, and Gordonia terrae, to isolate novel bacteriophages from soil samples. We named these phages, created high titer lysates, and purified their DNA genomes. We have archived the high titer lysates at Northwestern College and the University of Pittsburgh. The genomes of three of our phages were sequences at the University of Pittsburgh and we will be sequencing the remaining genomes this summer. Additionally, we are planning to image our phages with transmission electron microscopy at the University of Iowa or Nebraska yet this semester

    Comprehensive Fragment Screening of the SARS-CoV-2 Proteome Explores Novel Chemical Space for Drug Development

    Get PDF
    12 pags., 4 figs., 3 tabs.SARS-CoV-2 (SCoV2) and its variants of concern pose serious challenges to the public health. The variants increased challenges to vaccines, thus necessitating for development of new intervention strategies including anti-virals. Within the international Covid19-NMR consortium, we have identified binders targeting the RNA genome of SCoV2. We established protocols for the production and NMR characterization of more than 80 % of all SCoV2 proteins. Here, we performed an NMR screening using a fragment library for binding to 25 SCoV2 proteins and identified hits also against previously unexplored SCoV2 proteins. Computational mapping was used to predict binding sites and identify functional moieties (chemotypes) of the ligands occupying these pockets. Striking consensus was observed between NMR-detected binding sites of the main protease and the computational procedure. Our investigation provides novel structural and chemical space for structure-based drug design against the SCoV2 proteome.Work at BMRZ is supported by the state of Hesse. Work in Covid19-NMR was supported by the Goethe Corona Funds, by the IWBEFRE-program 20007375 of state of Hesse, the DFG through CRC902: “Molecular Principles of RNA-based regulation.” and through infrastructure funds (project numbers: 277478796, 277479031, 392682309, 452632086, 70653611) and by European Union’s Horizon 2020 research and innovation program iNEXT-discovery under grant agreement No 871037. BY-COVID receives funding from the European Union’s Horizon Europe Research and Innovation Programme under grant agreement number 101046203. “INSPIRED” (MIS 5002550) project, implemented under the Action “Reinforcement of the Research and Innovation Infrastructure,” funded by the Operational Program “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014–2020) and co-financed by Greece and the EU (European Regional Development Fund) and the FP7 REGPOT CT-2011-285950—“SEE-DRUG” project (purchase of UPAT’s 700 MHz NMR equipment). The support of the CERM/CIRMMP center of Instruct-ERIC is gratefully acknowledged. This work has been funded in part by a grant of the Italian Ministry of University and Research (FISR2020IP_02112, ID-COVID) and by Fondazione CR Firenze. A.S. is supported by the Deutsche Forschungsgemeinschaft [SFB902/B16, SCHL2062/2-1] and the Johanna Quandt Young Academy at Goethe [2019/AS01]. M.H. and C.F. thank SFB902 and the Stiftung Polytechnische Gesellschaft for the Scholarship. L.L. work was supported by the French National Research Agency (ANR, NMR-SCoV2-ORF8), the Fondation de la Recherche Médicale (FRM, NMR-SCoV2-ORF8), FINOVI and the IR-RMN-THC Fr3050 CNRS. Work at UConn Health was supported by grants from the US National Institutes of Health (R01 GM135592 to B.H., P41 GM111135 and R01 GM123249 to J.C.H.) and the US National Science Foundation (DBI 2030601 to J.C.H.). Latvian Council of Science Grant No. VPP-COVID-2020/1-0014. National Science Foundation EAGER MCB-2031269. This work was supported by the grant Krebsliga KFS-4903-08-2019 and SNF-311030_192646 to J.O. P.G. (ITMP) The EOSC Future project is co-funded by the European Union Horizon Programme call INFRAEOSC-03-2020—Grant Agreement Number 101017536. Open Access funding enabled and organized by Projekt DEALPeer reviewe

    Large-Scale Recombinant Production of the SARS-CoV-2 Proteome for High-Throughput and Structural Biology Applications

    Get PDF
    The highly infectious disease COVID-19 caused by the Betacoronavirus SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international COVID19-NMR consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail. The research in COVID19-NMR and the resources provided through the consortium are fully disclosed to accelerate access and exploitation. NMR investigations of the viral molecular components are designated to provide the essential basis for further work, including macromolecular interaction studies and high-throughput drug screening. Here, we present the extensive catalog of a holistic SARS-CoV-2 protein preparation approach based on the consortium’s collective efforts. We provide protocols for the large-scale production of more than 80% of all SARS-CoV-2 proteins or essential parts of them. Several of the proteins were produced in more than one laboratory, demonstrating the high interoperability between NMR groups worldwide. For the majority of proteins, we can produce isotope-labeled samples of HSQC-grade. Together with several NMR chemical shift assignments made publicly available on covid19-nmr.com, we here provide highly valuable resources for the production of SARS-CoV-2 proteins in isotope-labeled form

    Applicability of Actigraphy for Assessing Sleep Behaviour in Children with Palliative Care Needs Benchmarked against the Gold Standard Polysomnography

    No full text
    In children with life-limiting conditions and severe neurological impairment receiving pediatric palliative care (PPC), the degree to which actigraphy generates meaningful sleep data is uncertain. Benchmarked against the gold standard polysomnography (PSG), the applicability of actigraphy in this complex population was to be assessed. An actigraph was placed on N = 8 PPC patients during one-night polysomnography measurement in a pediatric tertiary care hospital’s sleep laboratory. Patient characteristics, sleep phase data, and respiratory abnormalities are presented descriptively. Bland-Altman plots evaluated actigraphy’s validity regarding sleep onset, sleep offset, wake after sleep onset (WASO), number of wake phases, total sleep time (TST) and sleep efficiency compared to PSG. PSG revealed that children spent most of their time in sleep stage 2 (46.6%) and most frequently showed central apnea (28.7%) and irregular hypopnea (14.5%). Bland-Altman plots showed that actigraphy and PSG gave similar findings for sleep onset, sleep offset, wake after sleep onset (WASO), total sleep time (TST) and sleep efficiency. Actigraphy slightly overestimated TST and sleep efficiency while underestimating all other parameters. Generally, the Actiwatch 2 low and medium sensitivity levels showed the best approximation to the PSG values. Actigraphy seems to be a promising method for detecting sleep problems in severely ill children

    Increased memory load-related frontal activation after estradiol treatment in postmenopausal women

    No full text
    Prior research shows that menopause is associated with changes in cognition in some older women. However, how estrogen loss and subsequent estrogen treatment affects cognition and particularly the underlying brain processes responsible for any cognitive changes is less well understood. We examined the ability of estradiol to modulate the manipulation of information in working memory and related brain activation in postmenopausal women. Twenty healthy postmenopausal women (mean age (SD)=59.13 (5.5)) were randomly assigned to three months of 1mg oral 17-beta estradiol or placebo. At baseline and three months later each woman completed a visual verbal N-back sequential letter test of working memory during functional magnetic resonance imaging (fMRI). The fMRI data showed that women who were treated with estradiol for three months had increased frontal activation during the more difficult working memory load conditions compared to women treated with placebo. Performance on the verbal working memory task showed no difference between estradiol and placebo treated subjects. These data are consistent with prior work showing increases in frontal activation on memory tasks after estrogen treatment. However, this is the first study to show that estrogen-induced increases in brain activity were tied to cognitive load during a verbal working memory task. These data suggest that estradiol treatment effects on cognition may be in part produced through modulation of frontal lobe functioning under difficult task conditions

    Estradiol treatment altered anticholinergic-related brain activation during working memory in postmenopausal women

    No full text
    Estradiol has been shown to affect cholinergic modulation of cognition in human and nonhuman animal models. This study examined the brain-based interaction of estradiol treatment and anticholinergic challenge in postmenopausal women during the performance of a working memory task and functional MRI. Twenty-four postmenopausal women were randomly and blindly placed on 1mg oral 17-beta estradiol or matching placebo pills for three months after which they participated in three anticholinergic challenge sessions. During the challenge sessions, subjects were administered the antimuscarinic drug scopolamine, the antinicotinic drug mecamylamine, or placebo. After drug administration, subjects completed an fMRI session during which time they performed a visual verbal N-back test of working memory. Results showed that scopolamine increased activation in the left medial frontal gyrus (BA 10) and mecamylamine increased activation in the left inferior frontal gyrus (BA 46). Estradiol treatment compared to placebo treatment significantly reduced the activation in this left medial frontal region during scopolamine challenge. Estradiol treatment also increased activation in the precuneus (BA 31) during mecamylamine challenge. These data are the first to show that estradiol modulated antimuscarinic- and anitnicotinic-induced brain activity and suggest that estradiol affected cholinergic system regulation of cognition-related brain activation in humans

    Establishment of an animal model of depression contagion

    No full text
    BackgroundDepression is a common and important cause of morbidity, and results in a significant economic burden. Recent human studies have demonstrated that that depression is contagious, and depression in family and friends might cumulatively increase the likelihood that a person will exhibit depressive behaviors. The mechanisms underlying contagion depression are poorly understood, and there are currently no animal models for this condition.MethodsRats were divided into 3 groups: depression group, contagion group, and control group. After induction of depression by 5 weeks of chronic unpredictable stress, rats from the contagion group were housed with the depressed rats (1 naïve rat with 2 depressed rats) for 5 weeks. Rats were then subjected to sucrose preference, open field, and forced swim tests.ResultsThe sucrose preference was significantly reduced in the depressed rats (p<0.01) and contagion depression rats (p<0.01). Climbing time during forced swim test was reduced in the depression and contagion depression groups (p<0.001), whereas immobility time was significantly prolonged in only the depression group (p<0.001). Rats in both the depression (p<0.05) and depression contagion group (p<0.005) had decreased total travel distance and decreased mean velocity in the open field test, whereas the time spent in the central part was significantly shorter in only the depression group (p<0.001).ConclusionsIn this study, for the first time we demonstrated depression contagion in an animal model. A reliable animal model may help better understand the underlying mechanisms of contagion depression, and may allow for future investigations of the studying therapeutic modalities
    corecore