24 research outputs found

    Dynamic changes in gene expression in vivo predict prognosis of tamoxifen-treated patients with breast cancer

    Get PDF
    Introduction: Tamoxifen is the most widely prescribed anti-estrogen treatment for patients with estrogen receptor (ER)-positive breast cancer. However, there is still a need for biomarkers that reliably predict endocrine sensitivity in breast cancers and these may well be expressed in a dynamic manner. Methods: In this study we assessed gene expression changes at multiple time points (days 1, 2, 4, 7, 14) after tamoxifen treatment in the ER-positive ZR-75-1 xenograft model that displays significant changes in apoptosis, proliferation and angiogenesis within 2 days of therapy. Results: Hierarchical clustering identified six time-related gene expression patterns, which separated into three groups: two with early/transient responses, two with continuous/late responses and two with variable response patterns. The early/transient response represented reductions in many genes that are involved in cell cycle and proliferation (e.g. BUB1B, CCNA2, CDKN3, MKI67, UBE2C), whereas the continuous/late changed genes represented the more classical estrogen response genes (e.g. TFF1, TFF3, IGFBP5). Genes and the proteins they encode were confirmed to have similar temporal patterns of expression in vitro and in vivo and correlated with reduction in tumour volume in primary breast cancer. The profiles of genes that were most differentially expressed on days 2, 4 and 7 following treatment were able to predict prognosis, whereas those most changed on days 1 and 14 were not, in four tamoxifen treated datasets representing a total of 404 patients. Conclusions: Both early/transient/proliferation response genes and continuous/late/estrogen-response genes are able to predict prognosis of primary breast tumours in a dynamic manner. Temporal expression of therapy-response genes is clearly an important factor in characterising the response to endocrine therapy in breast tumours which has significant implications for the timing of biopsies in neoadjuvant biomarker studies.Publisher PDFPeer reviewe

    Soil foraging animals alter the composition and co-occurrence of microbial communities in a desert shrubland

    Get PDF
    Animals that modify their physical environment by foraging in the soil can have dramatic effects on ecosystem functions and processes. We compared bacterial and fungal communities in the foraging pits created by bilbies and burrowing bettongs with undisturbed surface soils dominated by biocrusts. Bacterial communities were characterized by Actinobacteria and Alphaproteobacteria, and fungal communities by Lecanoromycetes and Archaeosporomycetes. The composition of bacterial or fungal communities was not observed to vary between loamy or sandy soils. There were no differences in richness of either bacterial or fungal operational taxonomic units (OTUs) in the soil of young or old foraging pits, or undisturbed soils. Although the bacterial assemblage did not vary among the three microsites, the composition of fungi in undisturbed soils was significantly different from that in old or young foraging pits. Network analysis indicated that a greater number of correlations between bacterial OTUs occurred in undisturbed soils and old pits, whereas a greater number of correlations between fungal OTUs occurred in undisturbed soils. Our study suggests that digging by soil-disturbing animals is likely to create successional shifts in soil microbial and fungal communities, leading to functional shifts associated with the decomposition of organic matter and the fixation of nitrogen. Given the primacy of organic matter decomposition in arid and semi-arid environments, the loss of native soil-foraging animals is likely to impair the ability of these systems to maintain key ecosystem processes such as the mineralization of nitrogen and the breakdown of organic matter, and to recover from disturbance

    Evaluating the effectiveness and cost-effectiveness of Dementia Care Mapping™ to enable person-centred care for people with dementia and their carers (DCM-EPIC) in care homes: study protocol for a randomised controlled trial

    Get PDF
    Background Up to 90 % of people living with dementia in care homes experience one or more behaviours that staff may describe as challenging to support (BSC). Of these agitation is the most common and difficult to manage. The presence of agitation is associated with fewer visits from relatives, poorer quality of life and social isolation. It is recommended that agitation is treated through psychosocial interventions. Dementia Care Mapping™ (DCM™) is an established, widely used observational tool and practice development cycle, for ensuring a systematic approach to providing person-centred care. There is a body of practice-based literature and experience to suggests that DCM™ is potentially effective but limited robust evidence for its effectiveness, and no examination of its cost-effectiveness, as a UK health care intervention. Therefore, a definitive randomised controlled trial (RCT) of DCM™ in the UK is urgently needed. Methods/design A pragmatic, multi-centre, cluster-randomised controlled trial of Dementia Care Mapping (DCM™) plus Usual Care (UC) versus UC alone, where UC is the normal care delivered within the care home following a minimum level of dementia awareness training. The trial will take place in residential, nursing and dementia-specialist care homes across West Yorkshire, Oxfordshire and London, with residents with dementia. A random sample of 50 care homes will be selected within which a minimum of 750 residents will be registered. Care homes will be randomised in an allocation ratio of 3:2 to receive either intervention or control. Outcome measures will be obtained at 6 and 16 months following randomisation. The primary outcome is agitation as measured by the Cohen-Mansfield Agitation Inventory, at 16 months post randomisation. Key secondary outcomes are other BSC and quality of life. There will be an integral cost-effectiveness analysis and a process evaluation. Discussion The protocol was refined following a pilot of trial procedures. Changes include replacement of a questionnaire, whose wording caused some residents distress, to an adapted version specifically designed for use in care homes, a change to the randomisation stratification factors, adaption in how the staff measures are collected to encourage greater compliance, and additional reminders to intervention homes of when mapping cycles are due, via text message. Trial registration Current Controlled Trials ISRCTN82288852. Registered on 16 January 2014. Full protocol version and date: v7.1: 18 December 2015

    Genome Sequencing and Analysis of the Biomass-Degrading Fungus \u3ci\u3eTrichoderma reesei\u3c/i\u3e (syn. \u3ci\u3eHypocrea jecorina\u3c/i\u3e)

    Get PDF
    Trichoderma reesei is the main industrial source of cellulases and hemicellulases used to depolymerize biomass to simple sugars that are converted to chemical intermediates and biofuels, such as ethanol. We assembled 89 scaffolds (sets of ordered and oriented contigs) to generate 34 Mbp of nearly contiguous T. reesei genome sequence comprising 9,129 predicted gene models. Unexpectedly, considering the industrial utility and effectiveness of the carbohydrate-active enzymes of T. reesei, its genome encodes fewer cellulases and hemicellulases than any other sequenced fungus able to hydrolyze plant cell wall polysaccharides. Many T. reesei genes encoding carbohydrate-active enzymes are distributed nonrandomly in clusters that lie between regions of synteny with other Sordariomycetes. Numerous genes encoding biosynthetic pathways for secondary metabolites may promote survival of T. reesei in its competitive soil habitat, but genome analysis provided little mechanistic insight into its extraordinary capacity for protein secretion. Our analysis, coupled with the genome sequence data, provides a roadmap for constructing enhanced T. reesei strains for industrial applications such as biofuel production

    Fueling the future with fungal genomics

    No full text
    Fungi play important roles across the range of current and future biofuel production processes. From crop/feedstock health to plant biomass saccharification, enzyme production to bioprocesses for producing ethanol, higher alcohols, or future hydrocarbon biofuels, fungi are involved. Research and development are underway to understand the underlying biological processes and improve them to make bioenergy production efficient on an industrial scale. Genomics is the foundation of the systems biology approach that is being used to accelerate the research and development efforts across the spectrum of topic areas that impact biofuels production. In this review, we discuss past, current, and future advances made possible by genomic analyses of the fungi that impact plant/feedstock health, degradation of lignocellulosic biomass, and fermentation of sugars to ethanol, hydrocarbon biofuels, and renewable chemicals
    corecore