276 research outputs found

    Slug (Snai2) Expression during Skin and Hair Follicle Development

    Get PDF

    Ultraviolet Radiation and the Slug Transcription Factor Induce Proinflammatory and Immunomodulatory Mediator Expression in Melanocytes

    Get PDF
    Despite extensive investigation, the precise contribution of the ultraviolet radiation (UVR) component of sunlight to melanoma etiology remains unclear. UVR induces keratinocytes to secrete proinflammatory and immunomodulatory mediators that promote inflammation and skin tumor development; expression of the slug transcription factor in keratinocytes is required for maximal production of these mediators. In the present studies we examined the possibility that UVR-exposed melanocytes also produce proinflammatory mediators and that Slug is important in this process. Microarray studies revealed that both UVR exposure and Slug overexpression altered transcription of a variety of proinflammatory mediators by normal human melanocytes; some of these mediators are also known to stimulate melanocyte growth and migration. There was little overlap in the spectra of cytokines produced by the two stimuli. However IL-20 was similarly induced by both stimuli and the NFκB pathway appeared to be important in both circumstances. Further exploration of UVR-induced and Slug-dependent pathways of cytokine induction in melanocytes may reveal novel targets for melanoma therapy

    Loss of DNA polymerase zeta enhances spontaneous tumorigenesis.

    Get PDF
    Mammalian genomes encode at least 15 distinct DNA polymerases, functioning as specialists in DNA replication, DNA repair, recombination, or bypass of DNA damage. Although the DNA polymerase zeta (polzeta) catalytic subunit REV3L is important in defense against genotoxins, little is known of its biological function. This is because REV3L is essential during embryogenesis, unlike other translesion DNA polymerases. Outstanding questions include whether any adult cells are viable in the absence of polzeta and whether polzeta status influences tumorigenesis. REV3L-deficient cells have properties that could influence the development of neoplasia in opposing ways: markedly reduced damage-induced point mutagenesis and extensive chromosome instability. To answer these questions, Rev3L was conditionally deleted from tissues of adult mice using MMTV-Cre. Loss of REV3L was tolerated in epithelial tissues but not in the hematopoietic lineage. Thymic lymphomas in Tp53(-/-) Rev3L conditional mice occurred with decreased latency and higher incidence. The lymphomas were populated predominantly by Rev3L-null T cells, showing that loss of Rev3L can promote tumorigenesis. Remarkably, the tumors were frequently oligoclonal, consistent with accelerated genetic changes in the absence of Rev3L. Mammary tumors could also arise from Rev3L-deleted cells in both Tp53(+/+) and Tp53(+/-) backgrounds. Mammary tumors in Tp53(+/-) mice deleting Rev3L formed months earlier than mammary tumors in Tp53(+/-) control mice. Prominent preneoplastic changes in glandular tissue adjacent to these tumors occurred only in mice deleting Rev3L and were associated with increased tumor multiplicity. Polzeta is the only specialized DNA polymerase yet identified that inhibits spontaneous tumor development

    Differential Downregulation of E-Cadherin and Desmoglein by Epidermal Growth Factor

    Get PDF
    Modulation of cell : cell junctions is a key event in cutaneous wound repair. In this study we report that activation of the epidermal growth factor (EGF) receptor disrupts cell : cell adhesion, but with different kinetics and fates for the desmosomal cadherin desmoglein and for E-cadherin. Downregulation of desmoglein preceded that of E-cadherin in vivo and in an EGF-stimulated in vitro wound reepithelialization model. Dual immunofluorescence staining revealed that neither E-cadherin nor desmoglein-2 internalized with the EGF receptor, or with one another. In response to EGF, desmoglein-2 entered a recycling compartment based on predominant colocalization with the recycling marker Rab11. In contrast, E-cadherin downregulation was accompanied by cleavage of the extracellular domain. A broad-spectrum matrix metalloproteinase inhibitor protected E-cadherin but not the desmosomal cadherin, desmoglein-2, from EGF-stimulated disruption. These findings demonstrate that although activation of the EGF receptor regulates adherens junction and desmosomal components, this stimulus downregulates associated cadherins through different mechanisms

    Differential Downregulation of E-Cadherin and Desmoglein by Epidermal Growth Factor

    Get PDF
    Modulation of cell : cell junctions is a key event in cutaneous wound repair. In this study we report that activation of the epidermal growth factor (EGF) receptor disrupts cell : cell adhesion, but with different kinetics and fates for the desmosomal cadherin desmoglein and for E-cadherin. Downregulation of desmoglein preceded that of E-cadherin in vivo and in an EGF-stimulated in vitro wound reepithelialization model. Dual immunofluorescence staining revealed that neither E-cadherin nor desmoglein-2 internalized with the EGF receptor, or with one another. In response to EGF, desmoglein-2 entered a recycling compartment based on predominant colocalization with the recycling marker Rab11. In contrast, E-cadherin downregulation was accompanied by cleavage of the extracellular domain. A broad-spectrum matrix metalloproteinase inhibitor protected E-cadherin but not the desmosomal cadherin, desmoglein-2, from EGF-stimulated disruption. These findings demonstrate that although activation of the EGF receptor regulates adherens junction and desmosomal components, this stimulus downregulates associated cadherins through different mechanisms

    In search of strategic assets through cross-border merger and acquisitions: evidence from Chinese multinational enterprises in developed economies

    Get PDF
    Drawing on multiple cases of cross-border merger and acquisitions (CBMAs) by Chinese multinational enterprises (CMNEs), we investigate their search of strategic assets in developed economies (DEs). It is a received view that CMNEs use CBMAs to access strategic assets in DEs so as to address their latecomer disadvantages and competitive weakness. This paper aims to identify the nature of strategic assets that sought after by CMNEs and the post-CBMA integration approach, a partnering approach, adopted in enabling access to these assets. The findings reveal that CMNEs possess firm-specific assets that give them competitive advantages at home and seek for complementary strategic assets in the similar domain, but at a more advanced level. The partnering approach helps securing these strategic assets through no or limited integration, giving autonomy to target firm management team, retaining talents and creating synergy

    SNAI2/Slug promotes growth and invasion in human gliomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Numerous factors that contribute to malignant glioma invasion have been identified, but the upstream genes coordinating this process are poorly known.</p> <p>Methods</p> <p>To identify genes controlling glioma invasion, we used genome-wide mRNA expression profiles of primary human glioblastomas to develop an expression-based rank ordering of 30 transcription factors that have previously been implicated in the regulation of invasion and metastasis in cancer.</p> <p>Results</p> <p>Using this approach, we identified the oncogenic transcriptional repressor, <it>SNAI2</it>/Slug, among the upper tenth percentile of invasion-related transcription factors overexpressed in glioblastomas. <it>SNAI2 </it>mRNA expression correlated with histologic grade and invasive phenotype in primary human glioma specimens, and was induced by EGF receptor activation in human glioblastoma cells. Overexpression of <it>SNAI2/</it>Slug increased glioblastoma cell proliferation and invasion <it>in vitro </it>and promoted angiogenesis and glioblastoma growth <it>in vivo</it>. Importantly, knockdown of endogenous <it>SNAI2</it>/Slug in glioblastoma cells decreased invasion and increased survival in a mouse intracranial human glioblastoma transplantation model.</p> <p>Conclusion</p> <p>This genome-scale approach has thus identified <it>SNAI2</it>/Slug as a regulator of growth and invasion in human gliomas.</p

    Generation and Characterization of Mice Carrying a Conditional Allele of the Wwox Tumor Suppressor Gene

    Get PDF
    WWOX, the gene that spans the second most common human chromosomal fragile site, FRA16D, is inactivated in multiple human cancers and behaves as a suppressor of tumor growth. Since we are interested in understanding WWOX function in both normal and cancer tissues we generated mice harboring a conditional Wwox allele by flanking Exon 1 of the Wwox gene with LoxP sites. Wwox knockout (KO) mice were developed by breeding with transgenic mice carrying the Cre-recombinase gene under the control of the adenovirus EIIA promoter. We found that Wwox KO mice suffered from severe metabolic defect(s) resulting in growth retardation and all mice died by 3 wk of age. All Wwox KO mice displayed significant hypocapnia suggesting a state of metabolic acidosis. This finding and the known high expression of Wwox in kidney tubules suggest a role for Wwox in acid/base balance. Importantly, Wwox KO mice displayed histopathological and hematological signs of impaired hematopoeisis, leukopenia, and splenic atrophy. Impaired hematopoeisis can also be a contributing factor to metabolic acidosis and death. Hypoglycemia and hypocalcemia was also observed affecting the KO mice. In addition, bone metabolic defects were evident in Wwox KO mice. Bones were smaller and thinner having reduced bone volume as a consequence of a defect in mineralization. No evidence of spontaneous neoplasia was observed in Wwox KO mice. We have generated a new mouse model to inactivate the Wwox tumor suppressor gene conditionally. This will greatly facilitate the functional analysis of Wwox in adult mice and will allow investigating neoplastic transformation in specific target tissues

    Postnatal Expansion of the Pancreatic β-Cell Mass Is Dependent on Survivin

    Get PDF
    OBJECTIVE—Diabetes results from a deficiency of functional β-cells due to both an increase in β-cell death and an inhibition of β-cell replication. The molecular mechanisms responsible for these effects in susceptible individuals are mostly unknown. The objective of this study was to determine whether a gene critical for cell division and cell survival in cancer cells, survivin, might also be important for β-cells
    corecore