45 research outputs found

    Investigation of nanometer scale charge carrier density variations with scattering-type scanning near-field microscopy in the THz regime

    Get PDF
    Near-field microscopy is a versatile technique for non-destructive detection of optical properties on the nanometer scale. Contrary to conventional microscopy techniques, the resolution in near-field microscopy is not restricted by the diffraction limit, but by the size of the probe only. Typically, wavelength-independent resolution in the range of few ten nanometers can be achieved. Many fundamental phenomena in solid states occur at such small length scales and can be probed by infrared and THz radiation. In the present work, nanoscale charge carrier distributions were investigated with near-field microscopy in classic semiconductors and state-of-the-art graphene field-effect transistors. A CO2 laser, the free-electron laser FELBE at the Helmholtz-Zentrum Dresden Rossendorf and a photoconductive antenna were applied as radiation sources for illumination of the samples. In the theoretical part of the work, the band model for charge carriers in semiconductors is briefly explained to derive typical charge carrier densities of such materials. The influence of the charge carriers to the light-matter interaction is introduced via the Drude model and evaluated for both infrared and THz radiation. In field-effect transistors, charge carrier density waves can occur when strong AC fields are coupled into the device. The phenomena in such transistors are introduced as a more complex material system. To describe the near-field coupling of the samples to the nanoscopic probe, the dipole model is introduced and extended for periodic charge carrier density, as elicited by low repetition-rate excitation lasers. Consequently, sidebands occur as new frequencies in the signal spectrum, allowing for a more sensitive probing of such transient processes. Experimental investigations of these sidebands were performed with a CO2 laser setup on a bulk germanium sample which was excited with femtosecond laser pulses. New frequencies up to the 8th sideband could be observed. The results show a characteristic near-field decay for all sidebands when the probe-sample distance is increased. A nanoscale material contrast in the sidebands signatures has been demonstrated via near-field scans on a gold / germanium heterostructure. Near-field signatures of graphene-field effect transistors have been examined utilizing FELBE. The results match the predicted behavior of charge carriers in such a device and in particular represent the first direct observations of the plasma waves. In collaboration with the group of Prof. Dr. Hartmut G. Roskos (Goethe-Universität Frankfurt), the plasma wave velocity in the graphene field-effect transistor has been derived via fitting to the model for two datasets on different devices from independent fabrications. The obtained velocity is in good agreement with literature values. The results promise the application of field-effect transistors as THz detectors and emitters and may lead to faster communication technology.:1 Introduction 2 Fundamentals 2.1 Semiconductors 2.2 Plasma Waves in Graphene Field-Effect Transistors 2.3 Near-Field Microscopy 2.3.1 Aperture-SNOM 2.3.2 Scattering-SNOM 2.4 THz Optics 3 SNOM-Theory 3.1 Dipole Model 3.2 Detection and Demodulation 3.3 Pump-induced Sidebands in SNOM 3.4 Field Enhancement by Resonant Probes 4 Near-Field Microscope Setups 4.1 FELBE THz SNOM 4.2 Pump-modulated s-SNOM 4.3 THz Time-Domain-Spectroscopy SNOM 5 Sideband Results 5.1 Pump-induced Sidebands in Germanium 5.2 Fluence Dependence 5.3 Higher-order sidebands 5.4 Oscillation Amplitude 5.5 Technical Aspects of the Sideband Demodulation 6 Field-Effect Transistors 6.1 Device Design 6.2 Data Analysis 6.3 Near-Field Overview Scans 6.4 Plasma Wave Examination 6.5 Conclusion 7 Discussion and Outlook A Appendix A.1 Scanning Probe Microscopy A.2 Atomic Force Microscope List of Figures BibliographyNahfeldmikroskopie ist eine vielseite Technik für das zerstörungsfreie Auslesen von optischen Eigenschaften auf der Nanoskala. Im Gegensatz zur konventionellen Mikroskopie ist die Auflösung nicht durch Beugungseffekte, sondern durch die Größe der genutzten Sonde begrenzt. Überlicherweise werden wellenlängenunabhängig Auflösungen von einigen zehn Nanometern erreicht. Viele fundamentale Prozesse in der Festkörperphysik treten auf Längenskalen dieser Größenordnung auf und können mit Infrarot- und THz-Strahlung untersucht werden. In dieser Arbeit wurden nanoskalige Ladungsträgerverteilungen mit Rasternahfeldmikroskopie untersucht, einerseits in klassischen Halbleitern, anderseits in state-of-the-art Graphen Feldeffekttransistoren. Zur Beleuchtung der Proben wurden ein CO2 Laser, der freie-Elektronen Laser FELBE am Helmholtz-Zentrum Dresden-Rossendorf und eine photoleitende Antenne verwendet. Im theoretischen Teil der Arbeit wird das Bändermodell für Ladungsträger in Halbleitern erklärt, um daraus typische Ladungsträgerdichten in diesen Materialien abzuleiten. Der Einfluss der Ladungsträger auf die Interaktion mit Strahlung wird durch das Drude-Modell eingeführt und für Infrarot- und THz-Strahlung abgeschätzt. In Graphen Feldeffekttransistoren können Ladungsträgerdichtewellen auftreten, wenn starke Wechselfelder in das Bauelement eingekoppelt werden. Die Prozesse in solchen Transistoren werden als komplexeres Materialsystem eingeführt. Um die Nahfeldkopplung der Proben an die Sonde zu beschreiben, wird das Dipol-Modell eingeführt und für periodische Ladungsträgerdichten erweitert, wie sie bspw. durch Pumplaser mit niedrigen Repetitionsraten erzeugt werden können. In der Folge entstehen Seitenbänder als neue Frequenzen im Signalspektrum, welche eine sensitivere Messung solcher transienten Prozesse ermöglichen. Experimentelle Untersuchungen des erweiterten Dipol-Modells wurden mit einem CO2 Laser Aufbau an einem Germaniumkristall durchgeführt, welcher mit Femtosekunden Laserpulsen angeregt wird. Neue Frequenzen im Spektrum konnten bis zu dem achten Seitenband beobachtet werden. Die Resultate zeigen den typischen Abfall des Nahfeldes, wenn der Abstand zwischen Sonde und Probe vergrößert wird. Ein Materialkontrast auf der Nanoskale im Seitenband-Signal konnte durch laterale Rasternahfeld-Scans auf einer Gold/Germanium Heterostruktur gezeigt werden. Die Nahfeldsignaturen der Graphen Feldeffekttransistoren wurden mit FELBE untersucht. Die Resultate stimmen mit dem vorausgesagtem Verhalten der Ladungsträger in einem solchen Bauteil überein und sind die erste direkte Beobachtung solcher Plasmawellen. In Kooperation mit der Gruppe um Prof. Dr. Hartmut G. Roskos (Goethe-Universität Frankfurt) wurde die Geschwindigkeit der Plasmawelle durch Regression der Daten berechnet. Dabei wurden zwei Datensätzen an Bauteilen von unabhängigen Fabrikationsprozessen genutzt. Die berechnete Geschwindigkeit ist in guter Übereinstimmung mit Literaturwerten. Die Resultate verheißen die Anwendung von Feldeffekttransistoren als THz Sender und Detektoren und könnten zu schnellerer Kommunikationstechnologie führen.:1 Introduction 2 Fundamentals 2.1 Semiconductors 2.2 Plasma Waves in Graphene Field-Effect Transistors 2.3 Near-Field Microscopy 2.3.1 Aperture-SNOM 2.3.2 Scattering-SNOM 2.4 THz Optics 3 SNOM-Theory 3.1 Dipole Model 3.2 Detection and Demodulation 3.3 Pump-induced Sidebands in SNOM 3.4 Field Enhancement by Resonant Probes 4 Near-Field Microscope Setups 4.1 FELBE THz SNOM 4.2 Pump-modulated s-SNOM 4.3 THz Time-Domain-Spectroscopy SNOM 5 Sideband Results 5.1 Pump-induced Sidebands in Germanium 5.2 Fluence Dependence 5.3 Higher-order sidebands 5.4 Oscillation Amplitude 5.5 Technical Aspects of the Sideband Demodulation 6 Field-Effect Transistors 6.1 Device Design 6.2 Data Analysis 6.3 Near-Field Overview Scans 6.4 Plasma Wave Examination 6.5 Conclusion 7 Discussion and Outlook A Appendix A.1 Scanning Probe Microscopy A.2 Atomic Force Microscope List of Figures Bibliograph

    Gp130 Signaling In POMC Neurons Is Required For CNTF-Induced Anorexia

    Get PDF
    Der ciliare neurotrophe Faktor (CNTF) übt seine anorexigene Wirkung über die Aktivierung hypothalamischer Neurone aus und ist damit sogar in der Lage, eine bestehende Leptin-Resistenz zu überwinden. Die genaue Wirkweise von CNTF an Neuronen des Hypothalamus ist bislang jedoch unklar. Um den Effekt der CNTFWirkung an Pro-opiomelanocortin- (POMC-) ausprägenden Neuronen des Hypothalamus zu untersuchen, wurde mithilfe des Cre-loxP-Systems in der Maus das für die CNTF-Signalkaskade notwendige Glykoprotein 130 (GP130) selektiv in POMC ausprägenden Neuronen inaktiviert. Die so entstandenen POMC-spezifischen GP130-Knockout-Mäuse wiesen sowohl unter Standardernährung als auch unter fettreicher Ernährung eine reguläre Anzahl an POMC-Zellen und normale Parameter der Energie-Homöostase auf. Die durch Endotoxin (LPS) und Stress induzierte Anorexie war in diesen Tieren ebenso wenig verändert, wie die Regulation von Adrenokortikotropin. Bemerkenswert war jedoch, dass POMC-spezifische GP130- Knockout-Mäuse nach zentraler CNTF-Gabe eine deutlich abgeschwächte Reduktion der Nahrungsaufnahme zeigten. Ebenso war CNTF in diesen Tieren nicht in der Lage, eine STAT3-Phosphorylierung zu bewirken und c-Fos Expression im paraventrikulären Nukleus hervorzurufen. Zusätzliche Langzeitstudien zeigten, dass POMC-spezifische GP130-Knockout-Tiere im Verlauf einer systemischen CNTFBehandlung deutlich weniger Körpergewicht verlieren, als Wildtyp-Mäuse. Diese Daten verdeutlichen, dass POMC Neurone eine entscheidende Rolle in der Vermittlung der anorexigenen und Körpergewichts-reduzierenden Wirkung von CNTF spielen

    A Local Superlens

    Get PDF
    Superlenses enable near-field imaging beyond the optical diffraction limit. However, their widespread implementation in optical imaging technology so far has been limited by large-scale fabrication, fixed lens position, and specific object materials. Here we demonstrate that a dielectric lamella of subwavelength size in all three spatial dimensions behaves as a compact superlens that operates at infrared wavelengths and can be positioned to image any local microscopic area of interest on the sample. In particular, the lamella superlens may be placed in contact with any type of object and therefore enables examination of hard-to-scan samples, for example, with high topography or in liquids, without altering the specimen design. This lamella-based local superlens design is directly applicable to subwavelength light-based technology, such as integrated optics

    Terahertz-slicing -- an all-optical synchronization for 4th generation light sources

    Get PDF
    A conceptually new approach to synchronizing accelerator-based light sources and external laser systems is presented. The concept is based on utilizing a sufficiently intense accelerator-based single-cycle terahertz pulse to slice a thereby intrinsically synchronized femtosecond-level part of a longer picosecond laser pulse in an electro-optic crystal. A precise synchronization of the order of 10 fs is demonstrated, allowing for real-time lock-in amplifier signal demodulation. We demonstrate successful operation of the concept with three benchmark experiments using a 4th generation accelerator-based terahertz light source, i.e. (i) far-field terahertz time-domain spectroscopy, (ii) terahertz high harmonic generation spectroscopy, and (iii) terahertz scattering-type scanning near-field optical microscopy

    COMPASSO mission and its iodine clock: outline of the clock design

    Get PDF
    One of the limiting factors for GNSS geolocation capabilities is the clock technology deployed on the satellites and the knowledge of the satellite position. Consequently, there are numerous ongoing efforts to improve the stability of space-deployable clocks for next-generation GNSS. The COMPASSO mission is a German Aerospace Center (DLR) project to demonstrate high-performance quantum optical technologies in space with two laser-based absolute frequency references, a frequency comb and a laser communication and ranging terminal establishing a link with the ground station located in Oberpfaffenhofen, Germany. A successful mission will strongly improve the timing stability of space-deployable clocks, demonstrate time transfer between different clocks and allow for ranging in the mm-range. Thus, the technology is a strong candidate for future GNSS satellite clocks and offers possibilities for novel satellite system architectures and can improve the performance of scientific instruments as well. The COMPASSO payload will be delivered to the international space station in 2025 for a mission time of 2 years. In this article, we will highlight the key systems and functionalities of COMPASSO, with the focus set to the absolute frequency references

    Ultrafast manipulation of the NiO antiferromagnetic order via sub gap optical excitation

    Get PDF
    Wide band gap insulators such as NiO offer the exciting prospect of coherently manipulating electronic correlations with strong optical fields. Contrary to metals where rapid dephasing of optical excitation via electronic processes occurs, the sub gap excitation in charge transfer insulators has been shown to couple to low energy bosonic excitations. However, it is currently unknown if the bosonic dressing field is composed of phonons or magnons. Here we use the prototypical charge transfer insulator NiO to demonstrate that 1.5 eV sub gap optical excitation leads to a renormalised NiO band gap in combination with a significant reduction of the antiferromagnetic order. We employ element specific X ray reflectivity at the FLASH free electron laser to demonstrate the reduction of the upper band edge at the O 1s 2p core valence resonance K edge whereas the antiferromagnetic order is probed via X ray magnetic linear dichroism XMLD at the Ni 2p 3d resonance L2 edge . Comparing the transient XMLD spectral line shape to ground state measurements allows us to extract a spin temperature rise of 65 5 K for time delays longer than 400 fs while at earlier times a non equilibrium spin state is formed. We identify transient mid gap states being formed during the first 200 fs accompanied by a band gap reduction lasting at least up to the maximum measured time delay of 2.4 ps. Electronic structure calculations indicate that magnon excitations significantly contribute to the reduction of the NiO band ga

    Development and application of flow measurement technique for investigating near-wall temperature fields

    No full text
    Im Rahmen der vorliegenden Arbeit wurde die nichtisotherme Vermischung zweier Fluidströme in einem T-Stück im Hinblick auf die Erfassung hochqualitativer Messdaten zur Validierung von strömungsmechanischen Simulationsmodellen untersucht. Dafür wurde die modular konzipierte Teststrecke der Fluid-Struktur-Interaktions-Versuchsanlage der Universität Stuttgart verwendet. Diese stellt definierte strömungsmechanische Randbedingung für das T-Stück sicher und ermöglicht den flexiblen Einbau eines Thermoelementmoduls sowie zweier Optikmodule stromaufwärts und stromabwärts des T-Stücks. Das Thermoelementmodul ist für die Vermessung des wandnahen Temperaturfeldes mittels Thermoelementen vorgesehen. An den Optikmodulen ist der Einsatz nichtinvasiver optischer Messtechnik realisierbar. Zur Vermessung der Einströmrandbedingungen des T-Stücks wurde die planare laseroptische Geschwindigkeitsmesstechnik (PIV) eingesetzt. Mit ihrer Hilfe konnten sowohl die Geschwindigkeitsprofile als auch die Geschwindigkeitsspektren der Strömungen in den Einlaufsträngen des T-Stücks dokumentiert werden. Der dabei auftretende Messfehler wurde unter Berücksichtigung der besonderen optischen Gegebenheiten der Optikmodule unter der Betriebsrandbedingungen der Versuchsanlage experimentell und analytisch bestimmt. Als zweiter Schritt der Charakterisierung der nichtisothermen Vermischung im T-Stück wurden Thermoelementmessungen durchgeführt und ausgewertet. Auf Basis der entsprechenden Messdaten konnten sieben Strömungsformen nachgewiesen werden, die anschließend in drei Strömungsformenkarten zusammengefasst wurden. Außerdem konnte gezeigt werden, dass die empirischen Gesetzmäßigkeiten, welche isotherme Vermischungsvorgänge beschreiben, ungeeignet für die Charakterisierung der nichtisothermen Vermischung sind. Darüber hinaus wurden signifikante Einflüsse der temperaturbedingten Auftriebskräfte sowohl auf die mittleren Temperaturen als auch auf die effektiven Temperaturschwankungen in der Mischungszone nachgewiesen. Die o.g. Größen wurden auf Basis einer Dimensionsanalyse in Abhängigkeit von den Systemrandbedingungen und den selektierten dimensionslosen Kennzahlen beschrieben. Hierbei konnten unter anderem die Einflüsse des Impulsstromverhältnisses und der Dichteunterschiede auf die Temperaturschwankungen im Fluid gezeigt werden. Um nichtinvasive Temperaturmessungen in der Mischungszone des T-Stücks zu ermöglichen, wurde das Nahwand-LED-induzierte-Fluoreszenz-Messverfahren (NWLED-IF-Messverfahren) entwickelt. Letzteres ist ein neues nichtinvasives Verfahren, das erstmals die zweidimensionale Erfassung von Strömungsstrukturen in einer millimeterdünnen wandparallelen Fluidschicht nichtisothermer Strömungen ermöglicht. Die Identifikation von Rhodamin B als ein geeigneter fluoreszierender Farbstoffs für das NWLED-IF-Verfahren bei den vorgegebenen Randbedingungen (Temperaturen bis zu 150 °C und Drücken bis zu 7,5 MPa) erfolgte anhand einer Reihe systematischer Untersuchungen. Der Einsatz des NWLED-IF-Messverfahrens lieferte detaillierte Informationen über das mittlere und das instationäre Temperaturfeld in der Mischungszone. Anhand der gewonnenen Messdaten wurde nachgewiesen, dass die Temperaturschwankungsamplituden in der Mischungszone im direkten Zusammenhang mit den lokalen Temperaturgradienten stehen. Überdies wurden in der wandnahen Zone langgestreckte nichtisotherme Strukturen identifiziert und deren Temperatur, Bewegungsrichtung und Geschwindigkeit für unterschiedliche Randbedingungen erfasst.As part of this work the nonisothermal mixing of two fluid flows in a T-junction was investigated with the objective of gathering high-quality data for the validation of fluid-mechanical simulation models. For this purpose the modular fluid-mechanical test setup of the fluid-structure-interaction facility of the University of Stuttgart was used. It guarantees well-defined fluid-mechanical boundary conditions and facilitates the flexible integration of a thermocouple module and two optical modules upstream and downstream of the T-junction. The thermocouple module was built for the investigation of the near-wall temperature field with the help of thermocouples. The optical modules facilitate the application of noninvasive measurement techniques by providing optical access to the fluid. For the determination of inflow conditions of the T-junction planar particle image velocimetry was applied. With its help velocity profiles as well as velocity spectra were recorded in the inlets. The associated measurement error for the specific optical conditions in the optical modules and for operational conditions was quantified experimentally and analytically. As a second step in the characterisation of nonisothermal mixing in the T-junction, thermocouple measurements were conducted and analysed. The resulting data proved the existence of seven flow patterns which were mapped in three flow charts. It was shown that empirical laws describing the isothermal mixing are not suitable to cover nonisothermal mixing. Moreover, it was demonstrated that temperature-dependent buoyancy in the mixing zone significantly influences the mean temperature field as well as the temperature fluctuations. The latter were described with the help of the system parameters and dimensionless parameters which resulted from a dimensional analysis. Among others, the dependencies of the temperature fluctuation on the ratio of impulse fluxes and density differences was demonstrated. With the aim to facilitate noninvasive temperature measurements in the mixing zone of the T-junction, the near-wall LED-induced fluorescence method (NWLED-IF-method) has been developed. The latter is a new noninvasive measurement technique which enables the two-dimensional detection of flow structures in a millimetre-thick layer of fluid adjacent to the wall in nonisothermal flows. Systematic investigations led to the identification of rhodamine B as a fluorescent dye utilizable for the NWLED-IF-method under the selected system conditions (temperature up to 423 K and pressures up to 7.5 MPa). Its application provided detailed information about the mean and the instationary temperature field in the mixing zone of the T-junction. Based on this data, the amplitudes of the temperature fluctuations in the mixing zone were found to be directly linked to the local temperature gradients. Moreover, elongated nonisothermal flow structures situated close to the wall were identified. Their temperature, direction of movement and velocity were captured for various boundary conditions

    Phenological Observations in Downer Woods

    No full text
    Jared Kuschewski Mentor: Prof. Mark D. Schwartz, Geography Department Poster Presentation The rate at which the earth’s climate is changing is a rapidly growing concern in today’s world. This project uses phenology, the study of seasonal plant cycles, to quantify the effects of climate change. Observations were taken at multiple forested locations across Wisconsin, with Downer Woods being the focus of this part of the project. Downer Woods has a permanent grid system, upon which are located 27 sites. Each site consists of 4 trees, which are the focal point of the observations. The two predominant species in these observations are white ash (Fraxinus americana sp.) and basswood (Tilia americana sp.), with a significant number of red oak (Quercus rubra sp.) and white oak (Quercus alba sp.), and a rather small numbers of boxelder (Acer negundo sp.), hophornbeam (Ostrya virginiana sp.), and hawthorn (Crataegus sp.). White ash, basswood, and oak are the dominant woody species that occupy the upper emergent and canopy forest layers. Boxelder, hophornbeam, and hawthorn are smaller, woody shrub-like species that occupy the midstory forest layers. The observations consist of recording leaf coloration in each individual tree, as well as leaf fall in each individual tree. Coloration was recorded as four different numerical values. These values were placed into 4 categories that were based on the percent of leaf coloration per tree. By observing the leaf change and leaf fall in Wisconsin forests, we can quantify plant-climate interactions and relate this seasonal data to the yearly climate trends that are being observed simultaneously. This past autumn there was an unusually early start to the coloring of basswood leaves, being the earliest that was recorded since observations began in 2007. It is data like this, coming in during a time of increasingly erratic weather patterns and seasonal changes, that may help show that climate change is indeed having a significant impact on the world we live in

    Investigation of nanometer scale charge carrier density variations with scattering-type scanning near-field microscopy in the THz regime

    No full text
    Near-field microscopy is a versatile technique for non-destructive detection of optical properties on the nanometer scale. Contrary to conventional microscopy techniques, the resolution in near-field microscopy is not restricted by the diffraction limit, but by the size of the probe only. Typically, wavelength-independent resolution in the range of few ten nanometers can be achieved. Many fundamental phenomena in solid states occur at such small length scales and can be probed by infrared and THz radiation. In the present work, nanoscale charge carrier distributions were investigated with near-field microscopy in classic semiconductors and state-of-the-art graphene field-effect transistors. A CO2 laser, the free-electron laser FELBE at the Helmholtz-Zentrum Dresden Rossendorf and a photoconductive antenna were applied as radiation sources for illumination of the samples. In the theoretical part of the work, the band model for charge carriers in semiconductors is briefly explained to derive typical charge carrier densities of such materials. The influence of the charge carriers to the light-matter interaction is introduced via the Drude model and evaluated for both infrared and THz radiation. In field-effect transistors, charge carrier density waves can occur when strong AC fields are coupled into the device. The phenomena in such transistors are introduced as a more complex material system. To describe the near-field coupling of the samples to the nanoscopic probe, the dipole model is introduced and extended for periodic charge carrier density, as elicited by low repetition-rate excitation lasers. Consequently, sidebands occur as new frequencies in the signal spectrum, allowing for a more sensitive probing of such transient processes. Experimental investigations of these sidebands were performed with a CO2 laser setup on a bulk germanium sample which was excited with femtosecond laser pulses. New frequencies up to the 8th sideband could be observed. The results show a characteristic near-field decay for all sidebands when the probe-sample distance is increased. A nanoscale material contrast in the sidebands signatures has been demonstrated via near-field scans on a gold / germanium heterostructure. Near-field signatures of graphene-field effect transistors have been examined utilizing FELBE. The results match the predicted behavior of charge carriers in such a device and in particular represent the first direct observations of the plasma waves. In collaboration with the group of Prof. Dr. Hartmut G. Roskos (Goethe-Universität Frankfurt), the plasma wave velocity in the graphene field-effect transistor has been derived via fitting to the model for two datasets on different devices from independent fabrications. The obtained velocity is in good agreement with literature values. The results promise the application of field-effect transistors as THz detectors and emitters and may lead to faster communication technology.:1 Introduction 2 Fundamentals 2.1 Semiconductors 2.2 Plasma Waves in Graphene Field-Effect Transistors 2.3 Near-Field Microscopy 2.3.1 Aperture-SNOM 2.3.2 Scattering-SNOM 2.4 THz Optics 3 SNOM-Theory 3.1 Dipole Model 3.2 Detection and Demodulation 3.3 Pump-induced Sidebands in SNOM 3.4 Field Enhancement by Resonant Probes 4 Near-Field Microscope Setups 4.1 FELBE THz SNOM 4.2 Pump-modulated s-SNOM 4.3 THz Time-Domain-Spectroscopy SNOM 5 Sideband Results 5.1 Pump-induced Sidebands in Germanium 5.2 Fluence Dependence 5.3 Higher-order sidebands 5.4 Oscillation Amplitude 5.5 Technical Aspects of the Sideband Demodulation 6 Field-Effect Transistors 6.1 Device Design 6.2 Data Analysis 6.3 Near-Field Overview Scans 6.4 Plasma Wave Examination 6.5 Conclusion 7 Discussion and Outlook A Appendix A.1 Scanning Probe Microscopy A.2 Atomic Force Microscope List of Figures BibliographyNahfeldmikroskopie ist eine vielseite Technik für das zerstörungsfreie Auslesen von optischen Eigenschaften auf der Nanoskala. Im Gegensatz zur konventionellen Mikroskopie ist die Auflösung nicht durch Beugungseffekte, sondern durch die Größe der genutzten Sonde begrenzt. Überlicherweise werden wellenlängenunabhängig Auflösungen von einigen zehn Nanometern erreicht. Viele fundamentale Prozesse in der Festkörperphysik treten auf Längenskalen dieser Größenordnung auf und können mit Infrarot- und THz-Strahlung untersucht werden. In dieser Arbeit wurden nanoskalige Ladungsträgerverteilungen mit Rasternahfeldmikroskopie untersucht, einerseits in klassischen Halbleitern, anderseits in state-of-the-art Graphen Feldeffekttransistoren. Zur Beleuchtung der Proben wurden ein CO2 Laser, der freie-Elektronen Laser FELBE am Helmholtz-Zentrum Dresden-Rossendorf und eine photoleitende Antenne verwendet. Im theoretischen Teil der Arbeit wird das Bändermodell für Ladungsträger in Halbleitern erklärt, um daraus typische Ladungsträgerdichten in diesen Materialien abzuleiten. Der Einfluss der Ladungsträger auf die Interaktion mit Strahlung wird durch das Drude-Modell eingeführt und für Infrarot- und THz-Strahlung abgeschätzt. In Graphen Feldeffekttransistoren können Ladungsträgerdichtewellen auftreten, wenn starke Wechselfelder in das Bauelement eingekoppelt werden. Die Prozesse in solchen Transistoren werden als komplexeres Materialsystem eingeführt. Um die Nahfeldkopplung der Proben an die Sonde zu beschreiben, wird das Dipol-Modell eingeführt und für periodische Ladungsträgerdichten erweitert, wie sie bspw. durch Pumplaser mit niedrigen Repetitionsraten erzeugt werden können. In der Folge entstehen Seitenbänder als neue Frequenzen im Signalspektrum, welche eine sensitivere Messung solcher transienten Prozesse ermöglichen. Experimentelle Untersuchungen des erweiterten Dipol-Modells wurden mit einem CO2 Laser Aufbau an einem Germaniumkristall durchgeführt, welcher mit Femtosekunden Laserpulsen angeregt wird. Neue Frequenzen im Spektrum konnten bis zu dem achten Seitenband beobachtet werden. Die Resultate zeigen den typischen Abfall des Nahfeldes, wenn der Abstand zwischen Sonde und Probe vergrößert wird. Ein Materialkontrast auf der Nanoskale im Seitenband-Signal konnte durch laterale Rasternahfeld-Scans auf einer Gold/Germanium Heterostruktur gezeigt werden. Die Nahfeldsignaturen der Graphen Feldeffekttransistoren wurden mit FELBE untersucht. Die Resultate stimmen mit dem vorausgesagtem Verhalten der Ladungsträger in einem solchen Bauteil überein und sind die erste direkte Beobachtung solcher Plasmawellen. In Kooperation mit der Gruppe um Prof. Dr. Hartmut G. Roskos (Goethe-Universität Frankfurt) wurde die Geschwindigkeit der Plasmawelle durch Regression der Daten berechnet. Dabei wurden zwei Datensätzen an Bauteilen von unabhängigen Fabrikationsprozessen genutzt. Die berechnete Geschwindigkeit ist in guter Übereinstimmung mit Literaturwerten. Die Resultate verheißen die Anwendung von Feldeffekttransistoren als THz Sender und Detektoren und könnten zu schnellerer Kommunikationstechnologie führen.:1 Introduction 2 Fundamentals 2.1 Semiconductors 2.2 Plasma Waves in Graphene Field-Effect Transistors 2.3 Near-Field Microscopy 2.3.1 Aperture-SNOM 2.3.2 Scattering-SNOM 2.4 THz Optics 3 SNOM-Theory 3.1 Dipole Model 3.2 Detection and Demodulation 3.3 Pump-induced Sidebands in SNOM 3.4 Field Enhancement by Resonant Probes 4 Near-Field Microscope Setups 4.1 FELBE THz SNOM 4.2 Pump-modulated s-SNOM 4.3 THz Time-Domain-Spectroscopy SNOM 5 Sideband Results 5.1 Pump-induced Sidebands in Germanium 5.2 Fluence Dependence 5.3 Higher-order sidebands 5.4 Oscillation Amplitude 5.5 Technical Aspects of the Sideband Demodulation 6 Field-Effect Transistors 6.1 Device Design 6.2 Data Analysis 6.3 Near-Field Overview Scans 6.4 Plasma Wave Examination 6.5 Conclusion 7 Discussion and Outlook A Appendix A.1 Scanning Probe Microscopy A.2 Atomic Force Microscope List of Figures Bibliograph

    Control of dynamic systems using feedforward neural networks

    No full text
    We investigate dynamic system control using feedforward neural networks (FNNs) that use generalized weight adaptation algorithms. We first analyze a method for control of linear, time-invariant, single-input single-output dynamic systems using an adaptive linear element (Adaline). The main feature of the control structure is a single feedback loop. We then present an algorithm, based on root locus concepts, for determining the proper range of the Adaline\u27s learning rate. A case study, that includes computer simulations and laboratory experiments, is carried out to evaluate the performance of this method when applied to the position control of a permanent magnet armature-controlled dc servomechanism, the main element of which is a permanent magnet armature-controlled dc servomotor. We then present methods for identification and control of dynamic systems using Adaline, two-layer, and three-layer FNNs equipped with generalized weight adaptation algorithms. The main feature of the control structure is the coordination of feedforward and feedback loops. The FNNs considered contain odd nonlinear operators in their neurons and in their weight adaptation algorithms. We carry out two case studies to evaluate the performance of the proposed methods. The first case study involves a nonlinear, time-invariant, dynamic system consisting of an inverted pendulum controlled by an armature-controlled dc motor through a gear train. We use computer simulations to evaluate the proposed methods of on-line FNN based identification of the system\u27s forward and inverse dynamics. Specifically, our interest is in the effect the type of nonlinear functions in the neurons and in the weight adaptation algorithms have on identification performance. We then evaluate the proposed methods of FNN based control via on-line identification of the system\u27s inverse dynamics combined with the coordination of feedforward control method. The second case study involves FNN based position control of a dc servomechanism. In this case study, we evaluate the performance of the FNN based control method
    corecore