165 research outputs found

    A giant planet shaping the disk around the very low-mass star CIDA 1

    Get PDF
    Context. Exoplanetary research has provided us with exciting discoveries of planets around very low-mass (VLM) stars (0.08 M⊙ ≲ M* ≲ 0.3 M⊙; e.g., TRAPPIST-1 and Proxima Centauri). However, current theoretical models still strive to explain planet formation in these conditions and do not predict the development of giant planets. Recent high-resolution observations from the Atacama Large Millimeter/submillimeter Array (ALMA) of the disk around CIDA 1, a VLM star in Taurus, show substructures that hint at the presence of a massive planet. Aims. We aim to reproduce the dust ring of CIDA 1, observed in the dust continuum emission in ALMA Band 7 (0.9 mm) and Band 4 (2.1 mm), along with its 12CO (J = 3−2) and 13CO (J = 3−2) channel maps, assuming the structures are shaped by the interaction of the disk with a massive planet. We seek to retrieve the mass and position of the putative planet, through a global simulation that assesses planet-disk interactions to quantitatively reproduce protoplanetary disk observations of both dust and gas emission in a self-consistent way. Methods. Using a set of hydrodynamical simulations, we model a protoplanetary disk that hosts an embedded planet with a starting mass of between 0.1 and 4.0 MJup and initially located at a distance of between 9 and 11 au from the central star. We compute the dust and gas emission using radiative transfer simulations, and, finally, we obtain the synthetic observations, treating the images as the actual ALMA observations. Results. Our models indicate that a planet with a minimum mass of ~1.4 MJup orbiting at a distance of ~9−10 au can explain the morphology and location of the observed dust ring in Band 7 and Band 4. We match the flux of the dust emission observation with a dust-to-gas mass ratio in the disk of ~10−2. We are able to reproduce the low spectral index (~2) observed where the dust ring is detected, with a ~40−50% fraction of optically thick emission. Assuming a 12CO abundance of 5 × 10−5 and a 13CO abundance 70 times lower, our synthetic images reproduce the morphology of the 12CO (J = 3−2) and 13CO (J = 3−2) observed channel maps where the cloud absorption allowed a detection. From our simulations, we estimate that a stellar mass M* = 0.2 M⊙ and a systemic velocity vsys = 6.25 km s−1 are needed to reproduce the gas rotation as retrieved from molecular line observations. Applying an empirical relation between planet mass and gap width in the dust, we predict a maximum planet mass of ~4−8 MJup. Conclusions. Our results suggest the presence of a massive planet orbiting CIDA 1, thus challenging our understanding of planet formation around VLM stars

    The SPHERE view of three interacting twin disc systems in polarized light

    Get PDF
    Dense stellar environments as hosts of ongoing star formation increase the probability of gravitational encounters among stellar systems during the early stages of evolution. Stellar interaction may occur through non-recurring, hyperbolic, or parabolic passages (a so-called 'fly-by'), through secular binary evolution, or through binary capture. In all three scenarios, the strong gravitational perturbation is expected to manifest itself in the disc structures around the individual stars. Here, we present near-infrared polarized light observations that were taken with the SPHERE/IRDIS instrument of three known interacting twin-disc systems: AS 205, EM∗ SR 24, and FU Orionis. The scattered light exposes spirals likely caused by the gravitational interaction. On a larger scale, we observe connecting filaments between the stars. We analyse their very complex polarized intensity and put particular attention to the presence of multiple light sources in these systems. The local angle of linear polarization indicates the source whose light dominates the scattering process from the bridging region between the two stars. Further, we show that the polarized intensity from scattering with multiple relevant light sources results from an incoherent summation of the individuals' contribution. This can produce nulls of polarized intensity in an image, as potentially observed in AS 205. We discuss the geometry and content of the systems by comparing the polarized light observations with other data at similar resolution, namely with ALMA continuum and gas emission. Collective observational data can constrain the systems' geometry and stellar trajectories, with the important potential to differentiate between dynamical scenarios of stellar interaction

    A high-throughput behavioral paradigm for Drosophila olfaction - The Flywalk

    Get PDF
    How can odor-guided behavior of numerous individual Drosophila be assessed automatically with high temporal resolution? For this purpose we introduce the automatic integrated tracking and odor-delivery system Flywalk. In fifteen aligned small wind tunnels individual flies are exposed to repeated odor pulses, well defined in concentration and timing. The flies' positions are visually tracked, which allows quantification of the odor-evoked walking behavior with high temporal resolution of up to 100 ms. As a demonstration of Flywalk we show that the flies' behavior is odorant-specific; attractive odors elicit directed upwind movements, while repellent odors evoke decreased activity, followed by downwind movements. These changes in behavior differ between sexes. Furthermore our findings show that flies can evaluate the sex of a conspecific and males can determine a female's mating status based on olfactory cues. Consequently, Flywalk allows automatic screening of individual flies for their olfactory preference and sensitivity

    Molecules with ALMA at Planet-forming Scales (MAPS). II. CLEAN strategies for synthesizing images of molecular line emission in protoplanetary disks

    Get PDF
    Funding: I.C. was supported by NASA through NASA Hubble Fellowship grant No. HST-HF2-51405.001-A, awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5-26555. C.W. acknowledges financial support from the University of Leeds, STFC, and UKRI (grant Nos. ST/R000549/1, ST/T000287/1, MR/T040726/1) J.D.I. acknowledges support from STFC under ST/T000287/1.The Molecules with ALMA at Planet-forming Scales Large Program (MAPS LP) surveyed the chemical structures of five protoplanetary disks across more than 40 different spectral lines at high angular resolution (0"15 and 0"30 beams for Bands 6 and 3, respectively) and sensitivity (spanning 0.3-1.3 mJy beam-1 and 0.4-1.9 mJy beam-1 for Bands 6 and 3, respectively). In this article, we describe the multistage workflow-built around the CASA tclean image deconvolution procedure-that we used to generate the core data product of the MAPS LP: the position-position-velocity image cubes for each spectral line. Owing to the expansive nature of the survey, we encountered a range of imaging challenges: some are familiar to the submillimeter protoplanetary disk community, like the need to use an accurate CLEAN mask, and others are less well known, like the incorrect default flux scaling of the CLEAN residual map first described by Jorsater & van Moorsel (the "JvM effect"). We distill lessons learned into recommended workflows for synthesizing image cubes of molecular emission. In particular, we describe how to produce image cubes with accurate fluxes via "JvM correction," a procedure that is generally applicable to any image synthesized via CLEAN deconvolution but is especially critical for low signal-to-noise ratio (S/N) emission. We further explain how we used visibility tapering to promote a common, fiducial beam size and contextualize the interpretation of S/N when detecting molecular emission from protoplanetary disks. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement.Publisher PDFPeer reviewe

    Hierarchical chemosensory regulation of male-male social interactions in Drosophila

    Get PDF
    Pheromones regulate male social behaviors in Drosophila, but the identities and behavioral role(s) of these chemosensory signals, and how they interact, are incompletely understood. We found that (z)-7-tricosene, a male-enriched cuticular hydrocarbon that was previously shown to inhibit male-male courtship, was essential for normal levels of aggression. The mechanisms by which (z)-7-tricosene induced aggression and suppressed courtship were independent, but both required the gustatory receptor Gr32a. Sensitivity to (z)-7-tricosene was required for the aggression-promoting effect of 11-cis-vaccenyl acetate (cVA), an olfactory pheromone, but (z)-7-tricosene sensitivity was independent of cVA. (z)-7-tricosene and cVA therefore regulate aggression in a hierarchical manner. Furthermore, the increased courtship caused by depletion of male cuticular hydrocarbons was suppressed by a mutation in the olfactory receptor Or47b. Thus, male social behaviors are controlled by gustatory pheromones that promote aggression and suppress courtship, and whose influences are dominant to olfactory pheromones that enhance these behaviors

    Molecules with ALMA at Planet-forming Scales (MAPS). I. Program overview and highlights

    Get PDF
    Funding: I.C. was supported by NASA through the NASA Hubble Fellowship grant HST-HF2-51405.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5-26555. C.W. acknowledges financial support from the University of Leeds, Science and Technology Facilities Council of the United Kingdom (STFC), and UKRI (grant Nos. ST/R000549/1, ST/T000287/1, MR/T040726/1).Planets form and obtain their compositions in dust- and gas-rich disks around young stars, and the outcome of this process is intimately linked to the disk chemical properties. The distributions of molecules across disks regulate the elemental compositions of planets, including C/N/O/S ratios and metallicity (O/H and C/H), as well as access to water and prebiotically relevant organics. Emission from molecules also encodes information on disk ionization levels, temperature structures, kinematics, and gas surface densities, which are all key ingredients of disk evolution and planet formation models. The Molecules with ALMA at Planet-forming Scales (MAPS) ALMA Large Program was designed to expand our understanding of the chemistry of planet formation by exploring disk chemical structures down to 10 au scales. The MAPS program focuses on five disks-around IM Lup, GM Aur, AS 209, HD 163296, and MWC 480-in which dust substructures are detected and planet formation appears to be ongoing. We observed these disks in four spectral setups, which together cover ~50 lines from over 20 different species. This paper introduces the Astrophysical Journal Supplement's MAPS Special Issue by presenting an overview of the program motivation, disk sample, observational details, and calibration strategy. We also highlight key results, including discoveries of links between dust, gas, and chemical substructures, large reservoirs of nitriles and other organics in the inner disk regions, and elevated C/O ratios across most disks. We discuss how this collection of results is reshaping our view of the chemistry of planet formation.Publisher PDFPeer reviewe

    Enhanced Transferrin Receptor Expression by Proinflammatory Cytokines in Enterocytes as a Means for Local Delivery of Drugs to Inflamed Gut Mucosa

    Get PDF
    Therapeutic intervention in inflammatory bowel diseases (IBDs) is often associated with adverse effects related to drug distribution into non-diseased tissues, a situation which attracts a rational design of a targeted treatment confined to the inflamed mucosa. Upon activation of immune cells, transferrin receptor (TfR) expression increases at their surface. Because TfR is expressed in all cell types we hypothesized that its cell surface levels are regulated also in enterocytes. We, therefore, compared TfR expression in healthy and inflamed human colonic mucosa, as well as healthy and inflamed colonic mucosa of the DNBS-induced rat model. TfR expression was elevated in the colonic mucosa of IBD patients in both the basolateral and apical membranes of the enterocytes. Increased TfR expression was also observed in colonocytes of the induced colitis rats. To explore the underlying mechanism CaCo-2 cells were treated with various proinflammatory cytokines, which increased both TfR expression and transferrin cellular uptake in a mechanism that did not involve hyper proliferation. These findings were then exploited for the design of targetable carrier towards inflamed regions of the colon. Anti-TfR antibodies were conjugated to nano-liposomes. As expected, iron-starved Caco-2 cells internalized anti-TfR immunoliposomes better than controls. Ex vivo binding studies to inflamed mucosa showed that the anti-TfR immunoliposomes accumulated significantly better in the mucosa of DNBS-induced rats than the accumulation of non-specific immunoliposomes. It is concluded that targeting mucosal inflammation can be accomplished by nano-liposomes decorated with anti-TfR due to inflammation-dependent, apical, elevated expression of the receptor

    Variation in the Male Pheromones and Mating Success of Wild Caught Drosophila melanogaster

    Get PDF
    Drosophila melanogaster males express two primary cuticular hydrocarbons (male-predominant hydrocarbons). These act as sex pheromones by influencing female receptivity to mating. The relative quantities of these hydrocarbons vary widely among natural populations and can contribute to variation in mating success. We tested four isofemale lines collected from a wild population to assess the effect of intrapopulation variation in male-predominant hydrocarbons on mating success. The receptivity of laboratory females to males of the four wild-caught lines varied significantly, but not consistently in the direction predicted by variation in male-predominant hydrocarbons. Receptivity of the wild-caught females to laboratory males also varied significantly, but females from lines with male-predominant hydrocarbon profiles closer to a more cosmopolitan one did not show a correspondingly strong mating bias toward a cosmopolitan male. Among wild-caught lines, the male-specific ejaculatory bulb lipid, cis-vaccenyl acetate, varied more than two-fold, but was not associated with variation in male mating success. We observed a strong inverse relationship between the receptivity of wild-caught females and the mating success of males from their own lines, when tested with laboratory flies of the opposite sex
    • …
    corecore