263 research outputs found

    Increased Expression and Protein Divergence in Duplicate Genes Is Associated with Morphological Diversification

    Get PDF
    The differentiation of both gene expression and protein function is thought to be important as a mechanism of the functionalization of duplicate genes. However, it has not been addressed whether expression or protein divergence of duplicate genes is greater in those genes that have undergone functionalization compared with those that have not. We examined a total of 492 paralogous gene pairs associated with morphological diversification in a plant model organism (Arabidopsis thaliana). Classifying these paralogous gene pairs into high, low, and no morphological diversification groups, based on knock-out data, we found that the divergence rate of both gene expression and protein sequences were significantly higher in either high or low morphological diversification groups compared with those in the no morphological diversification group. These results strongly suggest that the divergence of both expression and protein sequence are important sources for morphological diversification of duplicate genes. Although both mechanisms are not mutually exclusive, our analysis suggested that changes of expression pattern play the minor role (33%–41%) and that changes of protein sequence play the major role (59%–67%) in morphological diversification. Finally, we examined to what extent duplicate genes are associated with expression or protein divergence exerting morphological diversification at the whole-genome level. Interestingly, duplicate genes randomly chosen from A. thaliana had not experienced expression or protein divergence that resulted in morphological diversification. These results indicate that most duplicate genes have experienced minor functionalization

    RARGE: a large-scale database of RIKEN Arabidopsis resources ranging from transcriptome to phenome

    Get PDF
    The RIKEN Arabidopsis Genome Encyclopedia (RARGE) database houses information on biological resources ranging from transcriptome to phenome, including RIKEN Arabidopsis full-length (RAFL) complementary DNAs (cDNAs), their promoter regions, Dissociation (Ds) transposon-tagged lines and expression data from microarray experiments. RARGE provides tools for searching by resource code, sequence homology or keyword, and rapid access to detailed information on the resources. We have isolated 245 946 RAFL cDNA clones and collected 11 933 transposon-tagged lines, which are available from the RIKEN Bioresource Center and are stored in RARGE. The RARGE web interface can be accessed at http://rarge.gsc.riken.jp/. Additionally, we report 90 000 new RAFL cDNA clones here

    Functional Compensation of Primary and Secondary Metabolites by Duplicate Genes in Arabidopsis thaliana

    Get PDF
    It is well known that knocking out a gene in an organism often causes no phenotypic effect. One possible explanation is the existence of duplicate genes; that is, the effect of knocking out a gene is compensated by a duplicate copy. Another explanation is the existence of alternative pathways. In terms of metabolic products, the relative roles of the two mechanisms have been extensively studied in yeast but not in any multi-cellular organisms. Here, to address the functional compensation of metabolic products by duplicate genes, we quantified 35 metabolic products from 1,976 genes in knockout mutants of Arabidopsis thaliana by a high-throughput Liquid chromatography-Mass spectrometer (LC-MS) analysis. We found that knocking out either a singleton gene or a duplicate gene with distant paralogs in the genome tends to induce stronger metabolic effects than knocking out a duplicate gene with a close paralog in the genome, indicating that only duplicate genes with close paralogs play a significant role in functional compensation for metabolic products in A. thaliana. To extend the analysis, we examined metabolic products with either high or low connectivity in a metabolic network. We found that the compensatory role of duplicate genes is less important when the metabolite has a high connectivity, indicating that functional compensation by alternative pathways is common in the case of high connectivity. In conclusion, recently duplicated genes play an important role in the compensation of metabolic products only when the number of alternative pathways is small

    AtPHT4;4 is a chloroplast-localized ascorbate transporter in Arabidopsis

    Get PDF
    Ascorbate is an antioxidant and coenzyme for various metabolic reactions in vivo. In plant chloroplasts, high ascorbate levels are required to overcome photoinhibition caused by strong light. However, ascorbate is synthesized in the mitochondria and the molecular mechanisms underlying ascorbate transport into chloroplasts are unknown. Here we show that AtPHT4;4, a member of the phosphate transporter 4 family of Arabidopsis thaliana, functions as an ascorbate transporter. In vitro analysis shows that proteoliposomes containing the purified AtPHT4;4 protein exhibit membrane potential- and Cl-dependent ascorbate uptake. The AtPHT4;4 protein is abundantly expressed in the chloroplast envelope membrane. Knockout of AtPHT4;4 results in decreased levels of the reduced form of ascorbate in the leaves and the heat dissipation process of excessive energy during photosynthesis is compromised. Taken together, these observations indicate that the AtPHT4;4 protein is an ascorbate transporter at the chloroplast envelope membrane, which may be required for tolerance to strong light stress

    Evolutionary Persistence of Functional Compensation by Duplicate Genes in Arabidopsis

    Get PDF
    Knocking out a gene from a genome often causes no phenotypic effect. This phenomenon has been explained in part by the existence of duplicate genes. However, it was found that in mouse knockout data duplicate genes are as essential as singleton genes. Here, we study whether it is also true for the knockout data in Arabidopsis. From the knockout data in Arabidopsis thaliana obtained in our study and in the literature, we find that duplicate genes show a significantly lower proportion of knockout effects than singleton genes. Because the persistence of duplicate genes in evolution tends to be dependent on their phenotypic effect, we compared the ages of duplicate genes whose knockout mutants showed less severe phenotypic effects with those with more severe effects. Interestingly, the latter group of genes tends to be more anciently duplicated than the former group of genes. Moreover, using multiple-gene knockout data, we find that functional compensation by duplicate genes for a more severe phenotypic effect tends to be preserved by natural selection for a longer time than that for a less severe effect. Taken together, we conclude that duplicate genes contribute to genetic robustness mainly by preserving compensation for severe phenotypic effects in A. thaliana

    Analysis of Chromosome Behavior of Arabidopsis Mutants Defective in Reproductive Processes

    Get PDF
    From Arabidopsis mutant collections, more than 30 meiotic mutants have been isolated. However, the molecular mechanism of plant meiosis is still largely obscure. For the purpose of further understanding, we searched for new Arabidopsis meiotic mutants. As a results of our collaboration, we found several new mutants, which were defective in reproductive processes. Since our main interest was in meiosis, we selected one meiotic mutant among them, and analyzed its chromosome behavior during meiosis

    RiceFOX: A Database of Arabidopsis Mutant Lines Overexpressing Rice Full-Length cDNA that Contains a Wide Range of Trait Information to Facilitate Analysis of Gene Function

    Get PDF
    Identification of gene function is important not only for basic research but also for applied science, especially with regard to improvements in crop production. For rapid and efficient elucidation of useful traits, we developed a system named FOX hunting (Full-length cDNA Over-eXpressor gene hunting) using full-length cDNAs (fl-cDNAs). A heterologous expression approach provides a solution for the high-throughput characterization of gene functions in agricultural plant species. Since fl-cDNAs contain all the information of functional mRNAs and proteins, we introduced rice fl-cDNAs into Arabidopsis plants for systematic gain-of-function mutation. We generated >30,000 independent Arabidopsis transgenic lines expressing rice fl-cDNAs (rice FOX Arabidopsis mutant lines). These rice FOX Arabidopsis lines were screened systematically for various criteria such as morphology, photosynthesis, UV resistance, element composition, plant hormone profile, metabolite profile/fingerprinting, bacterial resistance, and heat and salt tolerance. The information obtained from these screenings was compiled into a database named ‘RiceFOX’. This database contains around 18,000 records of rice FOX Arabidopsis lines and allows users to search against all the observed results, ranging from morphological to invisible traits. The number of searchable items is approximately 100; moreover, the rice FOX Arabidopsis lines can be searched by rice and Arabidopsis gene/protein identifiers, sequence similarity to the introduced rice fl-cDNA and traits. The RiceFOX database is available at http://ricefox.psc.riken.jp/

    Analysis of Chromosome Behavior of Arabidopsis Mutants Defective in Reproductive Processes II

    Get PDF
    In a previous work, we showed that a mutation in AtSPO11-2 resulted in the production of abnormal sterile pollens and that AtSPO11-2 protein was required for meiotic homologous recombination. Atspoll-2 mutant was used with other meiotic mutants to examine the regulatory system of centromere roles during meiosis in this research. Yeast and Arabidopsis centromeres have been shown to couple with each other at early prophase I to promote homolog pairing, and to direct the polarity of sister chromatids at metaphase I. The present research revealed that centromere coupling at early prophase I was independent of meiotic homologous recombination, but that the decision of sister centromere polarity was dependent on recombination

    SnRK1 Kinase and the NAC Transcription Factor SOG1 Are Components of a Novel Signaling Pathway Mediating the Low Energy Response Triggered by ATP Depletion

    Get PDF
    Plant growth is strictly controlled by cell division, elongation, and differentiation for which adequate supplies of intracellular ATP are required. However, it is unclear how changes in the amount of intracellular ATP affect cell division and growth. To reveal the specific pathway dependent on ATP concentration, we performed analyses on the Arabidopsis mitochondria mutation sd3. The mutant is tiny, a result of a low amount of ATP caused by the disruption of Tim21, a subunit of the TIM23 protein complex localized in the inner membrane of the mitochondria. Loss of function of suppressor of gamma response 1 (SOG1) also restored the dwarf phenotype of wild type treated with antimycin A, a blocker of ATP synthesis in mitochondria. The sd3 phenotype is partially restored by the introduction of sog1, suppressor of gamma response 1, and kin10/kin11, subunits of Snf1-related kinase 1 (SnRK1). Additionally, SOG1 interacted with SnRK1, and was modified by phosphorylation in planta only after treatment with antimycin A. Transcripts of several negative regulators of the endocycle were up-regulated in the sd3 mutant, and this high expression was not observed in sd3sog1 and sd3kin11. We suggest that there is a novel regulatory mechanism for the control of plant cell cycle involving SnRK1 and SOG1, which is induced by low amounts of intracellular ATP, and controls plant development
    corecore