20 research outputs found

    Electronic structure and transport properties of CeNi9In2

    Full text link
    We investigated CeNi9In2 compound, which has been considered as a mixed valence (MV) system. Electrical resistivity vs. temperature variation was analysed in terms of the model proposed by Freimuth for systems with unstable 4f shell. At low temperature the resistivity dependence is consistent with a Fermi liquid state with a contribution characteristic of electron-phonon interaction. Ultraviolet photoemission spectroscopy (UPS) studies of the valence band did not reveal a Kondo peak down to 14 K. A difference of the spectra obtained with photon energies of low and high photoionization cross sections for Ce 4f electrons indicated that 4f states are located mainly close to the Fermi energy. The peaks related to f_{5/2}^1 and f_{7/2}^1 final states cannot be resolved but form a plateau between -0.3 eV and the Fermi energy. X-ray photoemission spectroscopy (XPS) studies were realized for the cerium 3d level. The analysis of XPS spectra within the Gunnarsson-Sh\"onhammer theory yielded a hybridization parameter of 104 meV and non-integer f level occupation, being close to 3. Calculations of partial densities of states were realized by a full potential local orbital (FPLO) method. They confirm that the valence band is dominated by Ni 3d states and are in general agreement with the experiment except for the behavior of f-electrons.Comment: 10 pages, 5 figure

    Evidence of momentum dependent hybridization in Ce2Co0.8Si3.2

    Full text link
    We studied the electronic structure of the Kondo lattice system Ce2Co0.8Si3.2 by angle-resolved photoemission spectroscopy (ARPES). The spectra obtained below the coherence temperature consist of a Kondo resonance, its spin-orbit partner and a number of dispersing bands. The quasiparticle weight related to the Kondo peak depends strongly on Fermi vectors associated with bulk bands. This indicates a highly anisotropic hybridization between conduction band and 4f electrons - V_{cf} in Ce2Co0.8Si3.2.Comment: 6 page

    Linkage between scattering rates and superconductivity in doped ferropnictides

    Get PDF
    We report an angle-resolved photoemission study of a series of hole- and electron-doped iron-based superconductors, their parent compound BaFe2_{2}As2_{2}, and their cousins BaCr2_{2}As2_{2} and BaCo2_{2}As2_{2}. We focus on the inner hole pocket, which is the hot spot in these compounds. More specifically, we determine the energy (E)-dependent scattering rate (E) as a function of the 3d count. Moreover, for the compounds K0.4_{0.4}Ba0.6_{0.6}Fe2_{2}As2_{2} and BaCr2_{2}As2_{2}, we derive the energy dependence of the renormalization function Z(E) and the imaginary part of the self-energy function Im(E). We obtain a non-Fermi liquidlike linear in energy scattering rate (E>>kB_{B}T ), independent of the dopant concentration. The main result is that the slope β = (E>>kB_{B}T )/E reaches its maxima near optimal doping and scales with the superconducting transition temperature. This supports the spin fluctuation model for superconductivity for these materials. In the optimally hole-doped compound, the slope of the scattering rate of the inner hole pocket is about three times bigger than the Planckian limit T(E)/E ≈ 1. This result, together with the energy dependence of the renormalization function Z(E), signals very incoherent charge carriers in the normal state which transform at low temperatures to a coherent unconventional superconducting state

    Topological magnetic order and superconductivity in EuRbFe4As4

    Get PDF
    We study single crystals of the magnetic superconductor EuRbFe4As4 by magnetization, electron spin resonance ESR , angle resolved photoemission spectroscopy, and electrical resistance in pulsed magnetic fields up to 63 T. The superconducting state below 36.5 K is almost isotropic and is only weakly affected by the development of Eu2 magnetic order at 15 K. On the other hand, for the external magnetic field applied along the c axis the temperature dependence of the ESR linewidth reveals a Berezinskii Kosterlitz Thouless topological transition below 15 K. This indicates that Eu2 planes are a good realization of a two dimensional XY magnet, which reflects the decoupling of the Eu2 magnetic moments from superconducting FeAs layer

    Photoemission signature of momentum-dependent hybridization in CeCoIn5

    Get PDF
    Hybridization between f electrons and conduction bands (c-f hybridization) is a driving force for many unusual phenomena. To provide insight into it, systematic studies of CeCoIn 5 heavy fermion superconductor have been performed by angle-resolved photoemission spectroscopy (ARPES) in a large angular range at temperature of T = 6 K. The used photon energy of 122 eV corresponds to Ce 4d-4f resonance. Calculations carried out with the relativistic multiple scattering Korringa-Kohn-Rostoker method and one-step model of photoemission yielded realistic simulation of the ARPES spectra, indicating that Ce-In surface termination prevails. Surface states, which have been identified in the calculations, contribute significantly to the spectra. Effects of the hybridization strongly depend on wave vector. They include a dispersion of heavy electrons and bands gaining f-electron character when approaching Fermi energy. We have also observed a considerable variation of f-electron spectral weight at EF , which is normally determined by both matrix element effects and wave vector dependent c-f hybridization. Fermi surface scans covering a few Brillouin zones revealed large matrix element effects. A symmetrization of experimental Fermi surface, which reduces matrix element contribution, yielded a specific variation of 4f-electron enhanced spectral intensity at EF around Gamma barre and M barre points. Tight-binding approximation calculations for Ce-In plane provided the same universal distribution of 4f-electron density for a range of values of the parameters used in the model

    Influence of brewing conditions on antioxidant content in different kinds of tea infusions

    No full text
    Tea has been consumed all over the World for over two thousand years and now it is the most popular caffeine-containing beverage. Its worldwide consumption is second only to water [1–3]. The tea is not only important because of its popularity but also due to its beneficial influence on human health [4]. The biological benefits of tea are due to their flavanol content [5–13]. Tea flavanols are a group of natural polyphenols (Fig. 2). Therapeutic effects of tea have been extensively examined in many in vitro and in vivo tests. It was confirmed that tea leaves ingredients have antibacterial, antifungial, antiviral properties, they also prevent cell mutations and they inhibit progress of heart diseases. Moreover, tea can stimulate neural system and regulate its functions [14–20]. All this activities are mostly due to antioxidant ability of tea polyphenols (Fig. 4). Tea production process can be run in different ways and this affects of the tea taste, aroma, colour and antioxidants content. According to fermentation degree, different tea kinds can be obtained (Fig. 1). During the manufacturing process of black and oolong teas, tea leaves are crushed to allow polyphenol oxidase to catalyze the oxidation and polymerization of catechins to polymers called theaflavins and thearubigins (Fig. 3) [21–23]. Green or white teas are obtained through shorter fermentation, so the catechin concentration remains higher. Tea is prepared by infusing tea leaves in hot water. Brewing process conditions like temperature, brewing time, pH, besides other factors has a significant influence on polyphenols content [24-32]. Many studies have determined total flavonoids content and antioxidant activity according to different tea type and brewing conditions, tea plantation type or fermentation process. The amount of total polyphenol was determined using the F-C method, catechins, caffeine and polyphenolic acids were analysed using High Performance Liquid Chromatography with reversed phase. Obtained results let compare how different production and brewing processes affect the tea quality [33–56]

    Effect of electron doping in FeTe_{1−y} Se_{y} realized by Co and Ni substitution

    No full text
    Angle-resolved photoemission spectroscopy (ARPES) reveals effects of electron doping, which is realized by Co and Ni substitution for Fe in FeTe1y_{1-y}Sey_{y} (y\sim0.35) superconductor. The data show consistent band shifts as well as expansion and shrinking of electron and hole Fermi surface, respectively. Doping of either element leads to a Lifshitz transition realized as a removal of one or two hole pockets. This explains qualitatively a complex behavior of Hall coefficient observed before [Bezusyy, et al., Phys. Rev. B 91, 100502 (2015)], including change of sign with doping, which takes place only below room temperature. Assuming that Ni substitution should deliver twice more electrons to the valence band than Co, it appears that such transfer is slightly more effective in the case of Co. Therefore, charge doping cannot account for much stronger effect of Ni on superconducting and transport properties [Bezusyy, et al., Phys. Rev. B 91, 100502 (2015)]. Although overall band shifts are roughly proportional to the amount of dopant, clear deviations from a rigid band shift scenario are found. The shape of electron pockets becomes elliptical only for Ni doping, effective mass of electron bands increases with doping, strong reduction of effective mass is observed for one of hole bands of the undoped system. The topology of hole and electron pockets for superconducting Fe1.01_{1.01}Te0.67_{0.67}Se0.33_{0.33} with Tc_{c}=13.6 K indicates a deviation from nesting. Co and Ni doping causes further departure from nesting, which accompanies the reduction of critical temperature
    corecore