9 research outputs found

    Dark Matter Search

    Get PDF
    The SuperCDMS SNOLAB is the first low-mass dark matter detector in the cryogenics system at SLAC. It is designed to be sensitive to detect dark matter down to 300 MeV in mass and resolve individual electrons-hole pairs from low energy scattering events in high purity Ge and Si crystals. The purpose is to simulate electrostatic fields within the detector medium and run detailed particle physics simulations to attempt to match simulation to observed detector response for the first time with detectors of this size using the GEANT4 simulation package, and SuperCDMS solid-state simulations. The simulation code is written in C++, my objective was to modify the probability of the electrons inter-valley scattering in the crystal. The previous function’s input was an electric field voltage the problem with this method was that it did not provide any underlining physics of the electron within the crystal. However, we added a physical model for the inter-valley scattering that instead intakes the energy of the electron and produces the probability of a particular electron’s propagation within the crystal. The results are still in progress and will be discussed in the poster. In conclusion, we hope that this new method will produce the same graphs as the previous method and in addition provides the underlying physics of the electron inside the crystal

    First Results from a Broadband Search for Dark Photon Dark Matter in the 4444 to 52μ52\,\mueV range with a coaxial dish antenna

    Full text link
    We present first results from a dark photon dark matter search in the mass range from 44 to 52 μeV\mu{\rm eV} (10.712.5GHz10.7 - 12.5\,{\rm GHz}) using a room-temperature dish antenna setup called GigaBREAD. Dark photon dark matter converts to ordinary photons on a cylindrical metallic emission surface with area 0.5m20.5\,{\rm m}^2 and is focused by a novel parabolic reflector onto a horn antenna. Signals are read out with a low-noise receiver system. A first data taking run with 24 days of data does not show evidence for dark photon dark matter in this mass range, excluding dark photon - photon mixing parameters χ1012\chi \gtrsim 10^{-12} in this range at 90% confidence level. This surpasses existing constraints by about two orders of magnitude and is the most stringent bound on dark photons in this range below 49 μ\mueV.Comment: 7 pages, 4 figure

    A Stress Induced Source of Phonon Bursts and Quasiparticle Poisoning

    Full text link
    The performance of superconducting qubits is degraded by a poorly characterized set of energy sources breaking the Cooper pairs responsible for superconductivity, creating a condition often called "quasiparticle poisoning." Recently, a superconductor with one of the lowest average quasiparticle densities ever measured exhibited quasiparticles primarily produced in bursts which decreased in rate with time after cooldown. Similarly, several cryogenic calorimeters used to search for dark matter have also observed an unknown source of low-energy phonon bursts that decrease in rate with time after cooldown. Here, we show that a silicon crystal glued to its holder exhibits a rate of low-energy phonon events that is more than two orders of magnitude larger than in a functionally identical crystal suspended from its holder in a low-stress state. The excess phonon event rate in the glued crystal decreases with time since cooldown, consistent with a source of phonon bursts which contributes to quasiparticle poisoning in quantum circuits and the low-energy events observed in cryogenic calorimeters. We argue that relaxation of thermally induced stress between the glue and crystal is the source of these events, and conclude that stress relaxation contributes to quasiparticle poisoning in superconducting qubits and the athermal phonon background in a broad class of rare-event searches.Comment: 13 pages, 6 figures. W. A. Page and R. K. Romani contributed equally to this work. Correspondence should be addressed to R. K. Roman

    Dark sectors 2016 Workshop: community report

    Get PDF
    This report, based on the Dark Sectors workshop at SLAC in April 2016, summarizes the scientific importance of searches for dark sector dark matter and forces at masses beneath the weak-scale, the status of this broad international field, the important milestones motivating future exploration, and promising experimental opportunities to reach these milestones over the next 5-10 years

    Mineral Detection of Neutrinos and Dark Matter. A Whitepaper

    Full text link
    Minerals are solid state nuclear track detectors - nuclear recoils in a mineral leave latent damage to the crystal structure. Depending on the mineral and its temperature, the damage features are retained in the material from minutes (in low-melting point materials such as salts at a few hundred degrees C) to timescales much larger than the 4.5 Gyr-age of the Solar System (in refractory materials at room temperature). The damage features from the O(50)O(50) MeV fission fragments left by spontaneous fission of 238^{238}U and other heavy unstable isotopes have long been used for fission track dating of geological samples. Laboratory studies have demonstrated the readout of defects caused by nuclear recoils with energies as small as O(1)O(1) keV. This whitepaper discusses a wide range of possible applications of minerals as detectors for ERO(1)E_R \gtrsim O(1) keV nuclear recoils: Using natural minerals, one could use the damage features accumulated over O(10)O(10) MyrO(1)-O(1) Gyr to measure astrophysical neutrino fluxes (from the Sun, supernovae, or cosmic rays interacting with the atmosphere) as well as search for Dark Matter. Using signals accumulated over months to few-years timescales in laboratory-manufactured minerals, one could measure reactor neutrinos or use them as Dark Matter detectors, potentially with directional sensitivity. Research groups in Europe, Asia, and America have started developing microscopy techniques to read out the O(1)O(100)O(1) - O(100) nm damage features in crystals left by O(0.1)O(100)O(0.1) - O(100) keV nuclear recoils. We report on the status and plans of these programs. The research program towards the realization of such detectors is highly interdisciplinary, combining geoscience, material science, applied and fundamental physics with techniques from quantum information and Artificial Intelligence.Comment: 115 pages, many pictures of tracks. Please see the source file for higher resolution versions of some plots. v2: matches the published versio

    EXCESS workshop: Descriptions of rising low-energy spectra

    No full text
    International audienceMany low-threshold experiments observe sharply rising event rates of yet unknown origins below a few hundred eV, and larger than expected from known backgrounds. Due to the significant impact of this excess on the dark matter or neutrino sensitivity of these experiments, a collective effort has been started to share the knowledge about the individual observations. For this, the EXCESS Workshop was initiated. In its first iteration in June 2021, ten rare event search collaborations contributed to this initiative via talks and discussions. The contributing collaborations were CONNIE, CRESST, DAMIC, EDELWEISS, MINER, NEWS-G, NUCLEUS, RICOCHET, SENSEI and SuperCDMS. They presented data about their observed energy spectra and known backgrounds together with details about the respective measurements. In this paper, we summarize the presented information and give a comprehensive overview of the similarities and differences between the distinct measurements. The provided data is furthermore publicly available on the workshop’s data repository together with a plotting tool for visualization

    Concept design of the LiteBIRD satellite for CMB B-mode polarization

    Get PDF
    LiteBIRD is a candidate for JAXA's strategic large mission to observe the cosmic microwave background (CMB) polarization over the full sky at large angular scales. It is planned to be launched in the 2020s with an H3 launch vehicle for three years of observations at a Sun-Earth Lagrangian point (L2). The concept design has been studied by researchers from Japan, U.S., Canada and Europe during the ISAS Phase-A1. Large scale measurements of the CMB B-mode polarization are known as the best probe to detect primordial gravitational waves. The goal of LiteBIRD is to measure the tensor-to-scalar ratio (r) with precision of r < 0:001. A 3-year full sky survey will be carried out with a low frequency (34 - 161 GHz) telescope (LFT) and a high frequency (89 - 448 GHz) telescope (HFT), which achieve a sensitivity of 2.5 \u3bcK-arcmin with an angular resolution 30 arcminutes around 100 GHz. The concept design of LiteBIRD system, payload module (PLM), cryo-structure, LFT and verification plan is described in this paper
    corecore