21 research outputs found

    Effects of river restoration on ecosystem metabolism and trophic relationships

    Get PDF
    Following a long history of human pressures on riverine ecosystems, the European Water Framework Directive (WFD, Directive 2000/60/EC) came into force in 2000 and initiated a new period of river management in Europe. The directive aims at improving the ecological and chemical status of rivers in order to achieve the ‘good status’ of all surface waters until the year 2027. In Europe, degraded hydromorphology has been highlighted as a central impact to the ecological status of the rivers. For instance, in countries such as Germany, the hydromorphology of almost all river sections is affected to an extent that they fail to meet the WFD goals. In response, river hydromorphology is nowadays being restored at an increasing rate. Restoration of river hydromorphology has the potential to affect not only structural ecosystem features, including species composition and diversity, but also functional aspects, such as key ecosystem processes and trophic transfers of energy and nutrients. Despite this, the most-widely used parameters for assessing the success or failure of restoration projects are almost exclusively based on changes in community composition of different biological groups (e.g., fish, benthic invertebrates, and macrophytes). Functional metrics, even though increasingly recognized as a valuable addition to classical assessments, are rarely used to study restoration effects. Consequently, the outcomes of river restoration for key ecosystem processes (e.g., river metabolism) and trophic relationships (e.g., trophic structure of benthic invertebrate communities and trophic connectivity between river and land) remain poorly understood. Against this background, the present thesis focused on the following objectives: (i) The application of stable isotope analysis (δ13C, δ15N) together with quantitative community metrics to characterize changes in the trophic structure of benthic invertebrate communities following restoration. (ii) The characterization of the isotopic composition (δ13C, δ15N) of consumers in aquatic, riparian, and terrestrial habitats to assess restoration effects on the trophic connectivity between river and land. (iii) The assessment of reach-scale restoration effects on hydromorphology, habitat composition and hydrodynamics and the estimation of the corresponding responses of river ecosystem metabolism

    Forested Riparian Zones Provide Important Habitat for Fish in Urban Streams

    Get PDF
    Riparian zones form a boundary between aquatic and terrestrial ecosystems, with disproportionate influences on food web dynamics and ecosystem functioning in both habitats. However, riparian boundaries are frequently degraded by human activities, including urbanization, leading to direct impacts on terrestrial communities and indirect changes that are mediated through altered connectivity with adjacent aquatic ecosystems. We investigated how riparian habitat influences fish communities in an urban context. We electrofished nine urban site pairs with and without forested riparian buffers, alongside an additional 12 sites that were located throughout the river networks in the Oslo Fjord basin, Norway. Brown trout (Salmo trutta) were the dominant fish species. Riparian buffers had weak positive effects on fish densities at low to moderate levels of catchment urbanization, whereas fish were absent from highly polluted streams. Subtle shifts in fish size distributions suggested that riparian buffers play an important role in metapopulation dynamics. Stable isotopes in fish from buffered reaches indicated dietary shifts, pointing to the potential for a greater reliance on terrestrial-sourced carbon. Combining these results, we postulate that spatially-mediated ontogenetic diet shifts may be important for the persistence of brown trout in urban streams. Our results show that using a food web perspective is essential in understanding how riparian buffers can offset impacts in urban catchments

    Small patches of riparian woody vegetation enhance biodiversity of invertebrates

    Get PDF
    Patches of riparian woody vegetation potentially help mitigate environmental impacts of agriculture and safeguard biodiversity. We investigated the effects of riparian forest on invertebrate diversity in coupled stream-riparian networks using a case study in the Zwalm river basin (Flanders, Belgium). Agriculture is one of the main pressures in the basin and riparian forest is limited to a number of isolated patches. Our 32 study sites comprised nine unshaded “unbuffered” sites which were paired with nine shaded “buffered” sites on the same stream reach, along with five ‘least-disturbed’ sites and nine downstream sites. We sampled water chemistry, habitat characteristics and stream and riparian invertebrates (carabid beetles and spiders) at each site. Three methods were used to quantify riparian attributes at different spatial scales: a visually-assessed qualitative index, quantitative estimates of habitat categories in six rectangular plots (10 × 5 m) and geographic information system (GIS)-derived land cover data. We investigated relationships between invertebrates and riparian attributes at different scales with linear regression and redundancy analyses. Spiders and carabids were most associated with local riparian attributes. In contrast, aquatic macroinvertebrates were strongly influenced by the extent of riparian vegetation in a riparian band upstream (100–300 m). These findings demonstrate the value of quantifying GIS-based metrics of riparian cover over larger spatial scales into assessments of the efficacy of riparian management as a complement to more detailed local scale riparian assessments in situ. Our findings highlight the value of even small patches of riparian vegetation in an otherwise extensively disturbed landscape in supporting biodiversity of both terrestrial and freshwater invertebrates and emphasize the need to consider multiple spatial scales in riparian management strategies which aim to mitigate human impacts on biodiversity in stream-riparian networks

    A Bayesian Belief Network learning tool integrates multi-scale effects of riparian buffers on stream invertebrates

    Get PDF
    Riparian forest buffers have multiple benefits for biodiversity and ecosystem services in both freshwater and terrestrial habitats but are rarely implemented in water ecosystem management, partly reflecting the lack of information on the effectiveness of this measure. In this context, social learning is valuable to inform stakeholders of the efficacy of riparian vegetation in mitigating stream degradation. We aim to develop a Bayesian belief network (BBN) model for application as a learning tool to simulate and assess the reach-and segment-scale effects of riparian vegetation properties and land use on instream invertebrates. We surveyed reach-scale riparian conditions, extracted segment-scale riparian and subcatchment land use information from geographic information system data, and collected macroinvertebrate samples from four catchments in Europe (Belgium, Norway, Romania, and Sweden). We modelled the ecological condition based on the Average Score Per Taxon (ASPT) index, a macroinvertebrate-based index widely used in European bioassessment, as a function of different riparian variables using the BBN modelling approach. The results of the model simulations provided insights into the usefulness of riparian vegetation attributes in enhancing the ecological condition, with reach-scale riparian vegetation quality associated with the strongest improvements in ecological status. Specifically, reach-scale buffer vegetation of score 3 (i.e. moderate quality) generally results in the highest probability of a good ASPT score (99-100%). In contrast, a site with a narrow width of riparian trees and a small area of trees with reach-scale buffer vegetation of score 1 (i.e. low quality) predicts a high probability of a bad ASPT score (74%). The strengths of the BBN model are the ease of interpretation, fast simulation, ability to explicitly indicate uncertainty in model outcomes, and interactivity. These merits point to the potential use of the BBN model in workshop activities to stimulate key learning processes that help inform the management of riparian zones

    Assessing the Benefits of Forested Riparian Zones: A Qualitative Index of Riparian Integrity Is Positively Associated with Ecological Status in European Streams

    Get PDF
    Developing a general, predictive understanding of ecological systems requires knowing how much structural and functional relationships can cross scales and contexts. Here, we introduce the CROSSLINK project that investigates the role of forested riparian buffers in modified European landscapes by measuring a wide range of ecosystem attributes in stream-riparian networks. CROSSLINK involves replicated field measurements in four case-study basins with varying levels of human development: Norway (Oslo Fjord), Sweden (Lake Malaren), Belgium (Zwalm River), and Romania (Arge River). Nested within these case-study basins include multiple, independent stream-site pairs with a forested riparian buffer and unbuffered section located upstream, as well as headwater and downstream sites to show cumulative land-use impacts. CROSSLINK applies existing and bespoke methods to describe habitat conditions, biodiversity, and ecosystem functioning in aquatic and terrestrial habitats. Here, we summarize the approaches used, detail protocols in supplementary materials, and explain how data is applied in an optimization framework to better manage tradeoffs in multifunctional landscapes. We then present results demonstrating the range of riparian conditions present in our case-study basins and how these environmental states influence stream ecological integrity with the commonly used macroinvertebrate Average Score Per Taxon (ASPT) index. We demonstrate that a qualitative index of riparian integrity can be positively associated with stream ecological status. This introduction to the CROSSLINK project shows the potential for our replicated study with its panoply of ecosystem attributes to help guide management decisions regarding the use of forested riparian buffers in human-impacted landscapes. This knowledge is highly relevant in a time of rapid environmental change where freshwater biodiversity is increasingly under pressure from a range of human impacts that include habitat loss, pollution, and climate change

    A global agenda for advancing freshwater biodiversity research

    Get PDF
    Global freshwater biodiversity is declining dramatically, and meeting the challenges of this crisis requires bold goals and the mobilisation of substantial resources. While the reasons are varied, investments in both research and conservation of freshwater biodiversity lag far behind those in the terrestrial and marine realms. Inspired by a global consultation, we identify 15 pressing priority needs, grouped into five research areas, in an effort to support informed stewardship of freshwater biodiversity. The proposed agenda aims to advance freshwater biodiversity research globally as a critical step in improving coordinated actions towards its sustainable management and conservation

    A global agenda for advancing freshwater biodiversity research

    Get PDF
    Global freshwater biodiversity is declining dramatically, and meeting the challenges of this crisis requires bold goals and the mobilisation of substantial resources. While the reasons are varied, investments in both research and conservation of freshwater biodiversity lag far behind those in the terrestrial and marine realms. Inspired by a global consultation, we identify 15 pressing priority needs, grouped into five research areas, in an effort to support informed stewardship of freshwater biodiversity. The proposed agenda aims to advance freshwater biodiversity research globally as a critical step in improving coordinated actions towards its sustainable management and conservation.Peer reviewe

    Bedeutung der Maßnahmen nach EG-Wasserrahmenrichtlinie für die Anpassung von Fließgewässern an den Klimawandel

    Get PDF
    Die vorliegende Diplomarbeit wurde im Rahmen des Netzwerk- und Forschungsprojekts dynaklim verfasst. Klimaprognosen zeigen für Deutschland neben einer fortschreitenden Erwärmung auch mögliche Veränderungen im Niederschlagsregime. Dies betrifft den mittleren Zustand, die saisonale Verteilung und das Extremverhalten. Diese Entwicklungen werden die Eigenschaften und die Beschaffenheit von Gewässern direkt und indirekt beeinflussen. Die Auswirkungen des Klimawandels auf Fließgewässer müssen bei der Umsetzung der EG-Wasserrahmenrichtlinie (WRRL), dem zentralen Instrument zum Schutz und zur Verbesserung der Gewässerökosysteme in Europa, berücksichtigt werden. Im Rahmen dieser Arbeit wurden die Maßnahmen nach WRRL im Hinblick auf den Klimawandel untersucht. Es wurde eine Bewertungsmatrix erstellt, anhand derer Aussagen über die Bedeutung einzelner WRRL-Maßnahmen für die Anpassung von Fließgewässern an den Klimawandel möglich sind und die eine Abschätzung über die Einfluss des Klimawandels auf die Wirksamkeit der Maßnahme erlaubt. Bei der Bewertung wurden alle Maßnahmen betrachtet, die auf Basis des standardisierten Maßnahmenkatalogs nach Bund/Länder-Arbeitsgemeinschaft Wasser (LAWA) an Oberflächengewässern in Nordrhein-Westfalen umgesetzt werden. Die entwickelte Matrix wurde anschließend auf das Maßnahmenprogramm des Emscher-Einzugsgebietes angewendet. Die Bewertungsmatrix zeigt, dass ein Großteil der bewerteten Maßnahmen einen Beitrag zur Anpassung an direkte und indirekte Auswirkungen des Klimawandels auf Gewässer leisten kann und somit für die Anpassung von Bedeutung ist. Die Untersuchung der Klimasensitivität hat ergeben, dass sich die Maßnahmen in diesem Punkt stark unterscheiden. Teils wird ihre Wirkung durch die Klimaveränderungen (Temperaturzunahme, Niederschlagszunahme inkl. Starkniederschlägen und Niederschlagsabnahme) verstärkt, teils wird sie gemindert. In einigen Fällen ist der Einfluss der Klimaveränderungen auf die Wirkung der Maßnahmen nicht signifikant

    Benthic Diatom Communities in Urban Streams and the Role of Riparian Buffers

    Get PDF
    Urbanization impacts stream ecosystems globally through degraded water quality, altered hydrology, and landscape disturbances at the catchment and riparian scales, causing biodiversity losses and altered system functioning. Addressing the "urban stream syndrome" requires multiple mitigation tools, and rehabilitation of riparian vegetation may help improve stream ecological status and provide key ecosystem services. However, the extent to which forested riparian buffers can help support stream biodiversity in the face of numerous environmental contingencies remains uncertain. We assessed how a key indicator of stream ecological status, benthic diatoms, respond to riparian habitat conditions using 10 urban site pairs (each comprising of one unbuffered and one buffered reach), and additional urban downstream and forest reference upstream sites in the Oslo Fjord basin. Diatom communities were structured by multiple drivers including spatial location, land use, water quality, and instream habitat. Among these, riparian habitat condition independently explained 16% of variation in community composition among site pairs. Changes in community structure and indicator taxa, along with a reduction in pollution-tolerant diatoms, suggested tangible benefits of forested riparian buffers for stream biodiversity in urban environments. Managing urban impacts requires multiple solutions, with forested riparian zones providing a potential tool to help improve biodiversity and ecosystem services

    Benthic Diatom Communities in Urban Streams and the Role of Riparian Buffers

    Get PDF
    Urbanization impacts stream ecosystems globally through degraded water quality, altered hydrology, and landscape disturbances at the catchment and riparian scales, causing biodiversity losses and altered system functioning. Addressing the “urban stream syndrome” requires multiple mitigation tools, and rehabilitation of riparian vegetation may help improve stream ecological status and provide key ecosystem services. However, the extent to which forested riparian bu↵ers can help support stream biodiversity in the face of numerous environmental contingencies remains uncertain. We assessed how a key indicator of stream ecological status, benthic diatoms, respond to riparian habitat conditions using 10 urban site pairs (each comprising of one unbuffered and one buffered reach), and additional urban downstream and forest reference upstream sites in the Oslo Fjord basin. Diatom communities were structured by multiple drivers including spatial location, land use, water quality, and instream habitat. Among these, riparian habitat condition independently explained 16% of variation in community composition among site pairs. Changes in community structure and indicator taxa, along with a reduction in pollution-tolerant diatoms, suggested tangible benefits of forested riparian buffers for stream biodiversity in urban environments. Managing urban impacts requires multiple solutions, with forested riparian zones providing a potential tool to help improve biodiversity and ecosystem services.publishedVersio
    corecore