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• Reach-scale riparian vegetation condition
had the strongest improvements in ecolog-
ical status.

• Bayesian belief network models were de-
veloped as a potential learning tool.

• Data collected from four European catch-
ments were used to train the model.

• Model's strengths are fast simulation time
and clarity, stimulating users' learning.
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Riparian forest buffers havemultiple benefits for biodiversity and ecosystem services in both freshwater and terrestrial
habitats but are rarely implemented in water ecosystem management, partly reflecting the lack of information on the
effectiveness of this measure. In this context, social learning is valuable to inform stakeholders of the efficacy of ripar-
ian vegetation in mitigating stream degradation. We aim to develop a Bayesian belief network (BBN) model for appli-
cation as a learning tool to simulate and assess the reach- and segment-scale effects of riparian vegetation properties
and land use on instream invertebrates. We surveyed reach-scale riparian conditions, extracted segment-scale riparian
and subcatchment land use information from geographic information system data, and collected macroinvertebrate
samples from four catchments in Europe (Belgium, Norway, Romania, and Sweden). We modelled the ecological con-
dition based on the Average Score Per Taxon (ASPT) index, a macroinvertebrate-based index widely used in European
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bioassessment, as a function of different riparian variables using the BBNmodelling approach. The results of themodel
simulations provided insights into the usefulness of riparian vegetation attributes in enhancing the ecological condi-
tion, with reach-scale riparian vegetation quality associatedwith the strongest improvements in ecological status. Spe-
cifically, reach-scale buffer vegetation of score 3 (i.e. moderate quality) generally results in the highest probability of a
good ASPT score (99–100%). In contrast, a site with a narrow width of riparian trees and a small area of trees with
reach-scale buffer vegetation of score 1 (i.e. low quality) predicts a high probability of a bad ASPT score (74%). The
strengths of the BBN model are the ease of interpretation, fast simulation, ability to explicitly indicate uncertainty in
model outcomes, and interactivity. These merits point to the potential use of the BBN model in workshop activities
to stimulate key learning processes that help inform the management of riparian zones.
Learning environment
Stakeholders engagement
Catchment management
Water resource management
Forest riparian buffers
Nature-based solution
Restoration
1. Introduction

Worldwide, streams are degraded due to excess nutrients, pesticide con-
tamination, wastewater discharge and habitat alterations (Casquin et al.,
2020; Deknock et al., 2019; Forio and Goethals, 2020; Mercado-Garcia
et al., 2018). Thus, various measures have been assessed and implemented
to improve the ecological conditions of streams. For instance, the minimum
environmentalflowswere applied in heavily regulated riverswhich resulted
in habitat improvements (Arthington et al., 2010; Carolli et al., 2021; Göthe
et al., 2019); constructedwetlandswere employed to partially remove nutri-
ents from wastewater before discharging to streams (Donoso et al., 2015;
Vymazal, 2007); and, natural retention measures such as wetlands, cover
crops, riparian buffers were restored or installed to reduce impacts of agri-
culture (Di and Cameron, 2002; Feld et al., 2018; Taramelli et al., 2019;
Zedler, 2003). In particular, the benefits of riparian forest buffers are well-
documented. They have shown to improve the water quality of streams, sta-
bilize streambank, enhance groundwater recharge and regulate the thermal
regime of streams (Johnson and Almlöf, 2016; Newbold et al., 2010; Singh
et al., 2021). Nevertheless, several studies have highlighted the importance
of considering the different spatial scales of riparian buffers when assessing
their benefits (Fitzpatrick et al., 2001; Forio et al., 2020a; Leps et al., 2015;
Popescu et al., 2021). For instance, Xu et al. (2021) showed that landscape
structures within a 300-m buffer zone had the greatest impact on water
quality, while Forio et al. (2020a) found that macroinvertebrate diversity
was strongly associated with the extent of trees in the riparian zone
100–300m upstream of the study sites. Another study claims that upstream
riparian conditions >2.5 km has a strong influence on the local ecological
status (Lorenz and Feld, 2013). Thus, considering the multi-scale effects of
riparian buffers is paramount when evaluating their benefits.

The efficacy of riparian buffers was assessed in various ways. Studies
have evaluated their effectiveness in reducing nutrient loads or losses using
nutrient concentrations as an indicator (e.g. Lee et al. (2020), Zhang et al.
(2017), Schilling and Jacobson (2014)), and in retaining sediments using
carbon stable isotopes (δ13C) and sediments loads in streams as indicators
(e.g. Sirabahenda et al. (2020), Cordeiro et al. (2020)). Moreover, riparian
buffers showed to have a positive effect for enhancing the ecological condi-
tions using biological metrics based on invertebrate, amphibian and fish
communities (e.g. Lorion and Kennedy (2009), Teels et al. (2006), Kupilas
et al. (2021), Forio et al. (2020a), Muenz et al. (2006)). Particularly, biolog-
ical metrics assess the cumulative impacts of chemical pollutants over time,
and thus integrate the current and past environmental conditions (Holt and
Miller, 2010). Biological metrics also indicate indirect biotic effects of pollut-
ants, reflect habitat quality which is not detected by traditional physical and
chemical water quality assessments, and denote the state of ecosystem func-
tioning (De Pauw et al., 2006; Holt and Miller, 2010; USEPA, 1997). In this
context, biological metrics provide a holistic indication of ecosystem health.

Despite the usefulness of the riparian forest buffers, their implementation
in water management has often been limited, which is partly due to the dis-
interest or distrust of stakeholders or the limited transfer of scientific knowl-
edge to practice (Durham et al., 2014; Megdal et al., 2017; Thoradeniya and
Maheshwari, 2017). The involvement of stakeholders is key to effectively
implement riparian buffers as measures to maintain or improve the ecologi-
cal quality of streams. In this context, social learning is valuable in informing
stakeholders and facilitating the successful implementation of particular
measures in environmental management (Cundill and Rodela, 2012). Social
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learning is a process wherein stakeholders come together and share their ex-
periences, perspectives and ideas, with participation and engagement as key
elements driving meaningful outcomes (Muro and Jeffrey, 2008; Rodela,
2011); furthermore, it often leads to awareness of human-environment con-
cerns, improved problem-solving capacity and decision-making, changes in
perceptions, values and norms and come up with collective action on a par-
ticular environmental concern (Armitage et al., 2008; Cundill and Rodela,
2012; Daniels and Walker, 1996). It also develops and sustains the capacity
of different authorities, experts, interest groups and the public to manage
their water resources effectively (Pahl-Wostl, 2007). Tools used during the
learning activities play a significant role in achieving the learning goals
(Pahl-Wostl, 2007). Among these tools are participatory GIS platforms and
visual aids such as photos to visualize spatial data and display the local land-
scape, respectively (Toderi et al., 2007). To our knowledge, the output or the
interactive model is rarely applied as a learning tool. A key strength of these
tools is the provision of evidence-based predictions on the outcomes of cer-
tain management actions such as particular conservation management
(Newton et al., 2007) and water resource management (Phan et al., 2019)
strategies and are promising social learning tools.

Mathematical models are commonly used to simulate environmental
processes. The outputs of some models are easy to interpret and use such
as those of decision trees, fuzzy logic, generalized linear regression and
Bayesian Belief Network (BBN) models (Van Echelpoel et al., 2015); there-
fore, they can be potentially used as a learning tool during a stakeholder en-
gagement. Among the enumerated models, the BBNmodels are interactive,
explicitly account for uncertainties, are able to complement empirical data
with expert knowledge, and straightforwardly propagate uncertainties asso-
ciated with model inputs (Boets et al., 2015; Forio et al., 2020b; Landuyt
et al., 2015; Nel et al., 2021). These advantages clearly indicate the great po-
tential of BBNs as social learning tools (Kelly et al., 2013; Smith et al., 2018);
however, hitherto BBNmodels are scarcely used in social learning activities.

In our study, we constructed BBN models as the basis for a potential
learning tool for riparian-stream management. In particular, we developed
a BBN model to simulate and assess the reach- and segment-scale effects of
riparian vegetation and the upstream catchment land use on streammacro-
invertebrates, specifically on the Average Score Per Taxon index, indicating
ecological quality (Fig. 1) as a proof of principle. We selected an index
based on macroinvertebrate communities because macroinvertebrates
(i) are generally ubiquitous and abundant in an aquatic ecosystem, (ii) inte-
grate environmental conditions over time, (iii) show the impacts of habitat
loss and (iv) are relatively easy to sample and identify (Dahm et al., 2013;
De Pauw et al., 2006; Forio and Goethals, 2020); furthermore, these organ-
isms (v) respond to the widest array of stressors and (vi) play an essential
role in the ecosystem functioning and food web (Dahm et al., 2013;
Hering et al., 2013; Hering et al., 2006). Data were collected in four catch-
ments across Europe (Belgium, Norway, Romania and Sweden) and were
used to train the model. We elaborated on the benefits and weaknesses of
BBN model for application as a potential learning tool.

2. Methods

2.1. Sampling scheme

Four catchments in Europe were investigated in this study: Arges
(44.2099306, 26.1831623 decimal degrees (DD); Romania), Fyrisån



Fig. 1.Graphical representation of the different spatial scales assessed in this study. Macroinvertebrates were sampled in the two sites with riparian vegetation (red dot) and
without (orange dot). Segment scale refers to a stream length of about >100 m but <1000m, while reach scale refers to a stream length of about >10m but <100 m (Frissell
et al., 1986).
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(59.786667, 17.655556 DD; Sweden), Oslo Fjord (59.3499986, 10.583331
DD; Norway), and Zwalm (50.88880, 3.66789 DD; Belgium) (Fig. S1).
Arges has a catchment area of 12,590 km2 and is dominated by forest in
the upstream areas with some agricultural activities in the midstream (pas-
ture and orchards) and downstream of the catchment. Fyrisån is 1982 km2

in size and consists of a mixture of forest and agriculture, with urban areas
downstream from our study sites. TheOslo Fjord subcatchments considered
in our study have a total area of 423 km2 and are dominated by upstream
forest areas with increasing urban land use further downstream; and,
Zwalm drains 117 km2 and is mainly dominated by agriculture-pasture
land use with about 10% urban and residences interlaced within the catch-
ment. Although the Arges catchment is the largest of all catchments, the
total area of the subcatchments that were sampled covered only
1135 km2. These subcatchments are located in the central and northern
parts of the catchment and are mainly dominated by forest with some agri-
cultural activities. Further descriptions of each case study catchment are
provided by Forio et al. (2020a), Ramberg et al. (2020), Mutinova et al.
(2020), Kupilas et al. (2021), Sargac et al. (2021) and Popescu et al. (2021).

This study was conducted as part of the European BiodivERsA project
CROSSLINK, which used the tiered study design described in Burdon
et al. (2020). The CROSSLINK project applied a “paired approach” to inves-
tigate aspects of lateral and longitudinal connectivity. In each case-study
catchment, we selected 10–12 streams, each with two paired sites: an up-
stream site with no riparian buffer (i.e. “unbuffered”), and a downstream
“buffered” site with a woody riparian buffer (i.e. leading to 20–24 sites
per catchment in total). The paired sites were relatively close together
with a distance of between 50 and 1000 m to ensure a similar stream size
in terms of discharge. We further selected 10–12 additional sites in each
catchment, located upstream and downstream of the site pairs, which
consisted of pristine or least impacted headwater sites and more degraded
downstream sites, respectively. This resulted in 30, 30, 37 and 34 sites sam-
pled in Arges, Fyrisån, Oslo Fjord and Zwalm catchment, respectively.

2.2. Data collection

Streammacroinvertebrateswere sampledwithin a 30m sampling reach
in each site using a Surber sampler (25 × 25 cm, 500 μm mesh net). Sam-
pling effort was standardized for 60 swhere the substratewas disturbed to a
3

maximum depth of 10 cm from the surface of the streambed. A total of six
replicate subsamples were collected (three from erosional/riffle-run habi-
tats, and three from depositional/run-pool habitats) within each sampling
reach and the contents pooled. In the laboratory, the pooled macroinverte-
brate sample was sieved (500 μm mesh) and sorted and then preserved in
10-mL tubes with 96% ethanol to reach a final concentration of 70%. Sam-
ples were identified under a stereomicroscope to the lowest possible level
using the identification keys (Dall and Lindegaard, 2001; de Pauw and
Vannevel, 1991; Dobson et al., 2012; Edington and Hildrew, 2005;
Hubendick, 1949; Lillehammer, 1988; Nilsson, 1996; Nilsson, 1997;
Pattée and Gourbault, 1981; Richoux, 1982; Sahlen, 1996; Tachet et al.,
1980; Ulmer, 1909; Wallace et al., 2003; Zwick, 2004). Subsequently, we
calculated the Average Score Per Taxon index (ASPT) with family-level mac-
roinvertebrate data using the calcBMWP function in the R package biotic for
each site (Briers, 2016; Burdon et al., 2020). The ASPT index was calculated
as the ratio of the score obtained in the Biological MonitoringWorking Party
(BMWP) index to the number of taxa scored in the sample. A higher ASPT
value indicates a better ecological condition (Armitage et al., 1983). The sam-
ples were collected in September of 2017, May of 2018, end of January–
March of 2018 and May–June of 2018 in Arges, Fyrisån, Oslo Fjord and
Zwalm catchment, respectively. These periods were chosen due to practical
reasons and the accessibility of the rivers. Nevertheless, studies have shown
that samples taken in any season are likely to provide consistent estimates
of ASPT (Armitage et al., 1983; Callanan et al., 2008; Odume, 2017).

In each site, the reach-scale vegetation in the riparian zones was sur-
veyed adjacent to the sampling reach at 50 m length of each bank. The veg-
etation was classified as score 1–5 (Table 1). Detailed information on
riparian survey methods is given in Burdon et al. (2020).

Segment-scale riparian characterization of each site was obtained from
GIS data in a polygon of 300 m upstream of the sampling sites (i.e. the re-
corded coordinates) with 50-m width on each stream bank. We calculated
the percentages of each land use category: arable/agriculture, forest and
shrub, pasture and grassland, and urban and industrial areas. The geographic
information system (GIS) data sourceswere Bodembedekkingskaart (BKK), a
1-m resolution land cover dataset (Agentschap Informatie Vlaanderen,
2019) for the Zwalm catchment, Copernicus, a 20-m resolution forest
cover dataset (European Union et al., 2020) for the % forest and shrub of
the three catchments and Corine, a 30-m resolution land cover dataset



Table 1
Description of each score class.

Classes Description

Score1 Short grazed pasture grasses to stream edge or impervious surfaces
Score2 Invasive weedy shrubs gorse, blackberry, broom, or mainly high grasses or

low shrubs 0.3–2 m
Score3 Deciduous tree dominated; small tree dom. (2–5 m); or forest plantation with

<25% cover of >5 m trees or natural grassy vegetation
Score4 Regenerating forest or woodlot evergreens with >25% cover sub-canopy (>5 m)

trees but <10% canopy trees (>12 m); or > 25% natural grassy vegetation
Score5 Maturing forest including >10% cover canopy trees (>12 m); or 100%

natural wetland or natural grassy vegetation

Table 2
ASPT scores and water quality classes based on Ganguly et al. (2018) and (Ochieng
et al., 2020).

Water quality category ASPT score BBN states

Waters with excellent quality >5.4 Good
Waters with good quality or no obvious distortions 4.8–5.4
Waters with regular quality, potentially eutrophic 4.3–4.8 Moderate
Waters with poor quality 3.6–4.3 Bad
Waters with bad quality 3.0–3.6
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(European Union and European Economic Area (EEA), 2012) for the % area
of the remaining land uses of three catchments.

The land use of the whole catchment upstream of the sites were also de-
termined using the GIS dataset BKK (Agentschap Informatie Vlaanderen,
2019) for the Zwalm catchment and Corine (European Union and
European Economic Area (EEA), 2012) for Arges, Fyrisån and Oslo Fjord
catchments.

2.3. Model development

A Bayesian belief network (BBN) model was developed to analyze and
predict the response of the ASPT index to the reach-scale and segment-
scale effects of riparian conditions as well as the catchment land use. A
BBN is a type of probabilistic graphical model that comprises two structural
components: a causal network, often referred to as the directed acyclic
graph (DAG), and conditional probability tables (CPTs) that quantify the re-
lations among the variables in the causal network. The DAG consists of a set
of nodes, representing the system's variables of interest, and a set of arrows,
indicating the causal relationships among these variables. Each node has a
finite set of states with probabilities defining the likelihood that a particular
state is manifested. The probability distribution over the states of a node X
is determined by the realized states of its preceding or parent nodes, using
the conditional probability P(X|parents(X)) described in Bayes' theorem
(Puga et al., 2015). These conditional probabilities are tabled in themodel's
CPTs and quantify the strengths of the relationships between the network's
variables. A detailed model description and statistical background can be
found in Jensen and Nielsen (2007).

The causal relations were defined between ASPT and the reach-scale
and segment-scale predictors of riparian condition and catchment land
use, detailed above in Section 2.2. Subsequently, the variables were
organised in a causal network. A multi-scaled approach was implemented
in the model, i.e. variables at different spatial scales were considered. The
subcatchment-scale variable represents the dominant land-use distribution
(%) in the full upstream catchment of the site. The segment-scale variables
consist of the average riparian width of trees (m) and percent area of trees
in a polygon of 300 m upstream of the sampling sites with 50-m width on
each stream bank as well as the ASPT upstream of the sites. However, the
upstream ASPT of a site was indicated as a missing observation if there
was no direct upstream site that was sampled. The reach-scale variable
consists of the buffer vegetation. The CPTs for each node were populated
based on the collected field data with 122 observations (after removing 9
inconsistent data) using Netica's (Norsys Software Corporation, 2017)
expectation-maximization (EM) algorithm (Gupta and Chen, 2011).

2.3.1. Thresholds
The ASPT at each site is expressed in three discrete ecological condition

categories: good,moderate, and bad (Table 2). The land use of each sitewas
categorized based on the most dominant land use category: grassland (or
pasture) interlaced with residences, forest and agriculture (i.e. arable). To
categorize themean riparian width of trees and the area of trees, we plotted
a scatter plot of the two variables as a function of ASPT with a line of best
fit. We identified the ASPT score where a sudden change of line direction
was observed. These scores were slightly adjusted so that the CPTs of the
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ASPTnodewere optimally trained. As a result, themean treewidthwas cat-
egorized into 0–20m (low), 20–40m (medium), and 40–100m (high). The
percent area of treeswas categorized into 0–25% (low), 25–40% (medium),
and 40–100% (high).

2.4. Model evaluation

2.4.1. Sensitivity analysis
The Netica software (Norsys Software Corporation, 2017) is an easy-to-

use program for developing BBNs and was used to calculate the sensitivity
of the ASPT node to findings in all other nodes of the network. Sensitivity
analysis measures the degree to which a model variable influences the var-
iable of interest within the model (Marcot et al., 2006; Sun and Müller,
2013), which is quantified through variance reduction. A higher variance
reduction value indicates a higher influence on the target variable of the
network. Sensitivity analysis identifies important variables within the net-
work and can help to assess the behaviour of the model.

2.4.2. Model validation
The model was separately tested by each of the country's data to evalu-

ate the applicability of the model in each country using three performance
metrics: Cohen's kappa, correctly classified instances (CCI), and spherical
payoff (SP).

Cohen's kappa (κ) is a descriptive statistics to quantify the agreement be-
tween two raters (Cohen, 1960). A Cohen's kappa value of less than 0 indi-
cates less than chance agreement, 0.01–0.20 indicates slight agreement,
0.21–0.40 indicates fair agreement, 0.41–0.60 indicates moderate agree-
ment, 0.61–0.80 indicates substantial agreement, and 0.81–0.99 indicates al-
most perfect agreement (Viera and Garrett, 2005). A Cohen's kappa value
above 0.4 is considered to indicate a reliable model (Dakou et al., 2007).

CCI is commonly used to evaluate the performance of ecological models
(Everaert et al., 2011; Goethals et al., 2007). CCI is calculated by the num-
ber of correctly classified instances divided by the total number of observa-
tions in the test dataset (Kohavi and Provost, 1998). A CCI that exceeds the
no-information rate (i.e. percentage of the largest class in the training set)
can be deemed acceptable (Kuhn and Johnson, 2013). In our study, the
no-information rate was 80%. The limitations of CCI as a model perfor-
mance metric include the index's inability to differentiate between small
and large class disagreements and its inability to take into account the un-
certainties associated with the predictions of a BBN.

SP is a performance metric that accounts for prediction uncertainty
while evaluating model performance (Marcot et al., 2006). SP is repre-
sented by Eq. (1)where n is the number of cases in the testfile, Pic is the pre-
dicted probability of the correct state for case i, Pij is the predicted
probability of state j for case i and m denoting the total number of states
of the target variable. SP ranges from 0 to 1, with higher values denoting
better model performance (Norsys Software Corporation, 2013).

SP ¼
∑
n

i¼1

Picffiffiffiffiffiffiffiffiffiffiffiffi
∑m

j¼1P
2
ij

p

n
(1)

2.5. Model simulations

In each land use type, 18 scenarios were formulated as a basis for model
simulations (Table 3); that is, model simulations were performed by setting



Table 3
List of scenarios.

Scenario Tree width node Area trees node Buffer vegetation node

1 High
2 Low
3 High High
4 High Low
5 Low High
6 Low Low
7 High High Score 5
8 High High Score 3
9 High High Score 1
10 High Low Score 5
11 High Low Score 3
12 High Low Score 1
13 Low High Score 5
14 Low High Score 3
15 Low High Score 1
16 Low Low Score 5
17 Low Low Score 3
18 Low Low Score 1

Fig. 3. Graphical representation of the sensitivity analysis results of the Bayesian
Belief Network (BBN) model represented as percentage variance reduction of the
target variable average score per taxon (ASPT).
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a 100% probability for the corresponding state of a given node indicated in
Table 3 in each scenario. For instance, the state “high” of the tree width node
was set to a probability of 100% in Scenario 1, while a probability of 100%
was set for the state “high” of the tree width and area trees nodes and state
“Score 5” of the buffer vegetation node in Scenario 7. Additionally, each
land use type was indicated by setting a 100% probability for a given
land use type (i.e. agriculture, grassland or forest). Subsequently, the prob-
ability distribution of the ASPT node was recorded after the simulation of
each scenario. These model simulations provided information on the effect
of riparian conditions at different scales on the ecological condition,
expressed as ASPT.

3. Results

3.1. The BBN model

The model consisted of 6 nodes with downstream ASPT as the target
variable. Three spatial scales of riparian variables are implemented in the
model: subcatchment, segment and reach scale (Appendix A). The model
indicated that 12.9%, 21.2% and 65.9% of the sites had bad, moderate
and good ecological water quality, respectively (Fig. 2). Seventy-six percent
of the upstream sites had good ecological water quality. Seventy-five
Fig. 2. BBN model to predict the ecological condition expressed as a

5

percent of the sites were dominated by forest land use. More sites have
highmeanwidth of treeswhilemost sites have approximately the same per-
centage of low and high area of trees. About 50% of the sites were classified
as score 2 and 5 in terms of reach-scale buffer vegetation.

3.2. Model evaluation

Reach-scale riparian variables strongly influenced the ASPT score
(Fig. 3). This was followed by the segment-scale variables: percent areas
of trees, upstream ASPT score and mean width of trees. The subcatchment
land use had the least influence on the ASPT score. Validation by country
revealed an acceptable Cohen's kappa mean value of 0.41 and correctly
classified instances (84.5%). Among the case study catchments, the
Zwalm catchment (Belgium) had a very good Cohen's kappa score (0.75)
followed by the Arges (Romania) with a score of 0.47 (Table 4,
Tables S1–2). ASPT classes were poorly predicted in the Norwegian and
Swedish case study catchments. For both case studies, themodel incorrectly
classified sites with moderate and bad ASPT classes into good class
(Tables S3–4). The spherical payoffs among the case studies were compara-
ble.

3.3. Model simulations

The model simulations suggest that grassland and agricultural
subcatchment-scale land use follow similar patterns with slight differences
in the probability distribution of ASPT states (Fig. 4a–b). Simulations on
forest-dominated land use showed a higher probability of a good ecological
state in comparison to the other dominant land uses (Fig. 4c). Scenario 10
indicates equal probability distribution of the ASPT states, implying
verage score per taxon (ASPT) in the four European catchments.



Table 4
Model validation per country.

CCI (%) Cohen's kappa Spherical payoff

Sweden 79.3 0.21 0.84
Romania 92.6 0.47 0.89
Norway 81.2 0.19 0.89
Belgium 84.8 0.75 0.90
Mean 84.5 0.41 0.88
Standard deviation 5.9 0.26 0.03
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uncertainty of model predictions. This is due to the absence of an observa-
tion in the data with wide tree area and reach-scale buffer vegetation clas-
sified with score 5, that is, this specific observation does not exist in any of
the sampled locations. Reach-scale buffer vegetation of score 3–5 generally
results in the highest probability of a good ASPT score (Scenario 8, 11, 13,
14 and 16). However, the highest probability of a good ASPT state was also
attained in a riparian zone with reach-scale buffer vegetation of score 1 but
with a very wide and large area of trees at the segment-scale area (Scenario
9). In contrast, a site with a narrow width of riparian trees and a small area
of trees with score 1 predicts a high probability of a bad ASPT score (Sce-
nario 18). Low probability of good ASPT was observed in narrow width
of riparian trees and a small area of riparian trees in combination with a
reach-scale buffer vegetation of score 3 in a grassland- and agriculture-
dominated land use (Scenario 17). These sites are more likely classified as
bad or moderate quality class. Riparian zones with a wide width of riparian
trees and a large area of riparian trees predict high chances of obtaining a
good ASPT class (Scenario 3, Fig. S2). In contrast, riparian zoneswith a nar-
row width of riparian trees and a small area of riparian trees predict high
chances of a bad ASPT class (Scenario 6, Fig. S2).

4. Discussion

4.1. Model outcome

Our study indicates that reach-scale riparian attributes, particularly
the vegetation condition had the strongest effect on ASPT among the
variables considered while the segment-scale riparian variables and
the subcatchment-scale land use had a moderate and the low influence
on ASPT, respectively. The model outcome generally followed similar
patterns as observed in previous studies, i.e. ecological condition is pos-
itively related to the quality and extent (e.g. width, area) of the riparian
vegetation (Burdon et al., 2020; Damanik-Ambarita et al., 2018; Gericke
et al., 2020). Based on our results, it can be inferred that ecological con-
dition is enhanced when the reach-scale riparian vegetation is at least
deciduous tree dominated; small tree dominated (2–5 m); or forest plan-
tation with <25% cover of >5 m trees or natural grassy vegetation, and
when the area of riparian trees is large (>40%) or riparian width of trees
is wide (>40 m). Furthermore, the results of our model imply that a min-
imum riparian vegetation score of 3 is required for all stream sections to
achieve a high probability of good ecological condition. Other studies,
akin to our investigation, have documented the benefits of riparian forest
on aquatic invertebrates and the underpinningmechanisms. Riparian forest
buffers retain nutrients and reduce soil erosion (Blankenberg and
Skarbovik, 2020; Groh et al., 2020; Singh et al., 2021), and regulate tem-
perature (Reiter et al., 2015; Singh et al., 2021) which are beneficial to
aquatic organisms (Collier and Smith, 2000; Quinn et al., 2004; Vought
et al., 1995). However, the positive effects of riparian vegetation can be
overruled by other factors (e.g. presence of wastewater) that are not in-
cluded in our model (Damanik-Ambarita et al., 2016; Mercado-Garcia
et al., 2019; Musonge et al., 2020; Mutinova et al., 2020). In our study,
we only focus on riparian attributes as the aim was to simulate the effects
of riparian variables on the ecological condition. Furthermore, due to the
limitations of the BBN model and the data, it is challenging to add addi-
tional nodes directly connected to the ASPT node. On the other hand, keep-
ing the model simple facilitates the understanding of model simulations
and output.
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4.2. Strengths and limitations of the model

The model developed in this study is relatively simple in terms of struc-
ture and number of input variables. Despite this, the model was able to im-
plement various simulations which allow the understanding of the effect of
riparian conditions on the ecological condition. The input variables in the
model were also selected so learners could potentially comprehend these
variables easily and be able to estimate the ecological condition based on
observations in their study area. That is, one can conveniently predict the
ecological conditions based on ASPT quality classes at a given site, given
the riparian conditions and the dominant land use. Incorporating
difficult-to-assess variables in the model will most likely be challenging
for the learners to understand. For instance, although the overall riparian
condition score (e.g. Riparian Condition Index, cf. Burdon et al. (2020))
provides an overall indication of the reach-scale riparian quality, it cannot
be directly estimated by learners as it consists of 13 riparian attributes such
as shading of water, buffer width, buffer intactness, land slope and vegeta-
tion composition. In this respect, keeping the model simple is potentially
advantageous for learning purposes (Allison and Tharby, 2015; Carroll,
1999). Model simplicity facilitates the straightforward interpretation of
model simulations and predictions, enabling effective learning (Allison
and Tharby, 2015; Carroll, 1999; Fink, 2013; Krumsieg et al., 1996).

The number of nodes in the BBNmodel and states in each node are lim-
ited by not only the amount of data but also the number of instances con-
taining a combination of different parent states. It is however possible
that the combinations of certain states are rare within the catchments. For
example, it is uncommon to observe the presence of an excellent reach-
scale vegetation quality (i.e. score 5), a large area and narrow width of ri-
parian trees in the reach-scale area. The absence of certain instances or ob-
servations in the data causes uncertainties in the model predictions (e.g.
Scenario 10). On the other hand, as these instances are rarely occurring in
the case study sites, the predicted outcome is not crucial. Nevertheless, to
improve the model's predictive performance, a large and diverse dataset
is needed to populate the conditional probability table (CPT). The dataset
must not only contain a high number of instances/observations but also
should comprise an adequate number of instances to train every parent
state combinations in the CPTs (Landuyt et al., 2013). Cain (2001) recom-
mended having at least 20 instances for all parent state combinations in
the CPTs. Thus, developing a more accurate model with a large number
of states and nodes might require a large dataset not only with a large num-
ber of observations but also a sufficient number of observations to train
every parent state combinations in the CPTs.

We recommended using the model only in the Belgian and Romanian
catchments, and that slight caution is advised when applying the models
to the Norwegian and Swedish catchments. To improve the predictive per-
formance of the model for the Norwegian and Swedish sites, the model
might need to be trained with additional data from both case studies. For
example, an additional node to accommodate the local-specific conditions
might increase model performances. The Norwegian case study catchment
has significant urban areas downstream of the catchment which may have
played a role in the model's predictive performance. Specifically, some of
the Norwegian sites were heavily polluted while having a good riparian
condition (Kupilas et al., 2021; Mutinova et al., 2020), which potentially
truncated the positive link between riparian vegetation and ASPT in our
models. Specifically, Kupilas et al. (2021) suggested that the positive effect
of riparian vegetation onfish abundances seemed to be limited by other fac-
tors, as a number of sites with a good riparian condition had low fish den-
sities, or, in some cases, no fish present. They expected that other human
impacts aside from urbanization, such as source pollution interferes with,
and, in some cases, completely disrupts, stream-riparian buffer interactions,
thereby limiting their potentially positive effects on fish populations. On
the other hand, the Swedish catchment had several features that could af-
fect model performance. The intermittent flows of the forested reference
streams during the summer preceding sampling might partly explain why
these sites deviate from the expected ecological condition (Burdon et al.,
2020). Another factor is that the model may have overpredicted the results



Fig. 4.Model simulations for Scenarios 7–18 for grasslandwith residences (a), agriculture (b) and forest (c) with current conditions (CS), current conditions for grasslandwith
residences, agriculture and forest-dominated land use (G-CS, A-CS, F-CS, respectively). Red, orange and blue bars represent the probability of ASPT with bad, moderate and
good classes, respectively.
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due to the large forest areas, thus underestimating the local impact of agri-
culture and overpredicting the ASPT scores in many sites.

The model was developed to assess and predict the responses of a
macroinvertebrate-based index on the different riparian attributes at vary-
ing scales as proof of principle and used ASPT to demonstrate the principle.
Nevertheless, responses to chemical indicators such as nutrients could pro-
vide useful information to stakeholders. In this context, the model can be
7

reapplied to other variables such as nutrients across catchments. However,
developing this model might be challenged by the fact that relevant chem-
ical variables may differ among case study catchments due to differences in
type of sources and loads of these stressors (Hering et al., 2015). For in-
stance, the downstreamNorwegian streams are heavily impacted by urban-
ization (Kupilas et al., 2021; Mutinova et al., 2020). The Belgian case study
catchment, although is mainly dominated by agriculture-pasture land use,
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is interlacedwith residences inwhich about 40% of the untreatedwastewa-
ters are directly discharged into the streams (Boets et al., 2021; Forio et al.,
2020a). The Swedish case study catchment, on the other hand, is moder-
ately impacted by agricultural activities (Burdon et al., 2020; Sargac
et al., 2021). Lastly, the Romanian case study catchment is least impacted
by stressors in comparison to all case study catchments (Burdon et al.,
2020; Popescu et al., 2021). In this respect, a catchment-specific model
might be needed to assess the responses of chemical variables on the differ-
ent riparian attributes.

One of the disadvantages of themodel is the use of discrete values, often
resulting in information loss (Aguilera et al., 2010; Landuyt et al., 2013).
One option is to increase the number of states within a node; however,
this may lead to a large conditional probability table (CPT) and the pres-
ence of missing data in many or some parent state combinations in the
CPTs. This is particularly the case in the BBN model developed in our
study. Adding more states within the nodes only resulted in additional un-
trained parent state combinations in the CPTs, resulting in poorer model
performance (Uusitalo, 2007). Likewise, connecting additional nodes in
the ASPT node will result in bulky CPTs which will again lead to additional
unlearnt state combinations. The BBN model developed in our study is to
some extent limited by the data used to train the CPTs. To improve model
performance, the model should be trained with not only data with a high
number of instances but also with a sufficient number of instances in each
parent state combination.

4.3. BBN model as a learning tool

The simulations in the developed BBN model can provide information
on the changes in ecological condition as a response to the riparian condi-
tions and dominant land use. Thus, learners such as stakeholders can per-
form queries and be able to obtain different types of inferences: diagnostic
and predictive (Fig. S3). The BBN model can be run in a diagnostic mode
by inserting the evidence in the output node and indicate the causes (see
Fig. S3a). On the other hand, when the evidence is inserted in one of the
input variables of the models, a predictive mode is run (see Fig. S3b), pro-
viding effects of input changes (Landuyt et al., 2017). The simulations in
our study implement a predictive mode. These queries allow the learners
to determine the causes or effects of certain conditions through diagnostic
or predictive inferences, respectively, which enhances their understanding
of the effects of riparian vegetation.

Information on model uncertainty is paramount for model users and
learners to understand the uncertainties associated with a particular sce-
nario and ultimately management strategies. Notably, quantitative indica-
tion of uncertainties is incorporated in the BBN model and these values
are indicated in various ways (Landuyt et al., 2015). As an illustration, we
use Scenario 3 for the land use type grassland with residences (SI Figs. 2,
4a). In this case, the expected ASPT value was 6.3 (standard deviation
was 2.2) indicating good quality. However, this standard deviation is less
informative because the distribution of the ASPT node is skewed. Another
quantification of uncertainty is through the quantification of the probabil-
ity of the most probable state. The most probable state (i.e. good quality)
has a 70.5% probability across all case study sites in this case. This informa-
tion indicates that Scenario 3 provides 70.5% certainty of good ecological
condition. In contrast, Scenario 4 for the land use type grassland with resi-
dences (SI Figs. 2, 4b) has a 45.6% probability of the most probable state
(i.e. good quality).

One of the main advantages of themodel is the short simulation time. It
takes less than a second to obtain results from eachmodel simulation. Users
or learners, in general, prefer models that provide fast outcomes (Cheng
et al., 2014; Han et al., 2018; Mouton et al., 2009). Furthermore, the
model does not require additional data to perform simulations in compari-
son to other model types (Grützner, 1996).

The model was developed as a potential learning tool. According to
Sterman (1994), effective learning methods must include tools that evoke
participants' knowledge and simulation tools that improve scientific rea-
soning skills. Moreover, using these tools in stakeholder workshops and
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dialogues is beneficial in achieving the learning goals (Pahl-Wostl, 2007).
As the involvement of stakeholders has been proven valuable inwaterman-
agement (Tengberg et al., 2021), these tools contribute to the success of
water protection, preservation and restoration. The model developed in
our study is potentially valuable as a learning tool because it provides
evidence-based learning outcomes, is relatively simple, interactive and is
therefore engaging, which are useful in stakeholders workshops (Allison
and Tharby, 2015; Carroll, 1999; Fink, 2013). Furthermore, the model pro-
vides information on the current environmental issues, raising stake-
holders' awareness of environmental problems. Nevertheless, this study is
only a first step and the model itself needs to be tested by stakeholders.

Singh et al. (2021) stressed the significance of stakeholders' participa-
tion in managing riparian zones. It is therefore of utmost importance that
they are involved in the decision-making process (Cansino-Loeza and
Ponce-Ortega, 2021) and the learning tools can be used to inform stake-
holders of possible decision outcomes. However, stakeholders often have
varying interests which are based on either economic, environmental or
socio-cultural objectives (Cansino-Loeza and Ponce-Ortega, 2021). In addi-
tion, their decision preferences are generally influenced by their vested in-
terest. A learning tool that provides trade-offs between these objectives is
valuable in multi-stakeholders learning dialogues. Our model only focuses
on one objective, that is, ecological condition. The model setup might be
less interesting for stakeholders who aremore concernedwith outcomes re-
lated to economic and socio-cultural objectives. Thus, a trade-off tool is
valuable for multi-stakeholders learning dialogues. The Bayesian belief net-
workmodel can potentially be set up as a trade-off tool (Forio et al., 2020b)
by adding other target nodes related to economic or socio-cultural objec-
tives. In our study, the model was only focused on assessing the effect of ri-
parian attributes on the ecological condition (i.e. the target node in our
model which was expressed as ASPT classes). However, the model can be
adapted to provide trade-offs between different objectives by restructuring
and collecting the needed data for populating the CPTs.

5. Conclusions

We constructed a Bayesian Belief Network (BBN)model to simulate and
assess the effects of riparian vegetation on streammacroinvertebrates, spe-
cifically on the Average Score Per Taxon index (ASPT), indicating ecologi-
cal condition (Fig. 1) as a proof of principle. Among the riparian
attributes at different spatial scales, the reach-scale attributes had the
most influence on the ecological condition (i.e. expressed as ASPT),
followed by the segment-scale attributes and lastly the subcatchment-
scale attributes. The model simulations indicated that a higher probability
of ecological condition, was achievedwhen the reach-scale riparian vegeta-
tion was at least deciduous tree dominated; small tree dominated (2–5 m)
or forest plantation with <25% cover of >5 m trees or natural grassy vege-
tation. The main advantage of the Bayesian belief network (BBN) model as
a learning tool is its simplicity, which allows the straightforward interpreta-
tion of model simulations and predictions, facilitating the learning process.
Furthermore, key characteristics of the BBN model are its fast simulation,
interactivity and ability to explicitly indicate uncertainty of model out-
comes, stimulating learning. Limitations of themodel are the use of discrete
values, potentially resulting in the loss of information, and the challenges in
addingmore nodes in the BBNmodel and states in each node as these addi-
tions require not only more observations in a dataset but also more in-
stances for all parent state combinations. Despite these drawbacks, the
model is potentially a valuable learning tool to support stakeholders' work-
shops and dialogues in water management implementation and synthesis.
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