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1 Introduction 

 

Following a long history of human pressures on riverine ecosystems, the European Water 

Framework Directive (WFD, Directive 2000/60/EC) came into force in 2000 and initiated a 

new period of river management in Europe. The directive aims at improving the ecological 

and chemical status of rivers in order to achieve the ‘good status’ of all surface waters until 

the year 2027. In Europe, degraded hydromorphology has been highlighted as a central 

impact to the ecological status of the rivers (EEA 2012). For instance, in countries such as 

Germany, the hydromorphology of almost all river sections is affected to an extent that they 

fail to meet the WFD goals (EEA, 2012). In response, river hydromorphology is nowadays 

being restored at an increasing rate. 

The assessment of restoration success or failure has mainly focused on responses of 

aquatic organisms, such as fish (e.g., Roni et al. 2008, Haase et al. 2013, Schmutz et al. 

2016), benthic invertebrates (e.g., Jähnig et al. 2010, Friberg et al. 2014, Verdonschot et al. 

2016), and macrophytes (e.g., Lorenz et al. 2012, Ecke et al. 2016). However, restoration of 

river hydromorphology has the potential to affect not only structural ecosystem features, 

including species composition and diversity, but also, and sometimes in a more pronounced 

way, functional aspects, such as key ecosystem processes and trophic transfers of energy and 

nutrients. Functional aspects can be influenced by restoration, while structural ecosystem 

features remain unaffected, and vice versa. Contrasting responses of functional aspects and 

community structural parameters have been reported in the context of impact assessments 

(e.g., Friberg et al. 2009, McKie & Malmqvist 2009, Niyogi et al. 2013). Thus, incorporating 

functional aspects into monitoring programs may enable a more holistic assessment of river 

health and a better mechanistic understanding of restoration effects. Although many studies 

have advocated that classical, community-based assessment needs to be complemented with 

functional approaches to evaluate river health (e.g., Young et al. 2008, 2009, Palmer & 

Febria 2012, Woodward et al. 2012), functional metrics are still rarely used in assessments of 

river restoration (Palmer et al. 2014). Consequently, the outcomes of river restoration for key 

ecosystem processes (e.g., river metabolism) and trophic relationships (e.g., trophic structure 



1  Introduction  11 
  

 

of benthic invertebrate communities and trophic connectivity between river and land) remain 

poorly understood. 

Hydromorphological restoration has the potential to influence riverine food webs and 

associated transfers of energy and nutrients. A higher diversity of both feeding- and physical 

habitat-related niches can contribute to changes in food web structure, particularly if a higher 

variety of resources is available to increase the number of trophic pathways (Layman et al. 

2007a, Woodward 2009). For instance, more complex river bed structures enhance the 

retention of allochthonous organic matter (Lepori et al. 2005b, 2006, Flores et al. 2011), 

which can further be increased by reconnecting rivers and floodplains and hence resource 

transfers from land to water. Autochthonous sources are also likely to increase, e.g. caused 

by enlarged shallow habitats providing more space for autotrophs (Lorenz et al. 2012, 

Friberg et al. 2016). Overall, improved river hydromorphology has the potential to increase 

the range of basal resources in riverine ecosystems with knock-on effects for consumers of 

higher trophic levels, including benthic invertebrates (Friberg et al. 2016). 

River restoration may also promote the flux of aquatic biomass into terrestrial food webs. 

One particular food web linkage is the contribution of aquatic insects to the diet of 

predaceous riparian ground-beetles and spiders (Hering & Plachter 1997, Collier et al. 2002, 

Paetzold et al. 2005). Riparian arthropod predation on aquatic insects is concentrated along 

the shoreline where riparian arthropods aggregate, aquatic insects emerge, and surface 

drifting organisms accumulate (Paetzold et al. 2005). An improved shoreline structure (by 

creating a shallower river profile, removing bank fixations and providing habitats suited for 

riparian biota) enables riparian arthropods to stay close to the river channel and potentially 

makes aquatic prey more easily accessible to riparian predators. Consequently, river 

restoration is likely to increase the proportion of aquatic prey in the diet of riparian 

arthropods, promoting the trophic connectivity of river and land. 

Food webs and trophic relationships of organisms are commonly analyzed by carbon and 

nitrogen stable isotopes (δ13C and δ15N). Stable isotope data provide information on the 

material assimilated by consumers (Abrantes et al. 2014). Because δ15N is stepwise enriched 

with trophic transfers, i.e., consumers are enriched relative to their diet, it is generally used 

to characterize the relative trophic position of a consumer (Minagawa & Wada 1984, Post 

2002, McCutchan et al. 2003). In contrast, δ13C isotopic signatures change little with trophic 

transfers but vary among different producers, and thus can be used to identify the carbon 

sources of an organism (DeNiro & Epstein 1978, Vander Zanden & Rasmussen 1999, Post 

2002). A common approach to study stable isotope data is to plot mean isotopic signatures of 

organisms in δ13C -15N -isotope bi-plots. The relative position of species or groups in this bi-

plot space is used to investigate food web related aspects (Layman et al. 2007b). This 



1  Introduction  12 
  

 

approach may also be suitable to study effects of restoration on trophic relationships in order 

to obtain a more holistic characterization of restoration effects. 

Ecosystem metabolism, i.e., the combination of gross primary production (GPP) and 

ecosystem respiration (ER), is a key ecosystem process in rivers. It is a measure of the 

production and use of organic matter within a river reach by the biota (Young et al. 2008, 

Tank et al. 2010). Hence, it provides information about a river’s trophic and energetic base 

(relative contribution of autochthonous and allochthonous carbon sources to the food web) 

(Young et al. 2008, Tank et al. 2010, Beaulieu et al. 2013). Together with other 

characteristics of the river ecosystem, light availability, temperature, and organic matter 

supply are among the primary factors that control river ecosystem metabolism (Lamberti & 

Steinman 1997, Sinsabaugh 1997, Mulholland et al. 2001), and these factors are directly 

influenced by reach-scale characteristics (Bernot et al. 2010, Tank et al. 2010). 

Consequently, hydromorphological restoration can affect river ecosystem metabolism. For 

example, the widening of the river channel is a widely implemented restoration technique 

along mountainous rivers in central Europe. It increases light availability and water 

temperature, and hence primary productivity. Furthermore, river widening promotes 

macrophytes and other autotrophs through the creation of shallow, slow flowing areas and 

backwaters (Lorenz et al. 2012). These changes potentially lead to enhanced in-stream 

autotrophic processes. However, restoration can also promote heterotrophic metabolism in 

the river due to an increased input and retention of allochthonous organic matter (e.g., caused 

by an enhanced resource transfer from land to water and more complex river bed structures; 

compare previous paragraphs). There is only limited understanding of how restoration can 

influence ecosystem metabolism, especially for larger rivers (but see Colangelo 2007). 

Including ecosystem metabolism into river monitoring may enable a better mechanistic 

understanding of restoration effects. 

 

 

1.1 Scope of the thesis 

According to the previous chapter, hydromorphological restoration has the potential to 

influence functional aspects of riverine ecosystems, including river metabolism and trophic 

relationships. However, this has rarely been studied and the effects of river restoration on the 

trophic structure of benthic invertebrate communities, the trophic connectivity between river 

and land, and river ecosystem metabolism remain poorly understood. Against this 

background, the present thesis consists of three main chapters which are associated to the 

prior outlined topics. These chapters represent individual papers which have been partially 
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submitted and published in peer-reviewed journals. They specifically address the following 

topics and associated objectives: 

 

x River restoration and the trophic structure of benthic invertebrate communities 

across 16 European restoration projects 

In the second chapter, stable isotope analysis (δ13C, δ15N) was applied to characterize 

changes in the trophic structure of benthic invertebrate communities between paired 

restored and unrestored river reaches. The study aimed to identify changes in the 

isotopic signatures of benthic invertebrate consumers indicative both of increased 

resource breadth (indicated by δ13C range), and increases in trophic length (indicated 

by δ15N range) following river restoration, which together favour larger isotopic 

niches of invertebrate assemblages. Moreover, it was investigated if restoration 

effects depend on the extent of restoration effort, and on the type of restoration 

measures applied. 

 

x River restoration enhances aquatic-terrestrial linkages: a stable isotope study of 

riparian arthropods in eleven restored floodplain sections 

In the third chapter, the isotopic composition (δ13C, δ15N) of consumers in aquatic, 

riparian (within one meter distance to the river) and terrestrial (beyond the riparian 

zone) habitats was investigated. Stable isotope data were plotted in isotope space to 

examine the trophic organization across the aquatic-terrestrial interface. The study 

aimed to detect changes in the position of riparian arthropods in isotope space 

indicative both of a smaller share of terrestrial resources, and an increased use of 

aquatic prey following restoration. The isotopic distance of riparian consumers to 

benthic invertebrates and terrestrial arthropods was quantified as a measure of 

trophic linkage, and it was investigated how this varied with riparian habitat 

composition. 

 

x Hydromorphological restoration stimulates river ecosystem metabolism 

In the fourth chapter, the effect of hydromorphological river restoration on 

ecosystem metabolism was investigated. The study was conducted in a 2.3 km long 

restored reach of a German mid-sized mountain river (Ruhr). The study aimed to 

assess reach-scale restoration effects on hydromorphology, habitat composition and 

hydrodynamics, and to determine the corresponding responses of river metabolism, 

i.e. whole-stream rates of GPP and ER, as well as the river’s metabolic balance. 
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2 River restoration and the trophic structure of benthic 
invertebrate communities across 16 European 
restoration projects 

 

2.1 Introduction 

Restoration of river hydromorphology has the potential to affect not only structural 

ecosystem features, including species composition and diversity, but also ecosystem 

functioning (Palmer et al. 2014). Despite this, the most-widely used parameters for assessing 

the success or failure of restoration projects are almost exclusively based on changes in 

community composition of different biological groups. In the context of the EU Water 

Framework Directive the composition of organism groups like fish, phytoplankton and 

benthic fauna and flora are most commonly investigated, and the response of these 

assemblages to hydromorphological restoration has been relatively well characterized 

(Lepori et al. 2005a, Jähnig et al. 2010, Sundermann et al. 2011, Lorenz et al. 2012, Haase et 

al. 2013, Friberg et al. 2014, Schmutz et al. 2014, Stoll et al. 2014). Functional metrics, even 

though widely applied in basic studies of aquatic systems (e.g., Vander Zanden & 

Rasmussen 1999, Hieber & Gessner 2002, Fischer et al. 2005, Friberg et al. 2009, Gücker et 

al. 2009, McKie & Malmqvist 2009), are rarely in assessments of river restoration (but see 

Lepori et al. 2005b, 2006, Flores et al. 2011). Consequently, the outcomes of restoration for 

key ecosystem processes and trophic transfers of energy and nutrients remain poorly 

understood (Lepori et al. 2006). 

Hydromorphological river restoration typically enhances not only habitat diversity in both 

the stream channel and riparian zone (Jähnig et al. 2010, Januschke et al. 2014), but also 

retention of organic matter (Lepori et al. 2005b, 2006, Flores et al. 2011), which together are 

expected to enhance aquatic-terrestrial linkages, and the availability of both autochthonous 

and allochthonous food sources. Therefore, significant alterations of food web structure and 

trophic relationships can be expected: A higher diversity of both feeding- and physical 

habitat-related niches can contribute to changes in food web structure, particularly if a higher 

variety of resources is available to increase the number of trophic pathways (Layman et al. 
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2007a, Woodward 2009). Apart from increases in retention of allochthonous matter (Lepori 

et al. 2005b, Flores et al. 2011), restoration also might increase the availability of 

autochthonous sources, e.g., caused by enlarged shallow habitats providing more space for 

autotrophs (Lorenz et al. 2012). Furthermore, stronger connections between river and 

floodplain, e.g., caused by a more shallow profile or the removal of hardened, channelized 

banks, has potential to increase inundation frequency and hence resource transfers from land 

to water. Furthermore, improving niche space for larger bodied predators through, e.g., the 

creation of pools or removal of dispersal obstacles are likely to increase food chain length 

(Woodward et al. 2005). These changes all have implications for complexity of the food web 

and the relative trophic position of different organisms within the web (Woodward & 

Hildrew 2002, Woodward 2009). 

Stable isotope composition of carbon and nitrogen (δ13C, δ15N) are commonly used to 

study food web structure as they provide information on the material assimilated by 

organisms (Abrantes et al. 2014). δ15N trophic fractionation changes about +3‰ between 

trophic levels (Minagawa & Wada 1984, McCutchan et al. 2003) and is generally used to 

calculate the trophic position of an organism (Post 2002). Because δ13C trophic fractionation 

is less, changing only 0-1‰ from source to consumer (DeNiro & Epstein 1978, McCutchan 

et al. 2003) and can vary among different producers, it is often used to identify the resource 

base (Vander Zanden & Rasmussen 1999). A set of community-wide metrics has been 

introduced by Layman et al. (2007b) to gain more quantitative information from stable 

isotope data at the species or community level. These metrics have been used to investigate 

effects of ecosystem fragmentation on niche width (Layman et al. 2007a), to study effects of 

flooding on community structure (Calizza et al. 2012), to compare the trophic structure of 

communities within different lakes (Cooper & Wissel 2012), in invasion ecology (Jackson et 

al. 2012), and to identify patterns in food web structure related to different environmental 

conditions (Abrantes et al. 2014). Recently, these metrics have further been reformulated in a 

Bayesian framework by Jackson et al. (2011) which enables statistical comparison between 

sites without standardized sampling design or between different sampling periods (Jackson et 

al. 2012, Abrantes et al. 2014).  

In this study, we applied stable isotope analysis of carbon and nitrogen to quantitatively 

characterize changes in trophic structure following both larger- and smaller scale river 

restoration projects. We sampled dominant benthic invertebrate taxa belonging to different 

functional feeding groups (FFG) on paired restored and degraded river sections in 16 

catchments throughout Europe, allowing comparison of restored sections with degraded 

“control sites” located upstream (Hering et al. 2015). Two types of restoration projects were 

investigated; comprehensive flagship projects representing best-practice examples and 



2  Trophic structure  16 
  

 

typically involving extensively restored river sections at a larger scale, and smaller projects 

including single restoration measures only. We focus on benthic invertebrate communities, 

which are commonly applied indicators of ecosystem health, and which are trophically 

diverse, encompassing herbivorous, detritivorous, and predacious species. However, benthic 

invertebrates in streams also typically show a high degree of dietary flexibility, and thus 

have the potential to respond to new resources as they become available (Mihuc 1997, Layer 

et al 2013), leading to potentially rapid uptake into the food web (Göthe et al 2009). For 

example, species typically classified as detritivores are capable of incorporating algae into 

their diets when available (Friberg & Jacobsen 1994), and many species feed at different 

levels in the food web (both primary consumer and predator) at different points in their 

lifecycle (Wissinger et al 2004, Layer et al 2013). Furthermore, two of the largest feeding 

groups (collector-gatherers and filterers) feed on particulate organic matter, derived from 

both allochthonous and autochthonous sources, providing another pathway for novel sources 

of energy and nutrients to enter stream food webs following restoration (Webster and Meyer 

1997).  

We used a set of quantitative community metrics: δ13C range (CR) and δ15N range (NR) 

following Layman et al. (2007b), and standard ellipse area (SEA) according to Jackson et al. 

(2011) of the dominant feeding types of benthic invertebrate communities to quantify 

changes in trophic structure between restored and degraded sections. The restoration effect 

was quantified by comparing each restored river section to an upstream non-restored section. 

We expected that our isotopic metrics would show evidence for changes in trophic 

organization following river restoration, reflecting increases in habitat diversity, resource 

diversity, and aquatic-terrestrial linkages. Specifically, we hypothesized that (i) the CR 

metric would increase (i.e., an increase in δ13C range), reflecting the availability of a more 

varied food source following restoration and that (ii) the NR metric would also increase 

(increasing δ15N range), if changes in habitat diversity and increased availability of basal 

resources allow an increase on food chain length. Based on this, we further hypothesized that 

(iii) the SEA metric would increase, reflecting a larger isotopic niche of benthic invertebrate 

communities following restoration. We further expected these effects would (iv) increase 

with restoration extent, reflecting stronger changes in habitat complexity and aquatic-

terrestrial connectivity, and that these effects are (v) related to the type of restoration 

measure employed, with projects which mainly aim at river widening (usually affecting both 

instream habitats and connectivity of water and land and thereby enhancing availability of 

autochthonous and allochthonous carbon resources) affecting food webs more strongly than 

projects which applied measures mainly affecting the river channel itself (e.g., instream 

measures or flow restoration). 
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2.2 Materials and Methods 

2.2.1 Study sites 

The study on benthic invertebrate communities and stable isotopes was undertaken in river 

sections in 16 catchments across Europe (Table 2.1, and compare Hering et al. 2015, Muhar 

et al. 2016), either medium-sized lowland rivers or medium-sized mountain rivers. In each of 

these catchments, a restored and a nearby non-restored river section were sampled. Two 

types of restoration projects were investigated: large restored river sections with an extensive 

restoration effort representing best-practice examples (R1) and smaller projects relying on 

mainly single, local restoration measures (R2). For each large and small project, a 

representative sampling reach was selected in the downstream part of the restored river 

section to account for effects of the restored river length. The restored sections were 

compared to non-restored, degraded “control sections” (D1/D2) located directly upstream of 

the corresponding restored sections. As the distance between restored and degraded reaches 

was small relative to overall stream size (mean distance: 3.0 km, n = 16), natural shifts in 

basal resources are not anticipated over this length of the streams, thus it is highly unlikely 

that anything other than the human impacts could cause shifts in isotopic signals. 
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We therefore did not expect effects on isotopic signals due to the position of the sampling 

reaches in the river network. The degraded sections were selected to be similar to the 

restored reaches and to differ only in the absence of restoration activities (Hering et al. 

2015). Therefore, comparing each restored river section with the nearby still degraded river 

section enabled quantifying the restoration effect. One flagship project (R1/D1) and one 

smaller project (R2/D2) were investigated in the following regions: Finland (FI), Sweden 

(SE), Denmark (DK), Poland (PL), Germany lowlands (DL) and mountains (DM), the Czech 

Republic (CZ), and Austria (AT). Further information about the general study design, 

restoration measures and environmental characteristics of the rivers is given in Muhar et al. 

(2016). 

 

2.2.2 Sampling and laboratory analysis 

Sampling was performed in summer 2012 or 2013, at the time of maximum biomass in each 

region (Table 2.1). We used a standardized sampling design across all 32 river sections, 

which allowed direct comparison of each restored river section with the nearby still degraded 

“control section”: At each sample section, we collected dominant benthic invertebrate taxa 

representing different functional feeding groups (FFG) to obtain an overview of the isotopic 

signatures of consumers at different trophic levels. Restored and degraded sections were 

sampled in the same field campaign. The invertebrates were taken from different habitats in 

the section using a shovel sampler (mesh size 500 μm) and a hand net. We sampled late-

instar larvae (and larger individuals in case of hololimnic species) representative taxa for the 

following functional feeding groups: 

- Grazers (e.g., Baetis sp., Rhithrogena sp.) 

- Shredders (e.g., Gammarus sp., Asellus sp., Nemoura sp.) 

- Collector-gatherers (e.g., Oligochaeta) 

- Collector-filterers (e.g., Hydropsyche sp., Simuliidae gen. sp.) 

- Predators (e.g., Rhyacophila sp., Sialis sp.) 

Each sample consisted of several individuals of the same taxon to obtain sufficient 

material for stable isotope analysis, and we aimed to collect at least one representative 

sample per FFG (see Appendix 1 for a list of taxa sampled at each section). In the field, 

individuals were presorted, counted and kept separated by functional feeding groups to avoid 

contact between predators and prey. The samples were placed in a cool box in the field and 

subsequently transported to the laboratory. 
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In the laboratory, the benthic invertebrates were kept individually in filtered stream water 

for 12 to 24 hours to allow for gut evacuation. Afterwards, the specimens were identified to 

the lowest level possible (most often genus). To prepare samples for stable isotope analysis, 

the animals were freeze-dried until all water was removed, and then ground with mortar and 

pestle. Four replicates of each taxon from each river section were loaded into tin capsules 

(~800 µg). Content of carbon and nitrogen and stable isotopes of carbon and nitrogen were 

analysed with an elemental analyser (CE Instruments  EA 1110 CHNS, Carlo Erba, Milan, 

Italy) connected via a ConflowIV interface to a Thermo Finnigan MAT 253 isotope ratio 

mass spectrometer (both Thermo Fischer, Bremen, Germany) at University of Duisburg-

Essen’s Stable Isotope Facility (Instrumental Analytical Chemistry). Data from the stable 

isotope analysis are expressed as relative difference between ratios of samples and standards 

(VPDB for δ13C and atmospheric nitrogen for δ15N) as described by the equation:  

 

δ13C, δ15N = [(Rsample/Rstandard) – 1] x 1000, where R = 13C/12C or 15N/14N.  

 

The analytical precision over all measurements (standard deviation from 791 in-house 

standards) was 0.08‰ for δ13C and 0.19‰ for δ15N.  

 

2.2.3 Data analysis 

We displayed the isotopic composition of benthic invertebrate assemblages in δ13C-δ15N-

isotope space (see Appendix 2). Quantitative community metrics, as introduced by Layman 

et al. (2007b), were calculated independently for each section. These metrics describe the 

trophic structure of communities and their trophic diversity by the position of species or 

groups in the δ13C-δ15N-isotope space. Here, we particularly focused on two of these metrics: 

(i) δ15N range (NR), calculated as maximum δ15N minus minimum δ15N; and (ii) δ13C range 

(CR), calculated as maximum δ13C minus minimum δ13C. Both NR and CR describe the 

distance between the two species or groups with the most enriched and most depleted δ15N or 

δ13C values, respectively (Layman et al. 2007b). We used NR as an indicator for the trophic 

length of the communities and CR as an indicator of the range of assimilated carbon sources. 

We calculated two sets of metrics. The first were calculated across all invertebrate species 

sampled at each river section, and are subsequently referred to as total range values (NRtotal 

and CRtotal). The second were calculated by classifying the invertebrate species into five 

feeding groups (predators, shredders, grazers, collector-filterers, collector-gatherers), and 

then using the mean values of each feeding type to calculate ranges across the FFGs. They 

are hereafter referred to as mean FFG range (NRmeanFFG and CRmeanFFG). Feeding types were 

assigned with data from www.freshwaterecology.info (Schmidt-Kloiber & Hering 2015). 
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Layman et al. (2007b) also calculated the area of a convex hull drawn around all species 

in δ13C-δ15N-isotope bi-plot to indicate the isotopic niche of the community. This approach 

was further extended by Jackson et al. (2011) by using standard ellipse area (SEA; expressed 

in ‰²), which is to bivariate data as standard deviation is to univariate data (Batschelet 

1981). The SEA contains c. 40% of the data and can therefore be used to measure the mean 

core community isotopic niche (Jackson et al. 2011). Here, the standard ellipse area 

corrected for small samples (SEAC) was calculated as a measure of the isotopic niche, and 

was therefore used in the following analysis to quantify restoration effects. The small sample 

size correction leads to a slightly increased SEAC in order to adjust bias towards 

underestimation (Jackson et al 2011). SEAC was further applied to test for isotopic niche 

overlap between restored and corresponding degraded sections, which gives a measure of 

dietary similarity/dissimilarity (Jackson et al. 2012). We finally pairwise tested the 

probability if SEA of the degraded section is smaller than SEA of the restored section based 

on the Bayesian standard ellipse area (SEAB). We refer to Jackson et al. (2011) for a 

comprehensive description of SEA, SEAC and SEAB. 

To quantify restoration effects across all 16 catchments we first pairwise compared CR, 

NR and SEAC between restored and corresponding degraded sections (R vs. D) and between 

large and small restored sections (R1 vs. D1 and R2 vs. D2). This allowed first investigation 

of patterns in trophic structure related to river restoration. We further used an effect size by 

calculating the response ratio according to Osenberg et al. (1997): 

 

∆𝑟 = ln(�̅�𝑅�̅�𝐷
) 

 

with �̅�𝑅 and �̅�𝐷 being δ13C range, δ15N range or the standard ellipse area corrected for small 

samples of restored and degraded sections, respectively; values > 0 are denoting a positive 

effect (e.g. an increase in δ13C range), and values < 0 are indicating a negative effect. One-

sample t-test was used to assess if effect sizes differed significantly from 0. The effect sizes 

based on CR, NR and SEAC were compared. Both, an overall comparison of effect sizes (R1 

and R2 pooled) and a comparison between large and small restoration projects (R1 vs. R2) 

were carried out to test if there was an overall positive effect of restoration, and if the effect 

of restoration depends on the restoration effort. Although the restored sections were selected 

to differ only in terms of restoration intensity (R1 vs. R2), there were differences in 

restoration measures employed independently from restoration extent: some projects aimed 

at river widening, while others applied measures mainly affecting the river channel itself 

(e.g., instream measures or flow restoration) (Table 2.1). Therefore, we re-grouped the 
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sections based on the restoration measure employed (widening vs. others) and tested if effect 

sizes differ between restoration projects which mainly aimed at river widening (usually 

affecting both instream habitats and connectivity of water and land and thereby enhancing 

availability of autochthonous and allochthonous carbon resources) and projects which 

established other, less extensive measures affecting the river channel itself (instream 

measures, flow restoration, remeandering, anastomosing). For selected restored and degraded 

sections, we worked out changes in trophic structure in more detail, based on niche overlaps 

and probabilities as inferred from SEAC. 

For the calculation of community-wide metrics (CR and NR), we used the package Stable 

Isotope Analysis (SIAR: Parnell et al. 2008, 2010) in R (R Development Core Team, 2007). 

The standard ellipse areas (SEA) were calculated using the SIBER package (Stable Isotope 

Bayesian Ellipses in R, Jackson et al. 2011) of SIAR (Parnell et al. 2008, 2010). Further 

statistical analyses, including Wilcoxon Matched Pair tests, t-tests (one-sample t-test against 

0) and Mann Whitney U tests, were run in Statistica 12 (StatSoft). 

 

 

2.3 Results 

2.3.1 General patterns of river restoration on CR and NR metrics of benthic 
invertebrates 

The pairwise comparison of benthic invertebrate communities between restored (R) and 

degraded (D) sections (large and small projects pooled) across all 16 catchments showed 

minor differences in both δ15N range and δ13C range. The difference between restored and 

degraded sections was not significant, neither for the total range, nor mean FFG range used 

for the calculation of NR and CR (Wilcoxon Matched Pair test, p > 0.06, n = 16, Table 2.2). 

The median NRtotal was equivalent to the distance between two trophic levels (3.68 ‰ in 

restored sections and 3.12 ‰ in degraded sections, n = 16, Table 2.2). The NRmeanFFG was 

smaller (restored sections: 2.21‰; degraded sections: 2.28‰).  

For the general comparison of effect sizes according to Osenberg et al. (1997), values 

above zero indicate enhanced δ15N range or δ13C range in restored sections. Restoration had 

an overall positive effect on CRtotal as the effect size ratio differed significantly from zero (t-

test, p < 0.05, Figure 2.1), while CRmeanFFG ratio was not significantly larger than zero (t-test, 

p > 0.15). Effect sizes for neither NRmeanFFG nor for NRtotal were different from zero (t-test, p 

> 0.6). 
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Figure 2.1: General restoration effect 
(R1 and R2 pooled) calculated as 
response ratio after Osenberg et al. 
(1997) for total range values of NR 
and CR (Median; Box: 25%–75%; 
Whisker: Min-Max). Effect sizes 
were pairwise calculated for each pair 
of restored and degraded sections. 

 

 

2.3.2 Effects of large and small restored sections on CR and NR metrics of benthic 
invertebrates  

The pairwise comparison between the four groups of sections (large restored sections: R1; 

corresponding degraded sections: D1; small restored sections: R2; corresponding degraded 

sections: D2) showed minor differences for δ15N ranges and CRmeanFFG (Table 2.2). In 

contrast, CRtotal differed significantly between R1 and D1 (Wilcoxon Matched Pair test, p < 

0.05, n = 8), but not between R2 and D2 (Wilcoxon Matched Pair test, p > 0.89, n = 8).  

Similarly, the pairwise calculated effect sizes, expressed as response ratios following 

Osenberg et al. (1997), revealed a positive effect of restoration on CRtotal on large restored 

river sections (R1) (t-test, p < 0.05, Figure 2.2) but not for the small restored sections (R2)  

(t-test, p > 0.33), suggesting that the range of assimilated sources is positively related to 

restoration extent. There were no significant effects of restoration on CRmeanFFG, NRtotal, and 

NRmeanFFG, neither for the large nor for the small restoration projects (t-tests, p > 0.17). 

Moreover, the comparison of the effect sizes between more- and less extensive restored 

sections (i.e., response ratios of R1 compared to the response ratios of corresponding R2 

sections) did not reveal a significant difference for any of the metric values (Wilcoxon 

Matched Pair test, p > 0.2). 
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Figure 2.2: Comparison of response 
ratios after Osenberg et al. (1997) 
based on CRtotal in large (R1) and 
small (R2) restoration projects; 
effect sizes were pairwise 
calculated (Median; Box: 25%–
75%; Whisker: Min-Max). 

 

 
 
 
 
 
Figure 2.3: Comparison of response 
ratios after Osenberg et al. (1997) 
based on CRtotal in restored sections 
with widening and restored sections 
with other measures (e.g., 
improvement of instream habitats); 
effect sizes were pairwise 
calculated (Median; Box: 25%–
75%; Whisker: Min-Max). 

 

 

2.3.3 Relationship of the metric values and the type of restoration measures 

The alternative grouping of sections was based on the restoration measure employed 

(widening vs. others) and was therefore independent from restoration extent. The comparison 

of the effect sizes according to Osenberg et al. (1997) between restoration projects which 

mainly aimed at river widening (n=9) and projects which applied other less extensive 

measures mainly affecting the river channel itself (n=7) showed a positive effect for CRtotal in 

sections where measures focused on river widening (Figure 2.3). Here, the effect size for 

δ13C range was significantly larger than zero (t-test, p < 0.05). Effect sizes for δ15N range 

were not significantly different from zero, neither using total range values nor mean values 

for the calculation of NR. The response ratios were not different between measures which 

aimed at river widening and other measures (Mann-Whitney U test, p > 0.2). 
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2.3.4 Effects of river restoration on isotopic niche metric of benthic invertebrate 
communities  

The entire statistical comparisons described above were simultaneously run based on 

standard ellipse area corrected for small samples (SEAC). There was no support for a general 

restoration effect on SEAC across all 16 catchments, i.e., neither pairwise comparison nor the 

effect sizes calculated according to Osenberg et al. (1997) revealed a significant difference; 

including the general comparison between R vs. D, the test if restoration extent has an effect 

(R1 vs. D1 and R2 vs. D2), and the re-grouping considering the type of restoration measure 

applied (widening vs. others). However, changes in SEAC were apparent between some 

specific restored and degraded sections (Figure 2.4, Table 2.3). 

In five of our eight study regions, SEAC was bigger in R1 sections compared to the 

corresponding D1 sections, suggesting a larger isotopic niche following restoration. These 

sections are located in Finland, Sweden, Poland, Germany (mountains), and Austria (Figure 

2.4, Table 2.3). Similarly, the probabilities that D1 had smaller SEAB than the corresponding 

R1 were 72% in Finland, 92% in Sweden, 95% in Poland, 86% in Germany (mountains), and 

81% in Austria, respectively. The comparison between small restored sections with the 

degraded “control-sites” only showed bigger SEAC in the R2 sections in Finland, Sweden, 

Germany (lowlands), and Austria. The associated probabilities that D2 had smaller SEAB 

than the corresponding R2 sections were 71% in Finland, 72% in Sweden, 93% in Germany 

(lowlands), and 67% in Austria. In contrast, there were no larger SEAC in R1 nor R2 sections 

compared to the corresponding D1/D2 in Denmark and in the Czech Republic. There were 

no distinct patterns in dietary similarity/dissimilarity by comparing the overlap between 

R2/D2 sections with those of the corresponding R1/D1 sections. In some cases, the overlap 

between R2/D2 was bigger compared to the corresponding R1/D1 sections (e.g., Czech 

Republic), suggesting that the diets of invertebrate communities were more similar in the 

less intensively restored sections (Figure 2.4, Table 2.3). However, this effect did not appear 

across all sections (e.g., in Denmark), and more often the difference between isotopic niches 

of restored and corresponding degraded section seemed to be independent from restoration 

extent (Figure 2.4). 
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Figure 2.4: Mean stable isotope composition of the different benthic invertebrates from the eight study 
regions: a) Finland, b) Sweden, c) Denmark, d) Poland, e) Germany lowland, f) Germany mountain, 
g) Czech Republic, and h) Austria. Solid lines enclose the standard ellipses area (SEAC), containing c. 
40% of the data, showing the isotopic niche of representative benthic invertebrate communities at 
each site. Dotted lines are the convex hull areas of benthic invertebrate communities for each site, 
corresponding to the area encompassing all invertebrates in the δ13C-δ15N plot. R1 = large restoration, 
R2 = small restoration, and D1/D2 = corresponding degraded control-sites. Axes are idealized for 
each region. 
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Table 2.3: Standard ellipse area corrected for small samples (SEAC), probability that the SEA in the 
degraded section is smaller than the SEA in the restored section, overlap in SEAC between pairs of 
sites (restored and degraded), and overlap in % of respective area. 

 SEAc (‰²) Probability that  
SEAB D < SEAB R 

Overlap in SEAC 
between R and D(‰²) 

Overlap in % of 
respective SEA 

Large restored (R1)    

   FI_R1 11.8 0.723 6.1 51.76 

   SE_R1 11.5 0.916 1.8 16.03 

   DK_R1 7.4 0.320 5.5 74.34 

   PL_R1 13.7 0.953 3.1 22.51 

   DL_R1 1.8 0.185 0.8 44.75 

   DM_R1 6.9 0.860 2.3 33.47 

   CZ_R1 6.3 0.173 3.6 56.12 

   AT_R1 8.9 0.810 3.9 43.44 

Degraded (D1)    

   FI_D1 8.8   69.22 

   SE_D1 3.2   57.55 

   DK_D1 8.9   61.47 

   PL_D1 5.4   57.59 

   DL_D1 5.7   14.39 

   DM_D1 3.7   62.66 

   CZ_D1 12.1   29.31 

   AT_D1 4.1   93.56 

Small restored (R2)    

   FI_R2 9.9 0.705 3.8 38.87 

   SE_R2 17.3 0.715 3.9 22.41 

   DK_R2 13.5 0.055 8.0 59.36 

   PL_R2 3.8 0.416 2.4 64.32 

   DL_R2 32.9 0.926 13.9 42.24 

   DM_R2 5.7 0.170 5.1 90.81 

   CZ_R2 4.7 0.309 4.0 84.36 

   AT_R2 5.3 0.666 3.1 57.45 

Degraded (D2)     

   FI_D2 6.7   57.05 

   SE_D2 10.8   35.93 

   DK_D2 23.7   33.80 

   PL_D2 5.3   46.01 

   DL_D2 13.9   99.99 

   DM_D2 13.2   38.78 

   CZ_D2 8.0   50.01 

   AT_D2 3.9   78.22 
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2.4 Discussion 

Restoration of rivers is expected to increase the diversity of both habitat- and resource-based 

niches, which together have potential to affect the trophic structure of invertebrate 

communities. In line with this, we expected changes in the isotopic signatures of benthic 

invertebrate consumers indicative both of increased resource breadth (indicated by δ13C 

range), and increases in trophic length (indicated by δ15N range) following river restoration, 

which together favour larger isotopic niches of invertebrate assemblages (indicated by 

SEAC). We further expected that the larger the restoration the bigger the impact. We found 

some support for an increase in resource breadth associated with restoration across all 16 

restored sections, with these effects stronger for larger-scale restoration projects, and 

especially projects which aimed at river widening. In contrast, there was no support for a 

general increase in trophic length across all 16 catchments, though increases in NR ratios 

were apparent between some specific degraded and restored sections, suggesting such effects 

depend on local assemblage composition and/or environmental conditions. In line with this, 

changes in isotopic niche width of invertebrate assemblages were obvious between some 

specific restored and degraded sections. These findings suggest that river restoration results 

in modest changes in trophic structure. However, this is largely dependent on positive effects 

on the variety of resources assimilated by consumers (confirming hypothesis 1), rather than 

trophic length (rejecting hypothesis 2), with both effects further depending on restoration 

extent, the type of restoration measures employed and local environmental and community 

characteristics. 

 

2.4.1 Restoration effects on trophic structure of benthic invertebrate communities 

When using total community range values (CRtotal), shifts in the δ13C isotopic signatures of 

benthic consumers indicate an overall increase in the variety of resources assimilated 

following restoration (widening of CR). We further found that the increase in CRtotal was 

significantly greater in more extensively restored sections (i.e., comparing R1 and D1), 

relative to the less extensive restorations (between R2 and D2). Similar results are apparent 

when comparing pairwise calculated effect sizes, expressed as response ratio after Osenberg 

et al. (1997), confirming the importance of restoration effort in dictating potential changes in 

the resource base and consumer responses. The increased CRtotal ratio might reflect an 

increased availability of habitats suitable for autochthonous productivity, and/or a higher 

availability of allochthonous carbon resources either due to an intensified aquatic-terrestrial 

interaction or to the higher retentivity of restored sections. These possibilities are supported 
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by results presented in Poppe et al. (2016) who showed that measures were significantly 

impacting the hydromorphology of our sections, and by Göthe et al. (2016) who found 

positive effects of restoration on riparian vegetation adjacent to our reaches. Effects on 

hydromorphology in particular were greater in the more extensively restored sections (Poppe 

et al. 2016). We sampled representatives of the same functional groups from all reaches, 

hence the change in the CRtotal of invertebrates can partly be attributed to the dietary 

flexibility of many species, including those representing more specialized functional groups, 

allowing the food web as a whole to respond to the availability of novel resources (Mihuc 

1997, Göthe et al. 2009, Layer et al. 2013). Increases in the variety of available resources 

may also help support the more flexible taxa among the invertebrates, at times or year or 

during particular disturbances when their preferred resource may be scarce. Overall, a 

greater range of basal resources allows for heterogeneous energy flow pathways, which is an 

important factor for stabilizing food webs (Rooney et al. 2006, Layman et al. 2007b). We 

found that river widening is a particularly effective restoration measure for increasing the 

breadth of resources available to consumers. Whereas CRtotal increased markedly following 

river widening, projects which applied other less extensive measures mainly affecting the 

river channel itself (instream measures, flow restoration, remeandering, anastomosing) had 

no similar effects. River widening increases the surface area of instream habitats, and 

increases lateral connectivity between the river and its floodplain and can thereby enhance 

the availability of autochthonous and allochthonous carbon resources. Lepori et al. (2006) 

found no effect of increased detritus retentivity following restoration on the δ13C signature of 

consumers, suggesting either that detritus was not limiting for consumers, or that the increase 

in retentivity was insufficient to alter carbon flows in the food web. The type of restoration 

studied by Lepori et al (2006) aimed primarily at restoring instream habitats, and thus may 

be comparable to the predominantly “instream” measures assessed in our study. Overall, our 

results provide strong evidence that the magnitude of food web changes following 

restoration can indeed depend strongly not only on the scale, but also type of restoration.  

In contrast with the relatively consistent changes in the range of resource assimilation 

following restoration at the European scale, there were no overall effects on trophic length. 

Thus, regardless of whether we compared NRtotal directly between reaches, or analysed 

response ratios, we could not detect any shifts in the range of δ15N signatures. Effects on NR 

also did not differ between restoration measures. Furthermore, when considered in light of 

trophic fractionation, we also have no evidence for the clear addition of trophic levels 

following restoration. The value of trophic fractionation within food webs is often given with 

c. 3 ‰ (e.g., 3.4 ‰ in Minagawa & Wada 1984, Post 2002). We therefore assumed the δ15N 

value of a consumer to be enriched by this value over that of its diet (Vander Zanden & 
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Rasmussen 2001). We observed the median δ15N range of our invertebrate communities 

(NRtotal) to span the space between two trophic levels (median restored sections: 3.68 ‰, 

median degraded sections: 3.12 ‰, n = 16). The results are in line with our expectations, as 

we sampled primary and secondary invertebrate consumers (e.g., grazers and predators) that 

should be separated by approximately one trophic level. Thus, based on the organisms we 

sampled, it appears that effects of the restoration on both the hydromorphology of the 

restored sections (increased habitat diversity and habitat size, e.g. depth, compare Poppe et 

al. 2016) and the variety of basal resources (indicated by CR) assimilated by consumers have 

not altered the trophic length of food chains. One possible reason for this is that, in choosing 

the most abundant invertebrate predators at each site, we were not sampling high enough in 

the food chain to detect real changes in food chain length, associated with large predators 

such as fish that might enter the food web due to increased habitat size and diversity 

(Woodward & Hildrew, 2002, Woodward et al. 2005, 2010). Other factors which might have 

obscured a change in food chain length include the possibilities that isotopic signatures of 

primary consumers might already be higher enriched (e.g., by scavenging on dead animal 

material), and reducing the relative difference between primary consumer and predator (i.e., 

minimum δ15N and maximum δ15N) may not show the absolute higher position of predators 

in restored sections. Nevertheless, we did see increases in NR in some instances, suggesting 

that given the right community configurations and/or local environmental conditions, 

increases in trophic position lower in the food chain are possible following restoration.  

We expected SEA to be larger in the restored sections compared to the degraded “control 

sections” following Layman et al. (2007a), who showed that the trophic niche width of the 

top predator Lutjanus griseus collapsed due to ecosystem fragmentation. He explains this 

effect with the reduction in diversity of prey taxa, which in turn is related to uniform energy 

flow pathways throughout the food web. Therefore, we assumed the isotopic niche of benthic 

invertebrate assemblages to increase with restoration, due to the higher diversity of both 

habitat- and resource-based niches (Poppe et al. 2016). We found no support for a general 

increase of isotopic niche width following restoration across our 16 catchments, though 

increases in SEAC ratios were apparent between some specific degraded and restored 

sections. For those sections, the increases in SEAC were further supported by the 

probabilities that degraded sections had smaller SEAB than the corresponding restored 

sections (calculated based on Bayesian statistics). It is well known that the isotopic niche of 

a community largely depends on CR and NR as it is based on the distribution of the mean 

core community in isotope space (Jackson et al. 2011) and thereby combines nitrogen and 

carbon ranges. This explains why an overall positive effect following restoration is absent: 

The missing general restoration effect on trophic length (indicated by NR) also negatively 
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affects a potential increase in SEAC. For example, SEAC in R1 of the Czech Republic was 

smaller compared to the degraded “control section”, although the corresponding CR was 

bigger. Thus, it appears that the smaller SEAC results from a corresponding smaller NR. 

Overall, our results indicate that the primary effect of restoration on food web structure 

lower down in the benthic food web is an increase in the variety of resources assimilated, 

rather than an extension of food chain length. 

 

2.4.2 Type of data used 

The results of our analysis were partly determined by the type of data used: Significant 

differences in δ13C range, e.g., between long restored sections compared to the 

corresponding degraded sections (R1 and D1), were only obtained with values for the total 

range of community signatures. Mean values of the organisms representing individual 

feeding types possibly reduced the corresponding δ15N and δ13C range, minimizing the 

influence of species occurring at either end of the isotopic gradients. This indicates that the 

increased variety of resources assimilated was primarily driven by a few taxa extending their 

range of resource intake. In fact, the outliers might reflect a higher diversity of the resource 

base, as stated in our first hypothesis. Consequently, outliers might be a result of restoration 

as the corresponding invertebrates assimilated sources that were only present at the restored 

sections. 

 

2.4.3 Recommendations for river management  

In this comparative analysis across multiple, heterogeneous restoration projects, we used a 

representative set of samples to test for restoration effects on trophic structure of benthic 

invertebrates communities, using a selected set of isotope-based community-wide metrics. 

To cover a large number of restored sites, we aimed to be pragmatic, straightforward, cost- 

and time-effective, i.e., we used a representative set of samples, considered time in the lab, 

and applicability of metrics. This approach could easily be adapted for more expanded 

sampling, particularly in more regional assessments focused more strongly on particular 

restoration projects. For instance, future sampling for stable isotope analysis could be 

coupled to the multihabitat sampling design (Haase et al. 2004). In this case, data about 

abundance of different taxa would be considered in later assessment of restoration effects to 

account for the relevance of different basal resources. If a standardized sampling design 

cannot be implemented or data from different sampling campaigns should be compared, we 

recommend the Bayesian approach to these metrics introduced by Jackson et al. (2011), and 

see McCarthy (2007) for an introduction to Bayesian statistics. Overall, this study 
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demonstrates that these isotope-based metrics are useful to identify patterns in trophic 

structure related to river restoration and that the integration of functional metrics in river 

management practice can be useful to determine the outcomes of restoration for key 

ecosystem processes such as trophic transfers of energy and nutrients. 
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3 River restoration enhances aquatic-terrestrial linkages: 
a stable isotope study of riparian arthropods in eleven 
restored floodplain sections 

 

3.1 Introduction 

Rivers are an important source of energy and nutrients for riparian biota, particularly in the 

form of the dispersing adult stages of aquatic insects. The flux of biomass between the river 

and its riparian zone is determined by habitat structure and assemblage composition in 

riverine landscapes (e.g., Baxter et al. 2005, Paetzold et al. 2005, Burdon & Harding 2008, 

Carlson et al. 2016). For instance, emerging aquatic insects and stranded organisms 

substantially contribute to the diet of predaceous arthropods - such as ground beetles and 

spiders - inhabiting river shores (Hering & Plachter 1997, Collier et al. 2002, Paetzold et al. 

2005). Consequently, riparian arthropods are a central component of floodplain biota, as they 

contribute to the linking of aquatic and terrestrial food webs (Baxter et al. 2005, Paetzold et 

al. 2005). Riparian arthropods subsequently serve as prey for other species, such as birds and 

bats, providing energy for higher trophic levels of terrestrial food webs (Jackson & Fisher 

1986, Hammond 1998). 

However, the flux of aquatic biomass into terrestrial food webs can be strongly altered by 

human activities (Carlson et al. 2016). One particularly pervasive impact in Europe is the 

modification of river channel hydromorphology (EEA 2012), which typically involves the 

degradation and loss of riparian habitats (Godreau et al. 1999, Tockner & Stanford 2002, 

Tockner et al. 2008). Negative effects of hydromorphological degradation on the quality of 

riparian habitats and diversity and composition of biota are well documented (e.g., Paetzold 

et al. 2008, Lambeets et al. 2009, Januschke et al. 2011). It can be assumed that also the 

fluxes of aquatic biomass to the terrestrial zone are affected as the river channel is 

disconnected from its riparian zone by many measures of hydraulic engineering. 

In Europe, the hydromorphology of a large number of river sections is nowadays being 

restored, which typically enhances habitat diversity not only in the river channel, but also in 

the riparian zone (e.g., Jähnig et al. 2010, Januschke et al. 2014, Poppe et al. 2016). Riparian 
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biota are positively affected by restoration, e.g. through increasing species richness and 

abundance of riparian carabid beetles (Jähnig et al. 2009, Januschke et al. 2014, Januschke & 

Verdonschot 2016). A major driver of change is the provision of habitats suited for riparian 

biota, e.g. open sand and gravel bars. In addition, hydromorphological restoration may 

impact the riparian food web. A stronger connection of river and floodplain, e.g. caused by a 

more shallow profile or the removal of bank fixations, potentially makes aquatic prey more 

easily accessible to riparian predators as the shoreline is more open for cross habitat 

movements of organisms including emerging aquatic insects that crawl on the shore 

(Paetzold et al. 2005). Consequently, restoration not only provides habitats for riparian 

arthropods, but is also likely to increase the proportion of aquatic prey in the diet of riparian 

predators resulting in an improved trophic linkage between river and land. 

However, the effect of restoration on energy and nutrient transfer between river channel 

and its adjacent riparian zone has not yet been sufficiently characterized. More generally, 

restoration effects have rarely been viewed from a functional point of view (but see Lepori et 

al. 2005b, 2006, Flores et al. 2011, Kupilas et al. 2016). Studying the effect of restoration on 

the linkage between these ecosystems is crucial to understand if restoration reestablishes this 

particular food web linkage and how the provision of riparian habitats promotes trophic 

reconnection. This is of interest for wider ecosystem management, as rivers most often 

represent habitats of high productivity that can fuel less productive systems (e.g. riparian and 

terrestrial) and thereby support other species of conservation interest (Jackson & Fisher 

1986, Hammond 1998, Paetzold et al. 2005). 

Stable isotope composition of carbon and nitrogen (δ15N, δ13C) is commonly used to study 

food webs. Trophic fractionation, i.e. the enrichment or depletion in δ15N and δ13C between 

diet and consumer, is important to evaluate food web relationships. According to Post 

(2002), the trophic fractionation of δ15N is 3.4 ± 1‰ and of δ13C is 0.4 ± 1.3‰. Based on this 

isotopic shift between prey and predator, δ15N is generally used to characterize the trophic 

position of a consumer and δ13C can be used to identify the ultimate carbon sources for an 

organism (Post 2002). Consequently, stable isotopes of carbon and nitrogen can be used to 

study food web organization and to trace affiliation of species or groups to each other in 

isotope space. 

To assess effects of hydromorphological restoration on trophic patterns across the aquatic-

terrestrial interface, we conducted a large scale comparative study targeting eleven river 

restoration projects in central and northern Europe. We analyzed stable isotopes (δ13C and 

δ15N) for a representative set of consumers sampled in the river and its floodplain indicating 

their aquatic, riparian (within one meter distance from the river) or terrestrial (beyond the 

riparian zone) origin due to their position in isotope space. We hypothesized that (i) isotopic 
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signatures (δ13C and δ15N) of benthic invertebrates and terrestrial arthropods show a clear 

separation, and that isotopic signatures of riparian arthropods show evidence for an 

intermediate position in isotope space, reflecting the use of both in-stream and terrestrial 

resources. Rather than an exhaustive quantification of different potential basal resources in 

the aquatic and terrestrial habitats, our analyses focused on detecting shifts in the position of 

the organisms themselves in isotope space. In particular, we sought to detect changes in the 

position of riparian arthropods in isotope space following restoration. We calculated the 

isotopic distance of riparian arthropods to benthic invertebrates and terrestrial arthropods as 

a measure of trophic linkage, and hypothesized that (ii) isotopic signatures of riparian 

arthropods in restored reaches show evidence for an increased trophic linkage of river and 

land: increased distance to terrestrial arthropods reflecting a smaller share of terrestrial prey, 

and higher similarity to benthic invertebrates reflecting an increased use of aquatic resources. 

Finally, we assumed that (iii) riparian habitat diversity and the provision of unvegetated side 

bars are positively related to the strength of aquatic-terrestrial linkages as reflected by our 

measures of trophic linkage. 

 

 

3.2 Materials and Methods 

3.2.1 Study sites 

We investigated the isotopic composition of consumers in aquatic, riparian and terrestrial 

habitats associated with eleven restoration projects conducted across central and northern 

Europe (Table 3.1, Muhar et al. 2016), encompassing both medium-sized lowland rivers and 

medium-sized mountain rivers. On each river, we selected a representative sampling reach at 

the downstream end of a restored river section (R) and compared it to a non-restored, 

hydromorphological degraded “control section”(D) located upstream of the restored section. 

As the distance between restored and degraded river sections was small relative to overall 

river size (2.8 km, n = 11), background shifts in isotopic composition (e.g. arising from 

geological or vegetation change) unrelated to the restoration are not anticipated between the 

sections. The degraded river sections were similar to the restored sections and differed only 

in the absence of restoration activities (Hering et al. 2015). The rivers are located in the 

following regions: Finland (FI), Sweden (SE), Germany lowlands (DL) and mountains 

(DM), the Czech Republic (CZ) and Austria (AT). Detailed information about the restoration 

measures and environmental characteristics of the rivers is given by Muhar et al. (2016). 
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3.2.2 Sample collection, preparation and laboratory analysis 

Study reaches were sampled in summer 2012 and 2013, at the time of maximum biomass 

(Table 3.1). Field personnel were trained on a standard agreed field protocol during a 

workshop in spring 2012 (Hering et al. 2015), to ensure uniformity in the sampling methods 

employed. At each study reach, representative samples of aquatic, riparian and terrestrial 

consumers were collected to obtain an overview of the isotopic signatures across the aquatic- 

terrestrial interface. We collected riparian and terrestrial arthropods (predaceous ground-

dwelling beetles and spiders) and dominant benthic invertebrate taxa representing different 

functional feeding groups. Basal resources (fine and coarse particulate organic matter in the 

river and most abundant terrestrial plant material) were taken for background information on 

isotopic signatures. Restored and degraded sections were sampled in the same field 

campaign. 

Predaceous riparian ground beetles or spiders (formerly referred to as riparian arthropods; 

compare Appendix 3) were sampled within one meter distance to the river edge at randomly 

chosen locations of the study reach using exhausters and forceps (Figure 3.1). Potential 

terrestrial food sources of riparian arthropods were indirectly inferred from predaceous 

ground-dwelling beetles or spiders sampled adjacent to the riparian zone (referred to as 

terrestrial arthropods). Each sample of riparian and terrestrial arthropods consisted of several 

individuals. 

 
Figure 3.1: Schematic overview of aquatic, riparian, and terrestrial habitats sampled at each study 
reach. 

 

We collected late-instar larvae (and larger individuals in case of hololimnic species) of the 

dominant benthic invertebrate taxa representing different functional feeding groups (FFG) to 

obtain an overview of the isotopic signatures of aquatic consumers at different trophic levels 

and to infer isotopic signals of potential aquatic food sources of riparian arthropods. The 
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late-instar larvae reflect the isotopic composition of an aquatic insect at the time close to 

emergence, and thus most closely represent the composition of the adult stage most prone to 

predation by riparian arthropods (Paetzold et al. 2005). The sampling of benthic 

invertebrates is described in more detail by Kupilas et al. (2016). Briefly, invertebrates were 

collected from different habitats along the study reach using a shovel sampler (mesh size 500 

μm) and a hand net. Each sample consisted of several individuals of the same taxon. 

Riparian arthropods, terrestrial arthropods and benthic invertebrates were presorted, 

counted and kept separated. The samples were placed in a cool box in the field and 

subsequently transported cool to the laboratory. In the laboratory, specimens were kept 

individually for 12 to 24 hours to allow for gut evacuation (benthic invertebrates were hold 

in filtered stream water). Afterwards, the specimens were identified to the lowest level 

possible (most often species or genus; compare Appendix 3). To prepare samples for stable 

isotope analysis, we freeze-dried the samples to remove water, and then ground them with 

mortar and pestle to obtain a homogenized composite sample. Depending on the amount of 

sample material, up to four replicates of each sample from each river section were loaded 

into tin capsules (~800 µg). 

At each study reach, we collected terrestrial basal resources from randomly selected 

locations along the shoreline for background information on isotopic composition of the 

resources. Fine and coarse particulate organic matter (POM), e.g. decaying leaves from 

riparian trees and herbaceous riparian vegetation, was collected from deposition zones in the 

river reach. In the laboratory, samples were rinsed and examined visually to remove all 

inorganic matter, benthic invertebrates or fragments of fresh plants. Samples of the most 

abundant terrestrial plants were collected from randomly selected locations along the 

shoreline of the study reach, e.g. herbaceous riparian vegetation from shallow banks. Plant 

samples were taken without roots. In the laboratory, samples were rinsed and examined 

visually to remove all material and specimens were identified to the lowest level possible 

(species or genus). The resource samples were freeze-dried in case of POM and dried at 

60°C in case of plants until all water was removed. Afterwards, the samples were ground 

with mortar and pestle to obtain a homogenized composite sample. Several replicates of each 

sample were loaded into tin capsules. 

Content of carbon and nitrogen and stable isotopes of carbon and nitrogen were analysed 

with an elemental analyser (CE Instruments  EA 1110 CHNS, Carlo Erba, Milan, Italy) 

connected via a ConflowIV interface to a Thermo Finnigan MAT 253 isotope ratio mass 

spectrometer (both Thermo Fischer, Bremen, Germany) at University of Duisburg-Essen’s 

Stable Isotope Facility (Instrumental Analytical Chemistry). Data from the stable isotope 
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analysis are expressed as relative difference between ratios of samples and standards (VPDB 

for δ13C and atmospheric nitrogen for δ15N) as described by the equation:  

δ13C, δ15N = [(Rsample/Rstandard) – 1] x 1000, where R = 13C/12C or 15N/14N.  

The analytical precision over all measurements (standard deviation from 791 in-house 

standards) was 0.08‰ for δ13C and 0.19‰ for δ15N. 

 

3.2.3 Data analysis 

We displayed the isotopic composition of each study reach in δ13C-δ15N-isotope space 

(Appendix 4). For benthic invertebrate communities we computed the area of a convex hull 

drawn around all species in isotope space to indicate the isotopic niche of the community. 

For further analyses, we calculated mean isotopic values of each community (separately for 

δ13C and δ15N), reflecting the average isotopic signature of the particular aquatic system; the 

arithmetic mean of a community is similar to its centroid in isotope space. We used multiple 

Wilcoxon Matched pair tests between organism groups (aquatic, riparian, terrestrial) to 

explore the general trophic organization across the aquatic-terrestrial interface for the total 

population of restored and degraded sections (n=22). We inferred the trophic relationship of 

riparian arthropods to either the aquatic or the terrestrial system based on their position in 

isotope space considering trophic fractionation. 

We calculated two metrics based on the relative position of groups to each other in the 

δ13C-δ15N-isotope space independently for each reach: the distance of riparian arthropods to 

terrestrial arthropods, calculated as riparian arthropods minus terrestrial arthropods; and the 

distance of riparian arthropods to benthic invertebrates, calculated as riparian arthropods 

minus benthic invertebrates separately for δ13C and δ15N. Both metrics indicate trophic 

linkage of riparian arthropods to the terrestrial and aquatic system considering trophic 

fractionation. To quantify the restoration effect, we then pairwise compared isotopic 

distances of riparian arthropods to terrestrial arthropods and benthic invertebrates between 

restored and corresponding degraded reaches using Wilcoxon Matched pair tests. 

To explore the relationship between riparian habitat composition and the strength of 

trophic linkages, we used data on riparian habitats recorded by Poppe et al. (2016). Briefly, 

for each study reach riparian habitats were recorded along ten equidistant transects vertical to 

flow directions containing the entire flood-prone area. The length of each riparian habitat 

feature was measured and proportions were computed. We calculated riparian habitat 

diversity (Shannon-Wiener Index) based on the habitat composition at each study reach and 

correlated the resulting habitat diversity to the trophic linkage metrics (i.e. isotopic 
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distances). In addition, the proportion of open side bars as key habitats for ground-dwelling 

riparian arthropods was correlated to the trophic linkage metrics. All statistical analyses were 

performed in R (Version 3.2.2, http://www.r-project.org/). 

 

 

3.3 Results 

3.3.1 Isotopic signatures across the aquatic-terrestrial interface 

Benthic invertebrates were significantly different in their isotopic signatures (δ13C, δ15N) 

from terrestrial arthropods collected beyond the riparian zone, indicating a clear 

differentiation between aquatic and terrestrial food webs (Wilcoxon Matched pair test, δ15N: 

p < 0.001, δ13C: p < 0.001, n=22, Figure 3.2, Appendix 4). The δ15N isotopic signatures 

indicated that the aquatic system (benthic invertebrates) was significantly more enriched than 

the terrestrial system (terrestrial arthropods). Both systems were separated by approximately 

one trophic level considering trophic fractionation of δ15N: the median of pairwise calculated 

distances between benthic invertebrates and terrestrial arthropods in isotope space was 

+3.7‰ (n = 22). Furthermore, benthic invertebrates were significantly more depleted in δ13C 

than terrestrial arthropods (median: -1.8‰, n = 22). Therefore, isotopic signatures suggest 

that predaceous arthropods collected beyond the riparian zone relied more on a terrestrial 

diet. However, δ13C isotopic signatures of benthic invertebrates showed a large range, 

reflecting an overlap in δ13C across the aquatic-terrestrial interface for the majority of study 

reaches (Figure 3.2c, Appendix 4). 
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Figure 3.2: Trophic organization across the aquatic-terrestrial interface as indicated by mean stable 
isotope composition (δ15N, δ13C) of benthic invertebrate communities, riparian arthropods and 
terrestrial arthropods across all study reaches (n=22): a) general distribution of benthic invertebrates 
(red), riparian arthropods (green) and terrestrial arthropods (blue) in isotope space, and pairwise 
comparison of b) δ15N and c) δ13C isotopic signatures between benthic invertebrates (aquatic), riparian 
and terrestrial arthropods (Median; Box: 25–75%; Whisker: Min–Max excluding outliers, ○ = 
Outliers). 

 

Riparian arthropods were similar in their δ15N isotopic signatures to benthic invertebrates 

and significantly different from terrestrial arthropods (Wilcoxon Matched pair test, δ15N: p < 

0.001, n=22, Figure 3.2b), indicating a large proportion of higher δ15N enriched aquatic prey 

in the diet of riparian arthropods. Therefore, riparian arthropods were also higher δ15N 

enriched than their terrestrial counterparts (median of pairwise calculated distances between 

riparian and terrestrial arthropods: +2.1‰, n = 22). Considering trophic fractionation, 

however, δ15N isotopic signatures of riparian arthropods reflected a mixed diet with 

significant proportion of aquatic insects and hence, an intermediate position in isotope space. 

In terms of δ13C isotopic signals we observed the opposite pattern, with isotopic signatures 

of riparian arthropods being more similar to terrestrial arthropods and significantly different 

from benthic invertebrates (Wilcoxon Matched pair test, δ13C: p < 0.001, n=22, Figure 3.2c). 

Considering trophic fractionation of δ13C (0.4 ± 1.3‰, Post 2002), however, the median of 

pairwise calculated distances between riparian arthropods and benthic invertebrates across 

all study reaches was still within the range of one trophic level (+1.5‰, n = 22). Overall, 

there were large differences between study reaches and riparian arthropods were more 

closely linked to the aquatic system in Austria, Germany (mountain) and partly in the Czech 

Republic and Finland. The majority of study reaches in Sweden, Finland and Germany 

(lowland) revealed more marked differences between riparian arthropods and benthic 
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invertebrates, reflecting that their diet predominantly relied on terrestrial carbon resources 

(Appendix 4). Accordingly, δ15N patterns were more consistent for describing trophic 

linkages of riparian arthropods. 

 

3.3.2 Restoration effect 

We compared the isotopic distances of riparian arthropods to terrestrial arthropods and 

benthic invertebrates between restored and corresponding degraded reaches (separately for 

δ15N and δ13C ). The δ15N-distance of riparian arthropods to terrestrial arthropods revealed 

differences between the two groups of sites (Wilcoxon Matched pair test, p < 0.05, n = 11, 

Figure 3.3a): The δ15N isotopic signatures of riparian arthropods were more differentiated 

from terrestrial arthropods in restored reaches than in degraded reaches, suggesting a 

significant decrease in the use of terrestrial resources following restoration. Accordingly, 

riparian arthropods in restored reaches also took a relative higher trophic position than in 

degraded reaches (as reflected by higher δ15N, Table 3.2), suggesting an increased proportion 

of higher δ15N enriched aquatic prey in the diet of riparian consumers following restoration 

and enhanced trophic linkage. This pattern is further supported by the pairwise comparison 

between restored and degraded reaches using the δ15N-distance of riparian arthropods to 

benthic invertebrates: although the comparison showed a minor effect (Wilcoxon Matched 

pair test, p = 0.08, n = 11), the findings suggest a closer relation between aquatic and riparian 

biota in restored reaches (Figure 3.3b). 

The pairwise comparison between restored and corresponding degraded reaches using 

δ13C-distances of riparian arthropods to terrestrial arthropods and benthic invertebrates did 

not reveal significant patterns. Consequently, the restoration effect was mostly a result of 

increased distance between riparian and terrestrial arthropods based on δ15N signatures and 

hence higher trophic enrichment of riparian predators following restoration. 
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Figure 3.3: Pairwise comparison of the isotopic distances of riparian arthropods to a) terrestrial 
arthropods and b) benthic invertebrates between restored and corresponding degraded study reaches 
(Median; Box: 25–75%; Whisker: Min–Max excluding outliers, ○ = Outliers): Significant differences 
(p < 0.05) between pairs are indicated with *. 

 

 

 

Table 3.2: Median δ13C and δ15N values of consumers in aquatic, riparian and terrestrial habitats 
separately for restored (R) and degraded (D) study reaches. 

         aquatic       riparian      terrestrial  
 δ13C δ15N δ13C δ15N δ13C δ15N n 

R -30.12 10.01 -27.52 8.64 -27.87 4.88 11 

D -29.53 10.38 -27.82 8.05 -27.84 5.53 11 
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3.3.3 Relationship between riparian habitat composition and trophic linkage 

We tested if habitat composition was positively related to trophic linkage metrics. Given the 

above presented results, we limited our analysis to δ15N-distance of riparian arthropods to 

terrestrial arthropods that displayed the most pronounced differences between restored and 

degraded sites. We tested the relationship between the metric values and the diversity of 

riparian habitats (Shannon-Wiener Index) and between the metric values and the proportion 

of unvegetated side bars. There was a positive relationship between riparian habitat diversity 

and our trophic linkage metrics as well as between the proportion of open side bars and 

trophic linkage metrics (Figure 3.4). 

 

 

 

Figure 3.4: Relationship between metric values (δ15N-distance of riparian arthropods to terrestrial 
arthropods in isotope space) and a) diversity of riparian habitats (Shannon-Wiener Index) and b) 
proportion of unvegetated side bars. 

a) 

b) 
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3.4 Discussion 

Stable isotopes indicate trophic positions and ultimate carbon resources of consumers in food 

webs (Post 2002). We therefore expected that isotopic signatures of consumers sampled in 

rivers and their floodplains reflect their aquatic, riparian or terrestrial origin (hypothesis i). 

Hydromorphological restoration of rivers is expected to increase habitat diversity of the 

riparian zone, favouring the occurrence of riparian arthropods such as ground beetles and 

spiders. Moreover, restoration can increase cross-habitat movements of consumers between 

the river and its riparian zone by creating a shallower river profile or the removal of bank 

fixations, making aquatic prey more easily accessible to riparian predators. Following 

restoration, we thus expected changes in isotopic signatures of riparian arthropods, due to a 

smaller share of terrestrial prey in their diet (indicated by increased distance to terrestrial 

arthropods in isotope space), and increased use of aquatic resources (higher similarity to 

benthic invertebrates in isotope space) (hypothesis ii). We further expected that riparian 

habitat diversity and the provision of unvegetated side bars are positively related to the 

strength of aquatic-terrestrial linkages (hypothesis iii). 

Our study revealed a general differentiation between benthic invertebrates and terrestrial 

arthropods in isotope space, with riparian arthropods taking an intermediate position, 

reflecting the use of both in-stream and terrestrial resources (confirming hypothesis i). 

However, δ15N patterns were more consistently useful for describing trophic linkages of 

riparian arthropods than δ13C. We found some support for an enhanced aquatic-terrestrial 

linkage associated with restoration across all eleven projects (confirming hypothesis ii). 

However, this was largely dependent on δ15N isotopic signatures of riparian arthropods, 

rather than on δ13C signatures, as δ15N signatures revealed a higher relative trophic position 

of riparian biota following restoration reflecting decreased use of terrestrial and increased 

use of aquatic prey (i.e. preservation of the aquatic signature). We further observed that 

riparian habitat diversity is positively related to the strength of aquatic-terrestrial linkages, 

pointing to the importance of habitat diversification in the riparian zone in promoting trophic 

linkages between river and floodplain (confirming hypothesis iii). In general, these findings 

suggest that restoration results in enhanced trophic linkages between river and riparian zone, 

which is not only controlled by the provision of open sand and gravel bars but by the general 

diversification of riparian habitats. 
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3.4.1 Isotopic signatures across the aquatic-terrestrial interface 

We found a clear separation between benthic invertebrates and predaceous terrestrial 

arthropods using stable isotopes (δ13C, δ15N). The higher trophic position of benthic 

invertebrates over terrestrial arthropods has to be emphasized: δ15N signatures revealed that 

benthic invertebrate communities were approximately one trophic level higher than 

terrestrial arthropods across all 22 study reaches. Riparian arthropods also took a higher 

trophic position than predaceous terrestrial arthropods, indicating a significant proportion of 

higher δ15N enriched emerging aquatic insects and stranded organism in their diet. Riparian 

arthropods subsequently can make aquatic biomass further available for the terrestrial food 

web as they represent important prey for terrestrial consumers of higher trophic levels 

(Jackson & Fisher 1986). Our large scale comparison therefore supports previous findings 

that characterized riparian arthropods as a central component of floodplain biota, as they 

contribute to the linking of aquatic and terrestrial food webs (Baxter et al. 2005, Paetzold et 

al. 2005).  

 

3.4.2 Restoration effect and influence of riparian habitat composition on trophic 
linkage 

In accordance with our hypothesis, restoration not only promotes riparian habitat 

diversification (e.g., Jähnig et al. 2010, Januschke et al. 2011, Poppe et al. 2016) and riparian 

arthropod assemblages (e.g., Jähnig et al. 2009, Januschke et al. 2014) but also promotes 

trophic connectivity between river and floodplain. Our findings indicated a significantly 

smaller share of terrestrial prey in the diet of riparian arthropods following restoration and 

suggested a modest increase of aquatic prey. This effect is largely inferred from the δ15N 

isotopic signatures of riparian arthropods, rather than changes in δ13C signatures, as δ15N 

signatures revealed a higher relative trophic position of riparian biota following restoration. 

In terms of δ13C isotopic signals we observed almost no changes, though δ13C was originally 

expected to be a better indicator of changes in resource use (Post 2002). For instance, Collier 

et al. (2002) showed that the ultimate carbon resources of riparian predators can shift 

between streams (indicated by δ13C) while the trophic position of riparian predators 

remained the same (δ15N). However, Collier et al. (2002) compared two streams differing in 

a range of environmental characteristics (e.g., catchment conditions) while we studied paired 

reaches, which were located close to each other and differed only in habitat changes induced 

by restoration measures. Our findings therefore suggest that there was no considerable shift 

in the use of ultimate carbon resources following restoration and that δ15N patterns were 

more consistent for describing trophic linkages of riparian arthropods. 
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Overall, patterns of δ13C across the aquatic-terrestrial interface were inconsistent between 

all 22 river reaches and were independent of their restored or degraded state: in some regions 

the sections showed large differences between terrestrial and aquatic δ13C, while others 

reflected an overlap in δ13C signatures (Appendix 4). These findings suggest that differences 

in δ13C isotopic signatures between water and land were dictated by regional environmental 

characteristics rather than restoration measures. One possible reason for a δ13C-overlap 

across the aquatic-terrestrial interface is the utilization of terrestrial carbon (leaves, wood) by 

benthic invertebrates. Even aquatic biofilms are often “contaminated” with terrestrial carbon 

(trapped particles, bacteria growing in the biofilm, uptake of DOC of terrestrial origin). 

Hence, grazing or shredding benthic invertebrates reflect isotopic signatures initially derived 

from terrestrial carbon instead of aquatic carbon. 

Riparian arthropod predation is concentrated along the shoreline and habitat structure of 

the riparian zone determines not only composition of riparian arthropod assemblages but also 

aquatic insect emergence and the accumulation of surface drifting organisms (Paetzold et al. 

2005). Open sand and gravel bars are major drivers of aquatic-terrestrial transfers as the 

boundary between river and shore is open for cross-habitat movements (Paetzold et al. 

2005). Furthermore, aquatic insects leaving the water for emergence are particularly 

vulnerable to predation on open bars providing a minimum of shelter (Hering & Plachter 

1997). In line with this, we found a positive relationship between the provision of such 

habitats and the strength of aquatic-terrestrial linkages. However, we further highlighted that 

overall riparian habitat diversity is important in dictating strength of trophic linkages 

between river and floodplain. One possible reason is that different habitats (such as 

vegetated banks together with open bars) promote riparian taxa with different hunting 

strategies: web-building spiders benefit from vegetated shorelines, complementing ground-

dwelling predation, thus utilizing a larger proportion of the available prey. 

Our findings provide evidence for an enhanced qualitative linkage following restoration. 

However, hydromorphological restoration typically enhances riparian arthropod abundances 

and species richness in the riparian zone (Günther & Assmann 2005, Lambeets et al. 2008, 

Jähnig et al. 2009, Januschke & Verdonschot 2016), which has potential to increase 

quantitative energy flow into the terrestrial food web as more riparian predators are 

consuming more aquatic prey. This is in line with numbers of arthropods caught in our 

paired restored and degraded reaches: the three reaches with highest trophic linkage metrics 

(δ15N-distance of riparian arthropods to terrestrial arthropods indicating a smaller share of 

terrestrial prey in the diet of riparian consumers) revealed the twelve-, six- and four-fold 

numbers of riparian arthropods in restored compared to degraded reaches. This also applies 

for the expected increase in aquatic insect biomass as a result of restoration, which can serve 
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as potential prey for riparian predators. Hering & Plachter (1997) and Burdon & Harding 

(2008) showed positive associations between aquatic insect biomass and riparian predator 

densities. 

 

3.4.3 Recommendations for future research 

Stable isotopes (δ15N, δ13C) can be particularly useful to investigate the trophic organization 

across the aquatic-terrestrial interface as they reflect integrated feeding patterns that 

incorporate spatiotemporal scales (Paetzold et al. 2005, Abrantes et al. 2014). Stable isotopes 

have been successfully used to estimate feeding linkages between river channels and their 

adjacent areas based on riparian arthropods (e.g., Collier et al. 2002, Sanzone et al. 2003, 

Paetzold et al. 2005) and have been further applied to test for land use effects on aquatic prey 

subsidies to riparian spiders (Krell et al. 2015) and for inundation pressures on prey selection 

of riparian beetles (O’Callaghan et al. 2013). In this study, we quantified the isotopic 

distance of riparian arthropods to terrestrial arthropods and benthic invertebrates as a 

measure of trophic linkage (considering trophic fractionation). Our metrics follow the 

objectives of Layman et al. (2007b) who introduced a set of metrics to gain more 

information from stable isotope data at the community level. Such metrics have a 

fundamental advantage, as they allow the organisms to “speak” for themselves. For future 

applications, we suggest to classify different floodplain-inhabiting organism groups by 

species or genus or by body size. We further propose to calculate standard ellipses to identify 

isotopic niches of the different organism groups according to Jackson et al. (2011). Standard 

ellipses can be applied to analyse isotopic niche overlaps as a measure of dietary similarities 

among groups (Jackson et al. 2012), and can therefore be used to identify the position of 

riparian consumers between aquatic and terrestrial food webs as well as changes following 

restoration. Recently, increasing attention has been given to the response of floodplain-

inhabiting organism groups to restoration (e.g., Hering et al. 2015, Göthe et al. 2016, 

Januschke & Verdonschot 2016). Moreover, the recovery of ecological functioning has been 

emphasized in river restoration research (Palmer et al. 2014). The above suggested approach 

combines the response of floodplain organisms to restoration with a functional metric to 

characterize the trophic organization across the aquatic-terrestrial interface. Consequently, it 

enables a more holistic characterization of river restoration effects and should therefore be of 

key interest to restoration research. 
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4 Hydromorphological restoration stimulates river 
ecosystem metabolism 

 

4.1 Introduction 

River restoration is a pivotal element of catchment management to counteract anthropogenic 

degradation and depletion of river health and water resources, and to increase overall 

biodiversity and ecosystem services provisioning (Bernhardt et al. 2005, Strayer & Dudgeon 

2010). Based on legislative frameworks such as the EU Water Framework Directive (WFD) 

and the Clean Water Act in the United States, large investments have been made to restore 

rivers. In Europe, degraded river hydromorphology is considered one of the central impacts 

to the ecological status of rivers (EEA 2012, Hering et al. 2015). For example, the German 

national river habitat survey, which evaluates 31 hydromorphological parameters for 100 m 

river sections, concluded that the majority of German rivers is severely degraded (Gellert et 

al. 2014, UBA 2013). As the river biota depend on suitable habitats (Beisel et al. 2000, 

Schröder et al. 2013), about 85% of German rivers failed to reach the ‘good ecological 

status’ demanded by the WFD (EEA 2012). Accordingly, most restoration projects target the 

hydromorphological improvement of rivers. The majority of restoration measures are 

implemented at the reach-scale, covering short river stretches typically of 1 km or less 

(Bernhardt et al. 2005, Palmer et al. 2014). A variety of reach-scale measures have been 

implemented (Lorenz et al. 2012): for instance, restoration activities along mountainous 

rivers in central Europe mainly targeted re-braiding and widening of streams, leading to 

greater habitat and hydrodynamic heterogeneity (Jähnig et al. 2009, Poppe et al. 2016). In 

combination with other characteristics of the river ecosystem – e.g., light, organic matter, 

nutrient availability, temperature, hydrologic and disturbance regimes – such 

hydromorphological changes likely affect biological community composition and ecosystem 

functioning, including ecosystem metabolism (Bernot et al. 2010, Tank et al. 2010). 

The assessment of restoration effects has mainly focused on responses of aquatic 

organisms, such as fish (e.g., Roni et al. 2008, Haase et al. 2013, Schmutz et al. 2016), 

benthic invertebrates (e.g., Jähnig et al. 2010, Friberg et al. 2014, Verdonschot et al. 2016), 
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and macrophytes (e.g., Lorenz et al. 2012, Ecke et al. 2016). Recently, increasing attention 

has also been given to the response of floodplain organisms (e.g., Hering et al. 2015, Göthe 

et al. 2016, Januschke & Verdonschot 2016), while functional characteristics, i.e., the rates 

and patterns of ecosystem processes, have rarely been addressed. Ecosystem functions are 

life-supporting processes that are directly linked to ecosystem services, i.e., the benefits 

people obtain from the environment (Palmer & Filoso 2009). Thus, an emerging interest in 

river restoration research is to incorporate the recovery of ecological functioning (Palmer et 

al. 2014). However, few studies have considered the response of river ecosystem functioning 

and functional metrics to restoration (e.g., Lepori et al. 2005, Bunn et al. 2010, Kupilas et al. 

2016). Consequently, the effects of restoration on key ecosystem processes remain poorly 

understood. 

Ecosystem metabolism, i.e., the combination of gross primary production (GPP) and 

ecosystem respiration (ER), is a fundamental ecosystem process in rivers. Ecosystem 

metabolism is a measure of the production and use of organic matter within a river reach by 

all biota. Therefore, it provides key information about a river’s trophic and energetic base 

(relative contribution of allochthonous and autochthonous carbon) (Young et al. 2008, Tank 

et al. 2010, Beaulieu et al. 2013). The majority of stream ecosystem metabolism work has 

investigated natural changes, such as effects of floods and droughts (e.g., Uehlinger 2000), 

seasonal or interannual changes (e.g., Uehlinger 2006, Beaulieu et al. 2013), interbiome 

differences (e.g., Mulholland et al. 2001), or land-use change (e.g., Gücker et al. 2009, Silva-

Junior et al. 2014). The majority of these studies have focused on smaller streams, while 

only few studies have measured metabolism of larger streams and rivers (e.g., Uehlinger 

2006, Dodds et al. 2013, Hall et al. 2015, 2016). The response of stream metabolism to 

hydromorphological changes, e.g., through river widening, is almost unknown, especially for 

larger rivers (but see Colangelo 2007). 

The widening of the riverbed enhances habitat complexity and diversity of the river 

channel and the riparian zone (Jähnig et al. 2010, Januschke et al. 2014, Poppe et al. 2016). 

Moreover, channel widening also favors macrophytes and other autotrophs through the 

creation of shallow, slow-flowing areas and backwaters (Lorenz et al. 2012). Further, it 

increases light availability and water temperature, which have been identified as major 

factors controlling river metabolism, especially primary production (Uehlinger 2006, Bernot 

et al. 2010, Tank et al. 2010). Accordingly, these changes potentially lead to enhanced in-

stream autotrophic processes. 

Restoration also increases the retention of allochthonous organic matter (Lepori et al. 

2005b, 2006, Flores et al. 2011). Moreover, the reconnection of rivers with their floodplains 

by creating shallower river profiles and removing bank fixations may enhance inundation 
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frequency, and hence resource transfers from land to water. In combination, these changes 

can favor heterotrophic activity in the river. Restoration also affects hydrodynamics and 

surface water–ground water interactions of streams (Becker et al. 2013): for instance, 

widening of the stream channel reduces flow velocity and the creation of backwaters and 

pools possibly leads to changes in the size and location of transient storage zones (Becker et 

al 2013). Increases in transient storage zones potentially enhance ER (Fellows et al. 2001) 

and nutrient processing (Valett et al. 1996, Gücker & Boëchat 2004). 

The objective of this study was to quantify reach-scale restoration effects on 

hydromorphology, habitat composition, and hydrodynamics, as factors potentially affecting 

river ecosystem function, by comparing three contiguous stream reaches (two restored and 

one upstream non-restored reach) of a mid-sized mountain river in Germany and to 

determine the corresponding responses of river metabolism. We expected (i) 

hydromorphological river characteristics, i.e., habitat composition and hydrodynamics, to 

change following restoration, with the magnitude of change depending on restoration effort 

(e.g., width and diversity of the river channel, and abundance of primary producers, as well 

as sizes and locations of transient storage zones in the two restored river reaches compared to 

the degraded reach). Further, we expected (ii) ecosystem metabolism to respond with 

increased metabolic rates, i.e., enhanced GPP and ER, mainly as a result of increased 

abundances of primary producers. 

 

 

4.2 Materials and Methods 

4.2.1 Study site 

This study was conducted in the upper river Ruhr (Federal State of North Rhine-Westphalia, 

Germany, Figure 4.1, Table 4.1) a tributary to the Rhine. The third-order Ruhr is a mid-sized 

mountain river with gravel and cobbles as bed sediments. The catchment area upstream of 

the study site is 1060 km², about 64 % of which is forested, 28 % is arable land and pasture, 

and 8 % is urban area (located mainly in the floodplains). The study site is at an altitude of 

153 m a.s.l. and the mean annual discharge was 21.3 m³ s-1 between 2004 and 2009. The 

Ruhr is draining one of the most densely populated areas of Europe; however, population 

density of the upstream catchment area is low (135.3 inhabitants km-² upstream of the study 

site). Due to manifold uses, the river’s hydromorphology has been largely modified by 

impoundments, residual flow sections, bank fixation, and industrial and residential areas in 

the floodplain. More recently, the hydromorphology of several river sections has been 

restored. 
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Figure 4.1: Location of the study site in the upper catchment of the river Ruhr in Germany. Stations 
represent start and end of the investigated river reaches (degraded, first restored and second restored 
reach). 

 

 

  



4  Ecosystem metabolism  55 
  

 

 

Table 4.1: River and study site characteristics. 

River characteristics  
Catchment size (km²) 4485 
Stream length (km) 219 
River type Gravel-bed 
Stream order 3 
Ecoregion Central Highlands 

Study site characteristics  
Latitude (N) *  51.44093 
Longitude (E ) *  7.96223 
Catchment size (km²) 1060 
Altitude (m a.s.l.) 153 
Mean annual discharge (m³ s-1) 21.3 
Catchment geology siliceous 
Restoration length (km) 2.3 
Restoration date 2007-2009 
Main restoration action riverbed widening 
pH ** 8.3 
Electric conductance ** (μS cm-1) 340 
Total nitrogen ** (mg L-1) 2.7 
NO3-N ** (mg L-1) 2.53 
NH4-N ** (mg L-1) < 0.1 
Total phosphorus ** (mg L-1) 0.07 
Total organic carbon ** (mg L-1) 2.3 

* center of reach 
** data from ELWAS-WEB (online information system maintained by The Ministry for Climate 
Protection, Environment, Agriculture, Conservation and Consumer Protection of the State of 
North Rhine-Westphalia; sampling date: 26.6.2012). 

 

Restoration aimed to establish near-natural hydromorphology and biota. Restoration 

measures were implemented between 2007 and 2009 and included the widening of the 

riverbed and the reconnection of the river with its floodplain by creating a shallower river 

profile and by removing bank fixations. Moreover, the physical stream quality was enhanced 

by generating secondary channels and islands, adding instream structures, such as woody 

debris, and creating shallow habitats providing more space for autotrophs (see Appendix 5). 

We separated the restored reach into two reaches of approximately similar lengths (1210 

and 1120 m) with obvious differences in morphological stream characteristics due to 

differing restoration effort (R1: moderate restoration effort; R2: high restoration effort). 

Briefly, in R2 a larger amount of soil was removed and the costs for the implementation of 

measures were higher than in R1 (see Appendix 5). In R2 the bank fixation was removed at 

both shorelines and the river was substantially widened and secondary channels and islands 

were created, while the removal of bank fixation and widening in R1 mainly focused on one 
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side due to constrains posed by a nearby railroad (see Appendix 5). The restored reaches 

were compared to a degraded “control section” of 850 m length located upstream of the 

restored reaches (D). The degraded reach was characteristic for the channelized state of the 

river Ruhr upstream of the restoration site, and reflected the conditions of the restored 

sections prior to restoration: The reach was a monotonous, channelized and narrowed river 

section with fixed banks and no instream structures. A 650 m long river section separating 

the degraded from the restored river reach was excluded from the investigations, as its 

hydromorphology was deviating due to constructions for canoeing and a bridge. As the three 

sections were neighboring each other, differences in altitude, slope, discharge, and catchment 

land cover between reaches were negligible. 

 

4.2.2 Hydromorphology and habitat composition 

Physical stream quality was quantified from aerial photos. High-resolution photos of the 

restored reaches were taken in summer 2013 using a Falcon 8 drone (AscTec, Germany). 

Aerial photos of the degraded reach from the same year at similar discharge conditions were 

provided by the Ministry for Climate Protection, Environment, Agriculture, Conservation 

and Consumer Protection of the State of North Rhine-Westphalia. Photos were analyzed in a 

geographical information system (ArcGIS 10.2, ESRI). For each reach, we measured the 

width of the wetted channel every 20 m along cross-sectional transects at low flow 

conditions and calculated mean width and its variation (reach D: n = 42; R1: n = 59; R2: n = 

54). For each reach, we recorded thalweg lengths, the area of the wetted stream channel, the 

floodplain area (defined as bank-full cross-sectional area), and the area covered by islands, 

woody debris, and aquatic macrophyte stands (Figure 4.2). Subsequently, the share of 

macrophyte stands of the total wetted area was calculated for each reach. Additionally, 

macrophytes were surveyed according to the German standard method (Schaumburg et al. 

2005a, b) in summer 2013. A 100 m reach was investigated by wading through the river in 

transects every 10 m, and walking along the riverbank (Lorenz et al. 2012). All macrophyte 

species were recorded and species abundance was estimated following a five-point scale 

developed by Kohler (1978), ranging from 1 (“very rare”) to 5 (“abundant, predominant”). 

The empirical relationship between the values of the five-point Kohler scale (x) and the 

actual surface cover of macrophytes (y) is given by the function y = x³ (Kohler & Janauer 

1997, Schaumburg et al. 2004). Using this relationship, we x³-transformed the values of the 

Kohler scale into quantitative estimates of macrophyte cover for the studied 100 m reaches. 
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Figure 4.2: Analysis of aerial photos. A representative river section of the second restored reach is 
shown. 

 

4.2.3 Hydrodynamics 

Stream hydrodynamics were estimated using a conservative tracer addition experiment with 

the fluorescent dye amidorhodamine G. Across the river width, we injected the dissolved dye 

in a distance sufficiently upstream to the first study reach to guarantee complete lateral 

mixing at the first sampling station. Breakthrough curves of the tracer were continuously 

measured in the main current at the upstream and downstream ends of all three reaches 

(Figure 4.1). Concentration of dye was recorded at a resolution of 10 s at the most upstream 

and downstream sampling stations using field fluorometers (GGUN-FL24 and GGUN-FL30, 

Albillia, Switzerland). At the other sampling stations (start and end of each investigated river 

reach) water samples were taken manually at 2 min intervals. The samples were stored dark 

and cold in the field and subsequently transported to the hydrogeochemical laboratory of the 

Ruhr University Bochum. Amidorhodamine G concentrations of water samples were 

measured with a fluorescence spectrometer (Perkin Elmer LS 45; detection limit of 0.1 ppb) 

and standard calibration curves prepared from the tracer and river water. Field fluorometers 

were calibrated prior to experiments with the same standard calibration procedure. 
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Subsequently, we used the one-dimensional solute transport model OTIS-P (Runkel 1998) 

to estimate parameters of river hydrodynamics for each reach from the breakthrough curves: 

advective velocity, longitudinal dispersion, stream channel and storage zone cross-sectional 

areas, and storage rate. We further calculated fractions of median travel time due to transient 

storage (Fmed
200) based on the hydrodynamic variables obtained from transport modeling 

(Runkel 2002). Additionally, Damköhler numbers were estimated for each reach (Harvey & 

Wagner 2000). 

 

4.2.4 Discharge 

Discharge data were provided by the North Rhine-Westphalia State Agency for Nature, 

Environment and Consumer Production, Germany (Landesamt für Natur, Umwelt und 

Verbraucherschutz Nordrhein-Westfalen) for a gauging station situated at the downstream 

end of the study site. At this station, discharge was constantly recorded at 5-min intervals. 

 

4.2.5 Ecosystem metabolism 

We estimated river dissolved O2 (DO) metabolism using the ‘open-channel one-station and 

two-station diel DO change techniques’ (Odum 1956, Marzolf et al. 1994, Young & Huryn 

1998, Roberts et al. 2007). We initially chose the one-station method to estimate metabolic 

rates at the downstream end of each reach (stations D, R1, and R2), as the individual studied 

reaches were too short for a reliable estimation of ecosystem metabolism with the two-

station technique, due to high current velocities and low reaeration rates. According to 

Demars et al. (2015), the two-station method is applicable to reach lengths 0.4 v/k to 1.0 v/k. 

For our reaches of the Ruhr, this range corresponds to 3283 - 8280 m for reach D, 2765 - 

6912 m for reach R1, 1624 - 4061 m for reach R2, and 2199 - 5497 m for the combined 

reach R1+R2. Thus, the quantification of metabolism using the two-station method was only 

possible for the combined reach R1+R2 with a reach length of 2330 m. 

Reach lengths influencing the one-station diel dissolved O2 change technique in our study 

were typically much longer than the experimental reaches, due to high current velocities and 

low reaeration (>10 km; estimated according to Chapra & Di Torro 1991). Following 

methods in Demars et al. (2015), metabolism estimates at the downstream sampling station 

R2 were only to 35% influenced by the restored river sections, but to 65% by upstream 

degraded river sections. Accordingly, differences in metabolic rates among sampling stations 

at the end of restored and impacted experimental reaches as estimated in our study should be 

viewed as qualitative indicators of restoration effects, rather than measured metabolic rates 

of the experimental reaches. To quantitatively support our qualitative findings, we 
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additionally used the two-station method for the combined restored river reach R1+R2, 

which was long enough for the application of the two-station open-channel method. The 

selected methods are based on the assumption that changes in DO within a parcel of water 

traveling downstream can be attributed to metabolism (photosynthesis and respiration) and to 

gas exchange between water and atmosphere, given that no significant groundwater dilution 

of river water occurs along the studied river: 

 

dDO/dt = GPP – ER – (Koxy * D) 

 

where dDO/dt is the change in dissolved oxygen concentration (mg O2 L-1 s-1), GPP is the 

gross primary production (mg O2 L-1 s-1), ER is the ecosystem respiration (mg O2 L-1 s-1), 

Koxy is the reaeration coefficient (s-1), and D is the oxygen deficit or surplus in the river (i.e., 

the difference between the measured oxygen concentration and the value at saturation; mg 

O2 L-1). The change in DO was estimated as the difference between consecutive 5-min 

readings of the same probe for the one-station method and as the difference between 

upstream (top of reach R1) and downstream probes (end of reach R2) for the two-station 

method (Roberts et al. 2007, Beaulieu et al. 2013). 

In two consecutive field campaigns in summer 2014, DO and water temperature were 

continuously measured at the downstream ends of the three reaches and at the top of reach 

R1 at 5-min intervals for 50 days. The DO probes with data loggers (O2-Log3050-Int data 

logger, Driesen + Kern GmbH, Germany) were installed in the thalweg of the river in the 

middle of the water column. The DO probes were calibrated in water-saturated air prior to 

measurements. Additionally, probes were cross-calibrated for 1 h at a single sampling station 

in the river before and after the measurements. We used the data of this comparison to 

correct for residual differences among probes (Gücker et al. 2009). This procedure assured 

that differences between probes were only due to differences in DO and water temperatures 

and not to analytical errors. In previous laboratory tests, the probes showed no drift and were 

thus not corrected for drift during the measurement campaigns (Almeida et al. 2014). 

In parallel to DO and water temperature, atmospheric pressure was recorded (Hobo U20-

001-04, Onset Computer Corporation). We used atmospheric pressure and water temperature 

data to calculate the oxygen saturation. Reaeration coefficients (Koxy
20; standardized for 

20°C) were estimated using the nighttime regression approach (Young & Huryn 1999). For 

the downstream stations of all three sampling reaches, we calculated reaeration coefficients 

(Koxy) as the slope of regressions between DO change rates (dDO/dt; mg O2 L-1 s-1) and DO 

deficits (D; mg O2 L-1) at night (night hours were defined as the period 1 h after sunset to 1 h 

before sunrise): 
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dDO/dt = Koxy * D + ER 

 

We only considered significant nighttime regressions (p < 0.05). Reaeration coefficients 

for days without significant regressions were estimated as the average value of the 

coefficients of the days before and after, as we did not observe Koxy
20 - discharge 

relationships in our data (see Appendix 6) that could have been used to estimate Koxy
20 values 

for days without reliable estimates. Estimated reaeration coefficients were low and ranged 

from 5 to 15 d-1 in our study (see Appendix 6). Subsequently, we calculated ER and GPP as 

described in detailed elsewhere (Marzolf et al. 1994, Young & Huryn 1998, Roberts et al. 

2007) from the recorded nighttime river water DO deficit and the daytime DO production, 

respectively, corrected for atmospheric reaeration (see Appendix 7). Metabolic rates 

obtained by this method closely matched those obtained with the estimator of Reichert et al. 

(2009). Ground water dilution was not detected, i.e., discharge differences among the 

investigated river reaches were within the ranges of method uncertainty of discharge 

measurements, and was thus not considered into our estimates. Metabolism measurements 

from days at which floating macrophytes accumulated around probes and affected DO 

measurements were eliminated from the dataset. 

 

4.2.6 Data analysis 

We used the ARIMA function in R to identify an ARIMA model that best represented all 

time series (metabolic parameters at stations D, R1, R2, and reach R1+R2), estimated 

average parameter predictions and 95% confidence limits for each time series based on these 

models, and used F-tests to test the hypothesis of differences among time series (compare 

Roley et al. 2014). Data recorded at the time of flooding events were omitted from analyses 

because GPP was not detectable, and we cannot be sure whether GPP was indeed zero or 

very low or whether high flows prevented the detection of GPP. Overall, data of n = 32 days 

were used in the analyses. Repeated measures ANOVAs and Tukey’s HSD post hoc tests 

were used to test for differences in water temperature among river reaches. Conventional 

one-way ANOVA was used to test for differences in river width, comparing the transect 

measurements performed in the three river reaches. All statistical analyses were conducted in 

R (R Development Core Team 2007). 
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4.3 Results 

4.3.1 Hydromorphology and habitat composition 

Restored river reaches were morphologically more complex and had significantly wider 

wetted channels (ANOVA and Tukey post hoc test, p < 0.05) and more variable channel 

width than the degraded reach (Table 4.2). Furthermore, the restored reaches had larger 

wetted channel areas, floodplain areas, island areas, and patches of woody debris than the 

degraded river reach (Table 4.2). The intensively restored reach R2 showed the highest 

values for hydromorphological variables (Table 4.2). The share of macrophyte cover of total 

wetted area was also highest in R2. 

 

Table 4.2: Morphological and hydrodynamic characteristics of the investigated river reaches. 

Variable degraded  
    reach (D) 

1. restored  
    reach (R1) 

2. restored  
    reach (R2) 

Thalweg length (m) 850 1210 1120 

Width (m) 22.5 28.2 36.6 

Width variation * (m) 3.3 6.3 10.5 

Wetted channel area (m²) 19,114 34,604 41,673 

Floodplain area (m²) 27,363 30,630 34,218 

Island area (m²) 0 2,666 12,381 

Woody debris (m²) 0 467 691 

Macrophyte coverage (%) 4.8 1.7 19.8 

Flow velocity (m s-1) 0.95 0.8 0.47 

Longitudinal dispersion, D (m² s-1) ** 0.28 0.59 10.21 

Channel cross-sectional area, A (m²) ** 12.11 14.96 27.05 

Storage zone cross-sectional area, AS (m²) ** 2.38 4.48 3.16 

Storage rate, α (s-1) ** 4.9 x 10-4 7.4 x 10-4 2.0 x 10-4 

Transient storage, Fmed
200 (%) 1.6 3.9 0.8 

Damköhler number 2.8 4.8 4.4 

* Width variation calculated as standard deviation; degraded: n = 42, restored 1: n = 59, restored 2: n 
= 54. ** Data on hydrodynamic characteristics represent the final parameters obtained by one-
dimensional transport modelling using OTIS-P. 

 

4.3.2 Hydrodynamics 

The reaches differed in hydrodynamic parameters: The restored reaches had lower flow 

velocity and higher longitudinal dispersion, cross-sectional areas of the advective channel, 

and storage zone cross-sectional areas than the degraded reach (Table 4.2). Storage rate and 

fractions of median travel time due to transient storage (Fmed
200) was highest in R1 and lowest 

in R2, with intermediate values for D (Table 4.2). Damköhler numbers between 0.5 and 5.0 

indicated reliable transient storage parameter estimates for the reaches (Harvey & Wagner, 
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2000, Table 4.2). Tracer breakthrough curves estimated by transport modeling closely 

corresponded to measured tracer concentrations (Figure 4.3). 

 

 
Figure 4.3: Tracer breakthrough curves for the conservative tracer addition experiment in the river 
Ruhr. Upstream boundary condition based on concentrations at sampling station 1 (start of degraded 
reach, D, grey solid line), observed concentrations at sampling stations 2 (end of degraded reach, 
empty circles), 3 (start of first restored reach, R1, empty squares), 4 (end of first restored reach, start 
of second restored reach, R2, empty triangles), 5 (end of second restored reach, crosses), and 
simulated concentrations based on final parameter estimates with OTIS-P (solid lines). 

 

4.3.3 Discharge and water temperature 

Mean discharge during the first weeks of measurement was 8.4 m3 s-1. The hydrograph was 

characterized by a large summer flow peak and two minor peaks during the study period 

(Figure 4.4a). During the flow peaks discharge rapidly increased 3.5- to 7-fold relative to the 

mean flow. Trends in water temperature over time were very similar for the three river 

reaches and are exemplarily shown for R2 (Figure 4.4 b). Overall, restored reaches had 

higher mean daily water temperatures than the degraded reach, with R2 having higher mean 

daily water temperatures compared to R1 (repeated measures ANOVA, p < 0.0001; Tukey’s 

HSD post hoc tests, p < 0.0005). 

 



4  Ecosystem metabolism  63 
  

 

 
Figure 4.4: (a) discharge and (b) water temperature in the river Ruhr during the study period in 
summer 2014. Trend in water temperature during study period is exemplarily shown for the second 
restored reach (R2). 

 

4.3.4 Ecosystem metabolism 

We observed significant effects of reach-scale restoration on metabolic rates estimated at the 

end of the restored river sections (R1 and R2 compared to D; estimated by the one-station 

method) and between the upstream degraded river (station D) and the combined restored 

reaches R1+R2 (estimated with the two-station method). According to the ARIMA function 

estimates, we found higher river GPP, net ecosystem production (NEP), and GPP:ER at the 

restored river sections (R1 and R2 versus station D; estimated with the one-station method; 

Figure 4.5). Moreover, GPP, ER, NEP, and GPP:ER were also higher (Figure 4.5) in the 

total restored river reach (R1+R2; estimated with the two-station method) than in the 

upstream degraded river (measured at section D with the one-station method). These findings 

indicate an increase in the river’s metabolism following restoration. 
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Figure 4.5: Average predicted metabolic parameters and 95% confidence intervals of time 
series estimated by the one-station open-channel method at river stations downstream of 
reaches D, R1, and R2, and by the two-station open-channel method for river reach R1+R2. 
F-tests for all variables were significant (GPP: p < 0.001; ER: p < 0.05; NEP: p < 0.005, 
GPP:ER: p < 0.0001). Different letters indicate differences according to Tukey’s post hoc 
test (p < 0.05). 

 

The three sampling stations at the downstream ends of the reaches generally exhibited 

similar metabolism patterns (Figure 4.6). Rates of GPP and ER ranged from 2.59 to 13.06 

and -4.96 to -17.52 g O2 m-2 day-1 at sampling station D, from 2.33 to 12.36 and -4.04 to -

14.02 g O2 m-2 day-1 at station R1, and from 3.61 to 17.64 and -5.91 to -24.71 g O2 m-2 day-1 

at station R2. Daily rates of GPP were highest shortly before the main summer flow peak at 

all sampling stations (Figure 4.6a). GPP was not detectable during the summer flow peaks. 

ER generally mirrored the GPP patterns, but showed distinct peaks at the beginning of the 

summer flow peak. ER exceeded GPP during all but one day at R1 and two days at R2. 

Consequently, NEP (net ecosystem production) was negative during most of the measured 

period, i.e., reaches were heterotrophic (Figure 4.6b). NEP ranged from -4.61 to -0.47 g O2 

m-2 day-1 at station D, from -4.29 to 0.22 g O2 m-2 day-1 at station R1, and from -8.24 to 0.14 

g O2 m-2 day-1 at station R2. The average GPP:ER ratio ranged from 0.66 to 0.97 across all 

sampling stations, also indicating that the Ruhr was moderately heterotrophic. General 

patterns in daily rates of both GPP and ER also seemed to be influenced by flow peaks. GPP 
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and ER were both suppressed immediately following the flooding events. The ensuing 

recovery patterns for GPP and ER were similar for all investigated sampling stations: 

depending on magnitude of flow, GPP and ER were suppressed for several days, but steadily 

returned to pre-disturbance conditions. The total restored river reach (R1+R2, two-station 

method) showed temporal metabolism patterns comparable to those estimated at the three 

sampling stations with the one-station method (Figure 4.6). However, NEP of the total 

restored river reach (R1+R2) was positive and the average GPP:ER ratio was higher than 1 

during most of the sampling period, indicating a slight change in the river’s metabolic 

balance following restoration. 

 

 

4.4 Discussion 

Restoration of river hydromorphology usually covers short river stretches of less than 1 km 

and is expected to increase the river’s habitat and hydrodynamic heterogeneity. Together, 

these changes may stimulate ecosystem metabolism, i.e., whole-stream rates of GPP and ER, 

as well as affect the river’s metabolic balance. Increases in river metabolism, in turn, may 

result in increased rates of other ecosystem processes, such as secondary productivity and 

whole-stream nutrient processing (Fellows et al. 2006, Gücker & Pusch 2006). 

 

4.4.1 Hydromorphological characteristics 

Recent monitoring and evaluation of restoration projects report positive effects on 

hydromorphology and habitat composition (Jähnig et al. 2009, Jähnig et al. 2010, Poppe et 

al. 2016). Similarly, we found greater habitat complexity of restored reaches, as indicated by 

wider and more diverse river channels. The reach with the highest restoration effort (R2) was 

characterized by the highest values and heterogeneity of hydromorphological variables; this 

suggests that restoration effort is indeed crucial for restoration success. According to Lorenz 

et al. (2012), the success of restoration in mid-sized to larger rivers can also be indicated by 

increased cover, abundance and diversity of macrophytes as they benefit from more natural 

and diverse substrate, and the variability in flow. Consequently, the higher share of 

macrophyte cover of total wetted area in R2 also highlighted the higher morphological 

quality of this reach. 
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Figure 4.6: Daily rates of (a) gross primary production (GPP: positive values, black line) and 
ecosystem respiration (ER: negative values, grey lines) and (b) net ecosystem production (NEP) 
measured at the downstream ends of the investigated reaches (degraded = D; first restored = R1; 
second restored = R2) and for the combined reaches R1+R2 of the river Ruhr in summer 2014. 
Vertical grey bars indicate peak flow events. 
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Moreover, there were no point sources or changes in land use along the studied river 

section, and therefore increases in P and N concentrations and associated eutrophication 

effects in the studied river section seem unlikely (compare Table 4.1). Thus, higher 

macrophyte biomass and metabolic responses are likely to be a result of river restoration, 

i.e., wider channels increasing light availability, shallower channels providing better habitats 

for macrophytes, and lower current velocities decreasing hydraulic stress. 

Changes in hydromorphology and habitat composition influenced hydrodynamics: we 

observed lower current velocity, higher longitudinal dispersion and larger transient storage 

zones in the restored reaches. This corresponds with the larger river width and wetted 

channel area, and the increased abundance of morphological features such as woody debris, 

islands and macrophyte patches. However, Fmed
200, i.e., the relative importance of transient 

storage for whole-stream hydrodynamics, was highest in R1 and lowest in R2, with 

intermediate values for D. Accordingly, there appeared to be an inverse relationship between 

Fmed
200 and the share of macrophyte cover of total wetted area, which was highest in R2 and 

lowest in R1, with intermediate values in D. These findings suggest that the dense stands of 

macrophytes in R2 particularly altered stream hydrodynamics: macrophyte patches built 

large surface transient storage areas and potentially changed the locations of transient storage 

zones from the hyporheic zone to the surface water column. Macrophyte fields in R2 may 

have even been so dense that large parts of them were representing hydrodynamic dead 

zones. A similar effect was found in streams restored by implementing steering structures to 

enhance stream quality: the restored reaches were dominated by surface transient storage 

exchange (Becker et al. 2013). Furthermore, the sedimentation of fine sediment within dense 

macrophyte stands may further decrease exchange with the hyporheic zone. 

 

4.4.2 Functional characteristics 

Metabolism was measured over a 50-day period to obtain representative data, allowing for 

comparisons among sampling stations. Furthermore, this time series allowed for the analysis 

of environmental variability, such as flow peaks. The results were obtained for the summer 

period, i.e., the time of maximum biomass, which is also relevant for the WFD compliant 

sampling period (e.g., Haase et al. 2004, Schaumburg et al. 2004, EFI+ CONSORTIUM 

2009). Therefore, results obtained in this study are directly comparable to the river status 

derived from biological assessment. 

In general, the three sampling stations showed similar patterns in metabolism, as our one-

station metabolism approach measured a long upstream river section in addition to the 

experimental reaches. Rates of ER mirrored those of GPP, suggesting that autotrophic 

respiration largely drove temporal patterns in ER, despite an overall ratio of GPP:ER < 1 and 
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a slightly negative NEP during most of the measurement period. Similar patterns were found 

in streams in the US (Beaulieu et al. 2013, Hall et al. 2016). The average GPP:ER ratio was 

significantly higher downstream of the restored reaches in our study (0.86 and 0.97, 

respectively) and in the combined restored reach (1.16) than in the upstream degraded river 

(0.66), indicating an increase in autotrophic processes following restoration. The only 

moderate heterotrophic state of the river together with ER closely tracking GPP indicated the 

importance of autochthonous production for the metabolism. This is further supported by the 

comparison of pre- and post-peak flow ER (Figure 4.6). McTammany et al. (2003) suggested 

that higher inputs of allochthonous material may occur after flooding events, subsequently 

supporting high rates of ER. In line with this, we expected high rates of ER during the last 

third of the sampling period, especially in restored reaches with a potentially high POM 

trapping efficiency. However, ER was lower compared to pre-flow peak conditions, with ER 

still mirroring GPP, thus indicating the coupling of autochthonous production with ER even 

after floods. This implies that restoration (reconnection of river and floodplain) did not 

increase resource transfer into the channel to such an extent that it influenced river 

metabolism. 

We observed significantly higher GPP and ER at station R2 compared to the other 

stations. Metabolism of R1 did not markedly differ from D, corresponding with consistently 

higher values of hydromorphological variables in R2 only. Given the previously discussed 

importance of autochthonous production for the metabolism, habitat enhancement supporting 

the growth of macrophytes is likely the cause for higher GPP and ER in R2. Consequently, 

only high restoration effort bringing a restored reach close to reference conditions led to 

pronounced effects on ecosystem metabolism. Restoration effects were mainly related to the 

growth of aquatic macrophytes, which formed dense stands that augmented ecosystem 

metabolism. We acknowledge that metabolism was measured during summer, i.e., the time 

of maximum biomass of aquatic macrophytes. Therefore, high GPP and ER measured in this 

campaign might be restricted to this season and effects will be lower during winter times 

when macrophyte abundance will be low. 

Ecosystem metabolism of the sampling stations at the restored reaches and of the 

combined restored river reaches was expected to be at similar levels to those of natural rivers 

reported in the literature. Therefore, we compared GPP and ER of our sampling stations to 

those of rivers comparable in size (discharge between 5 and 50 m³ s-1; see Appendix 8, 9). 

GPP and ER estimated in this study were among the highest values reported for similar sized 

rivers, especially those of the sampling station R2 and the combined restored reach. Of all 

the rivers, for which metabolism has been reported, the channelized river Thur (Uehlinger 

2006) is closest to the Ruhr regarding size, sediment, and region. Interestingly, average GPP 
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and ER reported for the Thur were similar to those of the channelized sampling station D. 

Thus, relatively low GPP and ER in hydromorphologically altered rivers compared to natural 

ones may be common. However, there is a tremendous variability in ecosystem metabolism 

among natural river reaches in the literature (see Appendix 8, 9). Considering the limited 

knowledge about natural geographical gradients in river metabolism, it was not possible to 

assess whether values obtained for restored reaches indicate natural conditions in a broader 

geographic context. In future analyses of restoration effects on fluvial metabolism, local 

reference conditions should therefore be assessed whenever possible. 

Our experimental reaches reflected typical spatial scales on which restoration measures 

are implemented. However, individually, these reaches were too short to feasibly use the 

two-station diel DO change method (see chapter 4.2.5). Accordingly, we used the one-station 

approach to assess reach-scale restoration effects on ecosystem metabolism of longer river 

sections (>10 km). Following methods in Demars et al. (2015), we evaluated to what extent 

these metabolism estimates reflected the restored river sections. Measurements at sampling 

station R1 and R2 were only to 16% and 24%, respectively, influenced by the restored 

experimental reaches directly upstream. However, station R2 was to 35% influenced by the 

combined reaches R1+R2, and thus to 65% by upstream degraded river sections. Despite this 

mismatch between lengths of river reaches evaluated and reaches exclusively affected by 

restoration, we found significant effects of reach-scale restoration on whole-river 

metabolism. Interestingly, our study therefore also shows that high restoration effort in short 

river reaches (1 to 2 km) had considerable effects on total whole-river metabolic rates of 

river stretches exceeding the length of the actually restored reaches (>10 km), and that the 

one-station method may therefore be an interesting option to qualitatively assess restoration 

effects in field situations, in which the two-station method is not feasible. 

To quantitatively support these qualitative findings, we estimated metabolism of the 

combined restored reaches R1+R2, which were long enough to permit the application of the 

two-station method. The obtained metabolic rates should be directly comparable to 

metabolic rates of the upstream, degraded river (measured at station D with the one-station 

method) as results obtained with the one-station and the two-station methods often agree 

remarkably well (e.g., Bernot et al. 2010, Beaulieu et al. 2013). The total restored reach 

(R1+R2) showed higher GPP, ER, NEP, and GPP:ER than the upstream degraded river. 

Thus, these results support the findings derived from the one-station method, indicating an 

increase in the river’s metabolism and metabolic balance associated with restoration. 

Thus, the restoration of short river reaches may have positive effects on downstream river 

sections regarding diel DO variability and carbon spiraling. High rates of metabolism and the 

occurrence of dense macrophyte stands in restored river reaches may also increase the 
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assimilation of dissolved nutrients (Fellows et al. 2006, Gücker et al. 2006) and the 

sedimentation of particulate nutrients (Schulz & Gücker 2005), thereby positively affecting 

water quality. 

 

4.4.3 Recommendations for restoration monitoring 

For most regions and river types, data are missing that could be used to establish limits of 

good, moderate or poor river conditions. However, based on data from mainly small streams, 

Young et al. (2008) proposed a useful framework to assess functional stream health using 

GPP, ER, NEP and GPP:ER. Consequently, metabolic rates for different river types should 

be surveyed to allow the incorporation of ecosystem metabolism of mid-sized and large 

rivers as functional indicator in this framework. Our study stresses the benefits of 

metabolism as a functional indicator complementing the monitoring of restoration projects 

(compare Young et al. 2008, Bunn et al. 2010): Temporally high-resolution and automated 

monitoring that integrates biotic and abiotic variables over time and across habitats may 

increase our understanding of the effects of river restoration and might help identifying 

initial changes after restoration. Incorporating functional indicators into monitoring 

programs may enable a more holistic assessment of river ecosystems and elucidate responses 

to restoration (and also impairment), which may be related to ecosystem structure and 

function. 
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5 Summary, conclusion and future prospects 

 

5.1 Summary 

Restoration of river hydromorphology has the potential to affect not only structural 

ecosystem features, including species composition and diversity, but also functional aspects, 

such as key ecosystem processes and trophic transfers of energy and nutrients. Despite this, 

the most-widely used parameters for assessing the success or failure of restoration projects 

are almost exclusively based on changes in community composition of different biological 

groups (e.g., fish, benthic invertebrates, and macrophytes). Functional metrics, even though 

increasingly recognized as a valuable addition to classical assessments, are rarely used to 

study restoration effects. Consequently, the outcomes of river restoration for key ecosystem 

processes (e.g., river metabolism) and trophic relationships (e.g., trophic structure of benthic 

invertebrate communities and trophic connectivity between river and land) remain poorly 

understood. Against this background, the present thesis focused on the following objectives: 

 

x The application of stable isotope analysis (δ13C, δ15N) together with quantitative 

community metrics to characterize changes in the trophic structure of benthic 

invertebrate communities following restoration. 

x The characterization of the isotopic composition (δ13C, δ15N) of consumers in 

aquatic, riparian, and terrestrial habitats to assess restoration effects on the trophic 

connectivity between river and land. 

x The assessment of reach-scale restoration effects on hydromorphology, habitat 

composition and hydrodynamics and the estimation of the corresponding responses 

of river ecosystem metabolism. 

According to the previously outlined objectives, this thesis is divided into three main 

chapters. In the following paragraphs, background information and main results of the three 

chapters are summarized. 
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Chapter 2: River restoration and the trophic structure of benthic invertebrate communities 

across 16 European restoration projects 

River restoration is expected to increase the diversity of both habitat- and resource-based 

niches, which together have potential to influence food web structure and trophic 

relationships. Stable isotope analysis (δ13C, δ15N) was applied to characterize changes in the 

trophic structure of benthic invertebrate communities between paired restored and degraded 

river reaches across 16 European catchments. Dominant taxa of invertebrate assemblages 

belonging to different functional feeding groups were sampled. Quantitative community 

metrics were calculated independently for each reach: δ13C range was calculated to estimate 

the range of basal resources assimilated, δ15N range was estimated as an indicator of the 

trophic length and standard ellipse area corrected for small samples was used as a measure of 

isotopic niche width. It was analyzed if restoration influenced the trophic structure of 

invertebrates, if restoration effects depended on the extent of restoration effort, and on 

restoration measures applied. 

The results indicated an increase in resource breadth associated with restoration across all 

16 restored reaches. These effects were stronger for larger-scale restoration projects and 

especially for projects where river widening was conducted. In contrast, there was no support 

for a general increase in trophic length, though increases in trophic length ratios were 

apparent between some specific degraded and restored reaches, suggesting such effects 

depend on local assemblage composition and/or environmental conditions. In line with this, 

changes in isotopic niche width were obvious between some paired restored and degraded 

reaches. This European-scale comparison indicates that river habitat restoration results in 

modest changes in trophic structure, primarily by increasing the breadth of resources 

assimilated by consumers; this effect increases with restoration effort and it depends on 

restoration measure type. 

 

Chapter 3: River restoration enhances aquatic-terrestrial linkages: a stable isotope study of 

riparian arthropods in eleven restored floodplain sections 

Riparian arthropod predation on aquatic insects is concentrated along the river shoreline 

where riparian consumers aggregate, aquatic insects emerge, and surface drifting organisms 

accumulate. An improved shoreline structure (by creating a shallower river profile, removing 

bank fixations and providing habitats suited for riparian biota) enables riparian arthropods to 

stay close to the river channel and potentially makes aquatic prey more easily accessible to 

riparian predators. Consequently, river restoration is likely to increase the proportion of 
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aquatic prey in the diet of riparian arthropods, promoting the trophic connectivity of river 

and land. 

A large scale comparative study targeting eleven river restoration projects in central and 

northern Europe was conducted to assess effects of river restoration on trophic patterns 

across the aquatic-terrestrial interface. The isotopic composition (δ13C, δ15N) of consumers in 

rivers and their floodplains was investigated reflecting their aquatic, riparian (sampled within 

one meter distance to the river) or terrestrial (collected beyond the riparian zone) origin. The 

study aimed to detect changes in the position of riparian arthropods in isotope space 

indicative both of a smaller share of terrestrial prey, and an increased use of aquatic insects 

following restoration. The isotopic distance of riparian consumers to benthic invertebrates 

and terrestrial arthropods was quantified as a measure of trophic linkage, and it was 

investigated how this varied with riparian habitat composition. 

The study revealed a general differentiation between benthic invertebrates and terrestrial 

arthropods in isotope space, with riparian arthropods taking an intermediate position, 

reflecting the use of both in-stream and terrestrial prey. Overall, patterns in δ15N isotopic 

signatures of consumers were more consistently useful for describing the trophic linkages of 

riparian arthropods than δ13C: Benthic invertebrates were significantly more enriched in δ15N 

than terrestrial arthropods (by approximately one trophic level) and riparian arthropods also 

took a higher trophic position than terrestrial consumers, indicating a significant proportion 

of higher δ15N enriched aquatic prey in their diet. Following restoration, δ15N isotopic 

signatures of riparian arthropods revealed a higher relative trophic position, lending support 

to the conjecture that restoration increased the proportion of aquatic prey and reduced the 

share of terrestrial prey in the diets of individuals. Riparian habitat diversity and the 

provision of open sand and gravel bars were positively related to the strength of aquatic-

terrestrial linkages as reflected by measures of trophic linkage, pointing to the importance of 

habitat diversification in the riparian zone in promoting trophic linkages between river and 

floodplain. 

 

Chapter 4: Hydromorphological restoration stimulates river ecosystem metabolism 

Restoration of river hydromorphology is expected to increase the river’s habitat and 

hydrodynamic heterogeneity. Together, these changes may stimulate ecosystem metabolism, 

i.e. whole-stream rates of gross primary production (GPP) and ecosystem respiration (ER), 

as well as affect the river’s metabolic balance. Yet, little is known about the effects of 

hydromorphological restoration on ecosystem metabolism, especially for mid-sized and large 

rivers. Against this background, three reaches of the third-order, gravel-bed river Ruhr in 
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Germany were compared: two reaches restored with moderate (R1) and substantial effort 

(R2) and one upstream degraded reach (D). Hydromorphology, habitat composition, and 

hydrodynamics were assessed. GPP and ER were estimated using the one-station open-

channel diel dissolved oxygen change method over a 50-day period at the end of each reach. 

Moreover, the metabolic rates of the combined restored reaches (R1+R2) were estimated 

using the two-station open-channel method. 

Values for hydromorphological variables increased with restoration intensity (D < R1 < 

R2). Restored reaches had lower current velocity, higher longitudinal dispersion and larger 

transient storage zones. However, fractions of median travel time due to transient storage 

were highest in R1 and lowest in R2, with intermediate values in D. The share of macrophyte 

cover of total wetted area was highest in R2 and lowest in R1, with intermediate values in D. 

Station R2 had higher average GPP and ER than R1 and D. The combined restored reaches 

R1+R2 also exhibited higher GPP and ER than the degraded upstream river (station D). 

Restoration increased river autotrophy, as indicated by elevated GPP:ER, and net ecosystem 

production of restored reaches. Temporal patterns of ER closely mirrored those of GPP, 

pointing to the importance of autochthonous production for ecosystem functioning. In 

conclusion, high reach-scale restoration effort had considerable effects on river 

hydrodynamics and ecosystem functioning, which were mainly related to massive stands of 

macrophytes. High rates of metabolism and the occurrence of dense macrophyte stands may 

increase the assimilation of dissolved nutrients and the sedimentation of particulate nutrients, 

thereby positively affecting water quality. 

 

 

5.2 Conclusion and future prospects 

The present thesis contributes to a more holistic understanding of river restoration effects 

and can help to develop novel assessment approaches that consider functional aspects. In this 

paragraph, main conclusions are presented and suggestions for future research and 

application in river restoration practice are made. 

The results obtained from the second chapter provide evidence that the magnitude of food 

web changes following restoration can depend not only on the scale, but also type of 

restoration measures applied. River widening was particularly effective for increasing the 

breadth of resources available to consumers. This should be of key interest for restoration 

practice as a greater range of basal resources allows for heterogeneous energy flow pathways 

up through the food web, which is important for stabilizing food webs. A web consisting of 

numerous energy flow pathways that originate from a diverse pool of resources is likely to 

be more resilient against disturbances than a food web relying on a single basal resource. 
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Consequently, river widening should be considered a key measure in future restoration 

practice in order to promote food web stability. 

In contrast with the relatively consistent changes in trophic structure of benthic 

invertebrates communities following restoration (chapter 2), there was no positive effect on 

benthic invertebrate richness and diversity (Verdonschot et al. 2016). This is of particular 

interest as the study of Verdonschot et al. (2016) was conducted in the same project but with 

classical, community-based assessment approaches. The contrasting results of these studies 

stress the potential for classical assessments to miss important effects of river restoration. 

This highlights the need to evaluate restoration effects in a holistic way, incorporating novel 

approaches that consider functional aspects. The use of community-wide metrics based on 

stable isotopes appears to be particularly suitable to study changes in the trophic structure of 

communities following restoration. Future research should focus on a more expanded 

sampling of benthic invertebrates, particularly in more regional assessments of restoration 

projects. Moreover, other metrics introduced by Layman et al. (2007b) can be used to gain 

further information about restoration effects on the trophic diversity of communities. This 

approach combines traditional taxonomic research with patterns in trophic structure and has 

the potential to complement classical assessments in order to provide a better mechanistic 

understanding of restoration effects. 

The third chapter stresses the need to address rivers and their adjacent riparian zones as a 

functional unit in restoration assessments since they are closely linked by the reciprocal flow 

and use of energy and nutrients. The results obtained from this thesis suggest that enhanced 

riparian habitat diversity and the provision of shallow bars along the shoreline can promote 

trophic connectivity of river and land mediated through riparian arthropods feeding on 

aquatic insects. Accordingly, river manager should increasingly aim at improving shoreline 

structures in the future. Shallow side bars (such as gravel and sand bars along the shoreline) 

appear to be key habitats for aquatic-terrestrial transfers as the shoreline is particularly open 

for cross habitat movements of consumers. More generally, increased habitat diversity in the 

riparian zone can promote riparian taxa with different hunting strategies. For instance, web-

building spiders benefit from vegetated shorelines, complementing the ground-dwelling 

predation on side bars. The recovery of aquatic-terrestrial linkages should also be of interest 

for wider ecosystem management as riparian arthropods can subsequently serve as prey for 

other floodplain-inhabiting organisms, including species of conservation interest (e.g., birds 

and bats).  

In order to develop a sound understanding of restoration effects on the trophic 

organization across the land- water interface, future research should also include other 

riparian and floodplain-inhabiting organism groups, especially in more regional assessments. 
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In this context, Layman-metrics (see chapter 2) can be used to study restoration effects on 

the trophic structure and diversity of these communities. Moreover, the degree of lateral 

trophic connectivity between river and land should be considered in future restoration 

research. This can be achieved by sampling terrestrial consumers in defined distances from 

the river edge in paired restored and degraded floodplain sections. 

The results obtained from chapter 4 indicate an increase in river ecosystem metabolism as 

response to the restoration of a mid-sized mountain river in Germany. Hydromorphological 

restoration enhanced habitat availability and abundance of macrophytes, promoting river 

primary productivity and respiration. This may be of interest for restoration practice as the 

occurrence of dense macrophyte stands and thus high rates of metabolism in restored river 

reaches are likely to increase the assimilation of dissolved nutrients and the sedimentation of 

particulate nutrients, thereby positively affecting water quality. Accordingly, these changes 

in ecosystem functioning are closely related to valuable ecosystem services such as self-

purification and the provision of clean water. 

The fourth chapter also revealed that for most regions and river types, data on metabolic 

rates are missing that could be used to establish limits of good, moderate or poor river 

conditions. This stresses the need to combine measures of river metabolism with classical 

assessments in different regions and river types in order to provide reference conditions and 

to facilitate interpretation of restoration outcomes. However, based on data from mainly 

small streams, Young et al. (2008) already proposed a framework to assess functional stream 

health using GPP, ER, NEP and GPP:ER. This framework can be used to establish an 

assessment approach for smaller river types in Germany. The findings obtained from this 

thesis (chapter 4) will help to develop a similar approach for larger rivers. Chapter 4 also 

reflected a good agreement of results obtained with the one-station and the two-station 

method in restored reaches, i.e. that both clearly suggested metabolism increases due to 

restoration. This may be an important finding for agency efforts to monitor restoration 

outcomes, because the one-station method may be more practical for routine measurements 

(especially in mid-sized and large rivers), while the two-station technique is often considered 

a research method that is too complex for such purposes. However, metabolic rates measured 

with the one-station method should be considered as qualitative indicators of metabolism as 

it is most likely that lengths of river reaches evaluated with the one-station method and 

reaches exclusively affected by restoration will differ. 

In general, modern river restoration should consider a wide range of environmental 

characteristics, including functional ones, such as ecosystem metabolism and trophic 

relationships. Incorporating functional metrics into monitoring programs enables a more 

holistic assessment of river health and a better understanding of restoration effects. 
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6 Zusammenfassung 

 

6.1 Hintergrund 

In Folge der intensiven Nutzung und den daraus resultierenden Belastungen von 

Fließgewässern durch den Menschen wurde die Wasserrahmenrichtlinie (WRRL, Richtlinie 

2000/60 / EG) im Jahr 2000 verabschiedet. Sie bietet die Basis für ein naturverträgliches 

Gewässermanagement in Europa. Das Ziel der WRRL besteht in dem Erhalt bzw. der 

Erreichung des guten ökologischen und chemischen Zustands aller Wasserkörper. Ein 

Großteil der Fließgewässer in Europa entspricht diesen Zielvorgaben nicht, in erster Linie 

aufgrund hydromorphologischer Beeinträchtigungen (EEA 2012). Daher liegt der Fokus 

europaweit auf der Verbesserung der Gewässerstrukturen, so dass die Zahl 

hydromorphologischer Renaturierungen stetig steigt. 

Der Erfolg von Renaturierungsmaßnahmen wird bisher meistens an der Etablierung 

naturnaher Lebensgemeinschaften im Gewässer gemessen. Häufig werden z.B. Fische (z.B. 

Roni et al. 2008, Haase et al. 2013, Schmutz et al. 2016), Makrozoobenthos (z.B. Jähnig et 

al. 2010, Friberg et al. 2014, Verdonschot et al. 2016) und aquatische Makrophyten (z.B. 

Lorenz et al. 2012, Ecke et al. 2016) untersucht. Allerdings können Gewässerrenaturierungen 

auch funktionale Eigenschaften, wie Ökosystemfunktionen oder Stoff- und Energieflüsse 

durch Nahrungsnetze, beeinflussen. Es ist auch möglich, dass Renaturierungen funktionale 

Eigenschaften beeinflussen während sich die Zusammensetzung der Lebensgemeinschaften 

nicht verändert (und umgekehrt). Diese gegensätzlichen Reaktionen wurden bereits in 

Studien festgestellt, in denen Auswirkungen verschiedener Belastungen bzw. Umwelt-

variablen auf Ökosystemfunktionen und die Zusammensetzung von Lebensgemeinschaften 

verglichen wurden (z.B. Friberg et al. 2009, McKie & Malmqvist 2009, Niyogi et al. 2013). 

Eine ganzheitliche Bewertung des Gewässerzustandes sollte daher auch funktionale Aspekte 

berücksichtigen. Obwohl dies in den letzten Jahren zunehmend hervorgehoben wurde (z.B. 

Young et al. 2008, 2009, Palmer & Febria 2012, Woodward et al. 2012), werden funktionale 

Aspekte im Zusammenhang mit Renaturierungen bislang häufig außer Acht gelassen 

(Palmer et al. 2014). Daher sind Renaturierungseffekte auf die trophische Struktur von 
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Lebensgemeinschaften, die trophische Vernetzung von Gewässer und Ufer und den 

Ökosystem-Metabolismus kaum verstanden. Eine umfassendere Untersuchung von 

Renaturierungen unter Einbeziehung funktionaler Aspekte kann zu einem besseren 

Verständnis von Renaturierungseffekten und damit auch zu einer effektiveren und 

erfolgreicheren Maßnahmenplanung beitragen. Die vorliegende Arbeit widmet sich daher 

der Analyse von Renaturierungseffekten im Hinblick auf: 

x Die trophische Struktur von Makrozoobenthos-Gemeinschaften unter Verwendung 

stabiler Isotope (δ13C, δ15N) und daraus abgeleiteter Isotopenmetrics. 

x Die trophische Vernetzung von Gewässer und Ufer unter Verwendung stabiler 

Isotope (δ13C, δ15N) mit dem Fokus auf Makrozoobenthos, Uferarthropoden und 

terrestrischen Arthropoden. 

x Habitatveränderungen innerhalb des Gewässers und daraus resultierende 

Veränderungen im Ökosystem-Metabolismus. 

Ziel dieser Arbeit ist es, durch die Untersuchung der o.g. Teilaspekte den bisherigen 

Wissensstand zu Renaturierungseffekten zu erweitern. Zudem werden Möglichkeiten 

aufgezeigt, wie funktionale Aspekte künftig im Rahmen eines Monitorings untersucht 

werden können. 

 

 

6.2 Methoden und Ergebnisse 

Die Arbeit gliedert sich entsprechend der oben genannten Teilaspekte in drei Hauptkapitel. 

Die jeweiligen Kapitel stellen individuelle Manuskripte dar und werden in der Folge kurz 

zusammengefasst: 

Kapitel 2: Effekte von Fließgewässer-Renaturierungen auf die trophische Struktur von 

Makrozoobenthos-Gemeinschaften an 16 Europäischen Renaturierungsprojekten 

Morphologische Renaturierungen erhöhen die Habitatvielfalt im Gewässer und fördern damit 

auch autotrophe Organismen. In Folge komplexerer Gewässerbettstrukturen verbessert sich 

zudem das Retentionsvermögen für partikuläres organisches Material. Gemeinsam kann dies 

das Angebot an allochthonen und autochthonen Ressourcen erhöhen. Dies kann 

Veränderungen in der Struktur von Nahrungsnetzen im Gewässer zur Folge haben. Auf 

Grundlage der stabilen Isotope (δ13C und δ15N) von Makrozoobenthos-Gemeinschaften in 16 

renaturierten und 16 oberhalb gelegenen, verbauten Fließgewässerabschnitten in Europa 

wurde untersucht, inwieweit Renaturierungen die trophische Struktur von Makrozoobenthos-
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Gemeinschaften beeinflussen. Beprobt wurden die dominanten Taxa verschiedener 

Ernährungstypen des Makrozoobenthos. Für jede Probestelle wurden die drei folgenden 

Isotopenmetrics berechnet, die über die Verteilung der Daten im Isotopenraum die 

trophische Struktur und Diversität einer Gemeinschaft beschreiben: Der δ13C range wurde als 

Maß für den Umfang an assimilierten Ressourcen genutzt und der δ15N range als Indikator 

für die trophische Länge der Makrozoobenthos-Gemeinschaften. Die Standardellipse wurde 

als Maß für die Nischengröße der Gemeinschaften im Isotopenraum berechnet. Anhand eines 

Vergleichs der Metrics zwischen renaturierten und oberhalb gelegenen, verbauten 

Gewässerabschnitten wurde untersucht, ob morphologische Renaturierungen die trophische 

Struktur der Makrozoobenthos-Gemeinschaften beeinflussen und ob Renaturierungseffekte 

vom Umfang der Renaturierung sowie dem Maßnahmentyp abhängig sind. 

Der Umfang an assimilierten Ressourcen war in renaturierten Abschnitten größer als in 

verbauten. Dieser Effekt war stärker in großräumig renaturierten Fließgewässerabschnitten 

und an Probestellen an denen der Maßnahmentyp „Aufweitung“ umgesetzt wurde. Im 

Gegensatz dazu zeigte sich keine generelle Zunahme der trophischen Länge. Zunahmen der 

trophischen Länge waren jedoch zwischen einigen gepaarten renaturierten und verbauten 

Abschnitten nachweisbar, was darauf hindeutet, dass diese Effekte von der lokalen 

Artenzusammensetzung und/oder von Umweltbedingungen abhängig sind. Infolgedessen 

zeigten sich Veränderungen in der Nischengröße ebenfalls nur an einigen gepaarten 

renaturierten und verbauten Abschnitten. Dieser großräumige Vergleich zeigt, dass 

Renaturierungen zu moderaten Veränderungen in der trophischen Struktur von 

Makrozoobenthos-Gemeinschaften führen, in erster Linie durch die Vergrößerung des 

assimilierten Nahrungsspektrums. Dieser Effekt nimmt mit dem Umfang einer 

Renaturierung zu und ist zudem vom Maßnahmentyp abhängig. 

 

Kapitel 3: Fließgewässer-Renaturierungen erhöhen die aquatisch-terrestrische Interaktion: 

Untersuchung der stabilen Isotope von Uferarthropoden in elf renaturierten 

Gewässerabschnitten 

Räuberische Uferarthropoden spielen eine wichtige Rolle bei der trophischen Verknüpfung 

von aquatischen und terrestrischen Nahrungsnetzen, da sie sich u.a. von aquatischen Insekten 

ernähren. Die Prädation durch räuberische Uferarthropoden (wie z.B. Laufkäfer und 

Spinnen) konzentriert sich in starkem Maße auf die Uferbereiche von Fließgewässern, an 

denen das Nahrungsangebot in Form von emergierenden und angespülten aquatischen 

Insekten hoch ist. Eine strukturelle Verbesserung von Uferbereichen im Zuge 

morphologischer Renaturierungen (z.B. durch die Abflachung der Ufer, der Entfernung von 

Ufersicherungen und der Schaffung von Habitaten) bietet den Prädatoren gute 
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Besiedlungsbedingungen und einen guten Zugang zu ihrer aquatischen Beute. Auf 

Grundlage der Untersuchung stabiler Isotope (δ13C, δ15N) von Makrozoobenthos, 

Uferarthropoden und terrestrischer Arthropoden in elf renaturierten und elf oberhalb 

gelegenen, verbauten Fließgewässerabschnitten in Europa wurde analysiert, inwieweit 

morphologische Renaturierungen die trophische Vernetzung von Gewässer und Ufer 

begünstigen. Die Isotopendaten der Organismen wurden für jeden Gewässerabschnitt im 

Isotopenraum aufgetragen. Es wurde untersucht, ob sich die Positionen der Uferarthropoden 

im Isotopenraum zwischen renaturierten und verbauten Abschnitten unterscheiden, und ob 

dies auf eine geringere Nutzung terrestrischer Ressourcen und auf einen größeren Anteil 

aquatischer Beute hinweist. Als Maß für die trophische Vernetzung wurden die Distanzen 

von Uferarthropoden zum Makrozoobenthos und zu terrestrischen Arthropoden im Isotopen-

raum berechnet. Zusätzlich wurde der Zusammenhang zwischen Habitatzusammensetzung 

im Uferbereich und trophischer Vernetzung getestet. 

Es zeigte sich eine deutliche Auftrennung von Makrozoobenthos und terrestrischen 

Arthropoden im Isotopenraum. Die intermediäre Stellung der Uferarthropoden deutet auf die 

Nutzung sowohl aquatischer als auch terrestrischer Beute hin. Generell waren die Stickstoff-

Isotope (δ15N) im Hinblick auf die Untersuchung der trophischen Vernetzung in dieser 

Studie besser geeignet als die Kohlenstoff-Isotope (δ13C): Das Makrozoobenthos nahm eine 

signifikant höhere trophische Position (δ15N) ein als die terrestrischen Arthropoden (um etwa 

eine trophische Stufe). Die Uferarthropoden wiesen im Vergleich zu den terrestrischen 

Arthropoden ebenfalls eine höhere trophische Position auf, was auf einen erheblichen Anteil 

an höher δ15N angereicherter aquatischer Beute in ihrer Nahrung hindeutet. Dabei zeigten die 

Uferarthropoden in renaturierten Abschnitten eine höhere trophische Position als an den 

verbauten Vergleichsabschnitten (basierend auf ihren δ15N-Werten). Dies lässt auf eine 

Erhöhung des Anteils aquatischer Beute und eine Reduktion des Anteils terrestrischer Beute 

in Folge der Renaturierung schließen. Sowohl der Anteil flacher Kies- oder Sandbänke als 

auch die Diversität an Uferhabitaten zeigten eine positive Korrelation zur Stärke der 

trophischen Vernetzung. Dies weist darauf hin, dass die Habitatzusammensetzung im 

Uferbereich die trophische Vernetzung von Gewässer und Ufer maßgeblich begünstigt. 

 

Kapitel 4: Hydromorphologische Renaturierung erhöht den Ökosystem-Metabolismus im 

Gewässer 

Fließgewässer-Renaturierungen erhöhen die Habitatvielfalt und verändern die 

hydrodynamischen Eigenschaften von Gewässerabschnitten. Diese Veränderungen können 

den Ökosystem-Metabolismus, d.h. Bruttoprimärproduktion (BPP) und Respiration (R), 

eines Fließgewässers beeinflussen. Bislang sind die Effekte morphologischer 
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Renaturierungen auf den Ökosystem-Metabolismus kaum untersucht worden, insbesondere 

für größere Flüsse. Im Rahmen dieser Studie wurden drei Gewässerabschnitte der Ruhr bei 

Arnsberg (Deutschland) verglichen: zwei renaturierte Abschnitte und ein oberhalb gelegener, 

verbauter Abschnitt. Die beiden renaturierten Abschnitte R1 und R2 unterschieden sich im 

Hinblick auf die Intensität morphologischer Veränderungen. Gewässermorphologie, 

Habitatzusammensetzung und Hydrodynamik der einzelnen Abschnitte wurden untersucht. 

Für die Quantifizierung des Ökosystem-Metabolismus wurden die Bruttoprimärproduktion 

(BPP) und Respiration (R) mit Hilfe der Ein-Stationen O2-Tagesgangmethode über einen 

Zeitraum von 50 Tagen jeweils am unteren Ende der drei Abschnitte erfasst. Zusätzlich 

wurde der Ökosystem-Metabolismus für die gesamte renaturierte Fließstrecke (R1+R2) mit 

Hilfe der Zwei-Stationen O2-Tagesgangmethode zur Messung des ökosystemaren 

Metabolismus definierter Fließstrecken untersucht. 

Die Gewässermorphologie, welche über verschiedene Strukturelemente charakterisiert 

wurde, verbesserte sich mit zunehmender Intensität der Renaturierungen (D < R1 < R2). Die 

hydrodynamischen Eigenschaften der renaturierten Abschnitte änderten sich. Sie wiesen eine 

geringere Fließgeschwindigkeit, höhere Längsdispersion und größere hydrodynamische 

Totzonen auf. Die Totzonenaktivität war am höchsten in R1 und am niedrigsten in R2, mit 

mittleren Werten in D. Die Makrophytendeckung war am höchsten in R2 und am niedrigsten 

in R1, mit mittleren Werten in D. Bruttoprimärproduktion (BPP) und Respiration (R) waren 

am höchsten am Ende von R2. Die gesamte renaturierte Fließstrecke (R1+R2) wies im 

Vergleich zum verbauten Abschnitt (D) ebenfalls höhere Werte für BPP und R auf. Die 

Renaturierung erhöhte die autotrophen Eigenschaften der untersuchten Abschnitte, was 

durch höhere BPP:R und eine größere Nettoproduktivität angezeigt wurde. Generell 

spiegelte die Respiration den Verlauf der Bruttoprimärproduktion, was auf die hohe 

Bedeutung der autochthonen Produktion im Gewässer hindeutet. In der vorliegenden Studie 

konnte somit gezeigt werden, dass Renaturierung einen erheblichen Einfluss auf die 

Hydrodynamik und den Ökosystem-Metabolismus der untersuchten Gewässerabschnitte 

hatte. Dies war maßgeblich auf die Zunahme an Makrophyten zurückzuführen. Der erhöhte 

Ökosystem-Metabolismus und das Vorkommen dichter Makrophytenbestände in 

renaturierten Gewässerabschnitten können die Assimilation gelöster Nährstoffe sowie die 

Sedimentation von partikulärem Material begünstigen und dadurch die Wasserqualität 

verbessern. 
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6.3 Schlussfolgerungen und Ausblick 

Die im Rahmen dieser Arbeit erzielten Ergebnisse tragen zu einem umfassenderen 

Verständnis von Renaturierungseffekten bei und können bei der Entwicklung funktionaler 

Bewertungsansätze helfen. In den folgenden Absätzen werden die wichtigsten 

Schlussfolgerungen der Kapitel dieser Arbeit zusammengefasst und Vorschläge für künftige 

Forschungsvorhaben sowie für die Anwendung in der Praxis formuliert. 

Die Ergebnisse des zweiten Kapitels zeigen, dass Renaturierungseffekte auf 

Nahrungsnetze sowohl vom Umfang einer Renaturierung als auch vom Maßnahmentyp 

abhängen können. Die Aufweitung des Gewässerbettes hat sich hinsichtlich der 

Vergrößerung des Nahrungsspektrums für benthische Primärkonsumenten als besonders 

effizient herausgestellt. Das sollte von Interesse für den Gewässerschutz sein, da eine breite 

Nahrungsbasis heterogene Stoffflüsse durch das Nahrungsnetz begünstigt und damit zur 

Stabilisierung von Nahrungsnetzen beiträgt. Dies macht es im Vergleich zu einem 

Nahrungsnetz, das auf einem begrenzten Nahrungspool beruht, robuster gegenüber 

Störungen. Daher sollte die Gewässeraufweitung zukünftig als Schlüsselmaßnahme 

angesehen werden, um die Stabilität eines Nahrungsnetzes zu begünstigen. 

Im Gegensatz zu den sehr konsistenten Renaturierungseffekten auf die trophische Struktur 

der Makrozoobenthos-Gemeinschaften (Kapitel 2), konnten keine positiven Auswirkungen 

auf Diversität und Artenreichtum des Makrozoobenthos festgestellt werden (Verdonschot et 

al. 2016). Dies ist von besonderer Bedeutung, da die Studie von Verdonschot et al. (2016) in 

dem gleichen Projekt (d.h. in denselben Gewässerabschnitten) durchgeführt wurde, jedoch 

unter Verwendung klassischer Bewertungsverfahren. Das unterstreicht die Notwendigkeit, 

Renaturierungseffekte in Zukunft mit einem ganzheitlichen Ansatz zu untersuchen, bei dem 

auch funktionale Aspekte wie die trophische Struktur von Lebensgemeinschaften 

berücksichtigt werden. Die Anwendung der in Kapitel 2 eingeführten Isotopenmetrics 

scheint in dieser Hinsicht besonders geeignet. Sie verbinden klassische taxonomische 

Analysen mit Veränderungen in der trophischen Struktur von Lebensgemeinschaften. In 

zukünftigen Studien könnte eine umfangreichere Beprobung des Makrozoobenthos im Fokus 

stehen, insbesondere wenn es sich dabei stärker um regionale Bewertungen handelt. Zudem 

können zusätzlich zu den in dieser Arbeit verwendeten Isotopenmetrics weitere der von 

Layman et al. (2007b) eingeführten Metrics verwendet werden, z.B. um die trophische 

Diversität der Gemeinschaften noch besser zu beschreiben. Dazu gehören „mean distance to 

centroid“, „mean nearest neighbor distance“ und „standard deviation of nearest neighbor 

distance“. Dieser Ansatz hat das Potenzial, die klassischen Bewertungsansätze zu ergänzen. 

Das dritte Kapitel verdeutlicht die Notwendigkeit Gewässer und Ufer in künftigen 

Bewertungen stärker als funktionale Einheit zu betrachten, da sie u.a. durch Stoff- und 
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Energieflüsse eng miteinander verbunden sind. Die im Rahmen dieser Arbeit erzielten 

Ergebnisse zeigen, dass morphologische Renaturierungen, insbesondere durch die Schaffung 

von Habitatvielfalt im Uferbereich sowie speziell durch offene und flache Uferbänke, die 

trophische Vernetzung von Gewässer und Ufer begünstigen können. Dementsprechend sollte 

in der künftigen Planung von Renaturierungsmaßnahmen die strukturelle Verbesserung der 

Uferzone stärker mit berücksichtigt werden. Flache Sand- und Kiesbänke, auf denen 

räuberische Uferarthropoden (z.B. Laufkäfer) einen guten Zugang zu emergierenden oder an 

Land gespülten Insekten haben, stellen entscheidende Habitate für die trophische Vernetzung 

dar. Generell kann die Schaffung von Habitatvielfalt im Uferbereich das Vorkommen von 

Arten mit unterschiedlichen Jagdtechniken begünstigen. Beispielsweise können Spinnen ihre 

Netze in die Ufervegetation bauen, so emergierende Insekten fangen und folglich ebenfalls 

zur trophischen Vernetzung beitragen. Spinnen und Laufkäfer können in der Folge selbst als 

Beute für andere Auenorganismen dienen (z.B. Vögel oder Fledermäuse). Deshalb sollte die 

Vernetzung von Gewässer und Ufer nicht allein im Fokus des Gewässerschutzes stehen, 

sondern auch für den allgemeinen Umweltschutz von Interesse sein. 

Der im Rahmen dieser Arbeit verwendete Ansatz ist ein erster Versuch, 

Renaturierungseffekte auf die trophische Organisation zwischen Gewässer und Ufer zu 

untersuchen. Ein Aspekt, der in zukünftigen Studien unbedingt Beachtung finden sollte, ist 

das Ausmaß der lateralen Vernetzung. Dies kann beispielsweise untersucht werden, indem 

an gepaarten renaturierten und verbauten Gewässerabschnitten in definierten Abständen vom 

Gewässer Organismen gesammelt werden. Diese Untersuchungen können Aufschluss 

darüber geben, welche Uferstrukturen eine möglichst weitreichende trophische Vernetzung 

begünstigen. Darüber hinaus sollten in zukünftigen Untersuchungen auch weitere 

Organismengruppen der Ufer und Auen mit einbezogen werden. So kann ein fundiertes 

Verständnis über Renaturierungseffekte auf die trophische Organisation an der Schnittstelle 

von Gewässer und Aue erlangt werden. Unter Verwendung der bereits zuvor genannten 

Isotopenmetrics (Kapitel 2) können so u.a. Auswirkungen auf die trophische Struktur und 

Diversität der verschiedenen Organismengruppen untersucht werden. 

Die im Rahmen des vierten Kapitels erzielten Ergebnisse zeigen, dass Renaturierung den 

Ökosystem-Metabolismus von Fließgewässern beeinflussen kann. In Folge der 

morphologischen Renaturierung werden Habitate für Makrophyten geschaffen, die den 

Ökosystem-Metabolismus fördern. Das sollte für die Praxis von Bedeutung sein, da dichte 

Makrophytenfelder und höherer Ökosystem-Metabolismus in renaturierten Abschnitten die 

Assimilation gelöster Nährstoffe und die Sedimentation partikulärer Substanzen fördern und 

dadurch die Wasserqualität verbessern können. Dementsprechend steht der Ökosystem-

Metabolismus eng in Verbindung mit Ökosystemdienstleistungen, wie der Selbstreinigung 
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von Gewässern und der Bereitstellung von sauberem Wasser. Die Untersuchungen im 

Rahmen dieser Arbeit zeigten auch, dass für viele Gewässertypen bislang keine Daten zum 

Metabolismus vorhanden sind. Daher ist es nach derzeitigem Stand nicht möglich, 

Grenzwerte für einen guten, mäßigen oder schlechten Zustand zu bestimmen. In Zukunft 

sollte daher der Ökosystem-Metabolismus gemeinsam mit klassischen Untersuchungen zum 

Gewässerzustand in verschiedenen Regionen und für verschiedene Gewässertypen bestimmt 

werden. Für kleine Fließgewässer wurde basierend auf dem Ökosystem-Metabolismus 

bereits ein Ansatz zur Bewertung des funktionalen Gewässerzustandes entwickelt (Young et 

al. 2008). Dieser Ansatz kann als Grundlage für die Entwicklung eines Bewertungssystems 

für kleine Gewässertypen in Deutschland dienen. Eine Erweiterung dieses Ansatzes auf 

Grundlage der im Rahmen dieser Arbeit erzielten Ergebnisse kann dabei helfen, ein 

entsprechendes Bewertungssystem für größere Fließgewässer zu entwickeln. 

Die beiden Methoden zur Messung des Ökosystem-Metabolismus (Ein-Stationen und 

Zwei- Stationen O2-Tagesgangmethode) zeigten eine gute Übereinstimmung, d.h. beide 

wiesen auf eine deutliche Zunahme des Ökosystem-Metabolismus in Folge der 

Renaturierung hin. Dies könnte entscheidende Informationen zur Wahl der Methode im 

Rahmen eines Monitorings liefern. Die Ein-Stationen O2-Tagesgangmethode scheint im 

Hinblick auf das Monitoring praktikabler zu sein (besonders in größeren Flüssen). Die Zwei-

Stationen O2-Tagesgangmethode wird hingegen häufig als sehr wissenschaftlicher Ansatz 

erachtet der für das routinemäßige Monitoring zu komplex ist. Bei der Bewertung von 

Renaturierungseffekten mit der Ein-Stationen O2-Tagesgangmethode sollten die Ergebnisse 

als qualitative Veränderungen des Metabolismus gesehen werden, da die damit gemessenen 

Fließstrecken häufig nicht mit den renaturierten Gewässerabschnitten übereinstimmen. 

Die vorliegende Arbeit hat gezeigt, dass hydromorphologische Renaturierungen 

funktionale Aspekte - wie die trophische Struktur von Lebensgemeinschaften, die trophische 

Vernetzung von Gewässer und Ufer und den Ökosystem-Metabolismus - beeinflussen 

können. Klassische Bewertungsverfahren sollten daher in Zukunft durch funktionale Ansätze 

ergänzt werden, um so eine umfassendere Abschätzung des Gewässerzustands und ein 

besseres Verständnis von Renaturierungseffekten zu ermöglichen. 
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Appendices are available on the enclosed CD-ROM. 
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