61 research outputs found

    Allelic variation in HLA-B and HLA-C sequences and the evolution of the HLA-B alleles

    Get PDF
    Several new HLA-B (B8, B51, Bw62)- and HLA-C (Cw6, Cw7)-specific genes were isolated either as genomic cosmid or cDNA clones to study the diversity of HLA antigens. The allele specificities were identified by sequence analysis in comparison with published HLAB and -C sequences, by transfection experiments, and Southern and northern blot analysis using oligonucleotide probes. Comparison of the classical HLA-A, -B, and -C sequences reveals that allele-specific substitutions seem to be rare events. HLA-B51 codes only for one allelespecific residue: arginine at position 81 located on the cd helix, pointing toward the antigen binding site. HLA-B8 contains an acidic substitution in amino acid position 9 on the first central/3 sheet which might affect antigen binding capacity, perhaps in combination with the rare replacement at position 67 (F) on the Alpha-l helix. HLA-B8 shows greatest homology to HLA-Bw42, -Bw41, -B7, and -Bw60 antigens, all of which lack the conserved restriction sites Pst I at position 180 and Sac I at position 131. Both sites associated with amino acid replacements seem to be genetic markers of an evolutionary split of the HLA-B alleles, which is also observed in the leader sequences. HLA-Cw7 shows 98% sequence identity to the JY328 gene. In general, the HLA-C alleles display lower levels of variability in the highly polymorphic regions of the Alpha 1 and Alpha 2 domains, and have more distinct patterns of locusspecific residues in the transmembrane and cytoplasmic domains. Thus we propose a more recent origin for the HLA-C locus

    A Novel Multi-objective Optimisation Algorithm for Routability and Timing Driven Circuit Clustering on FPGAs

    Get PDF
    Circuit clustering algorithms fit synthesised circuits into FPGA configurable logic blocks (CLBs) efficiently. This fundamental process in FPGA CAD flow directly impacts both effort required and performance achievable in subsequent place-and-route processes. Circuit clustering is limited by hardware constraints of specific target architectures. Hence, better circuit clustering approaches are essential for improving device utilisation whilst at the same time optimising circuit performance parameters such as, e.g., power and delay. In this paper, we present a method based on multi-objective genetic algorithm (MOGA) to facilitate circuit clustering. We address a number of challenges including CLB input bandwidth constraints, improvement of CLB utilisation, minimisation of interconnects between CLBs. Our new approach has been validated using the "Golden 20" MCNC benchmark circuits that are regularly used in FPGA-related literature. The results show that the method proposed in this paper achieves improvements of up to 50% in clustering, routability and timing when compared to state-of-the-art approaches including VPack, T-VPack, RPack, DPack, HDPack, MOPack and iRAC. Key contribution of this work is a flexible EDA flow that can incorporate numerous objectives required to successfully tackle real-world circuit design on FPGA, providing device utilisation at increased design performance

    Multiple Scenario Generation of Subsurface Models:Consistent Integration of Information from Geophysical and Geological Data throuh Combination of Probabilistic Inverse Problem Theory and Geostatistics

    Get PDF
    Neutrinos with energies above 1017 eV are detectable with the Surface Detector Array of the Pierre Auger Observatory. The identification is efficiently performed for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as well as for Earth-skimming \u3c4 neutrinos with nearly tangential trajectories relative to the Earth. No neutrino candidates were found in 3c 14.7 years of data taken up to 31 August 2018. This leads to restrictive upper bounds on their flux. The 90% C.L. single-flavor limit to the diffuse flux of ultra-high-energy neutrinos with an E\u3bd-2 spectrum in the energy range 1.0 7 1017 eV -2.5 7 1019 eV is E2 dN\u3bd/dE\u3bd < 4.4 7 10-9 GeV cm-2 s-1 sr-1, placing strong constraints on several models of neutrino production at EeV energies and on the properties of the sources of ultra-high-energy cosmic rays
    corecore