1,579 research outputs found

    Optimization of windowing and peak-windowing techniques for WCDMA systems

    Get PDF
    In the downlink of Wideband Code Division Multiple Access (WCDMA) system, the signals from different channels are combined together before power amplification and transmission. The combined signal has a very high crest factor (CF) which imposes a tight requirement on the linearity of the transmitter power amplifier (PA). This paper proposes a peak-windowing technique to reduce the CF. Computer simulation results show that the proposed technique is superior to the conventional windowing technique. Since different window functions and lengths of window affect the performances of the techniques, in this paper, an attempt is also made to optimize the type of window, the length and other parameters for different windows in terms of the signal-to-noise ratio (SNR) and the bit-error-rate (BER) performance. © 2006 IEEE.published_or_final_versionThe 2006 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2006), Toulouse, France, 15-19 May 2006. In IEEE ICASSP Proceedings, 2006, v. 4, p. IV313-IV31

    Union bounds for BER evaluation and code optimization of space-time codes in 2-by-2 MIMO systems

    Get PDF
    In this paper, an exact closed-form formula for the Pair-wise Error Probability (PEP) is derived for two transmit and two receive antennas MIMO systems using the probability density function (PDF) of the modified Euclidean distance. An exact Union Bound formed by this formula, together with the Asymptotic Union Bound, are studied for optimization and biterror rate (BER) evaluation of Space-Time (S-T) codes. Numerical calculations and Monte Carlo computer simulation have been used to study these two Union Bounds on a 2-by-2 MIMO system using a rotation-based diagonal S-T code (D code) in a block fading channel. Results show that the exact Union Bound is a very tight Bound for BER evaluation while the Asymptotic Union Bound is very accurate for code optimization. © 2006 IEEE.published_or_final_versionIEEE 63rd Vehicular Technology Conference (VTC 2006-Spring), Melbourne, Australia, 7-10 May 2006. In Proceedings of the 63rd IEEE VTC Spring 2006, v. 3, p. 1506-151

    Duplicate dmbx1 genes regulate progenitor cell cycle and differentiation during zebrafish midbrain and retinal development

    Get PDF
    Abstract Background The Dmbx1 gene is important for the development of the midbrain and hindbrain, and mouse gene targeting experiments reveal that this gene is required for mediating postnatal and adult feeding behaviours. A single Dmbx1 gene exists in terrestrial vertebrate genomes, while teleost genomes have at least two paralogs. We compared the loss of function of the zebrafish dmbx1a and dmbx1b genes in order to gain insight into the molecular mechanism by which dmbx1 regulates neurogenesis, and to begin to understand why these duplicate genes have been retained in the zebrafish genome. Results Using gene knockdown experiments we examined the function of the dmbx1 gene paralogs in zebrafish, dmbx1a and dmbx1b in regulating neurogenesis in the developing retina and midbrain. Dose-dependent loss of dmbx1a and dmbx1b function causes a significant reduction in growth of the midbrain and retina that is evident between 48-72 hpf. We show that this phenotype is not due to patterning defects or persistent cell death, but rather a deficit in progenitor cell cycle exit and differentiation. Analyses of the morphant retina or anterior hindbrain indicate that paralogous function is partially diverged since loss of dmbx1a is more severe than loss of dmbx1b. Molecular evolutionary analyses of the Dmbx1 genes suggest that while this gene family is conservative in its evolution, there was a dramatic change in selective constraint after the duplication event that gave rise to the dmbx1a and dmbx1b gene families in teleost fish, suggestive of positive selection. Interestingly, in contrast to zebrafish dmbx1a, over expression of the mouse Dmbx1 gene does not functionally compensate for the zebrafish dmbx1a knockdown phenotype, while over expression of the dmbx1b gene only partially compensates for the dmbx1a knockdown phenotype. Conclusion Our data suggest that both zebrafish dmbx1a and dmbx1b genes are retained in the fish genome due to their requirement during midbrain and retinal neurogenesis, although their function is partially diverged. At the cellular level, Dmbx1 regulates cell cycle exit and differentiation of progenitor cells. The unexpected observation of putative post-duplication positive selection of teleost Dmbx1 genes, especially dmbx1a, and the differences in functionality between the mouse and zebrafish genes suggests that the teleost Dmbx1 genes may have evolved a diverged function in the regulation of neurogenesis

    Elevated Aspartate and Alanine Aminotransferase Levels and Natural Death among Patients with Methamphetamine Dependence

    Get PDF
    Background: Methamphetamine is one of the fastest growing illicit drugs worldwide, causing multiple organ damage and excessive natural deaths. The authors aimed to identify potential laboratory indices and clinical characteristics associated with natural death through a two-phase study. Methods: Methamphetamine-dependent patients (n = 1,254) admitted to a psychiatric center in Taiwan between 1990 and 2007 were linked with a national mortality database for causes of death. Forty-eight subjects died of natural causes, and were defined as the case subjects. A time-efficient sex-and age-matched nested case-control study derived from the cohort was conducted first to explore the potential factors associated with natural death through a time-consuming standardized review of medical records. Then the identified potential factors were evaluated in the whole cohort to validate the findings. Results: In phase I, several potential factors associated with natural death were identified, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), comorbid alcohol use disorder, and the prescription of antipsychotic drugs. In phase II, these factors were confirmed in the whole cohort using survival analysis. For the characteristics at the latest hospital admission, Cox proportional hazards models showed that the adjusted hazard ratios for natural death were 6.75 (p<0.001) in the group with markedly elevated AST (>80 U/L) and 2.66 (p<0.05) in the group with mildly elevated AST (40-80 U/L), with reference to the control group (>40 U/L). As for ALT, the adjusted hazard ratios were 5.41 (p<0.001), and 1.44 (p>0.05). Comorbid alcohol use disorder was associated with an increased risk of natural death, whereas administration of antipsychotic drugs was not associated with lowered risk. Conclusions: This study highlights the necessity of intensive follow-up for those with elevated AST and ALT levels and comorbid alcohol use disorder for preventing excessive natural deaths

    Stochastic Gravity: Theory and Applications

    Get PDF
    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime, compute the two-point correlation functions of these perturbations and prove that Minkowski spacetime is a stable solution of semiclassical gravity. Second, we discuss structure formation from the stochastic gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a black hole and describe the metric fluctuations near the event horizon of an evaporating black holeComment: 100 pages, no figures; an update of the 2003 review in Living Reviews in Relativity gr-qc/0307032 ; it includes new sections on the Validity of Semiclassical Gravity, the Stability of Minkowski Spacetime, and the Metric Fluctuations of an Evaporating Black Hol

    Caspase cleavage of the Golgi stacking factor GRASP65 is required for Fas/CD95-mediated apoptosis

    Get PDF
    GRASP65 (Golgi reassembly and stacking protein of 65 KDa) is a cis-Golgi protein with roles in Golgi structure, membrane trafficking and cell signalling. It is cleaved by caspase-3 early in apoptosis, promoting Golgi fragmentation. We now show that cleavage is needed for Fas-mediated apoptosis: expression of caspase-resistant GRASP65 protects cells, whereas expression of membrane proximal caspase-cleaved GRASP65 fragments dramatically sensitises cells. GRASP65 coordinates passage through the Golgi apparatus of proteins containing C-terminal hydrophobic motifs, via its tandem PDZ type ‘GRASP' domains. Fas/CD95 contains a C-terminal leucine–valine pairing so its trafficking might be coordinated by GRASP65. Mutagenesis of the Fas/CD95 LV motif reduces the number of cells with Golgi-associated Fas/CD95, and generates a receptor that is more effective at inducing apoptosis; however, siRNA-mediated silencing or expression of mutant GRASP65 constructs do not alter the steady state distribution of Fas/CD95. We also find no evidence for a GRASP65–Fas/CD95 interaction at the molecular level. Instead, we find that the C-terminal fragments of GRASP65 produced following caspase cleavage are targeted to mitochondria, and ectopic expression of these sensitises HeLa cells to Fas ligand. Our data suggest that GRASP65 cleavage promotes Fas/CD95-mediated apoptosis via release of C-terminal fragments that act at the mitochondria, and we identify Bcl-XL as a candidate apoptotic binding partner for GRASP65

    Transgenic expression of the dicotyledonous pattern recognition receptor EFR in rice leads to ligand-dependent activation of defense responses

    Get PDF
    Plant plasma membrane localized pattern recognition receptors (PRRs) detect extracellular pathogen-associated molecules. PRRs such as Arabidopsis EFR and rice XA21 are taxonomically restricted and are absent from most plant genomes. Here we show that rice plants expressing EFR or the chimeric receptor EFR::XA21, containing the EFR ectodomain and the XA21 intracellular domain, sense both Escherichia coli- and Xanthomonas oryzae pv. oryzae (Xoo)-derived elf18 peptides at sub-nanomolar concentrations. Treatment of EFR and EFR::XA21 rice leaf tissue with elf18 leads to MAP kinase activation, reactive oxygen production and defense gene expression. Although expression of EFR does not lead to robust enhanced resistance to fully virulent Xoo isolates, it does lead to quantitatively enhanced resistance to weakly virulent Xoo isolates. EFR interacts with OsSERK2 and the XA21 binding protein 24 (XB24), two key components of the rice XA21-mediated immune response. Rice-EFR plants silenced for OsSERK2, or overexpressing rice XB24 are compromised in elf18-induced reactive oxygen production and defense gene expression indicating that these proteins are also important for EFR-mediated signaling in transgenic rice. Taken together, our results demonstrate the potential feasibility of enhancing disease resistance in rice and possibly other monocotyledonous crop species by expression of dicotyledonous PRRs. Our results also suggest that Arabidopsis EFR utilizes at least a subset of the known endogenous rice XA21 signaling components

    Stochastic Gravity: Theory and Applications

    Get PDF
    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel.In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime: we compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. Second, we discuss structure formation from the stochastic gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a quasi-static black hole.Comment: 75 pages, no figures, submitted to Living Reviews in Relativit

    A Single Polar Residue and Distinct Membrane Topologies Impact the Function of the Infectious Bronchitis Coronavirus E Protein

    Get PDF
    The coronavirus E protein is a small membrane protein with a single predicted hydrophobic domain (HD), and has a poorly defined role in infection. The E protein is thought to promote virion assembly, which occurs in the Golgi region of infected cells. It has also been implicated in the release of infectious particles after budding. The E protein has ion channel activity in vitro, although a role for channel activity in infection has not been established. Furthermore, the membrane topology of the E protein is of considerable debate, and the protein may adopt more than one topology during infection. We previously showed that the HD of the infectious bronchitis virus (IBV) E protein is required for the efficient release of infectious virus, an activity that correlated with disruption of the secretory pathway. Here we report that a single residue within the hydrophobic domain, Thr16, is required for secretory pathway disruption. Substitutions of other residues for Thr16 were not tolerated. Mutations of Thr16 did not impact virus assembly as judged by virus-like particle production, suggesting that alteration of secretory pathway and assembly are independent activities. We also examined how the membrane topology of IBV E affected its function by generating mutant versions that adopted either a transmembrane or membrane hairpin topology. We found that a transmembrane topology was required for disrupting the secretory pathway, but was less efficient for virus-like particle production. The hairpin version of E was unable to disrupt the secretory pathway or produce particles. The findings reported here identify properties of the E protein that are important for its function, and provide insight into how the E protein may perform multiple roles during infection
    corecore