88 research outputs found

    Crystal scavenging from mush piles recorded by melt inclusions

    Get PDF
    Olivine-hosted melt inclusions are commonly used to determine pre-eruptive storage conditions. However, this approach relies on the assumption that co-erupted olivines have a simple association with their carrier melts. We show that primitive olivine crystal cargoes and their melt inclusions display a high degree of geochemical disequilibrium with their carrier melts at Kīlauea Volcano, Hawai’i. Within a given eruption, melt inclusions trapped in primitive olivine crystals exhibit compositional diversity exceeding that in erupted lava compositions since 1790 CE. This demonstrates that erupting liquids scavenge crystal cargoes from mush piles accumulating diverse melt inclusion populations over timescales of centuries or longer. Entrainment of hot primitive olivines into cooler, evolved carrier melts drives post-entrapment crystallization and sequestration of CO2 into vapour bubbles, producing spurious barometric estimates. While scavenged melt inclusion records may not be suitable for the investigation of eruption-specific processes, they record timescales of crystal storage and remobilization within magmatic mush piles

    Crystal scavenging from mush piles recorded by melt inclusions

    Get PDF
    Abstract: Olivine-hosted melt inclusions are commonly used to determine pre-eruptive storage conditions. However, this approach relies on the assumption that co-erupted olivines have a simple association with their carrier melts. We show that primitive olivine crystal cargoes and their melt inclusions display a high degree of geochemical disequilibrium with their carrier melts at Kīlauea Volcano, Hawai’i. Within a given eruption, melt inclusions trapped in primitive olivine crystals exhibit compositional diversity exceeding that in erupted lava compositions since 1790 CE. This demonstrates that erupting liquids scavenge crystal cargoes from mush piles accumulating diverse melt inclusion populations over timescales of centuries or longer. Entrainment of hot primitive olivines into cooler, evolved carrier melts drives post-entrapment crystallization and sequestration of CO2 into vapour bubbles, producing spurious barometric estimates. While scavenged melt inclusion records may not be suitable for the investigation of eruption-specific processes, they record timescales of crystal storage and remobilization within magmatic mush piles

    Zircon ages in granulite facies rocks: decoupling from geochemistry above 850 °C?

    Get PDF
    Granulite facies rocks frequently show a large spread in their zircon ages, the interpretation of which raises questions: Has the isotopic system been disturbed? By what process(es) and conditions did the alteration occur? Can the dates be regarded as real ages, reflecting several growth episodes? Furthermore, under some circumstances of (ultra-)high-temperature metamorphism, decoupling of zircon U–Pb dates from their trace element geochemistry has been reported. Understanding these processes is crucial to help interpret such dates in the context of the P–T history. Our study presents evidence for decoupling in zircon from the highest grade metapelites (> 850 °C) taken along a continuous high-temperature metamorphic field gradient in the Ivrea Zone (NW Italy). These rocks represent a well-characterised segment of Permian lower continental crust with a protracted high-temperature history. Cathodoluminescence images reveal that zircons in the mid-amphibolite facies preserve mainly detrital cores with narrow overgrowths. In the upper amphibolite and granulite facies, preserved detrital cores decrease and metamorphic zircon increases in quantity. Across all samples we document a sequence of four rim generations based on textures. U–Pb dates, Th/U ratios and Ti-in-zircon concentrations show an essentially continuous evolution with increasing metamorphic grade, except in the samples from the granulite facies, which display significant scatter in age and chemistry. We associate the observed decoupling of zircon systematics in high-grade non-metamict zircon with disturbance processes related to differences in behaviour of non-formula elements (i.e. Pb, Th, U, Ti) at high-temperature conditions, notably differences in compatibility within the crystal structure

    Novel SCARB2 mutation in action myoclonus-renal failure syndrome and evaluation of SCARB2 mutations in isolated AMRF features

    Get PDF
    Background: Action myoclonus-renal failure syndrome is a hereditary form of progressive myoclonus epilepsy associated with renal failure. It is considered to be an autosomal-recessive disease related to loss-of-function mutations in SCARB2. We studied a German AMRF family, additionally showing signs of demyelinating polyneuropathy and dilated cardiomyopathy. To test the hypothesis whether isolated appearance of individual AMRF syndrome features could be related to heterozygote SCARB2 mutations, we screened for SCARB2 mutations in unrelated patients showing isolated AMRF features. Methods: In the AMRF family all exons of SCARB2 were analyzed by Sanger sequencing. The mutation screening of unrelated patients with isolated AMRF features affected by either epilepsy (n = 103, progressive myoclonus epilepsy or generalized epilepsy), demyelinating polyneuropathy (n = 103), renal failure (n = 192) or dilated cardiomyopathy (n = 85) was performed as high resolution melting curve analysis of the SCARB2 exons. Results: A novel homozygous 1 bp deletion (c.111delC) in SCARB2 was found by sequencing three affected homozygous siblings of the affected family. A heterozygous sister showed generalized seizures and reduction of nerve conduction velocity in her legs. No mutations were found in the epilepsy, renal failure or dilated cardiomyopathy samples. In the polyneuropathy sample two individuals with demyelinating disease were found to be carriers of a SCARB2 frameshift mutation (c.666delCCTTA). Conclusions: Our findings indicate that demyelinating polyneuropathy and dilated cardiomyopathy are part of the action myoclonus-renal failure syndrome. Moreover, they raise the possibility that in rare cases heterozygous SCARB2 mutations may be associated with PNP features

    Permian high-temperature metamorphism in the Western Alps (NW Italy)

    Get PDF
    During the late Palaeozoic, lithospheric thinning in part of the Alpine realm caused high-temperature low-to-medium pressure metamorphism and partial melting in the lower crust. Permian metamorphism and magmatism has extensively been recorded and dated in the Central, Eastern, and Southern Alps. However, Permian metamorphic ages in the Western Alps so far are constrained by very few and sparsely distributed data. The present study fills this gap. We present U/Pb ages of metamorphic zircon from several Adria-derived continental units now situated in the Western Alps, defining a range between 286 and 266 Ma. Trace element thermometry yields temperatures of 580-890°C from Ti-in-zircon and 630-850°C from Zr-in-rutile for Permian metamorphic rims. These temperature estimates, together with preserved mineral assemblages (garnet-prismatic sillimanite-biotite-plagioclase-quartz-K-feldspar-rutile), define pervasive upper-amphibolite to granulite facies conditions for Permian metamorphism. U/Pb ages from this study are similar to Permian ages reported for the Ivrea Zone in the Southern Alps and Austroalpine units in the Central and Eastern Alps. Regional comparison across the former Adriatic and European margin reveals a complex pattern of ages reported from late Palaeozoic magmatic and metamorphic rocks (and relics thereof): two late Variscan age groups (~330 and ~300 Ma) are followed seamlessly by a broad range of Permian ages (300-250 Ma). The former are associated with late-orogenic collapse; in samples from this study these are weakly represented. Clearly, dominant is the Permian group, which is related to crustal thinning, hinting to a possible initiation of continental rifting along a passive margin

    Association between solar insolation and a history of suicide attempts in bipolar I disorder

    Get PDF
    In many international studies, rates of completed suicide and suicide attempts have a seasonal pattern that peaks in spring or summer. This exploratory study investigated the association between solar insolation and a history of suicide attempt in patients with bipolar I disorder. Solar insolation is the amount of electromagnetic energy from the Sun striking a surface area on Earth. Data were collected previously from 5536 patients with bipolar I disorder at 50 collection sites in 32 countries at a wide range of latitudes in both hemispheres. Suicide related data were available for 3365 patients from 310 onset locations in 51 countries. 1047 (31.1%) had a history of suicide attempt. There was a significant inverse association between a history of suicide attempt and the ratio of mean winter solar insolation/mean summer solar insolation. This ratio is smallest near the poles where the winter insolation is very small compared to the summer insolation. This ratio is largest near the equator where there is relatively little variation in the insolation over the year. Other variables in the model that were positively associated with suicide attempt were being female, a history of alcohol or substance abuse, and being in a younger birth cohort. Living in a country with a state-sponsored religion decreased the association. (All estimated coefficients p <0.01). In summary, living in locations with large changes in solar insolation between winter and summer may be associated with increased suicide attempts in patients with bipolar disorder. Further investigation of the impacts of solar insolation on the course of bipolar disorder is needed.Peer reviewe
    • 

    corecore