40 research outputs found

    TNF-dependent regulation and activation of innate immune cells are essential for host protection against cerebral tuberculosis

    Get PDF
    BACKGROUND: Tuberculosis (TB) affects one third of the global population, and TB of the central nervous system (CNS-TB) is the most severe form of tuberculosis which often associates with high mortality. The pro-inflammatory cytokine tumour necrosis factor (TNF) plays a critical role in the initial and long-term host immune protection against Mycobacterium tuberculosis (M. tuberculosis) which involves the activation of innate immune cells and structure maintenance of granulomas. However, the contribution of TNF, in particular neuron-derived TNF, in the control of cerebral M. tuberculosis infection and its protective immune responses in the CNS were not clear. METHODS: We generated neuron-specific TNF-deficient (NsTNF / ) mice and compared outcomes of disease against TNF f/f control and global TNF / mice. Mycobacterial burden in brains, lungs and spleens were compared, and cerebral pathology and cellular contributions analysed by microscopy and flow cytometry after M. tuberculosis infection. Activation of innate immune cells was measured by flow cytometry and cell function assessed by cytokine and chemokine quantification using enzyme-linked immunosorbent assay (ELISA). RESULTS: Intracerebral M. tuberculosis infection of TNF / mice rendered animals highly susceptible, accompanied by uncontrolled bacilli replication and eventual mortality. In contrast, NsTNF / mice were resistant to infection and presented with a phenotype similar to that in TNF f/f control mice. Impaired immunity in TNF / mice was associated with altered cytokine and chemokine synthesis in the brain and characterised by a reduced number of activated innate immune cells. Brain pathology reflected enhanced inflammation dominated by neutrophil influx. CONCLUSION: Our data show that neuron-derived TNF has a limited role in immune responses, but overall TNF production is necessary for protective immunity against CNS-TB

    Tumor necrosis factor‐α underlies loss of cortical dendritic spine density in a mouse model of congestive heart failure

    Get PDF
    BACKGROUND: Heart failure (HF) is a progressive disorder characterized by reduced cardiac output and increased peripheral resistance, ultimately leading to tissue perfusion deficits and devastating consequences for several organs including the brain. We previously described a tumor necrosis factor-α (TNF-α)-dependent enhancement of posterior cerebral artery tone and concomitant reduced cerebral blood flow in a mouse model of early HF in which blood pressure remains minimally affected. HF is often associated with cognitive impairments such as memory deficits, even before any overt changes in brain structure and function occur. The pathophysiology underlying the development of cognitive impairments in HF is unknown, and appropriate treatment strategies are lacking.METHODS AND RESULTS: We used a well-established mouse model in which HF was induced by experimental myocardial infarction produced by permanent surgical ligation of the left anterior descending coronary artery (infarct size ≈25% of the left ventricular wall). Ligated mice developed enlarged hearts, congested lungs, and reduced cardiac output and blood pressure, with elevated peripheral resistance within 6 to 8 weeks after ligation. In this study, we demonstrated the significance of the proinflammatory cytokine TNF-α during HF-mediated neuroinflammation and associated impaired hippocampus-independent nonspatial episodic memory function. Augmented cerebral TNF-α expression and microglial activation in HF mice, indicative of brain inflammation, were accompanied by morphological changes and significant reduction of cortical dendritic spines (61.39±8.61% for basal and 61.04±9.18% for apical spines [P<0.001]). The significance of TNF-α signaling during the observed HF-mediated neurodegenerative processes is supported by evidence showing that sequestration or genetic deletion of TNF-α ameliorates the observed reduction of cortical dendritic spines (33.51±7.63% for basal and 30.13±6.98% for apical spines in wild-type mice treated with etanercept; 17.09±6.81% for basal and 17.21±7.29% for apical spines in TNF-α(-/-)). Moreover, our data suggest that alterations in cerebral serum and glucocorticoid-inducible kinase 1 (SgK1) expression and phosphorylation during HF may be TNF-α dependent and that an increase of SgK1 phosphorylation potentially plays a role in the HF-associated reduction of dendritic spine density.CONCLUSIONS: Our findings demonstrate that TNF-α plays a pivotal role in HF-mediated neuroinflammation and associated alterations of cortical dendritic spine density and has the potential to reveal novel treatment strategies for HF-associated memory deficits

    Group A Streptococcus Subcutaneous Infection-Induced Central Nervous System Inflammation Is Attenuated by Blocking Peripheral TNF

    Get PDF
    Group A streptococcus (GAS) infection causes a strong inflammatory response associated with cytokine storms, leading to multiorgan failure, which is characterized as streptococcal toxic shock syndrome. However, little is known about GAS subcutaneous infection-mediated brain inflammation. Therefore, we used a bioluminescent GAS strain and reporter mice carrying firefly luciferase under transcriptional control of the nuclear factor-kappa B (NF-κB) promoter to concurrently monitor the host immune response and bacterial burden in a single mouse. Notably, in addition to the subcutaneous inoculation locus at the back of mice, we detected strong luminescence signals from NF-κB activation and increased inflammatory cytokine production in the brain, implying the existence of central nervous system inflammation after GAS subcutaneous infection. The inflamed brain exhibited an increased expression of glial fibrillary acidic protein and nicotinamide adenine dinucleotide phosphate oxidase components and greater microglial activation and blood–brain barrier (BBB) disruption. Furthermore, Fluoro-Jade C positive cells increased in the brain, indicating that neurons underwent degeneration. Peripheral tumor necrosis factor (TNF), which contributes to pathology in brain injury, was elevated in the circulation, and the expression of its receptor was also increased in the inflamed brain. Blockage of peripheral TNF effectively reduced brain inflammation and injury, thereby preventing BBB disruption and improving survival. Our study provides new insights into GAS-induced central nervous system inflammation, such as encephalopathy, which can be attenuated by circulating TNF blockage

    Is BDNF sufficient for information transfer between microglia and dorsal horn neurons during the onset of central sensitization?

    Get PDF
    Peripheral nerve injury activates spinal microglia. This leads to enduring changes in the properties of dorsal horn neurons that initiate central sensitization and the onset of neuropathic pain. Although a variety of neuropeptides, cytokines, chemokines and neurotransmitters have been implicated at various points in this process, it is possible that much of the information transfer between activated microglia and neurons, at least in this context, may be explicable in terms of the actions of brain derived neurotrophic factor (BDNF). Microglial-derived BDNF mediates central sensitization in lamina I by attenuating inhibitory synaptic transmission. This involves an alteration in the chloride equilibrium potential as a result of down regulation of the potassium-chloride exporter, KCC2. In lamina II, BDNF duplicates many aspects of the effects of chronic constriction injury (CCI) of the sciatic nerve on excitatory transmission. It mediates an increase in synaptic drive to putative excitatory neurons whilst reducing that to inhibitory neurons. CCI produces a specific pattern of changes in excitatory synaptic transmission to tonic, delay, phasic, transient and irregular neurons. A very similar 'injury footprint' is seen following long-term exposure to BDNF. This review presents new information on the action of BDNF and CCI on lamina II neurons, including the similarity of their actions on the kinetics and distributions of subpopulations of miniature excitatory postsynaptic currents (mEPSC). These findings raise the possibility that BDNF functions as a final common path for a convergence of perturbations that culminate in the generation of neuropathic pain

    Role of Schwann cell-derived Exosomes in Cisplatin-induced Hyperalgesia

    Get PDF
    University of Minnesota M.S. thesis. May 2018. Major: Oral Biology. Advisor: Donald Simone. 1 computer file (PDF); vi, 37 pages.Painful peripheral neuropathy is a common dose-limiting side effect associated with cisplatin treatment. Cisplatin is unable to cross the blood-brain barrier, and its neurotoxicity is limited to the peripheral nervous system (PNS). In the PNS, Schwann cells are an essential component supporting dorsal root ganglion (DRG) neuron viability, and impairments in Schwann cell biology contribute to cisplatin-induced painful neuropathy. We explored the role of Schwann cell-derived exosomes in the development of cisplatin-induced hyperalgesia. Consistent with our previous reports, daily injection of cisplatin (1 mg/kg, i.p.) for 7 days produced mechanical hyperalgesia in C3H/HeN mice. To investigate the impact of exosome signaling in the development of cisplatin-induced hyperalgesia, exosomes isolated from the sciatic nerves of cisplatin-treated mice were injected intrathecally into naïve mice for 5 consecutive days (7 g of total protein/10 l, i.t.). Mechanical hyperalgesia was observed after the second injection of exosomes, mimicking the effect of cisplatin alone and supporting the involvement of integrated exosome signaling in hyperalgesia produced by cisplatin. Intrathecal administration of Schwann cell-derived exosomes activated microglia, and analysis of exosomal content indicated mediators of neuronal sensitization at the central level. Collectively, our results indicate that Schwann cells affected by cisplatin contribute to mechanical hyperalgesia and exosomes are an important signaling mediator for glia-neuronal communication

    Lipopolysaccharide inhibits myogenic differentiation of C2C12 myoblasts through the Toll-like receptor 4-nuclear factor-κB signaling pathway and myoblast-derived tumor necrosis factor-α

    Get PDF
    Background: Circulating lipopolysaccharide (LPS) concentrations are often elevated in patients with sepsis or with various endogenous diseases that are associated with metabolic endotoxemia. Involuntary loss of skeletal muscle, termed muscle wasting, is commonly observed in these conditions, suggesting that circulating LPS might play an essential role in its development. Although impairment of muscle regeneration is an important determinant of skeletal muscle wasting, it is unclear whether LPS affects this process and, if so, by what mechanism. Here, we used the C2C12 myoblast cell line to investigate the effects of LPS on myogenesis. Methods: C2C12 myoblasts were grown to 80% confluence and induced to differentiate in the absence or presence of LPS (0.1 or 1 μg/mL); TAK-242 (1 μM), a specific inhibitor of Toll-like receptor 4 (TLR4) signaling; and a tumor necrosis factor (TNF)-α neutralizing antibody (5 μg/mL). Expression of a skeletal muscle differentiation marker (myosin heavy chain II), two essential myogenic regulatory factors (myogenin and MyoD), and a muscle negative regulatory factor (myostatin) was analyzed by western blotting. Nuclear factor-κB (NF-κB) DNA-binding activity was measured using an enzyme-linked immunosorbent assay. Results: LPS dose-dependently and significantly decreased the formation of multinucleated myotubes and the expression of myosin heavy chain II, myogenin, and MyoD, and increased NF-κB DNA-binding activity and myostatin expression. The inhibitory effect of LPS on myogenic differentiation was reversible, suggesting that it was not caused by nonspecific toxicity. Both TAK-242 and anti-TNF-α reduced the LPS-induced increase in NF-κB DNA-binding activity, downregulation of myogenic regulatory factors, and upregulation of myostatin, thereby partially rescuing the impairment of myogenesis. Conclusions: Our data suggest that LPS inhibits myogenic differentiation via a TLR4–NF-κB-dependent pathway and an autocrine/paracrine TNF-α-induced pathway. These pathways may be involved in the development of muscle wasting caused by sepsis or metabolic endotoxemi

    Glial Tumor Necrosis Factor Alpha (TNFα) Generates Metaplastic Inhibition of Spinal Learning

    Get PDF
    Injury-induced overexpression of tumor necrosis factor alpha (TNFα) in the spinal cord can induce chronic neuroinflammation and excitotoxicity that ultimately undermines functional recovery. Here we investigate how TNFα might also act to upset spinal function by modulating spinal plasticity. Using a model of instrumental learning in the injured spinal cord, we have previously shown that peripheral intermittent stimulation can produce a plastic change in spinal plasticity (metaplasticity), resulting in the prolonged inhibition of spinal learning. We hypothesized that spinal metaplasticity may be mediated by TNFα. We found that intermittent stimulation increased protein levels in the spinal cord. Using intrathecal pharmacological manipulations, we showed TNFα to be both necessary and sufficient for the long-term inhibition of a spinal instrumental learning task. These effects were found to be dependent on glial production of TNFα and involved downstream alterations in calcium-permeable AMPA receptors. These findings suggest a crucial role for glial TNFα in undermining spinal learning, and demonstrate the therapeutic potential of inhibiting TNFα activity to rescue and restore adaptive spinal plasticity to the injured spinal cord. TNFα modulation represents a novel therapeutic target for improving rehabilitation after spinal cord injury

    P2X7 and A2A receptor endogenous activation protects against neuronal death caused by CoCl2-induced photoreceptor toxicity in the zebrafish retina

    Get PDF
    Injured retinas in mammals do not regenerate and heal with loss of function. The adult retina of zebrafish self-repairs after damage by activating cell-intrinsic mechanisms, which are regulated by extrinsic signal interactions. Among relevant regulatory extrinsic systems, purinergic signaling regulates progenitor proliferation during retinogenesis and regeneration and glia proliferation in proliferative retinopathies. ATP-activated P2X7 (P2RX7) and adenosine (P1R) receptors are involved in the progression of almost all retinopathies leading to blindness. Here, we examined P2RX7 and P1R participation in the retina regenerative response induced by photoreceptor damage caused by a specific dose of CoCl2. First, we found that treatment of uninjured retinas with a potent agonist of P2RX7 (BzATP) provoked photoreceptor damage and mitotic activation of multipotent progenitors. In CoCl2-injured retinas, blockade of endogenous extracellular ATP activity on P2RX7 caused further neurodegeneration, Müller cell gliosis, progenitor proliferation, and microglia reactivity. P2RX7 inhibition in injured retinas also increased the expression of lin28a and tnfα genes, which are related to multipotent progenitor proliferation. Levels of hif1α, vegf3r, and vegfaa mRNA were enhanced by blockade of P2RX7 immediately after injury, indicating hypoxic like damage and endothelial cell growth and proliferation. Complete depletion of extracellular nucleotides with an apyrase treatment strongly potentiated cell death and progenitor proliferation induced with CoCl2. Blockade of adenosine P1 and A2A receptors (A2AR) had deleterious effects and deregulated normal timing for progenitor and precursor cell proliferation following photoreceptor damage. ATP via P2RX7 and adenosine via A2AR are survival extracellular signals key for retina regeneration in zebrafish.Fil: Medrano, Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; ArgentinaFil: Pisera Fuster, Antonella. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; ArgentinaFil: Bernabeu, Ramon Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; ArgentinaFil: Faillace, Maria Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; Argentin
    corecore