126 research outputs found

    Genome-wide Haplotype Association Mapping in mice identifies a genetic variant in CER1 associated with bone mineral density and fracture in southern Chinese women

    Get PDF
    INTRODUCTION: Osteoporosis is characterized by a decrease in bone mass, deterioration of bone tissue, impaired bone strength and increased fracture risk. It is a medically, socially, and economically important disease, especially among the aging population. Bone Mass Density (BMD) is a quantitative index of osteoporosis. Acquisition of bone mineral is a complex process involving genetics and environmental factors. METHODS: A genome-wide Haplotype Association Mapping (HAM) approach was performed by using inbred mice strains which had been genotyped and phenotyped in the Mouse Phenome Project. In HAM, a dense SNPs map was first partitioned into blocks of three SNPs with an average length of 1Mb. Modified F-statistics were calculated for the whole genome to test if blocks exist where the haplotypes can partition inbred strains into high and low BMD groups. In this study, the candidate gene Cerberus 1 (Cer1) suggested from HAM analysis was eventually tested by a human case-control cohort of 1,083 subjects. RESULTS AND CONCLUSION: In this study, we used a HAM approach to identify a haplotype block within Cer1 that partitions inbred mice strains into high and low BMD groups. A cohort of 1083 high and low BMD human subjects were studied and a non-synonymous SNP (rs3747532) in human CER1 was identified to be associated with increased risk of both low BMD in premenopausal women (OR 2.2; 95% confidence interval: 1.0 - 4.6; p < 0.05) and increased risk of vertebral fractures (OR 1.82, p=0.025) in the post-menopausal cohort. We also showed that Cer1 is expressed in mouse bone and growth plate by RT-PCR, immunohistochemistry and in situ hybridization, consistent with polymorphisms potentially influencing bone mineral density. Our successful identification of an association with CER1 in humans together with our mouse study suggests that CER1 may play a role in the development of bone or its metabolism.postprintThe 59th Annual Meeting of The American Society of Human Genetics (ASHG), Honolulu, HI., 20-24 October 2009

    A secondary Fracture Prevention Programme to reduce fractures, hospital admissions, and mortality rates

    Get PDF
    Conference Theme: Happy Staff - Healthy People (開心員工 - 共建民康)published_or_final_versionThe Hospital Authority Convention, Hong Kong, 10-11 May 2010

    Evaluation of the Osteoporosis Secondary Fracture Prevention Program at Queen Mary Hospital: successful recruitment is associated with lower re-fracture rate and mortality rate at one year

    Get PDF
    Conference Theme: Happy Staff - Healthy People (開心員工 - 共建民康)published_or_final_versionThe Hospital Authority Convention, Hong Kong, 10-11 May 2010

    Differences in pregnancy outcomes in donor egg frozen embryo transfer (FET) cycles following preimplantation genetic screening (PGS): a single center retrospective study

    Get PDF
    PURPOSE: This study aims to test the hypothesis, in a single-center retrospective analysis, that live birth rates are significantly different when utilizing preimplantation genetic screening (PGS) compared to not utilizing PGS in frozen–thawed embryo transfers in our patients that use eggs from young, anonymous donors. The question therefore arises of whether PGS is an appropriate intervention for donor egg cycles. METHODS: Live birth rates per cycle and live birth rates per embryo transferred after 398 frozen embryo transfer (FET) cycles were examined from patients who elected to have PGS compared to those who did not. Blastocysts derived from donor eggs underwent trophectoderm biopsy and were tested for aneuploidy using array comparative genomic hybridization (aCGH) or next-generation sequencing (NGS), then vitrified for future use (test) or were vitrified untested (control). Embryos were subsequently warmed and transferred into a recipient or gestational carrier uterus. Data was analyzed separately for single embryo transfer (SET), double embryo transfer (DET), and for own recipient uterus and gestational carrier (GC) uterus recipients. RESULTS: Rates of implantation of embryos leading to a live birth were significantly higher in the PGS groups transferring two embryos (DET) compared to the no PGS group (GC, 72 vs. 56 %; own uterus, 60 vs. 36 %). The live birth implantation rate in the own uterus group for SET was higher in the PGS group compared to the control (58 vs. 36 %), and this almost reached significance but the live birth implantation rate for the SET GC group remained the same for both tested and untested embryos. Live births per cycle were nominally higher in the PGS GC DET and own uterus SET and DET groups compared to the non-PGS embryo transfers. These differences almost reached significance. The live birth rate per cycle in the SET GC group was almost identical. CONCLUSIONS: Significant differences were noted only for DET; however, benefits need to be balanced against risks associated with multiple pregnancies. Results observed for SET need to be confirmed on larger series and with randomized cohorts

    Impact of female age and male infertility on ovarian reserve markers to predict outcome of assisted reproduction technology cycles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study was designed to assess the capability of ovarian reserve markers, including baseline FSH levels, baseline anti-Müllerian hormone (AMH) levels, and antral follicle count (AFC), as predictors of live births during IVF cycles, especially for infertile couples with advanced maternal age and/or male factors.</p> <p>Methods</p> <p>A prospective cohort of 336 first IVF/ICSI cycles undergoing a long protocol with GnRH agonist was investigated. Patients with endocrine disorders or unilateral ovaries were excluded.</p> <p>Results</p> <p>Among the ovarian reserve tests, AMH and age had a greater area under the receiving operating characteristic curve than FSH in predicting live births. Furthermore, AMH and age were the sole predictive factors of live births for women greater than or equal to 35 years of age; while AMH was the major determinant of live births for infertile couples with absence of male factors by multivariate logistic regression analysis. However, all the studied ovarain reserve tests were not preditive of live births for women < 35 years of age or infertile couples with male factors.</p> <p>Conclusion</p> <p>The serum AMH levels were prognostic for pregnancy outcome for infertile couples with advanced female age or absence of male factors. The predictive capability of ovarian reserve tests is clearly influenced by the etiology of infertility.</p

    CK2 Phosphorylates Sec31 and Regulates ER-To-Golgi Trafficking

    Get PDF
    Protein export from the endoplasmic reticulum (ER) is an initial and rate-limiting step of molecular trafficking and secretion. This is mediated by coat protein II (COPII)-coated vesicles, whose formation requires small GTPase Sar1 and 6 Sec proteins including Sec23 and Sec31. Sec31 is a component of the outer layer of COPII coat and has been identified as a phosphoprotein. The initiation and promotion of COPII vesicle formation is regulated by Sar1; however, the mechanism regulating the completion of COPII vesicle formation followed by vesicle release is largely unknown. Hypothesizing that the Sec31 phosphorylation may be such a mechanism, we identified phosphorylation sites in the middle linker region of Sec31. Sec31 phosphorylation appeared to decrease its association with ER membranes and Sec23. Non-phosphorylatable mutant of Sec31 stayed longer at ER exit sites and bound more strongly to Sec23. We also found that CK2 is one of the kinases responsible for Sec31 phosphorylation because CK2 knockdown decreased Sec31 phosphorylation, whereas CK2 overexpression increased Sec31 phosphorylation. Furthermore, CK2 knockdown increased affinity of Sec31 for Sec23 and inhibited ER-to-Golgi trafficking. These results suggest that Sec31 phosphorylation by CK2 controls the duration of COPII vesicle formation, which regulates ER-to-Golgi trafficking

    Inhibition of Melanoma Growth by Subcutaneous Administration of hTERTC27 Viral Cocktail in C57BL/6 Mice

    Get PDF
    hTERTC27 is a 27 kDa C-terminal polypeptide of human telomerase reverse transcriptase that has previously been shown to reduce tumorigenicity of HeLa cells and suppress growth of xenografted glioblastoma in nude mice. Although ectopic expression of hTERTC27 upregulated genes that are involved in apoptosis, cell cycle, and immune response, the mechanism for hTERTC27-induced tumor suppression has not been completely elucidated. Since hTERT was identified as a universal tumor-associated antigen, we hypothesize that hTERTC27 inhibits tumor growth in vivo through activation of anti-tumor immune response. Immunocompetent C57BL/6 mice were used for mouse B16 melanoma model. Mice bearing B16 melanoma were administered rAAV-/rAdv viral cocktail expressing hTERTC27, and tumor growth was monitored after viral cocktail treatment. Blood and splenocytes were used to determine the level of cytokines and the activity of immune cells, respectively. B16 tumor growth was significantly inhibited by subcutaneous administration of a single dose of 1.5×10(11) vg rAAV-hTERTC27 and 2.5×10(9) pfu rAdv-hTERTC27 viral cocktail (rAAV-/rAdv-hTERTC27). The population and cytotoxicity of NK cells in the mice were significantly augmented by rAAV-/rAdv-hTERTC27 treatment, and selective depletion of the NK cell population in mice by intraperitoneal injection of anti-GM1 antibody abrogated the growth suppression of melanoma induced by rAAV-/rAdv-hTERTC27 administration. Activation of NK cells by administration of rAAV-/rAdv-hTERTC27 is critical for growth suppression of melanoma in mouse model.published_or_final_versio

    Involvement of the exomer complex in the polarized transport of Ena1 required for Saccharomyces cerevisiae survival against toxic cations

    Get PDF
    [EN] Exomer is an adaptor complex required for the direct transport of a selected number of cargoes from the trans-Golgi network (TGN) to the plasma membrane in Saccharomyces cerevisiae However, exomer mutants are highly sensitive to increased concentrations of alkali metal cations, a situation that remains unexplained by the lack of transport of any known cargoes. Here we identify several HAL genes that act as multicopy suppressors of this sensitivity and are connected to the reduced function of the sodium ATPase Ena1. Furthermore, we find that Ena1 is dependent on exomer function. Even though Ena1 can reach the plasma membrane independently of exomer, polarized delivery of Ena1 to the bud requires functional exomer. Moreover, exomer is required for full induction of Ena1 expression after cationic stress by facilitating the plasma membrane recruitment of the molecular machinery involved in Rim101 processing and activation of the RIM101 pathway in response to stress. Both the defective localization and the reduced levels of Ena1 contribute to the sensitivity of exomer mutants to alkali metal cations. Our work thus expands the spectrum of exomer-dependent proteins and provides a link to a more general role of exomer in TGN organization.We acknowledge Emma Keck for English language revision. We also thank members of the Translucent group, J. Arino, J. Ramos, and L. Yenush, for many useful discussions throughout this work and especially L. Yenush for her generous gift of strains and reagents. The help of O. Vincent was essential for developing the work involving RIM101. We also thank R. Valle for her technical assistance at the CR Laboratory. M. Trautwein is acknowledged for data acquisition and discussions during the early stages of the project. C.A. is supported by a USAL predoctoral fellowship. Work at the Spang laboratory was supported by the University of Basel and the Swiss National Science Foundation (31003A-141207 and 310030B-163480). C.R. was supported by grant SA073U14 from the Regional Government of Castilla y Leon and by grant BFU2013-48582-C2-1-P from the CICYT/FEDER Spanish program. J.M.M. acknowledges the financial support from Universitat Politecnica de Valencia project PAID-06-10-1496.Anton, C.; Zanolari, B.; Arcones, I.; Wang, C.; Mulet, JM.; Spang, A.; Roncero, C. (2017). Involvement of the exomer complex in the polarized transport of Ena1 required for Saccharomyces cerevisiae survival against toxic cations. Molecular Biology of the Cell. 28(25):3672-3685. https://doi.org/10.1091/mbc.E17-09-0549S367236852825Ariño, J., Ramos, J., & Sychrová, H. (2010). Alkali Metal Cation Transport and Homeostasis in Yeasts. Microbiology and Molecular Biology Reviews, 74(1), 95-120. doi:10.1128/mmbr.00042-09Bard, F., & Malhotra, V. (2006). The Formation of TGN-to-Plasma-Membrane Transport Carriers. Annual Review of Cell and Developmental Biology, 22(1), 439-455. doi:10.1146/annurev.cellbio.21.012704.133126Barfield, R. M., Fromme, J. C., & Schekman, R. (2009). The Exomer Coat Complex Transports Fus1p to the Plasma Membrane via a Novel Plasma Membrane Sorting Signal in Yeast. Molecular Biology of the Cell, 20(23), 4985-4996. doi:10.1091/mbc.e09-04-0324Bonifacino, J. S. (2014). Adaptor proteins involved in polarized sorting. Journal of Cell Biology, 204(1), 7-17. doi:10.1083/jcb.201310021Bonifacino, J. S., & Glick, B. S. (2004). The Mechanisms of Vesicle Budding and Fusion. Cell, 116(2), 153-166. doi:10.1016/s0092-8674(03)01079-1Bonifacino, J. S., & Lippincott-Schwartz, J. (2003). Coat proteins: shaping membrane transport. Nature Reviews Molecular Cell Biology, 4(5), 409-414. doi:10.1038/nrm1099Carlson, M., & Botstein, D. (1982). Two differentially regulated mRNAs with different 5′ ends encode secreted and intracellular forms of yeast invertase. Cell, 28(1), 145-154. doi:10.1016/0092-8674(82)90384-1Costanzo, M., Baryshnikova, A., Bellay, J., Kim, Y., Spear, E. D., Sevier, C. S., … Mostafavi, S. (2010). The Genetic Landscape of a Cell. Science, 327(5964), 425-431. doi:10.1126/science.1180823De Matteis, M. A., & Luini, A. (2008). Exiting the Golgi complex. Nature Reviews Molecular Cell Biology, 9(4), 273-284. doi:10.1038/nrm2378De Nadal, E., Clotet, J., Posas, F., Serrano, R., Gomez, N., & Arino, J. (1998). The yeast halotolerance determinant Hal3p is an inhibitory subunit of the Ppz1p Ser/Thr protein phosphatase. Proceedings of the National Academy of Sciences, 95(13), 7357-7362. doi:10.1073/pnas.95.13.7357Drubin, D. G., & Nelson, W. J. (1996). Origins of Cell Polarity. Cell, 84(3), 335-344. doi:10.1016/s0092-8674(00)81278-7Fell, G. L., Munson, A. M., Croston, M. A., & Rosenwald, A. G. (2011). Identification of Yeast Genes Involved in K+Homeostasis: Loss of Membrane Traffic Genes Affects K+Uptake. G3&amp;#58; Genes|Genomes|Genetics, 1(1), 43-56. doi:10.1534/g3.111.000166Ferrando, A., Kron, S. J., Rios, G., Fink, G. R., & Serrano, R. (1995). Regulation of cation transport in Saccharomyces cerevisiae by the salt tolerance gene HAL3. Molecular and Cellular Biology, 15(10), 5470-5481. doi:10.1128/mcb.15.10.5470Forsmark, A., Rossi, G., Wadskog, I., Brennwald, P., Warringer, J., & Adler, L. (2011). Quantitative Proteomics of Yeast Post-Golgi Vesicles Reveals a Discriminating Role for Sro7p in Protein Secretion. Traffic, 12(6), 740-753. doi:10.1111/j.1600-0854.2011.01186.xGaber, R. F., Styles, C. A., & Fink, G. R. (1988). TRK1 encodes a plasma membrane protein required for high-affinity potassium transport in Saccharomyces cerevisiae. Molecular and Cellular Biology, 8(7), 2848-2859. doi:10.1128/mcb.8.7.2848Galindo, A., Calcagno-Pizarelli, A. M., Arst, H. N., & Penalva, M. A. (2012). An ordered pathway for the assembly of fungal ESCRT-containing ambient pH signalling complexes at the plasma membrane. Journal of Cell Science, 125(7), 1784-1795. doi:10.1242/jcs.098897Goldstein, A. L., & McCusker, J. H. (1999). Three new dominant drug resistance cassettes for gene disruption inSaccharomyces cerevisiae. Yeast, 15(14), 1541-1553. doi:10.1002/(sici)1097-0061(199910)15:143.0.co;2-kHayashi, M., Fukuzawa, T., Sorimachi, H., & Maeda, T. (2005). Constitutive Activation of the pH-Responsive Rim101 Pathway in Yeast Mutants Defective in Late Steps of the MVB/ESCRT Pathway. Molecular and Cellular Biology, 25(21), 9478-9490. doi:10.1128/mcb.25.21.9478-9490.2005Herrador, A., Herranz, S., Lara, D., & Vincent, O. (2009). Recruitment of the ESCRT Machinery to a Putative Seven-Transmembrane-Domain Receptor Is Mediated by an Arrestin-Related Protein. Molecular and Cellular Biology, 30(4), 897-907. doi:10.1128/mcb.00132-09Herrador, A., Livas, D., Soletto, L., Becuwe, M., Léon, S., & Vincent, O. (2015). Casein kinase 1 controls the activation threshold of an α-arrestin by multisite phosphorylation of the interdomain hinge. Molecular Biology of the Cell, 26(11), 2128-2138. doi:10.1091/mbc.e14-11-1552Herranz, S., Rodriguez, J. M., Bussink, H.-J., Sanchez-Ferrero, J. C., Arst, H. N., Penalva, M. A., & Vincent, O. (2005). Arrestin-related proteins mediate pH signaling in fungi. Proceedings of the National Academy of Sciences, 102(34), 12141-12146. doi:10.1073/pnas.0504776102Hoya, M., Yanguas, F., Moro, S., Prescianotto-Baschong, C., Doncel, C., de León, N., … Valdivieso, M.-H. (2016). Traffic Through theTrans-Golgi Network and the Endosomal System Requires Collaboration Between Exomer and Clathrin Adaptors in Fission Yeast. Genetics, 205(2), 673-690. doi:10.1534/genetics.116.193458Huranova, M., Muruganandam, G., Weiss, M., & Spang, A. (2016). Dynamic assembly of the exomer secretory vesicle cargo adaptor subunits. EMBO reports, 17(2), 202-219. doi:10.15252/embr.201540795Kung, L. F., Pagant, S., Futai, E., D’Arcangelo, J. G., Buchanan, R., Dittmar, J. C., … Miller, E. A. (2011). Sec24p and Sec16p cooperate to regulate the GTP cycle of the COPII coat. The EMBO Journal, 31(4), 1014-1027. doi:10.1038/emboj.2011.444Lamb, T. M., & Mitchell, A. P. (2003). The Transcription Factor Rim101p Governs Ion Tolerance and Cell Differentiation by Direct Repression of the Regulatory Genes NRG1 and SMP1 in Saccharomyces cerevisiae. Molecular and Cellular Biology, 23(2), 677-686. doi:10.1128/mcb.23.2.677-686.2003Lamb, T. M., Xu, W., Diamond, A., & Mitchell, A. P. (2000). Alkaline Response Genes ofSaccharomyces cerevisiaeand Their Relationship to theRIM101Pathway. Journal of Biological Chemistry, 276(3), 1850-1856. doi:10.1074/jbc.m008381200Madrid, R., Gómez, M. J., Ramos, J., & Rodrı́guez-Navarro, A. (1998). Ectopic Potassium Uptake intrk1 trk2Mutants ofSaccharomyces cerevisiaeCorrelates with a Highly Hyperpolarized Membrane Potential. Journal of Biological Chemistry, 273(24), 14838-14844. doi:10.1074/jbc.273.24.14838Maresova, L., & Sychrova, H. (2004). Physiological characterization of Saccharomyces cerevisiae kha1 deletion mutants. Molecular Microbiology, 55(2), 588-600. doi:10.1111/j.1365-2958.2004.04410.xMarqués, M. C., Zamarbide-Forés, S., Pedelini, L., Llopis-Torregrosa, V., & Yenush, L. (2015). A functional Rim101 complex is required for proper accumulation of the Ena1 Na+-ATPase protein in response to salt stress in Saccharomyces cerevisiae. FEMS Yeast Research, 15(4). doi:10.1093/femsyr/fov017Mulet, J. M., Leube, M. P., Kron, S. J., Rios, G., Fink, G. R., & Serrano, R. (1999). A Novel Mechanism of Ion Homeostasis and Salt Tolerance in Yeast: the Hal4 and Hal5 Protein Kinases Modulate the Trk1-Trk2 Potassium Transporter. Molecular and Cellular Biology, 19(5), 3328-3337. doi:10.1128/mcb.19.5.3328Mulet, J. M., & Serrano, R. (2002). Simultaneous determination of potassium and rubidium content in yeast. Yeast, 19(15), 1295-1298. doi:10.1002/yea.909Murguía, J. R., Bellés, J. M., & Serrano, R. (1996). The YeastHAL2Nucleotidase Is anin VivoTarget of Salt Toxicity. Journal of Biological Chemistry, 271(46), 29029-29033. doi:10.1074/jbc.271.46.29029Obara, K., & Kihara, A. (2014). Signaling Events of the Rim101 Pathway Occur at the Plasma Membrane in a Ubiquitination-Dependent Manner. Molecular and Cellular Biology, 34(18), 3525-3534. doi:10.1128/mcb.00408-14Paczkowski, J. E., & Fromme, J. C. (2014). Structural Basis for Membrane Binding and Remodeling by the Exomer Secretory Vesicle Cargo Adaptor. Developmental Cell, 30(5), 610-624. doi:10.1016/j.devcel.2014.07.014Paczkowski, J. E., Richardson, B. C., & Fromme, J. C. (2015). Cargo adaptors: structures illuminate mechanisms regulating vesicle biogenesis. Trends in Cell Biology, 25(7), 408-416. doi:10.1016/j.tcb.2015.02.005Paczkowski, J. E., Richardson, B. C., Strassner, A. M., & Fromme, J. C. (2012). The exomer cargo adaptor structure reveals a novel GTPase-binding domain. The EMBO Journal, 31(21), 4191-4203. doi:10.1038/emboj.2012.268Parsons, A. B., Brost, R. L., Ding, H., Li, Z., Zhang, C., Sheikh, B., … Boone, C. (2003). Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nature Biotechnology, 22(1), 62-69. doi:10.1038/nbt919Peñalva, M. A., Lucena-Agell, D., & Arst, H. N. (2014). Liaison alcaline: Pals entice non-endosomal ESCRTs to the plasma membrane for pH signaling. Current Opinion in Microbiology, 22, 49-59. doi:10.1016/j.mib.2014.09.005Ríos, G., Cabedo, M., Rull, B., Yenush, L., Serrano, R., & Mulet, J. M. (2013). Role of the yeast multidrug transporter Qdr2 in cation homeostasis and the oxidative stress response. FEMS Yeast Research, 13(1), 97-106. doi:10.1111/1567-1364.12013RIOS, G., FERRANDO, A., & SERRANO, R. (1997). Mechanisms of Salt Tolerance Conferred by Overexpression of theHAL1 Gene inSaccharomyces cerevisiae. Yeast, 13(6), 515-528. doi:10.1002/(sici)1097-0061(199705)13:63.0.co;2-xRitz, A. M., Trautwein, M., Grassinger, F., & Spang, A. (2014). The Prion-like Domain in the Exomer-Dependent Cargo Pin2 Serves as a trans-Golgi Retention Motif. Cell Reports, 7(1), 249-260. doi:10.1016/j.celrep.2014.02.026Rockenbauch, U., Ritz, A. M., Sacristan, C., Roncero, C., & Spang, A. (2012). The complex interactions of Chs5p, the ChAPs, and the cargo Chs3p. Molecular Biology of the Cell, 23(22), 4402-4415. doi:10.1091/mbc.e11-12-1015Roncero, C. (2002). The genetic complexity of chitin synthesis in fungi. Current Genetics, 41(6), 367-378. doi:10.1007/s00294-002-0318-7Rothfels, K., Tanny, J. C., Molnar, E., Friesen, H., Commisso, C., & Segall, J. (2005). Components of the ESCRT Pathway, DFG16, and YGR122w Are Required for Rim101 To Act as a Corepressor with Nrg1 at the Negative Regulatory Element of the DIT1 Gene of Saccharomyces cerevisiae. Molecular and Cellular Biology, 25(15), 6772-6788. doi:10.1128/mcb.25.15.6772-6788.2005Santos, B., & Snyder, M. (1997). Targeting of Chitin Synthase 3 to Polarized Growth Sites in Yeast Requires Chs5p and Myo2p. Journal of Cell Biology, 136(1), 95-110. doi:10.1083/jcb.136.1.95Sato, M., Dhut, S., & Toda, T. (2005). New drug-resistant cassettes for gene disruption and epitope tagging inSchizosaccharomyces pombe. Yeast, 22(7), 583-591. doi:10.1002/yea.1233Schekman, R., & Orci, L. (1996). Coat Proteins and Vesicle Budding. Science, 271(5255), 1526-1533. doi:10.1126/science.271.5255.1526Sopko, R., Huang, D., Preston, N., Chua, G., Papp, B., Kafadar, K., … Andrews, B. (2006). Mapping Pathways and Phenotypes by Systematic Gene Overexpression. Molecular Cell, 21(3), 319-330. doi:10.1016/j.molcel.2005.12.011Spang, A. (2008). Membrane traffic in the secretory pathway. Cellular and Molecular Life Sciences, 65(18), 2781-2789. doi:10.1007/s00018-008-8349-yStarr, T. L., Pagant, S., Wang, C.-W., & Schekman, R. (2012). Sorting Signals That Mediate Traffic of Chitin Synthase III between the TGN/Endosomes and to the Plasma Membrane in Yeast. PLoS ONE, 7(10), e46386. doi:10.1371/journal.pone.0046386Trautwein, M., Schindler, C., Gauss, R., Dengjel, J., Hartmann, E., & Spang, A. (2006). Arf1p, Chs5p and the ChAPs are required for export of specialized cargo from the Golgi. The EMBO Journal, 25(5), 943-954. doi:10.1038/sj.emboj.7601007Trilla, J. A., Durán, A., & Roncero, C. (1999). Chs7p, a New Protein Involved in the Control of Protein Export from the Endoplasmic Reticulum that Is Specifically Engaged in the Regulation of Chitin Synthesis in Saccharomyces cerevisiae. Journal of Cell Biology, 145(6), 1153-1163. doi:10.1083/jcb.145.6.1153Valdivia, R. H., Baggott, D., Chuang, J. S., & Schekman, R. W. (2002). The Yeast Clathrin Adaptor Protein Complex 1 Is Required for the Efficient Retention of a Subset of Late Golgi Membrane Proteins. Developmental Cell, 2(3), 283-294. doi:10.1016/s1534-5807(02)00127-2Wadskog, I., Forsmark, A., Rossi, G., Konopka, C., Öyen, M., Goksör, M., … Adler, L. (2006). The Yeast Tumor Suppressor Homologue Sro7p Is Required for Targeting of the Sodium Pumping ATPase to the Cell Surface. Molecular Biology of the Cell, 17(12), 4988-5003. doi:10.1091/mbc.e05-08-0798Wang, C.-W., Hamamoto, S., Orci, L., & Schekman, R. (2006). Exomer: a coat complex for transport of select membrane proteins from the trans-Golgi network to the plasma membrane in yeast. Journal of Cell Biology, 174(7), 973-983. doi:10.1083/jcb.200605106Weiskoff, A. M., & Fromme, J. C. (2014). Distinct N-terminal regions of the exomer secretory vesicle cargo Chs3 regulate its trafficking itinerary. Frontiers in Cell and Developmental Biology, 2. doi:10.3389/fcell.2014.00047Yahara, N., Ueda, T., Sato, K., & Nakano, A. (2001). Multiple Roles of Arf1 GTPase in the Yeast Exocytic and Endocytic Pathways. Molecular Biology of the Cell, 12(1), 221-238. doi:10.1091/mbc.12.1.221Yenush, L., Merchan, S., Holmes, J., & Serrano, R. (2005). pH-Responsive, Posttranslational Regulation of the Trk1 Potassium Transporter by the Type 1-Related Ppz1 Phosphatase. Molecular and Cellular Biology, 25(19), 8683-8692. doi:10.1128/mcb.25.19.8683-8692.2005Yenush, L. (2002). The Ppz protein phosphatases are key regulators of K+ and pH homeostasis: implications for salt tolerance, cell wall integrity and cell cycle progression. The EMBO Journal, 21(5), 920-929. doi:10.1093/emboj/21.5.920Zanolari, B., Rockenbauch, U., Trautwein, M., Clay, L., Barral, Y., & Spang, A. (2011). Transport to the plasma membrane is regulated differently early and late in the cell cycle in Saccharomyces cerevisiae. Journal of Cell Science, 124(7), 1055-1066. doi:10.1242/jcs.07237

    Subtomogram averaging of COPII assemblies reveals how coat organization dictates membrane shape

    Get PDF
    Eukaryotic cells employ membrane-bound carriers to transport cargo between compartments in a process essential to cell functionality. Carriers are generated by coat complexes that couple cargo capture to membrane deformation. The COPII coat mediates export from the endoplasmic reticulum by assembling in inner and outer layers, yielding carriers of variable shape and size that allow secretion of thousands of diverse cargo. Despite detailed understanding of COPII subunits, the molecular mechanisms of coat assembly and membrane deformation are unclear. Here we present a 4.9 Å cryo-tomography subtomogram averaging structure of in vitro-reconstituted membrane-bound inner coat. We show that the outer coat (Sec13-Sec31) bridges inner coat subunits (Sar1-Sec23-Sec24), promoting their assembly into a tight lattice. We directly visualize the membrane-embedded Sar1 amphipathic helix, revealing that lattice formation induces parallel helix insertions, yielding tubular curvature. We propose that regulators like the procollagen receptor TANGO1 modulate this mechanism to determine vesicle shape and size
    corecore