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Abstract

Protein export from the endoplasmic reticulum (ER) is an initial and rate-limiting step of molecular trafficking and secretion.
This is mediated by coat protein II (COPII)-coated vesicles, whose formation requires small GTPase Sar1 and 6 Sec proteins
including Sec23 and Sec31. Sec31 is a component of the outer layer of COPII coat and has been identified as a
phosphoprotein. The initiation and promotion of COPII vesicle formation is regulated by Sar1; however, the mechanism
regulating the completion of COPII vesicle formation followed by vesicle release is largely unknown. Hypothesizing that the
Sec31 phosphorylation may be such a mechanism, we identified phosphorylation sites in the middle linker region of Sec31.
Sec31 phosphorylation appeared to decrease its association with ER membranes and Sec23. Non-phosphorylatable mutant
of Sec31 stayed longer at ER exit sites and bound more strongly to Sec23. We also found that CK2 is one of the kinases
responsible for Sec31 phosphorylation because CK2 knockdown decreased Sec31 phosphorylation, whereas CK2
overexpression increased Sec31 phosphorylation. Furthermore, CK2 knockdown increased affinity of Sec31 for Sec23 and
inhibited ER-to-Golgi trafficking. These results suggest that Sec31 phosphorylation by CK2 controls the duration of COPII
vesicle formation, which regulates ER-to-Golgi trafficking.
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Introduction

Molecular trafficking and secretion is initiated by the rate-

limiting step of protein export from the endoplasmic reticulum

(ER). This process is mediated by coat protein II (COPII)-coated

vesicles, the formation of which is a crucial step. The COPII coat

consists of small GTPase Sar1 and 6 Sec proteins. Coat assembly

is initiated by the exchange of GDP for GTP on Sar1 [1,2], which

is catalyzed by the ER-localized guanine nucleotide exchange

factor Sec12 [3,4]. Sar1–GTP recruits the heterodimeric complex

Sec23–Sec24 to ER membranes [5,6,7]. Sec23 is a GTPase-

activating protein (GAP) for Sar1 [8]. Sec24 is thought to bind

directly to and sort cargo [9,10,11]. The Sec23–Sec24 heterodi-

mers recruited to ER membranes by Sar1–GTP in turn recruit

Sec13–Sec31. The Sec13–Sec31 heterodimers form a clathrin-like

cage lattice to promote budding of COPII vesicles from ER

membranes [12,13]. Other molecules not included in the COPII

coat also modulate COPII vesicle formation [14]. A transmem-

brane protein, Sec16, has been shown to be necessary for COPII

vesicle formation by binding to multiple components of the COPII

coat [15,16,17,18,19,20].

It is well established that COPII vesicle formation is initiated by

the activation of Sar1. However, the regulation of the subsequent

process has not been elucidated completely. One way of achieving

such a regulation could be Sec31 phosphorylation. Sec31 is

phosphorylated in yeast, and its phosphorylation–dephosphoryla-

tion cycle is implicated in the budding of COPII vesicles [21]. In

addition, mammalian Sec31 has been isolated as a phosphoprotein

[22]. However, the molecular nature underlying Sec31 phosphor-

ylation including the responsible kinase(s), phosphorylation sites,

and the functional significance in COPII vesicle formation have

not been well characterized.

Casein Kinase II (CK2) is a constitutively active serine/

threonine kinase that regulates cellular events such as cell cycle

and transcriptional regulation, cell survival, virus infection and

tumor growth [23]. CK2 is also known as a master kinase that

links these cellular events to other kinases [24]. Importantly, the

role of CK2 in the regulation of the secretory pathway has been

documented by its effect on the trafficking of cystic fibrosis

transmembrane conductance regulator (CFTR), mannose 6-

phosphate receptor (MPR), and taurine [25,26,27]. It is also

speculated that CK2 phosphorylates p115, a vesicle tethering

factor that is essential for ER-to-Golgi transport [28]. Similar to

the proteins described above Sec31 contains multiple CK2

consensus phosphorylation sites. Therefore, we hypothesized

that CK2 is responsible for Sec31 phosphorylation, and

attempted to determine the role of Sec31 phosphorylation in

COPII vesicle formation.
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Results

Sec31 Phosphorylation Reduces its Membrane
Association

To determine the role of Sec31 phosphorylation in COPII-

mediated ER-to-Golgi transport, we first examined whether Sec31

phosphorylation affects its membrane association by subcellular

fractionation. Ultracentrifugation was used to separate the

membranes from the cytosol. Sec31 was recovered from each

fraction by immunoprecipitation with anti-Sec31 and its phospho-

status was determined by western blotting using anti-phosphoser-

ine/threonine antibodies. As shown in Figure 1, phosphorylated

Sec31 was only found in the supernatant (cytoplasmic fraction),

whereas Sec31 was detected in both the supernatant and the pellet

(membrane fraction; indicated by calnexin). These findings

indicate that the phosphorylation of Sec31 reduces its membrane

association.

Sec31 is Phosphorylated at Serines 527, 799, and 1163
and at Threonine 1165

Since Sec31 phosphorylation appears to be important for its

membrane dissociation, we determined its phosphorylation sites.

Endogenous Sec31 was isolated from total cell lysates by

immunoprecipitation and analyzed by mass spectrometry. Peptide

fragments containing serines 527 (S527), 799 (S799), and 1163

(S1163) and threonine 1165 (T1165) were phosphorylated. These

sites (indicated by the arrows in Figure 2A) are distributed in the

linker region (S527 and S799) and C-terminal Sec23 binding site

(S1163 and T1165) of Sec31. To confirm their phosphorylation,

the 4 amino acids were mutated to alanines using QuikChange.

FLAG-tagged wild-type (WT) and alanine mutant Sec31 (4SA)

were expressed and immunoprecipitated from the total cell lysate.

Their phosphorylation was analyzed by western blotting using

anti-phosphoserine/threonine antibodies. As shown in Figure 2B,

the phosphorylation of the 4SA mutant was reduced by

approximately 60%. The 4SA mutant was still partially phos-

phorylated, which suggests that the 4SA mutant is able to form

complexes with endogenous WT Sec31 that can be phosphory-

lated or that there are other phosphorylation sites that were not

identified.

The Non-phosphorylatable Mutant of Sec31 Increases its
Membrane Association

Membrane association of the WT Sec31 and the 4SA mutant

was assessed by fluorescence recovery after photobleaching

(FRAP). GFP-tagged WT Sec31 and the 4SA mutant were

expressed transiently in HeLa cells. A GFP-positive dot (an ERES)

was then photobleached, and the fluorescence recovery was

monitored. As shown in Figure 3, the FRAP of the 4SA mutant

was slower than that of the WT. Analysis by fitting the FRAP data

to 2 equations (Materials and Methods) showed that the 4SA

mutant appeared to have a larger immobile fraction and kon/koff

(Table 1). To determine the cause of the difference in the FRAP of

WT and 4SA, the FRAP was performed in the presence of

cycloheximide. Cycloheximide inhibits protein synthesis resulting

in less cargo loading into transport vesicles. Lowering cargo

loading by cyclohexmide has been shown to change the turnover

of COPII coat [48]. The FRAP of 4SA in the presence or absence

of cyclohexmide did not change, suggesting that the difference

between WT and SA in Figure 3 may be due to the changes in the

turnover rather than lateral diffusion (data not shown). These

findings suggest that the 4SA mutant remains on the membranes

longer than the WT, which is consistent with the decreased

membrane association of phospho-Sec31 shown in Figure 1.

Dephosphorylation of the Linker Region of Sec31
Increases its Binding to Sec23

Sec23 forms the inner layer of the COPII coat on ER

membranes, whereas Sec31 is part of the outer layer. It is thought

that Sec31 is recruited to the membrane through direct binding to

Sec23 [15,22]. Therefore, the decreased association of Sec31 with

membranes due to phosphorylation led us to examine whether

Sec31 phosphorylation also affects its affinity for Sec23. For this

purpose, we generated a series of Sec31 non-phosphorylatable

alanine mutants. FLAG-tagged Sec31 (WT and alanine mutants)

and GFP-tagged Sec23 were then co-expressed, and Sec23 was

recovered from total cell lysates by immunoprecipitation with anti-

GFP antibodies. As shown in Figure 4A, double mutation of the

serines at 527 and 799 (S527/S799) in the linker region led to a 3-

fold increase in Sec31 binding to Sec23, whereas there was no or a

minimal effect with only a single mutation of S527 or S799,

respectively. These effects were specific to Sec23. As shown in

Figure 4B, the association of Sec31 with Sec13 was not affected by

these mutations. These results indicate that Sec31 phosphorylation

regulates its binding to Sec23 but not Sec13. Importantly, the

Figure 1. Membrane associated Sec31 is not phosphorylated. HeLa cells were subjected to subcellular fractionations to prepare cytosol (Sup)
and membranes (Ppt) by ultracentrifugation. The recovery of the transmembrane protein, calnexin in the membrane fraction (Ppt) indicates that the
fractionation was performed properly. Subsequently, Sec31 from both fractions were immunoprecipitated and subjected to western blotting with
anti-Sec31 and anti-phospho-serine/threonine antibodies.
doi:10.1371/journal.pone.0054382.g001
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increased affinity of the Sec31 alanine mutants for Sec23 may

explain the larger immobile fraction and slower FRAP of the 4SA

mutant shown in Figure 3.

CK2 Phosphorylates Sec31
Our preliminary data showed that Sec31 was phosphorylated

using 32P-ATP as well as 32P-GTP as a phosphate source (data not

shown), which is consistent with the fact that CK2 and CK2-like

kinases can use both ATP and GTP as a phosphate source [28].

Therefore, we tested whether CK2 could phosphorylate Sec31.

FLAG-tagged Sec31 was expressed, immunoprecipitated from the

total cell lysates, and incubated with recombinant CK2 protein

(recCK2) before western blotting using anti-phosphoserine/

threonine antibodies. recCK2 treatment increased Sec31 phos-

phorylation more than 3-fold, indicating that CK2 can phosphor-

ylate Sec31 directly at least in vitro (Figure 5A). We did not observe

phosphorylation of Sec13 treated with recCK2 in the same way

suggesting that the phosphorylation of Sec31 by recCK2 is specific

(Figure 5B). In addition, recCK2 treatment did not change the

weak phosphorylation of 4SA suggesting that there might be

additional unidentified phosphorylation sites in Sec31 (data not

shown). To confirm whether CK2 is responsible for Sec31

phosphorylation in cells, we depleted CK2 by RNAi. Depletion

or inhibition of CK2 reduced Sec31 phosphorylation (Figure 5C

and 5D, respectively). These results suggest that CK2 is

responsible for Sec31 phosphorylation. The protein levels of

CK2 after depletion were 10%–15%, as determined by western

blotting using anti-CK2 (Figure S1).

CK2 Regulates Sec31–Sec23 Interactions Through
Sec31phosphorylation

Since Sec31 phosphorylation decreased its binding to mem-

branes and the alanine mutations increased Sec31 binding to

Sec23, we predicted that phospho-Sec31 may not bind to Sec23.

To test the role of CK2 in Sec31–Sec23 interactions, we

manipulated CK2 levels prior to Sec31–Sec23 co-immunoprecip-

itation in a process similar to that of the experiment shown in

Figure 4. As shown in Figure 6, depletion of CK2 by siRNA1

increased Sec31 binding to Sec23 by approximately 3-fold. In

contrast, CK2 overexpression decreased such binding (data not

shown). We also noticed that CK2 was co-immunoprecipitated

with Sec31 in the presence of 1 mM Ca++ (Figure S2).

Figure 2. Identification of the phosphorylation sites in Sec31. (A) The predicted domain structure of human Sec31 by SMART (http://smart.
embl-heidelberg.de). The domain structure of Sec31 is: N-terminal WD repeats for Sec13 binding, a linker region, and a C-terminal extensin-like
proline-rich domain for Sec23 binding. The phosphorylation sites identified by mass-spectrometry were indicated by arrows. (B) HEK293 cells were
transfected with FLAG-tagged wild type (WT) Sec31 or its S527A/S799A/S1163A/T1165A mutant (4SA). Tagged proteins were immunoprecipitated
with antibodies to the FLAG tag and subjected to western blotting with anti-FLAG and anti-phospho-serine/threonine antibodies. The
immunoprecipitated (IP’ed) phospho-Sec31 levels were normalized with IP’ed Sec31 levels and expressed as the normalized ratio.
doi:10.1371/journal.pone.0054382.g002

Table 1. Kinetics of Sec31 turnover at single ERES.

Mobile
fraction*

t1/2 maximum
recovery (s)* kon/koff**

Wild type (WT) 0.22160.004 6.13 s 60.01 8.4760.14

4SA mutant 0.11860.002 6.46 s 60.01 12.3260.20

*Calculated using the equation 1 in the text and [48].
**Calculated using the equation 2, which is the reaction dominant model
described in [49].
doi:10.1371/journal.pone.0054382.t001
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CK2 Depletion Reduces Membrane Trafficking
To investigate the function of CK2 in the secretory pathway, we

tested whether depletion of CK2 by RNAi affects membrane

trafficking. We first monitored the secretion of secretory alkaline

phosphatase (SEAP) by measuring SEAP activity in the culture

supernatants of mock or CK2 siRNA-treated cells. As shown in

Figure 7A, the secretion of SEAP was reduced by approximately

50% in CK2-depleted cells. To confirm the phenotypes of CK2

knockdown by siRNAs, we used siRNA1 and siRNA2. The

depletion of CK2 by siRNA1 was more efficient with just 10%–

15% of the original CK2 protein level remaining after depletion

(Figure S1). The reduction of CK2 by siRNA2 (Figure S3A) was

less efficient than that by siRNA1, but the trend in the SEAP assay

was the same (Figure S3B). To further determine whether CK2

exerts its effect in ER-to-Golgi transport, we assessed the

trafficking of a temperature-sensitive mutant of vesicular stomatitis

virus G protein (VSVG). HeLa cells were transfected with VSVG-

GFP at 40uC and incubated overnight. After being shifted to 32uC
for 15 min, the cells were processed for fluorescence microscopy.

The GFP fluorescence intensity in the Golgi region was quantified

using Image J software. As shown in Figure 7B, VSVG in the

Golgi region was reduced by approximately 40% in CK2-depleted

cells. The immunofluorescence images in Figure 7C indicated

VSVG is retained in the ER and ERES in CK2-depleted cells. To

examine the primary effect of CK2 inhibition in SEAP transport, a

CK2 inhibitor was then used. As shown in Figure 7D, the CK2

inhibitor also inhibited SEAP transport similar to CK2 RNAi

(Figure 7A). Furthermore, to test if the inhibition of CK2 is

primarily caused by inhibition of Sec31 phosphorylation, the

SEAP transport was measured in 4SA mutant expressing cells. As

shown in Figure 7D, the expression of 4SA mutant reduced SEAP

transport by 70%. The 4SD mutant did not affect the transport.

These data suggest that CK2 is involved in the regulation of

membrane trafficking particularly in ER-to-Golgi transport

though Sec31 phosphorylation.

Finally, we measured the colocalization of wild type Sec31 (WT)

or 4SA mutant (SA) with Sec24, which is known to colocalize with

Sec31 and Sec23 at ERES. As shown in Figure S4, the 4SA

mutant colocalized with Sec24 better than the wild type. This is in

agreement with our finding that unphosphorylated Sec31 found in

the membrane fraction bound better to Sec23 and its FRAP was

slower than that of wild type.

Discussion

COPII vesicle formation is an essential part of protein export

from the ER and thus membrane trafficking. However, the

regulation of this vital process has not been elucidated completely.

In this study, we demonstrated that Sec31 phosphorylation by

CK2 plays a crucial role in COPII vesicle formation. Sec31

phosphorylation reduces its association with ER membranes as

well as with Sec23. We also identified the Sec31 phosphorylation

sites, namely serines 527, 799, and 1163 and threonine 1165,

which are located in the middle linker region between the N-

terminal WD-40 repeats and C-terminal extensin-like proline-rich

domain, and near the C-terminus. The N-terminal WD-40 repeats

and C-terminal proline-rich domain of Sec31 have been shown to

interact with Sec13 and Sec23, respectively [15,22]. However, the

function of the linker region between the N-terminal and C-

terminal domains is unclear. Our results show that a double non-

phosphorylatable mutation of S527 and S799 in the linker region

markedly increases Sec31 binding to Sec23. This suggests that

Sec31 phosphorylation in the linker region changes the confor-

mation of the C-terminal Sec23 binding domain, thereby reducing

Sec31 binding to Sec23. In other words, the linker region may be a

domain for regulating Sec31 binding to Sec23 through phosphor-

ylation.

We also identified CK2 as a kinase capable of Sec31

phosphorylation. Furthermore, we demonstrated that CK2

facilitates ER-to-Golgi transport and protein secretion. Given that

Sec31 membrane association is regulated by its phosphorylation

and that CK2 can phosphorylate Sec31, we speculated that the

functional role of CK2 in membrane trafficking may be related to

its capacity to phosphorylate Sec31 and thus change Sec31

membrane associations. Further studies are required to obtain

direct evidence to prove this speculation.

CK2 or a CK2-like kinase has been suggested to be responsible

for phosphorylation of the vesicle tethering factor p115 [28].

Similar to Sec31, de-phosphorylated p115 has been shown to be

associated with ER membranes [29], although the contribution of

p115 phosphorylation to the early secretory pathway may be

minimal [30,31]. p115 phosphorylation has also been implicated

in Golgi re-assembly after mitosis. Therefore, our finding

represents further evidence of the importance of CK2 for COPII

vesicle formation and ER-to-Golgi transport.

Sec31 has been shown to be phosphorylated by several other

kinases and several phosphorylation sites have been identified

(Table S1) [32,33,34,35]. Four such sites were also identified in

our study. We were unable to detect Y804 phosphorylation of

Sec31 from HeLa cell lysates by either mass spectrometry or

western blotting with anti-phospho-tyrosine antibodies. It is also

notable that the region containing S527 and S532 is missing from

Sec31 isoform 2, suggesting that CK2 phosphorylation may be

only part of the repertoire of kinase regulation of Sec31. In this

regard, phosphatases(s) responsible for Sec31 dephosphorylation

should be identified to better understand the mechanism of Sec31

Figure 3. The dynamic of membrane association and dissoci-
ation of Sec31 is reduced with the non-phosphorylatable
mutant. (A) Shown are the results of fluorescence recovery after
photobleaching (FRAP) of Sec31 and its 4SA. GFP-tagged wild type
Sec31 (WT) and the 4SA mutant were expressed transiently in HeLa
cells. A GFP positive dot was photobleached and subsequent
fluorescence recovery was monitored for 30 s with 1.2 s intervals. Eight
dots were photobleached per cell and results were normalized.
Represented are the average of ,7 experiments. Bars, SEM. (B) The
representative images at the indicated time points of Figure 3A. Sizes,
1.85 (w) x 1.85 (h) mm.
doi:10.1371/journal.pone.0054382.g003
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Figure 4. Dephosphorylation of Sec31 at Serines 527 and 799 increases its affinity to Sec23. (A) HEK293 cells were co-transfected with
indicated FLAG-tagged Sec31 mutants and GFP-tagged Sec23. Sec23 was immunoprecipitated with anti-GFP beads and subjected to western
blotting with anti-FLAG and anti-GFP antibodies. The ‘‘input 10% Sec31’’ is a western blot of 10% aliquots of total cell lysates. The normalized ratio of
Sec31 bound to Sec23 was shown below. W985A is a known Sec23-binding defect mutant [52]. The most right lane is a negative control with GFP.
The graph below the blots shows the average of the quantification of three independent experiments with SD. (B) FLAG-Sec31 and GFP-Sec13
(instead of GFP-Sec23) were co-expressed and their interactions detected by co-immunoprecipitation and western blotting following the procedures
described in Figure 4A. The lane on right most is a negative control with GFP.
doi:10.1371/journal.pone.0054382.g004
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phosphorylation. We noticed that CK2 was co-immunoprecipi-

tated with Sec31 in the presence of 1 mM Ca++ (Figure S2). This

supports our finding that CK2 is a kinase responsible for Sec31

phosphorylation, although the interaction between CK2 and

Sec31 may be indirect. Other molecules that have been shown to

interact with Sec31, such as ALG-2 and p125, may participate in

the CK2–Sec31 interaction and modulate Sec31 phosphorylation

by CK2 [36,37,38,39].

Other protein modifications, such as ubiquitination, have also

been implicated in the regulation of COPII vesicle formation [40].

Sec31 ubiquitination appears to be important for COPII vesicle

formation for large cargo such as collagen. This suggests that

ubiquitination may control the size of COPII vesicles. Interest-

ingly, Sec23 binding to Sec31 has been shown to be crucial for

collagen trafficking. A mutation in Sec23 at the Sec31 binding site

was identified in patients with cranio-lenticulo-sutural dysplasia,

which is caused by abnormal collagen trafficking [41,42,43].

In conclusion, we found that Sec31 phosphorylation by CK2

decreases its association with ER membranes and Sec23. We also

demonstrated that CK2 regulates ER-to-Golgi transport. These

findings suggest that CK2 may play an important role in the

regulation of COPII vesicle trafficking by the phosphorylation–

dephosphorylation cycle of Sec31. Identification of the phospha-

tase(s) responsible for Sec31 dephosphorylation will help in further

understanding the molecular mechanisms underlying the regula-

tion of COPII vesicle formation through Sec31 phosphorylation.

Materials and Methods

Antibodies and siRNAs
The antibodies used in this study are as follows: monoclonal

anti-casein kinase II, alpha-subunit (anti-CK2; clone 1AD9,

Calbiochem, EMD Millipore, Darmstadt, Germany), anti-gamma

tubulin (anti-gamma Tub; clone GTU-88) and anti-FLAG tag

(anti-FLAG, clone M2, Sigma-Aldrich, St. Louis, MO), anti-

GM130 (clone 35), anti-Sec31A (clone 32), anti-phospho-serine/

threonine antibodies (anti-pS/pT; clone 22a) and anti-calnexin

(clone 37, BD Biosciences, San Jose, CA), anti-Myc tag (anti-Myc,

clone 9E10, a gift from Dr. Ira Mellman (Genentech)), polyclonal

anti-giantin [44] and anti-GFP [45], Alexa-conjugated secondary

antibodies (Invitrogen, Carlsbad, CA), and horseradish peroxidase

(HRP)-conjugated secondary antibodies (Pierce, Rockford, IL).

Anti-FLAG tag-agarose (M2-agarose) was obtained from Sigma

(St. Louis, MO).

The siRNAs used in this study are as follows: siRNA to human

casein kinase II alpha 1: siRNA1; CTGGTCGCTTACAT-

CACTTTA (Qiagen, Valencia, CA) and siRNA2; TCAAGAT-

GACTACCAGCTGT (Yale Pathology, New Haven, CT), and

siRNA to eGFP: AAGACGTAAACGGCCACAAGTTC (Dhar-

macon, Thermo Fisher Scientific, Lafayette, CO).

Cell Culture and Transfection
HeLa or HEK293 cells (CCL-2 or CRL-1573, respectively,

ATCC, Manassas, VA) were grown in Dulbecco’s modified

Eagle’s medium supplemented with 10% FBS (Invitrogen,

Figure 5. CK2 phosphorylates human Sec31. (A) FLAG-Sec31
expressed in HRK293 cells was immunoprecipitated and incubated
with/without recombinant CK2 (recCK2) followed by western blotting
with anti-phospho serine/threonine and anti-FLAG antibodies (IP’ed
Sec31). The phospho-Sec31 levels were normalized to IP’ed Sec31 levels
and expressed as the normalized ratio. (B) FLAG-Sec13 expressed in
HRK293 cells was immunoprecipitated, treated and subjected to
western blotting as described in (A). (C) Cells were first transfected
with siRNA1 to CK2 alpha1 (RNAi +) or to eGFP (RNAi 2). After 2 days
incubation, cells were transfected with FLAG-tagged Sec31 transfection
followed by immunoprecipitation and western blotting as described in
(A). Total cell lysates were also analyzed for CK2 by western blotting to
determine the depletion efficiency as shown in the bottom panel. (D)
FLAG-Sec31 expressed in HRK293 cells treated with or without CK2
inhibitor was immunoprecipitated and subjected to western blotting as
described in (A).
doi:10.1371/journal.pone.0054382.g005

Figure 6. Depletion of CK2 increases Sec31’s affinity to Sec23.
Two days before the FLAG-tagged Sec31 and GFP-Sec23 co-transfec-
tion, HEK293 cells were transfected with (RNAi +) or without siRNA1 to
CK2 alpha1 (RNAi 2). GFP-tagged Sec23 was immunoprecipitated with
anti-GFP beads and subjected to western blot with anti-FLAG and anti-
GFP antibodies. The ‘‘input 10% Sec31’’ is a western blot of 10%
aliquots of total cell lysates in order to show the transfection and
binding efficiency of Sec31. The co-immunoprecipitated (co-IP’ed)
Sec31 were normalized with input Sec31 and expressed as the
normalized ratio. In order to check the efficiency of CK2 RNAi, western
blotting of the total cell lysates with anti-CK2 antibodies was shown in
the bottom panel.
doi:10.1371/journal.pone.0054382.g006

CK2 Phosphorylates Sec31

PLOS ONE | www.plosone.org 6 January 2013 | Volume 8 | Issue 1 | e54382



Carlsbad, CA). Transient transfection with plasmids and siRNAs

were performed using Lipofectamine LTX and RNAiMAX

(Invitrogen), respectively, following the manufacturer’s instruc-

tions.

Plasmids and Stable Cell Lines
Plasmids to express secretory alkaline phosphatases (SEAP) and

VSV-G-tsO45-SP-YFP (VSVG-YFP), and YFP-Sec23a were

kindly provided by Drs. Craig Roy and Derek Toomre (Yale

University, CT), and Dr. David Stephens (Bristol University,

Bristol, UK). Myc-CK2 alpha 1 was purchased from Origene

(Rockville, MD). A cDNA of human Sec31a (clone KIAA 0905)

was obtained from Kazusa DNA Research Institute (Kisarazu,

Japan). FLAG- or GFP-tagged Sec31 was constructed by

subcloning of the human Sec31a cDNA into p36FLAG-CMV

(Sigma) or pQCXIP-GFP (Clontech, Mountain View, CA). Point

mutations of Sec31 were introduced using QuikChange kit

(Agilent, Santa Clara, CA).

HeLa cells stably expressing SEAP were established as

previously described [46].

Immunoprecipitation, Western Blotting and Cell
Fractionation

Cell lysates were prepared with immunoprecipitation buffer

(10 mM HEPES-KOH, pH 7.4, 100 mM KCl, 0.1 mM dithio-

threitol (DTT), 2.5 mM MgCl2, 1% Triton X-100, protease

inhibitor cocktails (Roche, South San Francisco, CA) and

phosphatases inhibitor cocktails 1 and 2 (Sigma). After incubation

for 10 min on ice, the lysate was clarified by centrifugation at

14,000 g for 20 min. For immunoprecipitation, the supernatants

were incubated with M2-agarose (Sigma), or anti-Sec31 (Fred

Gorelick) or anti-GFP bound to Protein A-Sepharose (GE

Healthcare, Piscataway, NJ) for 30 min at 4uC. After washing

three times with immunoprecipitation buffer, the samples were

fractionated by SDS-PAGE followed by western blotting with

antibodies indicated in the figures. Quantification of western blots

was performed using Image J software. For some experiments,

recombinant CK2 from New England BioLabs (Ipswich, MA) was

used to treat the immunoprecipitants for 30 min at 37uC. To

identify the phosphorylation sites, immunoprecipitated endoge-

nous Sec31 from total cell lysates was incubated with 32P-ATP and

cytosol at 37uC for 30 min followed by a separation by SDS-

PAGE. Peptides generated by trypsin were analyzed by mass-

spectrometry performed by Yale Keck facility (New Haven, CT).

For subcellular fractionation, cells in culture dishes were

scraped, suspended in cell fractionation buffer (0.26 M sucrose,

20 mM HEPES-KOH, pH 7.4, 4 mM MgCl2, protease inhibitor

cocktail and phosphatases inhibitor cocktails 1 and 2) and passed

through 25 G needle 6 times using 1 ml syringe, followed by a 4

seconds sonication. The samples were incubated on ice for 20 min,

and then centrifuged at 4,400 rpm (2,000 g, A-8-11 rotor,

Eppendorf, Hauppauge, NY) for 5 min at 4uC. The supernatants

were collected, layered onto 1.2 M sucrose containing Cell

fractionation buffer and centrifuged at 55,000 rpm (,200,000 g)

in a TLS-55 rotor (Beckman Coulter, Indianapolis, IN) for 30 min

at 4uC. The supernatants and pellets of the 100,000 g spin were

collected as the cytoplasmic and membrane fractions, respectively.

Immunofluorescence Microscopy
Cells on coverslips were fixed with 10% formalin in phosphate

buffered saline (PBS) for 15 min, permeabilized with 0.1% Triton

X-100 in PBS for 5 min at room temperature. The cells were

blocked with 4% bovine serum albumin (BSA) in PBS for 15 min,

and then incubated for 15 min with primary antibodies diluted in

4% BSA in PBS. The cells were washed three times with PBS, and

incubated for 15 min with secondary antibodies conjugated to

Alexa fluorophors (Invitrogen). After washing the cells, the

coverslips were mounted on microscope slides and imaged using

a FV1000 confocal microscope equipped with a 606oil objectives

(Olympus, Tokyo, Japan). Image data were processed and

quantified using Image J software and Adobe Photoshop.

Figure 7. Depletion of CK2 reduces ER to Golgi trafficking. (A)
HeLa cells stably expressing secretory alkaline phosphatase (SEAP) were
transfected with siRNA1 to CK2 alpha1 (RNAi, 20 nM) or to eGFP (mock).
After 90 h, cells were washed and fed with new media. In 6 h, aliquots
of culture supernatants were collected and their phosphatase activities
were measured in triplicates. Data are presented as a secretion index,
which is the ratio of SEAP activity detected in the culture medium to the
cellular SEAP activity. Bars, SD (n = 3). (B) CK2 alpha1 siRNA1- or mock-
treated cells were transfected with VSV-G-tsO45-YFP plasmid and
incubated at the restrictive temperature of 40oC overnight before
shifting them to the permissive temperature of 32uC. In 15 min, cells
were fixed, permeabilized, and labeled with anti-GM130 antibodies to
define the Golgi region. Cell images were captured and analyzed using
Image J and Photoshop (n = ,20 cells). Error bars represent the SEM of
three independent experiments. (C) The representative images at the
indicated time points of Figure 7B. Bar, 10 mm. (D) HeLa cells stably
expressing secretory alkaline phosphatase (SEAP) were transfected with
wild type (WT), 4SA mutant (4SA) or 4SD mutant (4SD). After 24 h, cells
were washed and fed with new media with or without CK2 inhibitor 1
(Calbiochem). In 6 h, aliquots of culture supernatants were collected
and their phosphatase activities were measured in triplicates. Data are
presented as a normalized secretion (Secretion index of WT = 100%).
Bars, SD (n = 3).
doi:10.1371/journal.pone.0054382.g007
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Fluorescence Recovery After Photobleaching (FRAP)
FRAP assay was performed as described previously [47]. Briefly,

HeLa cells on a MatTek glass bottom dish were transfected with

GFP-Sec31 wild type or 24SA mutant and incubated overnight.

FRAP experiments were performed with a FV1000 confocal

microscope (Olympus). After the pre-bleach acquisition, a GFP-

Sec31 positive dot was photobleached using the 488 laser at

maximum power, and then the fluorescence recovery was followed

at 37uC for 30 s with 1.2 s intervals. Eight photobleaches were

performed in a cell. Image data were processed and quantified

using Image J software. After normalization, the data from 7,10

experiments were averaged. The analysis of the mobile fraction

and of the half time of maximum recovery, and kon/koff of each

experiment was carried out after best fitting of the experimental

data obtained to a single curve using CurveExpert Pro software

(curveexpert.com). The mobile fraction and t1/2 maximum

recovery (s) were obtained by fitting the FRAP data to the

following equation,

F tð Þ~A:(1{exp({lt))zB, t1=2~ln 2ð Þ=l ð1Þ

where ‘‘A’’ represents the mobile fraction, ‘‘B’’ is the fluorescence

directly after photobleaching (%), and l is the rate of fluorescence

recovery from which t1/2 is determined [48]. The kon/koff was

obtained by fitting the FRAP data to the reaction dominant

model,

F tð Þ~1{ kon= konzkoff

� �� �
exp {koff t
� �

ð2Þ

where ‘‘kon’’ represents the on rate at the localized binding sites

(association rate constant), and ‘‘koff’’ represents the off rate at the

localized binding sites (dissociation rate constant) [49].

Secretory Alkaline Phosphatases (SEAP) Transport Assay
SEAP transport assay was performed as previously described

[50]. Briefly, HeLa cells stably expressing SEAP were transfected

with indicated siRNAs. After 90 h incubation, cells were washed

and incubated in fresh culture media for 6 h. The culture

supernatant and cells were collected and their SEAP activities

were measured using Phospha-light (Roche). Data are presented as

a secretion index, which is the ratio of SEAP activity detected in

the culture supernatant to that in the cells. In some experiments,

CK2 inhibitor (InSolution Casein Kinase II Inhibitor 1,

Calbiochem) was used at 1:1000 dilution.

Vesicular Stomatitis Virus G Protein (VSVG) Transport
Assay

VSVG transport assay was performed as previously described

[51]. Briefly, HeLa cells were transfected with siRNA. In 72 h,

cells were again transfected with VSVG-YFP plasmid and

incubated at the restricted temperature of 40uC overnight. After

shifting the permissive temperature of 32uC, cells were incubated

for 20 min, and processed for immunofluorescence.

Supporting Information

Figure S1 Depletion of CK2 by siRNA1. HeLa cells were

transfected with a siRNA (siRNA1) for CK2 with indicated

concentration and the efficiency of CK2 depletion was determined

by western blotting. The CK2 protein levels among the samples

were normalized by gamma Tubulin protein levels, and quantified

by Image J software. The CK2 depletion by CK2 siRNA1 was

efficient with 10,15% remaining CK2 protein level in the

experiments shown in Figures 5,7. Here shows one representative

result.

(TIF)

Figure S2 CK2 interacts with Sec31. HEK293 cells were co-

transfected with Myc-CK2 and GFP-Sec31 or GFP and incubated

for 48 h. In the presence of 1 mM Ca++ in immunoprecipitation

buffer, cells were lysed and GFP-tagged protein was immunopre-

cipitated with anti-GFP beads and subjected to western blotting

with anti-Myc and anti-GFP antibodies. The ‘‘input 1% CK2’’ is a

western blot of 1% aliquots of total cell lysates to show the

transfection and binding efficiency of CK2.

(TIF)

Figure S3 Other CK2 siRNA also reduces trafficking. (A)

siRNA2 also reduced CK2 protein level. CK2 protein level was

also decreased by siRNA2 but to a less lesser extent (,50%

reduction). (B) Secretory alkaline phosphatase (SEAP) secretion

assay using cells transfected with siRNA2. Similar to siRNA1

shown in Figure 7A, reduction of CK2 protein level also reduced

SEAP secretion by 75%.

(TIF)

Figure S4 Sec31 4SA mutant colocalized better with
Sec24 than wild type Sec31. (A) HeLa cells were transfected

with GFP-Sec24c and wild type Sec31 (WT) or 4SA mutant (SA).

After incubation for 18 h, cells were fixed and stained with

immunofluorescence with anti-FLAG shown in red and Hoechst

shown in blue. The bottle panels are 4 times magnification of the

boxed area of the top panels. Bar, 20 mm. The colocalization of

Sec31 and Sec24 were measured using Image J software and

shown in (B). Bar, SD.

(TIF)

Table S1 Phosphorylation sites of Sec31 and experi-
mental conditions in published studies (PMID).
(DOC)
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