25 research outputs found

    The emerging role of exosome and microvesicle- (EMV-) based cancer therapeutics and immunotherapy

    Get PDF
    This document is the Accepted Manuscript version of the following article: Colin Moore, Uchini Kosgodage, Sigrun Lange, and Jameel M. Inal, ‘The emerging role of exosome and microvesicle- (EMV-) based cancer therapeutics and immunotherapy’, International Journal of Cancer, Vol. 141 (3): 428-436, August 2017. DOI: https://doi.org/10.1002/ijc.30672. © 2017 UICC. This manuscript version may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.There is an urgent need to develop new combination therapies beyond existing surgery, radio- and chemo-therapy, perhaps initially combining chemotherapy with the targeting specificities of immunotherapy. For this, strategies to limit inflammation and immunosuppression and evasion in the tumour microenvironment are also needed. To devise effective new immunotherapies we must first understand tumour immunology, including the roles of T cells, macrophages, myeloid suppressor cells and of exosomes and microvesicles (EMVs) in promoting angiogenesis, tumour growth, drug resistance and metastasis. One promising cancer immunotherapy discussed uses cationic liposomes carrying tumour RNA (RNA-lipoplexes) to provoke a strong anti-viral-like (cytotoxic CD8+ ) anti-tumour immune response. Mesenchymal stem cell-derived EMVs, with their capacity to migrate towards inflammatory areas including solid tumours, have also been used. As tumour EMVs clearly exacerbate the tumour microenvironment, another therapy option could involve EMV removal. Affinity-based methods to deplete EMVs, including an immunodepletion, antibody-based affinity substrate, are therefore considered. Finally EMV and exosome-mimetic nanovesicles (NVs) delivery of siRNA or chemotherapeutic drugs that target tumours using peptide ligands for cognate receptors on the tumour cells are discussed. We also touch upon the reversal of drug efflux in EMVs from cancer cells which can sensitize cells to chemotherapy. The use of immunotherapy in combination with the advent of EMVs provides potent therapies to various cancers.Peer reviewe

    Genome-wide association study identifies susceptibility loci for acute myeloid leukemia

    Get PDF
    Acute myeloid leukemia (AML) is a hematological malignancy with an undefined heritable risk. Here we perform a meta-analysis of three genome-wide association studies, with replication in a fourth study, incorporating a total of 4018 AML cases and 10488 controls. We identify a genome-wide significant risk locus for AML at 11q13.2 (rs4930561; P = 2.15 × 10-8; KMT5B). We also identify a genome-wide significant risk locus for the cytogenetically normal AML sub-group (N = 1287) at 6p21.32 (rs3916765; P = 1.51 × 10-10; HLA). Our results inform on AML etiology and identify putative functional genes operating in histone methylation (KMT5B) and immune function (HLA)

    Genome-wide association study identifies susceptibility loci for acute myeloid leukemia

    Get PDF
    Acute myeloid leukemia (AML) is a hematological malignancy with an undefined heritable risk. Here we perform a meta-analysis of three genome-wide association studies, with replication in a fourth study, incorporating a total of 4018 AML cases and 10488 controls. We identify a genome-wide significant risk locus for AML at 11q13.2 (rs4930561; P = 2.15 × 10^{-8}; KMT5B). We also identify a genome-wide significant risk locus for the cytogenetically normal AML sub-group (N = 1287) at 6p21.32 (rs3916765; P = 1.51 × 10^{−10}; HLA). Our results inform on AML etiology and identify putative functional genes operating in histone methylation (KMT5B) and immune function (HLA)

    Genome-wide association study identifies susceptibility loci for acute myeloid leukemia

    Get PDF
    \ua9 2021, The Author(s).Acute myeloid leukemia (AML) is a hematological malignancy with an undefined heritable risk. Here we perform a meta-analysis of three genome-wide association studies, with replication in a fourth study, incorporating a total of 4018 AML cases and 10488 controls. We identify a genome-wide significant risk locus for AML at 11q13.2 (rs4930561; P = 2.15 7 10−8; KMT5B). We also identify a genome-wide significant risk locus for the cytogenetically normal AML sub-group (N = 1287) at 6p21.32 (rs3916765; P = 1.51 7 10−10; HLA). Our results inform on AML etiology and identify putative functional genes operating in histone methylation (KMT5B) and immune function (HLA)

    Evaluation of the methoxy-X04 derivative BSC4090 for diagnosis of prodromal and early Alzheimer’s disease from bioptic olfactory mucosa

    No full text
    Alzheimer's disease (AD) pathology precedes the onset of clinical symptoms by several decades. Thus, biomarkers are required to identify prodromal disease stages to allow for the early and effective treatment. The methoxy-X04-derivative BSC4090 is a fluorescent ligand which was designed to target neurofibrillary tangles in AD. BSC4090 staining was previously detected in post-mortem brains and olfactory mucosa derived from AD patients. We tested BSC4090 as a potential diagnostic marker of prodromal and early AD using olfactory mucosa biopsies from 12 individuals with AD, 13 with mild cognitive impairment (MCI), and 10 cognitively normal (CN) controls. Receiver-operating curve analysis revealed areas under the curve of 0.78 for AD versus CN and of 0.86 for MCI due to AD versus MCI of other causes. BSC4090 labeling correlated significantly with cerebrospinal fluid levels of tau protein phosphorylated at T181. Using NMR spectroscopy, we find that BSC4090 binds to fibrillar and pre-fibrillar but not to monomeric tau. Thus, BSC4090 may be an interesting candidate to detect AD at the early disease stages

    Genome-wide association study identifies susceptibility loci for acute myeloid leukemia

    Get PDF
    Publisher Copyright: © 2021, The Author(s).Acute myeloid leukemia (AML) is a hematological malignancy with an undefined heritable risk. Here we perform a meta-analysis of three genome-wide association studies, with replication in a fourth study, incorporating a total of 4018 AML cases and 10488 controls. We identify a genome-wide significant risk locus for AML at 11q13.2 (rs4930561; P = 2.15 x 10(-8); KMT5B). We also identify a genome-wide significant risk locus for the cytogenetically normal AML sub-group (N = 1287) at 6p21.32 (rs3916765; P = 1.51 x 10(-10); HLA). Our results inform on AML etiology and identify putative functional genes operating in histone methylation (KMT5B) and immune function (HLA). Genome wide association studies in cancer are used to understand the heritable genetic contribution to disease risk. Here, the authors perform a genome wide association study in European patients with acute myeloid leukemia and identify loci associated with risk of developing the disease.Peer reviewe
    corecore