24 research outputs found

    The effect of long-term and decadal climate and hydrology variations on estuarine marsh dynamics: An identifying case study from the Río de la Plata

    Get PDF
    The vertical growth of coastal wetlands is known to primarily be controlled by local tidal range and sediment availability as well as the occurrence of storm events. In estuaries, sediment availability additionally depends on riverine sediment input, the effect of which may be more pronounced in some parts of the estuary, thereby introducing a distinct spatial pattern that depends on the estuary's shape as well as the riverine sediment input and the hydro-meteorological regime. In the present study, we investigate how estuarine marshes along the whole Río de la Plata (RdlP) are affected by decadal and long-term variations in river discharge and storm activity. The El Niño Southern Oscillation (ENSO), in this context, appears to introduce a pronounced decadal variability on sediment loads brought into the RdlP. Based on 15 sediment cores, recovered along the RdlP and adjacent Atlantic coast, vertical marsh growth rates were studied using radionuclide dating (210Pb and 137Cs) and grain size distributions. By comparing these sedimentological records with historic river discharge and storm surge data, we spatially interpret the relative importance of temporal variations in river discharge and storm activity on estuarine marsh growth. By delivering the first estimates for vertical growth rates of the RdlP marshes, we conclude that with average vertical marsh growth rates between 0.4 and 2.6 cm year− 1, the RdlP marshes are highly resilient against drowning under present and future sea-level rise (SLR) conditions. Furthermore, our results confirm a large spatial variability of the drivers for vertical marsh growth; extreme storm surges appear to play a role in the development of the outer RdlP marshes whereas the temporal variations in river discharge seem to be hierarchically more important for the marshes in the inner estuary.This project was financially supported by a grant of the Cluster of Excellence 80 ‘The Future Ocean’ to Mark Schuerch (grant CP1211). ‘The Future Ocean’ is funded within the framework of the Excellence Initiative by the ‘Deutsche Forschungsgemeinschaft’ (DFG) on behalf of the German federal and state governments (EXC 80). Felipe García-Rodríguez acknowledges ‘Agencia Nacional de Investigación e Innovación’ (ANII) and PEDECIBA. Jan Scholten acknowledges the support provided by the FP7 EU Marie Curie Career Integration Grant (grant PCIG09-GA-2011-293499).This is the author accepted manuscript. The final version is available from Elsevier at http://dx.doi.org/10.1016/j.geomorph.2016.06.029

    The effect of long-term and decadal climate and hydrology variations on estuarine marsh dynamics: an identifying case study from the Río de la Plata

    Get PDF
    The vertical growth of coastal wetlands is known to primarily be controlled by local tidal range and sediment availability as well as the occurrence of storm events. In estuaries, sediment availability additionally depends on riverine sediment input, the effect of which may be more pronounced in some parts of the estuary, thereby introducing a distinct spatial pattern that depends on the estuary's shape as well as the riverine sediment input and the hydro-meteorological regime. In the present study, we investigate how estuarine marshes along the whole Rio de la Plata (RdlP) are affected by decadal and long-term variations in river discharge and storm activity. The El Nino Southern Oscillation (ENSO), in this context, appears to introduce a pronounced decadal variability on sediment loads brought into the RdlP. Based on 15 sediment cores, recovered along the RdlP and adjacent Atlantic coast, vertical marsh growth rates were studied using radionuclide dating (210Pb and 137Cs) and grain size distributions. By comparing these sedimentological records with historic river discharge and storm surge data, we spatially interpret the relative importance of temporal variations in river discharge and storm activity on estuarine marsh growth. By delivering the first estimates for vertical growth rates of the RdlP marshes, we conclude that with average vertical marsh growth rates between 0.4 and 2.6 cm year− 1, the RdlP marshes are highly resilient against drowning under present and future sea-level rise (SLR) conditions. Furthermore, our results confirm a large spatial variability of the drivers for vertical marsh growth; extreme storm surges appear to play a role in the development of the outer RdlP marshes whereas the temporal variations in river discharge seem to be hierarchically more important for the marshes in the inner estuary.Facultad de Ciencias Naturales y Muse

    Investigating compound flooding in an estuary using hydrodynamic modelling: A case study from the Shoalhaven River, Australia

    Get PDF
    Many previous modelling studies have considered storm-tide and riverine flooding independently, even though joint-probability analysis highlighted significant dependence between extreme rainfall and extreme storm surges in estuarine environments. This study investigates compound flooding by quantifying horizontal and vertical differences in coastal flood risk estimates resulting from a separation of storm-tide and riverine flooding processes. We used an open-source version of the Delft3D model to simulate flood extent and inundation depth due to a storm event that occurred in June 2016 in the Shoalhaven Estuary, south-eastern Australia. Time series of observed water levels and discharge measurements are used to force model boundaries, whereas observational data such as satellite imagery, aerial photographs, tidal gauges and water level logger measurements are used to validate modelling results. The comparison of simulation results including and excluding riverine discharge demonstrated large differences in modelled flood extents and inundation depths. A flood risk assessment accounting only for storm-tide flooding would have underestimated the flood extent of the June 2016 storm event by 30 % (20.5 km2). Furthermore, inundation depths would have been underestimated on average by 0.34 m and by up to 1.5 m locally. We recommend considering storm-tide and riverine flooding processes jointly in estuaries with large catchment areas, which are known to have a quick response time to extreme rainfall. In addition, comparison of different boundary set-ups at the intermittent entrance in Shoalhaven Heads indicated that a permanent opening, in order to reduce exposure to riverine flooding, would increase tidal range and exposure to both storm-tide flooding and wave action
    corecore