224 research outputs found
Magneto-optics of massive Dirac fermions in bulk Bi2Se3
We report on magneto-optical studies of Bi2Se3, a representative member of
the 3D topological insulator family. Its electronic states in bulk are shown to
be well described by a simple Dirac-type Hamiltonian for massive particles with
only two parameters: the fundamental bandgap and the band velocity. In a
magnetic field, this model implies a unique property - spin splitting equal to
twice the cyclotron energy: Es = 2Ec. This explains the extensive
magneto-transport studies concluding a fortuitous degeneracy of the spin and
orbital split Landau levels in this material. The Es = 2Ec match differentiates
the massive Dirac electrons in bulk Bi2Se3 from those in quantum
electrodynamics, for which Es = Ec always holds.Comment: 5 pages, 3 figures and Supplementary materials, to be published in
Physical Review Letter
GATA transcription factors drive initial Xist upregulation after fertilization through direct activation of a distal enhancer element
To ensure dosage compensation for X-linked genes between the sexes, one X chromosome is silenced during early embryonic development of female mammals. This process of X-chromosome inactivation (XCI) is initiated through upregulation of the RNA Xist from one X chromosome shortly after fertilization. Xist then mediates chromosome-wide gene silencing in cis and remains expressed in all cell types except the germ line and the pluripotent state, where XCI is reversed. The factors that drive Xist upregulation and thereby initiate XCI remain however unknown. We identify GATA transcription factors as potent Xist activators and demonstrate that they are essential for the activation of Xist in mice following fertilization. Through a pooled CRISPR activation screen we find that GATA1 can drive ectopic Xist expression in murine embryonic stem cells (mESCs). We demonstrate that all GATA factors can activate Xist directly via a GATA-responsive regulatory element (RE79) positioned 100 kb upstream of the Xist promoter. Additionally, GATA factors are essential for the induction of XCI in mouse preimplantation embryos, as simultaneous deletion of three members of the GATA family (GATA1/4/6) in mouse zygotes effectively prevents Xist upregulation. Thus, initiation of XCI and possibly its maintenance in distinct lineages of the preimplantation embryo is ensured by the combined activity of different GATA family members, and the absence of GATA factors in the pluripotent state likely contributes to X reactivation. We thus describe a form of regulation in which the combined action of numerous tissue-specific factors can achieve near-ubiquitous expression of a target gene
Comparison of cardiovascular risk factors between sri lankans living in kandy and oslo
<p>Abstract</p> <p>Background</p> <p>South Asians living in western countries are known to have unfavourable cardiovascular risk profiles. Studies indicate migrants are worse off when compared to those living in country of origin. The purpose of this study was to compare selected cardiovascular risk factors between migrant Sri Lankans living in Oslo, Norway and Urban dwellers from Kandy, Sri Lanka.</p> <p>Methods</p> <p>Data on non fasting serum lipids, blood pressure, anthropometrics and socio demographics of Sri Lankan Tamils from two almost similar population based cross sectional studies in Oslo, Norway between 2000 and 2002 (1145 participants) and Kandy, Sri Lanka in 2005 (233 participants) were compared. Combined data were analyzed using linear regression analyses.</p> <p>Results</p> <p>Men and women in Oslo had higher HDL cholesterol. Men and women from Kandy had higher Total/HDL cholesterol ratios. Mean waist circumference and body mass index was higher in Oslo. Smoking among men was low (19.2% Oslo, 13.1% Kandy, P = 0.16). None of the women smoked. Mean systolic and diastolic blood pressure was significantly higher in Kandy than in Oslo.</p> <p>Conclusions</p> <p>Our comparison showed unexpected differences in risk factors between Sri Lankan migrants living in Oslo and those living in Kandy Sri Lanka. Sri Lankans in Oslo had favorable lipid profiles and blood pressure levels despite being more obese.</p
Observation of epitaxially ordered twinned zinc aluminate “nanoblades” on c-capphire
We report the observation of a novel nanostructured growth mode of the ceramic spinel zinc aluminate grown on c-sapphire in the form of epitaxially ordered twinned crystallites with pronounced vertically aligned “nanoblades” on top of these crystallites. The nanostructures are formed on bare c-sapphire substrates using a vapour phase transport method. Electron microscopy images reveal the nanostructure morphology and dimensions and allow direct and indirect observation of the twin boundary location in a number of samples. The nanoblade structure with sharply rising sidewalls gives rise to a distinctive bright contrast in secondary electron images in scanning electron microscopy measurements
Evidence That Gene Activation and Silencing during Stem Cell Differentiation Requires a Transcriptionally Paused Intermediate State
A surprising portion of both mammalian and Drosophila genomes are transcriptionally paused, undergoing initiation without elongation. We tested the hypothesis that transcriptional pausing is an obligate transition state between definitive activation and silencing as human embryonic stem cells (hESCs) change state from pluripotency to mesoderm. Chromatin immunoprecipitation for trimethyl lysine 4 on histone H3 (ChIP-Chip) was used to analyze transcriptional initiation, and 3′ transcript arrays were used to determine transcript elongation. Pluripotent and mesodermal cells had equivalent fractions of the genome in active and paused transcriptional states (∼48% each), with ∼4% definitively silenced (neither initiation nor elongation). Differentiation to mesoderm changed the transcriptional state of 12% of the genome, with roughly equal numbers of genes moving toward activation or silencing. Interestingly, almost all loci (98–99%) changing transcriptional state do so either by entering or exiting the paused state. A majority of these transitions involve either loss of initiation, as genes specifying alternate lineages are archived, or gain of initiation, in anticipation of future full-length expression. The addition of chromatin dynamics permitted much earlier predictions of final cell fate compared to sole use of conventional transcript arrays. These findings indicate that the paused state may be the major transition state for genes changing expression during differentiation, and implicate control of transcriptional elongation as a key checkpoint in lineage specification
Probabilistic Integrity and Risk Assessment of Turbine Engines, Phase II
15-G-016This grant supported the efforts of the Federal Aviation Administration (FAA) to develop an enhanced life management process, based on probabilistic damage tolerance principles, to address the threat of material or manufacturing anomalies in high-energy rotating components of aircraft engines. Major research products included formal verification and validation of Design Assessment of Reliability With INspection (DARWIN\uae) stress-intensity factor solutions; enhanced DARWIN capabilities for manual and automatic fracture mechanics modeling, probabilistic methods, and fleet risk methods. Substantial improvements in the speed and robustness of DARWIN for large finite element (FE) models; streamlined methods for deterministic life calculations; a DARWIN Python module to facilitate scripting of multiple DARWIN runs; options to specify or limit optional features or default values available in DARWIN; new advanced visualization capabilities enabling users to define and manipulate regions within three-dimensional FE models; multiple new versions of the DARWIN computer code for technology transfer to industry and the FAA, and a large DARWIN training workshop are also included. The efforts facilitate implementation of official advisory material for axial blade slots, titanium hard alpha anomalies, and circular holes, while also developing improved analysis methods for other applications of deterministic and probabilistic damage tolerance to engine safety
Understanding 'non-genetic' inheritance : insights from molecular-evolutionary crosstalk
The idea for this paper was initially proposed by I.A.-K. and was further developed by all authors in a workshop generously funded by grant No 789240 from the European Research Council (ERC) to F.J.W. S.E.S. acknowledges support from Wesleyan University and The John Templeton Foundation.Understanding the evolutionary and ecological roles of 'non-genetic' inheritance (NGI) is daunting due to the complexity and diversity of epigenetic mechanisms. We draw on insights from molecular and evolutionary biology perspectives to identify three general features of 'non-genetic' inheritance systems: (i) they are functionally interdependent with, rather than separate from, DNA sequence; (ii) precise mechanisms vary phylogenetically and operationally; and (iii) epigenetic elements are probabilistic, interactive regulatory factors and not deterministic 'epialleles' with defined genomic locations and effects. We discuss each of these features and offer recommendations for future empirical and theoretical research that implements a unifying inherited gene regulation (IGR) approach to studies of 'non-genetic' inheritance.Publisher PDFPeer reviewe
Myocardial tagging by Cardiovascular Magnetic Resonance: evolution of techniques--pulse sequences, analysis algorithms, and applications
Cardiovascular magnetic resonance (CMR) tagging has been established as an essential technique for measuring regional myocardial function. It allows quantification of local intramyocardial motion measures, e.g. strain and strain rate. The invention of CMR tagging came in the late eighties, where the technique allowed for the first time for visualizing transmural myocardial movement without having to implant physical markers. This new idea opened the door for a series of developments and improvements that continue up to the present time. Different tagging techniques are currently available that are more extensive, improved, and sophisticated than they were twenty years ago. Each of these techniques has different versions for improved resolution, signal-to-noise ratio (SNR), scan time, anatomical coverage, three-dimensional capability, and image quality. The tagging techniques covered in this article can be broadly divided into two main categories: 1) Basic techniques, which include magnetization saturation, spatial modulation of magnetization (SPAMM), delay alternating with nutations for tailored excitation (DANTE), and complementary SPAMM (CSPAMM); and 2) Advanced techniques, which include harmonic phase (HARP), displacement encoding with stimulated echoes (DENSE), and strain encoding (SENC). Although most of these techniques were developed by separate groups and evolved from different backgrounds, they are in fact closely related to each other, and they can be interpreted from more than one perspective. Some of these techniques even followed parallel paths of developments, as illustrated in the article. As each technique has its own advantages, some efforts have been made to combine different techniques together for improved image quality or composite information acquisition. In this review, different developments in pulse sequences and related image processing techniques are described along with the necessities that led to their invention, which makes this article easy to read and the covered techniques easy to follow. Major studies that applied CMR tagging for studying myocardial mechanics are also summarized. Finally, the current article includes a plethora of ideas and techniques with over 300 references that motivate the reader to think about the future of CMR tagging
Obtaining Adequate Surgical Margins in Breast-Conserving Therapy for Patients with Early-Stage Breast Cancer: Current Modalities and Future Directions
Inadequate surgical margins represent a high risk for adverse clinical outcome in breast-conserving therapy (BCT) for early-stage breast cancer. The majority of studies report positive resection margins in 20% to 40% of the patients who underwent BCT. This may result in an increased local recurrence (LR) rate or additional surgery and, consequently, adverse affects on cosmesis, psychological distress, and health costs. In the literature, various risk factors are reported to be associated with positive margin status after lumpectomy, which may allow the surgeon to distinguish those patients with a higher a priori risk for re-excision. However, most risk factors are related to tumor biology and patient characteristics, which cannot be modified as such. Therefore, efforts to reduce the number of positive margins should focus on optimizing the surgical procedure itself, because the surgeon lacks real-time intraoperative information on the presence of positive resection margins during breast-conserving surgery. This review presents the status of pre- and intraoperative modalities currently used in BCT. Furthermore, innovative intraoperative approaches, such as positron emission tomography, radioguided occult lesion localization, and near-infrared fluorescence optical imaging, are addressed, which have to prove their potential value in improving surgical outcome and reducing the need for re-excision in BCT
Novel genetic loci underlying human intracranial volume identified through genome-wide association
Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five novel loci for intracranial volume and confirmed two known signals. Four of the loci are also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic=0.748), which indicated a similar genetic background and allowed for the identification of four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, Parkinson’s disease, and enriched near genes involved in growth pathways including PI3K–AKT signaling. These findings identify biological underpinnings of intracranial volume and provide genetic support for theories on brain reserve and brain overgrowth
- …