332 research outputs found

    Thermal annealing behaviour on electrical properties of Pd/Ru Schottky contacts on n-type GaN

    Get PDF
    We have investigated the electrical properties of Pd/Ru Schottky contacts on n-GaN as a function of annealing temperature by current-voltage (I-V) and capacitance-voltage (C-V) measurements. The Schottky barrier height of the as-deposited Pd/Ru contact is found to be 0.67 eV (I-V) and 0.79 eV (C-V), respectively. Measurements showed that the Schottky barrier height increased from 0.68 eV (I-V) and 0.80 eV (C-V) to 0.80 eV (I-V) and 0.96 eV (C-V) as the annealing temperature is varied from 200 °C to 300 °C. Upon annealing at 400 °C and 500 °C, the Schottky barrier height decreased to 0.73 eV (I-V) and 0.85 eV (C-V) and 0.72 eV (I-V) and 0.84 eV (C-V), respectively. It is noted that the barrier height further decreased to 0.59 eV (I-V) and 0.72 eV (C-V) when the contact is annealed at 600 °C. The change of Schottky barrier heights and ideality factors with annealing temperature may be due to the formation of interfacial compounds at the Ru/Pd/n-GaN interface. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/2788

    Variability, Heritability and Genetic Advance for Quantitative Traits in Pigeonpea (Cajanus cajan (L.) Mill sp.)

    Get PDF
    Study was carried out for genetic variability, heritability and genetic advance of sixteen characters in twenty eight genotypes including checks. Analysis of variance revealed significant difference among genotypes for all the sixteen characters studied. The magnitude of PCV and GCV was moderate to high for pods per plant, seed yield and primary branches per plant. High heritability was recorded for days to 50% flowering, seed yield per plant, number of pods per plant, test weight and plant height. High heritability combined with high genetic advance was recorded for number of pods per plant and seed yield per plant indicating that these characters are controlled by additive gene effect and phenotypic selection of these characters would be effective for further breeding purpose

    Beneficial health effects of cumin (Cuminum cyminum) seeds upon incorporation as a potential feed additive in livestock and poultry: A mini-review

    Get PDF
    Cumin (Cuminum cyminum Linn) is an annual plant of the family Umbelliferae, with its use dating back to ancient times when it was cultivated for its medicinal and culinary potential. Cumin seeds could contain a wide variety of phytochemicals, including alkaloids, coumarins, anthraquinones, flavonoids, glycosides, proteins, resins, saponins, tannins, and steroids. In particular, linoleic acid, one of the unsaturated fatty acids found in abundance in cumin oleoresin, is credited with promoting good health. Many of cumin's purported biological actions in livestock and poultry have been attributed to flavonoids such as apigenin, luteolin, and glycosides. Cumin has several healthful qualities, such as antibacterial, insecticidal, anti-inflammatory, analgesic, antioxidant, anticancer, anti-diabetic, anti-platelet aggregation, hypotensive, bronchodilatory, immunological, anti-amyloidogenic, and anti-osteoporotic properties. Cumin supplementation may improve milk production and reproductive function in dairy cows by altering the feeding pattern of bacteria in the rumen, encouraging the growth of beneficial microbes, or stimulating the secretion of certain digestive enzymes. Because of the low price of cumin seed, it could be concluded that its inclusion in the diet might be beneficial to the commercial poultry industry and reduce the overall cost of egg and meat production. In recent years a rise in cumin's popularity has been seen as a result of the herbal movement spearheaded by naturopaths, yoga gurus, advocates of alternative medicine, and manufacturers of feed additives. Animal nutritionists are exploring the use of cumin for its potential to boost growth, improve nutrient usage efficiency, and reduce greenhouse gas emissions. This mini-review discusses how cumin could be used as a feed ingredient to boost productivity and ensure healthy animal reproduction

    Parity-Violating Electron Scattering from 4He and the Strange Electric Form Factor of the Nucleon

    Full text link
    We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from ^4He at an average scattering angle = 5.7 degrees and a four-momentum transfer Q^2 = 0.091 GeV^2. From these data, for the first time, the strange electric form factor of the nucleon G^s_E can be isolated. The measured asymmetry of A_PV = (6.72 +/- 0.84 (stat) +/- 0.21 (syst) parts per million yields a value of G^s_E = -0.038 +/- 0.042 (stat) +/- 0.010 (syst), consistent with zero

    Measurement of the Neutron Radius of 208Pb Through Parity-Violation in Electron Scattering

    Full text link
    We report the first measurement of the parity-violating asymmetry A_PV in the elastic scattering of polarized electrons from 208Pb. A_PV is sensitive to the radius of the neutron distribution (Rn). The result A_PV = 0.656 \pm 0.060 (stat) \pm 0.014 (syst) ppm corresponds to a difference between the radii of the neutron and proton distributions Rn - Rp = 0.33 +0.16 -0.18 fm and provides the first electroweak observation of the neutron skin which is expected in a heavy, neutron-rich nucleus.Comment: 6 pages, 1 figur

    Constraints on the Nucleon Strange Form Factors at Q^2 ~ 0.1 GeV^2

    Get PDF
    We report the most precise measurement to date of a parity-violating asymmetry in elastic electron-proton scattering. The measurement was carried out with a beam energy of 3.03 GeV and a scattering angle =6 degrees, with the result A_PV = -1.14 +/- 0.24 (stat) +/- 0.06 (syst) parts per million. From this we extract, at Q^2 = 0.099 GeV^2, the strange form factor combination G_E^s + 0.080 G_M^s = 0.030 +/- 0.025 (stat) +/- 0.006 (syst) +/- 0.012 (FF) where the first two errors are experimental and the last error is due to the uncertainty in the neutron electromagnetic form factor. This result significantly improves current knowledge of G_E^s and G_M^s at Q^2 ~0.1 GeV^2. A consistent picture emerges when several measurements at about the same Q^2 value are combined: G_E^s is consistent with zero while G_M^s prefers positive values though G_E^s=G_M^s=0 is compatible with the data at 95% C.L.Comment: minor wording changes for clarity, updated references, dropped one figure to improve focu

    Display of probability densities for data from a continuous distribution

    Get PDF
    Based on cumulative distribution functions, Fourier series expansion and Kolmogorov tests, we present a simple method to display probability densities for data drawn from a continuous distribution. It is often more efficient than using histograms.Comment: 5 pages, 4 figures, presented at Computer Simulation Studies XXIV, Athens, GA, 201

    Large Momentum Transfer Measurements of the Deuteron Elastic Structure Function A(Q^2) at Jefferson Laboratory

    Full text link
    The deuteron elastic structure function A(Q^2) has been extracted in the Q^2 range 0.7 to 6.0 (GeV/c)^2 from cross section measurements of elastic electron-deuteron scattering in coincidence using the Hall A Facility of Jefferson Laboratory. The data are compared to theoretical models based on the impulse approximation with inclusion of meson-exchange currents, and to predictions of quark dimensional scaling and perturbative quantum chromodynamicsComment: Submitted to Physical Review Letter

    Virtual Compton Scattering and the Generalized Polarizabilities of the Proton at Q^2=0.92 and 1.76 GeV^2

    Get PDF
    Virtual Compton Scattering (VCS) on the proton has been studied at Jefferson Lab using the exclusive photon electroproduction reaction (e p --> e p gamma). This paper gives a detailed account of the analysis which has led to the determination of the structure functions P_LL-P_TT/epsilon and P_LT, and the electric and magnetic generalized polarizabilities (GPs) alpha_E(Q^2) and beta_M(Q^2) at values of the four-momentum transfer squared Q^2= 0.92 and 1.76 GeV^2. These data, together with the results of VCS experiments at lower momenta, help building a coherent picture of the electric and magnetic GPs of the proton over the full measured Q^2-range, and point to their non-trivial behavior.Comment: version 2: modified according to PRC Editor's and Referee's recommendations. Archival paper for the E93-050 experiment at JLab Hall A. 28 pages, 23 figures, 5 cross-section tables. To be submitted to Phys.Rev.
    corecore