444 research outputs found

    The antiquity of the Rhine River : stratigraphic coverage of the Dinotheriensande (Eppelsheim Formation) of the Mainz Basin (Germany)

    Get PDF
    Background: Mammalian fossils from the Eppelsheim Formation (Dinotheriensande) have been a benchmark for Neogene vertebrate palaeontology since 200 years. Worldwide famous sites like Eppelsheim serve as key localities for biochronologic, palaeobiologic, environmental, and mammal community studies. So far the formation is considered to be of early Late Miocene age (~9.5 Ma, Vallesian), representing the oldest sediments of the Rhine River. The stratigraphic unity of the formation and of its fossil content was disputed at times, but persists unresolved. Principal Findings: Here we investigate a new fossil sample from Sprendlingen, composed by over 300 mammalian specimens and silicified wood. The mammals comprise entirely Middle Miocene species, like cervids Dicrocerus elegans, Paradicrocerus elegantulus, and deinotheres Deinotherium bavaricum and D. levius. A stratigraphic evaluation of Miocene Central European deer and deinothere species proof the stratigraphic inhomogenity of the sample, and suggest late Middle Miocene (~12.5 Ma) reworking of early Middle Miocene (~15 Ma) sediments. This results agree with taxonomic and palaeoclimatic analysis of plant fossils from above and within the mammalian assemblage. Based on the new fossil sample and published data three biochronologic levels within the Dinotheriensand fauna can be differentiated, corresponding to early Middle Miocene (late Orleanian to early Astaracian), late Middle Miocene (late Astaracian), and early Late Miocene (Vallesian) ages. Conclusions/Significance: This study documents complex faunal mixing of classical Dinotheriensand fauna, covering at least six million years, during a time of low subsidence in the Mainz Basin and shifts back the origination of the Rhine River by some five million years. Our results have severe implications for biostratigraphy and palaeobiology of the Middle to Late Miocene. They suggest that turnover events may be obliterated and challenge the proposed ‘supersaturated’ biodiversity, caused by Middle Miocene superstites, of Vallesian ecosystems in Central Europe

    Hominin palaeoecology in Late Pliocene Malawi : first insights from isotopes (13C, 18O) in mammal teeth

    Get PDF
    Carbon-13 and oxygen-18 abundances were measured in large mammal skeletal remains (tooth enamel, dentine and bone) from the Chiwondo Beds in Malawi, which were dated by biostratigraphic correlation to ca. 2.5 million years ago. The biologic isotopic patterns, in particular the difference in carbon-13 abundances between grazers and browsers and the difference in oxygen-18 abundances between semi-aquatic and terrestrial herbivores, were preserved in enamel, but not in dentine and bone. The isotopic results obtained from the skeletal remains from the Chiwondo Beds indicate a dominance of savannah habitats with some trees and shrubs. This environment was more arid than the contemporaneous Ndolanya Beds in Tanzania. The present study confirms that robust australopithecines were able to live in relatively arid environments and were not confined to more mesic environments elsewhere in southern Africa

    Unravelling the functional biomechanics of dental features and tooth wear

    Get PDF
    Most of the morphological features recognized in hominin teeth, particularly the topography of the occlusal surface, are generally interpreted as an evolutionary functional adaptation for mechanical food processing. In this respect, we can also expect that the general architecture of a tooth reflects a response to withstand the high stresses produced during masticatory loadings. Here we use an engineering approach, finite element analysis (FEA), with an advanced loading concept derived from individual occlusal wear information to evaluate whether some dental traits usually found in hominin and extant great ape molars, such as the trigonid crest, the entoconid-hypoconulid crest and the protostylid have important biomechanical implications. For this purpose, FEA was applied to 3D digital models of three Gorilla gorilla lower second molars (M2) differing in wear stages. Our results show that in unworn and slightly worn M2s tensile stresses concentrate in the grooves of the occlusal surface. In such condition, the trigonid and the entoconid-hypoconulid crests act to reinforce the crown locally against stresses produced along the mesiodistal groove. Similarly, the protostylid is shaped like a buttress to suffer the high tensile stresses concentrated in the deep buccal groove. These dental traits are less functional in the worn M2, because tensile stresses decrease physiologically in the crown with progressing wear due to the enlargement of antagonistic contact areas and changes in loading direction from oblique to nearly parallel direction to the dental axis. This suggests that the wear process might have a crucial influence in the evolution and structural adaptation of molars enabling to endure bite stresses and reduce tooth failure throughout the lifetime of an individual

    Molar macrowear reveals Neanderthal eco-geographic dietary variation

    Get PDF
    Neanderthal diets are reported to be based mainly on the consumption of large and medium sized herbivores, while the exploitation of other food types including plants has also been demonstrated. Though some studies conclude that early Homo sapiens were active hunters, the analyses of faunal assemblages, stone tool technologies and stable isotopic studies indicate that they exploited broader dietary resources than Neanderthals. Whereas previous studies assume taxon-specific dietary specializations, we suggest here that the diet of both Neanderthals and early Homo sapiens is determined by ecological conditions. We analyzed molar wear patterns using occlusal fingerprint analysis derived from optical 3D topometry. Molar macrowear accumulates during the lifespan of an individual and thus reflects diet over long periods. Neanderthal and early Homo sapiens maxillary molar macrowear indicates strong eco-geographic dietary variation independent of taxonomic affinities. Based on comparisons with modern hunter-gatherer populations with known diets, Neanderthals as well as early Homo sapiens show high dietary variability in Mediterranean evergreen habitats but a more restricted diet in upper latitude steppe/coniferous forest environments, suggesting a significant consumption of high protein meat resources

    The use of Z-scores to facilitate morphometric comparisons between African Plio-Pleistocene hominin fossils: An example of method

    Get PDF
    South Africa and East Africa each have a rich palaeoanthropological heritage, but the taxonomy of fossil hominins from these regions is controversial. In this study, two morphometric methods related to the quantification of variability in morphology have been applied to pairwise comparisons of linear measurements of hominoid crania and mandibles. The log-transformed standard error of the m-coefficient (‘log sem’) is calculated from linear regressions. Like Procrustes Distances (PD), log sem statistics can serve to quantify variation in the shape of a cranium or mandible in the context of a constellation of landmarks. In this study, PD and log sem statistics are integrated and standardised using Z-scores, and applied probabilistically to Plio-Pleistocene hominins. As a test case, OH 7 and OH 24 as reference specimens of Homo habilis are compared to fossils representing other taxa. There is a wide spectrum of variation in Z-scores for specimens attributed to early Homo dated within the period between circa 1.8 Ma and 2 Ma. In terms of morphometric variation predating 1.8 Ma, Z-scores (Z<2) for Australopithecus afarensis, A. africanus and Homo habilis display a small range of variability. This study serves as a demonstration of a method whereby log sem and PD can be used together to facilitate an objective assessment of morphological variability, applicable in palaeontological contexts. Significance:• Using a probabilistic approach, two morphometric methods are integrated to quantify morphological variability in Plio-Pleistocene African hominin mandibles and crania.• Two Tanzanian specimens of Homo habilis (the OH 7 mandible of the holotype specimen, and the OH 24 skull) can be used as reference material for morphometric comparisons with other fossils (mandibles or crania) attributed to Australopithecus africanus, A. afarensis, H. erectus and H. rudolfensis.• The results of these comparisons are expressed as standardised probabilistic Z-scores such that these statistics for skulls and mandibles can be expressed on a common scale

    Chemical composition of modern and fossil Hippopotamid teeth and implications for paleoenvironmental reconstructions and enamel formation: 1. major and minor element variation [Discussion paper]

    Get PDF
    Bioapatite in mammalian teeth is readily preserved in continental sediments and represents a very important archive for reconstructions of environment and climate evolution. This project intends to provide a detailed data base of major, minor and trace element and isotope tracers for tooth apatite using a variety of microanalytical techniques. The aim is to identify specific sedimentary environments and to improve our understanding on the interaction between internal metabolic processes during tooth formation and external nutritional control and secondary alteration effects. Here, we use the electron microprobe, to determine the major and minor element contents of fossil and modern molar enamel, cement and dentin from hippopotamids. Most of the studied specimens are from different ecosystems in Eastern Africa, representing modern and fossil lakustrine (Lake Kikorongo, Lake Albert, and Lake Malawi) and modern fluvial environments of the Nile River system. Secondary alteration effects in particular FeO, MnO, SO3 and F concentrations, which are 2 to 10 times higher in fossil than in modern enamel; secondary enrichments in fossil dentin and cement are even higher. In modern and fossil enamel, along sections perpendicular to the enamel-dentin junction (EDJ) or along cervix-apex profiles, P2O5 and CaO contents and the CaO/P2O5 ratios are very constant (StdDev ~1 %). Linear regression analysis reveals very tight control of the MgO (R2∼0.6), Na2O and Cl variation (for both R2>0.84) along EDJ-outer enamel rim profiles, despite large concentration variations (40 % to 300 %) across the enamel. These minor elements show well defined distribution patterns in enamel, similar in all specimens regardless of their age and origin, as the concentration of MgO and Na2O decrease from the enamel-dentin junction (EDJ) towards the outer rim, whereas Cl displays the opposite variation. Fossil enamel from hippopotamids which lived in the saline Lake Kikorongo have a much higher MgO/Na2O ratio (∼1.11) than those from the Neogene fossils of Lake Albert (MgO/Na2O∼0.4), which was a large fresh water lake like those in the western Branch of the East African Rift System today. Similarly, the MgO/Na2O ratio in modern enamel from the White Nile River (∼0.36), which has a Precambrian catchment of dominantly granite and gneisses and passes through several saline zones, is higher than that from the Blue Nile River, whose catchment is the Neogene volcanic Ethiopian Highland (MgO/Na2O∼0.22). Thus, particularly MgO/Na2O might be a sensitive fingerprint for environments where river and lake water have suffered strong evaporation. Enamel formation in mammals takes place at successive mineralization fronts within a confined chamber where ion and molecule transport is controlled by the surrounding enamel organ. During the secretion and maturation phases the epithelium generates different fluid composition, which in principle, should determine the final composition of enamel apatite. This is supported by co-linear relationships between MgO, Cl and Na2O which can be interpreted as binary mixing lines. However, if maturation starts after secretion is completed the observed element distribution can only be explained by recrystallization of existing and addition of new apatite during maturation. Perhaps the initial enamel crystallites precipitating during secretion and the newly formed bioapatite crystals during maturation equilibrate with a continuously evolving fluid. During crystallization of bioapatite the enamel fluid becomes continuously depleted in MgO and Na2O, but enriched in Cl which results in the formation of MgO, and Na2O-rich, but Cl-poor bioapatite near the EDJ and MgO- and Na2O-poor, but Cl-rich bioapatite at the outer enamel rim. The linkage between lake and river water composition, bioavailability of elements for plants, animal nutrition and tooth formation is complex and multifaceted. The quality and limits of the MgO/Na2O and other proxies have to be established with systematic investigations relating chemical distribution patterns to sedimentary environment and to growth structures developing as secretion and maturation proceed during tooth formation

    A dental revolution: The association between occlusion and chewing behaviour.

    Get PDF
    Dentistry is confronted with the functional and aesthetic consequences that result from an increased prevalence of misaligned and discrepant dental occlusal relations in modern industrialised societies. Previous studies have indicated that a reduction in jaw size in response to softer and more heavily processed foods during and following the Industrial Revolution (1,700 CE to present) was an important factor in increased levels of poor dental occlusion. The functional demands placed on the masticatory system play a crucial role in jaw ontogenetic development; however, the way in which chewing behaviours changed in response to the consumption of softer foods during this period remains poorly understood. Here we show that eating more heavily processed food has radically transformed occlusal power stroke kinematics. Results of virtual 3D analysis of the dental macrowear patterns of molars in 104 individuals dating to the Industrial Revolution (1,700–1,900 CE), and 130 of their medieval and early post-medieval antecedents (1,100–1,700 CE) revealed changes in masticatory behaviour that occurred during the early stages of the transition towards eating more heavily processed foods. The industrial-era groups examined chewed with a reduced transverse component of jaw movement. These results show a diminished sequence of occlusal contacts indicating that a dental revolution has taken place in modern times, involving a dramatic shift in the way in which teeth occlude and wear during mastication. Molar macrowear suggests a close connection between progressive changes in chewing since the industrialization of food production and an increase in the prevalence of poor dental occlusion in modern societies

    About the Influence of Line-shaped Inclusions on the Path of Fatigue Cracks

    Get PDF
    AbstractSecure findings on the propagation behavior of fatigue cracks are essential for the evaluation of the safety of components and structures. Therefore the growth of cracks in the vicinity of material boundaries, whereas also accidental inclusions represent such material boundaries, has to be considered, too. Depending on the way an initial crack enters the region of influence of such a material boundary, the crack may grow towards or away from the material boundary. In both cases a curved crack path results that cannot be explained with the global loading but obviously with different stiffness relations

    Chemical composition of modern and fossil hippopotamid teeth and implications for paleoenvironmental reconstructions and enamel formation : part 2, alkaline earth elements as tracers of watershed hydrochemistry and provenance

    Get PDF
    This study demonstrates that alkaline earth elements in enamel of hippopotamids, in particular Ba and Sr, are tracers for water provenance and hydrochemistry in terrestrial settings. The studied specimens are permanent premolar and molar teeth found in modern and fossil lacustrine sediments of the Western Branch of the East African Rift system (Lake Kikorongo, Lake Albert, and Lake Malawi) and from modern fluvial environments of the Nile River. Concentrations in enamel vary by two orders of magnitude for Ba (120–9336 μg g−1) as well as for Sr (9–2150 μg g−1). The variations are partially induced during post-mortem alteration and during amelogenesis, but the major contribution originates ultimately from the variable water chemistry in the habitats of the hippopotamids which is controlled by the lithologies and weathering processes in the watershed areas. Amelogenesis causes a distinct distribution of MgO, Ba and Sr in modern and fossil enamel, in that element concentrations increase along profiles from the outer rim towards the enamel–dentin junction by a factor of 1.3–1.9. These elements are well correlated in single specimens, thus suggesting that their distribution is determined by a common, single process, which can be described by closed system Rayleigh crystallization of bioapatite in vivo. Enamel from most hippopotamid specimens has Sr/Ca and Ba/Ca which are typical for herbivores. However, Ba/Sr ranges from 0.1 to 3 and varies on spatial and temporal scales. Thus, Sr concentrations and Ba/Sr in enamel differentiate between habitats having basaltic mantle rocks or Archean crustal rocks as the ultimate sources of Sr and Ba. This provenance signal is modulated by climate change. In Miocene to Pleistocene enamel from the Lake Albert region, Ba/Sr decreases systematically with time from 2 to 0.5. This trend can be correlated with changes in climate from humid to arid, in vegetation from C3 to C4 biomass as well as with increasing evaporation of the lake water. The most plausible explanation is that Ba mobility decreased with increasing aridification due to preferential deposition with clay and Fe-oxide-hydroxide or barite on the watershed of Lake Albert

    Lokaler Gentransfer mit implantierbaren Arzneistoffträgern. Neue Wege zur Rekonstruktion von Haut- und Knochengewebe

    Get PDF
    Die Behandlung zerstörter Gewebe- und Organstrukturen nach akuten Verletzungen oder chronischen Krankheitsverläufen hat sich zu einer enormen Belastung für das heutige Gesundheitswesen entwickelt. Neue Konzepte der Geweberekonstruktion durch Tissue Engineering führten in den letzten Jahren zu einer erheblichen Verbesserung der Behandlungsmöglichkeiten. Die vorliegende Arbeit beschreibt die Entwicklung und Charakterisierung einer genaktivierten Fibrinmatrix zur lokalen Expression des Wachstumsfaktors epidermal growth factor (EGF). Das Konzept beinhaltet die gemeinsame Applikation autologer Keratinozyten und nicht-viraler Genvektoren mit PEI in Form einer injizierbaren Fibrinkleberzubereitung. Durch Variationen von PEI-Struktur, N/P-Ratio und dem Zusatz des abschirmenden Hüllpolymers P6YE5C wurde das Transfektionsverhalten unterschiedlicher Genvektorformulierungen in der Fibrinmatrix untersucht. Durch den Einsatz von fluoreszenzmarkierten Genvektoren wurde der Transfektionsverlauf innerhalb der Matrix visualisiert und dokumentiert. Größere Mengen ungeschützter Genvektoren führten in Fibrin trotz ihres toxischen Potentials zu hohen Genexpressionen. Ein protektiver Effekt durch den Zusatz des schützenden Hüllpolymers P6YE5C schien in Fibrin als nicht zwingend notwendig. Daraufhin wurde ein möglicher Einfluss der Fibrinmatrix auf Genvektorformulierungen untersucht. Erste Vorversuche in Zellkultur zeigten eine Steigerung des Transfektionspotentials nicht-viraler Genvektoren mit PEI nach Vorinkubation mit einer Fibrinogen-Lösung. Aus der Perspektive einer kommerziellen Anwendung heraus wurde ein lagerungsfähiges Lyophilisat aus genaktiviertem Fibrinogen entwickelt, das zum Versuchszeitpunkt als Fibrinklebervorstufe mit Wasser rehydratisiert und gemeinsam mit Thrombin zur Herstellung der genaktivierten Fibrinmatrix eingesetzt werden konnte. Der Einsatz des schützenden Hüllpolymers P6YE5C hatte dabei einen entscheidenden Einfluss auf die unmittelbare Verfügbarkeit der eingesetzten Genvektoren. Für die Regeneration von Knochenbrüchen bleibt dagegen der Einsatz medizinischer Implantate von entscheidender Bedeutung. In der vorliegenden Arbeit wird in einem weiteren Ansatz die Entwicklung und Charakterisierung genaktivierter Polymerfilme aus PDLLA und PLGA zur Beschichtung medizinischer Implantate beschrieben. Die neue Grenzfläche zwischen Implantat und Knochenstruktur soll zur lokalen Transfektion und Expression therapeutischer Gene dienen. Dafür wurden nicht-virale Genvektoren lyophilisiert und als Dispersion in organischen Lösungen der Polymere PDLLA und PLGA auf resistente Oberflächen aufgetragen und getrocknet. Die Besiedelung der verbliebenen Polymerfilme mit Zellen führte über den direkten Kontakt mit genaktivierten Polymerstrukturen zur Expression des eingesetzten Gens. Durch Variation von Polymer- und Genvektormenge wurde anhand der gemessenen Genexpressionen sowie der metabolischen Aktivität transfizierter Zellen das System optimiert. Die Bestimmung der Transfektionseffizienz sowie des Freisetzungsverhaltens formulierter Genvektoren diente zur Charakterisierung der genaktivierten Polymeroberflächen aus PDLLA und PLGA. Trotz struktureller Ähnlichkeiten der eingesetzten Filmbildner zeigte sich das Freisetzungsverhalten aus PDLLA gegenüber PLGA abhängig der eingesetzten Polymer- und Genvektormengen. Das Beschichtungsprinzip konnte ebenfalls für die Aktivierung von Folien aus Aluminiumlegierung eingesetzt werden und führte zur Expression des therapeutischen Gens bone morphogenic protein-2 (BMP-2). Die Verwendung von Poly-[Tyrosincarbonaten] als strukturelle Alternative zu PDLLA bzw. PLGA führte zu keiner Genexpression. Hohe medizinische Anforderungen und individuelle Interaktionen einzelner Matrixkomponenten machen genaktivierter Biomaterialien zu komplexen Applikationsformen der regenerativen Medizin. Kleinste Veränderungen im komplexen Verbund aus Matrixstrukturen, Genvektoren und Zielzellen können drastische Effekte im Gesamtsystem verursachen. Abhängig von Indikation und Materialeigenschaften müssen die Formulierungen individuell angepasst und optimiert werden. Wird dieser Arbeitsaufwand investiert, bietet der Einsatz genaktivierter Biomaterialien gegenüber herkömmlichen Behandlungsformen großes therapeutisches Potential
    corecore