184 research outputs found
Ember Alerts: Assessing Wireless Emergency Alert (WEA) Messages in Wildfires Using the Warning Response Model
When evacuation is necessary in a wildfire event, affected communities must be alerted and warned of the imminent danger and instructed on what to do to protect themselves. One channel available to message providers in the United States is Wireless Emergency Alerts (WEAs) disseminated via IPAWS. Recent wildfire events have shed light on the need to improve WEA strategies and messages when alerting exposed populations of imminent fire threat. The purpose of this article is to assess how, when and where WEAs have been used in US wildfires; whether they comply with guidance set out by Mileti and Sorensen’s Warning Response Model (WRM); and whether the expansion in characters (from 90 to 360) of WEA messages has influenced compliance with the WRM. A quantitative content analysis was conducted of WEA messages sent during US wildfires from January 2020-April 2022. A total of 1,284 messages were manually coded based upon the content and style categories identified in the WRM. Descriptive analyses (and Chi-square tests) were performed to illustrate how 90-character and 360-character WEA messages differ by key content and style features. Results showed that certain content features (i.e., location, guidance, and the name of the hazard) were included more often than others (i.e., source, hazard description, hazard consequences, and timing information) and that the inclusion of most content features increased with increasing message character length. Additionally, when assessing message ‘completeness’, the use of acronyms was prevalent in both 90- and 360-character wildfire WEAs; whereas the inclusion of URLs was linked to increased message length. Wildfire WEAs also displayed inconsistency both within and across states in their use of terminology to trigger evacuation. These findings, among others, have implications for theory highlighting a growing need to confirm that message receivers understand and can act on the messages sent, regardless of the language used. In addition, for message creators, recommendations for effective WEA messages for wildfires are provided
Advancing the remote sensing of precipitation
Satellite-based global precipitation data has addressed the limitations of rain gauges and weather radar systems in forecasting applications and for weather and climate studies. Inspite of this ability, a number of issues that require the development of advanced concepts to address key challenges in satellite-based observations of precipitation were identified during the Advanced Concepts Workshop on Remote Sensing of Precipitation at Multiple Scales at the University of California. These include quantification of uncertainties of individual sensors and their propagation into multisensor products warrants a great deal of research. The development of metrics for validation and uncertainty analysis are of great importance. Bias removal, particularly probability distribution function (PDF)-based adjustment, deserves more in-depth research. Development of a near-real-time probabilistic uncertainty model for satellitebased precipitation estimates is highly desirable
WCDRR and the CEOS activities on disaters
Agencies from CEOS (Committee on Earth Observation Satellites) have traditionally focused their efforts on the response phase. Rapid urbanization and increased severity of weather events has led to growing economic and human losses from disasters, requiring international organisations to act now in all disaster risk management (DRM) phases, especially through improved disaster risk reduction policies and programmes. As part of this effort, CEOS agencies have initiated a series of actions aimed at fostering the use of Earth observation (EO) data to support disaster risk reduction and at raising the awareness of policy and decision-makers and major stakeholders of the benefits of using satellite EO in all phases of DRM. CEOS is developing a long-term vision for sustainable application of satellite EO to all phases of DRM. CEOS is collaborating with regional representatives of the DRM user community, on a multi-hazard project involving three thematic pilots (floods, seismic hazards and volcanoes) and a Recovery Observatory that supports resilient recovery from one major disaster. These pilot activities are meant as trail blazers that demonstrate the potential offered by satellite EO for comprehensive DRM. In the framework of the 2015 3rd World Conference on Disaster Risk Reduction (WCDRR), the CEOS space agencies intend to partner with major stakeholders, including UN organizations, the Group on Earth Observations (GEO), international relief agencies, leading development banks, and leading regional DRM organisations, to define and implement a 15-year plan of actions (2015- 2030) that responds to high-level Post-2015 Framework for Disaster Risk Reduction priorities. This plan of action will take into account lessons learned from the CEOS pilot activities
Genetic analysis of juvenile coho salmon (Oncorhynchus kisutch) off Oregon and Washington reveals few Columbia River wild fish
Little is known about the ocean distributions of wild juvenile coho salmon off the Oregon-Washington coast. In this study we report tag recoveries and genetic mixed-stock estimates of juvenile fish caught in coastal waters near the Columbia River plume. To support the genetic estimates, we report an allozyme-frequency baseline for 89 wild and hatchery-reared coho salmon spawning populations, extending from northern California to southern British Columbia. The products of 59 allozyme-encoding loci were examined with
starch-gel electrophoresis. Of these, 56 loci were polymorphic, and 29 loci had P0.95 levels of polymorphism. Average heterozygosities within populations ranged from 0.021 to 0.046 and averaged 0.033. Multidimensional scaling of chord genetic distances between samples resolved nine regional groups that were sufficiently distinct for genetic
mixed-stock analysis. About 2.9% of the total gene diversity was due to differences among populations within these regions, and 2.6% was due to differences among the nine regions. This allele-frequency data base was used to estimate the stock proportions of 730 juvenile coho salmon in offshore samples collected from central Oregon to northern Washington in June and September-October 1998−2000. Genetic mixed-stock analysis, together with recoveries of tagged or fin-clipped fish, indicates that about one half of the juveniles came from Columbia River hatcheries. Only 22% of the ocean-caught juveniles were wild fish, originating largely from coastal Oregon and Washington rivers (about 20%). Unlike previous studies of tagged juveniles, both tag recoveries and genetic estimates indicate the presence of fish from British Columbia and
Puget Sound in southern waters. The most salient feature of genetic mixed stock estimates was the paucity of wild
juveniles from natural populations in the Columbia River Basin. This result reflects the large decrease in the abundances of these populations in the last few decades
Recommended from our members
Genetic Identification of Chinook Salmon: Stock-Specific Distributions of Juveniles along the Washington and Oregon Coasts
We used microsatellite DNA data and genetic stock identification methods to delineate the temporal and spatial distributions of juvenile Chinook Salmon Oncorhynchus tshawytscha occupying coastal habitats extending from central Oregon to northern Washington. Juveniles were collected in trawl surveys conducted during spring, summer, and autumn over 15 years. Distributions (mean latitude and distance from shore) differed between yearling and subyearling life history types and between stocks; many of these differences were consistent across years. Yearlings were nearly all (98%) from Columbia River sources, and only 6% were naturally produced. In late May, yearlings from the lower Columbia and Willamette rivers were farther north than other yearlings, likely due to the early spring timing of their releases from hatcheries and subsequent out-migration from the Columbia River. However, yearling distributions in late June reflected known migration behaviors. Yearlings from interior Columbia and Snake River sources were farthest north by June, whereas yearlings from other stocks were more spread out in latitude. Subyearlings sampled in early summer were also largely from the Columbia River (98%), but greater percentages of subyearlings from coastal rivers were present during the fall (24%). In contrast to yearlings, natural production accounted for nearly one-third of subyearlings. Subyearlings of most stocks tended to remain relatively near their point of sea entry throughout the summer. Subyearlings from the Snake River fall-run stock and upper Columbia River summer–fall-run stock exhibited diverse distributions that included both southward and northward dispersal. Overall, distributions of Chinook Salmon stocks and life history types reflected differences in migration behavior but also reflected the influence of environmental factors and hatchery practices
Assessment of oxidative damage to proteins and DNA in urine of newborn infants by a validated UPLC-MS/MS approach
The assessment of oxidative stress is highly relevant in clinical Perinatology as it is associated to adverse outcomes in newborn infants. This study summarizes results from the validation of an Ultra Performance Liquid Chromatography-tandem Mass Spectrometry (UPLC-MS/MS) method for the simultaneous quantification of the urinary concentrations of a set of endogenous biomarkers, capable to provide a valid snapshot of the oxidative stress status applicable in human clinical trials, especially in the field of Perinatology. The set of analytes included are phenylalanine (Phe), para-tyrosine (p-Tyr), ortho-tyrosine (o-Tyr), meta-tyrosine (m-Tyr), 3-NO2-tyrosine (3NO 2-Tyr), 3-Cl-tyrosine (3Cl-Tyr), 2′-deoxyguanosine (2dG) and 8-hydroxy-2′-deoxyguanosine (8OHdG). Following the FDA-based guidelines, appropriate levels of accuracy and precision, as well as adequate levels of sensitivity with limits of detection (LODs) in the low nanomolar (nmol/L) range were confirmed after method validation. The validity of the proposed UPLC-MS/MS method was assessed by analysing urine samples from a clinical trial in extremely low birth weight (ELBW) infants randomized to be resuscitated with two different initial inspiratory fractions of oxygen
The simulation of wildland-urban interface fire evacuation: The WUI-NITY platform
Wildfires are a significant safety risk to populations adjacent to wildland areas, known as the wildland-urban interface (WUI). This paper introduces a modelling platform called WUI-NITY. The platform is built on the Unity3D game engine and simulates and visualises human behaviour and wildfire spread during an evacuation of WUI communities. The purpose of this platform is to enhance the situational awareness of responders and residents during evacuation scenarios by providing information on the dynamic evolution of the emergency. WUI-NITY represents current and predicted conditions by coupling the three key modelling layers of wildfire evacuation, namely the fire, pedestrian, and traffic movement. This allows predictions of evacuation behaviour over time. The current version of WUI-NITY demonstrates the feasibility and advantages of coupling the modelling layers. Its wildfire modelling layer is based on FARSITE, the pedestrian layer implements a dedicated pedestrian response and movement model, and the traffic layer includes a traffic evacuation model based on the Lighthill-Whitham-Richards model. The platform also includes a sub-model called PERIL that designs the spatial location of trigger buffers. The main contribution of this work is in the development of a modular and model-agnostic (i.e., not linked to a specific model) platform with consistent levels of granularity (allowing a comparable modelling resolution in the representation of each layer) in all three modelling layers. WUI-NITY is a powerful tool to protect against wildfires; it can enable education and training of communities, forensic studies of past evacuations and dynamic vulnerability assessment of ongoing emergencies
Self-reported sleep duration and quality and cardiovascular disease and mortality: A dose-response meta-analysis
Background-There is growing evidence that sleep duration and quality may be associated with cardiovascular harm and mortality. Methods and Results-We conducted a systematic review, meta-analysis, and spline analysis of prospective cohort studies that evaluate the association between sleep duration and quality and cardiovascular outcomes. We searched MEDLINE and EMBASE for these studies and extracted data from identified studies. We utilized linear and nonlinear dose-response meta-analysis models and used DerSimonian-Laird random-effects meta-analysis models of risk ratios, with inverse variance weighting, and the I2statistic to quantify heterogeneity. Seventy-four studies including 3 340 684 participants with 242 240 deaths among 2 564 029 participants who reported death events were reviewed. Findings were broadly similar across both linear and nonlinear dose-response models in 30 studies with >1 000 000 participants, and we report results from the linear model. Self-reported duration of sleep >8 hours was associated with a moderate increased risk of all-cause mortality, with risk ratio, 1.14 (1.05-1.25) for 9 hours, risk ratio, 1.30 (1.19-1.42) for 10 hours, and risk ratio, 1.47 (1.33-1.64) for 11 hours. No significant difference was identified for periods of selfreported sleep <7 hours, whereas similar patterns were observed for stroke and cardiovascular disease mortality. Subjective poor sleep quality was associated with coronary heart disease (risk ratio, 1.44; 95% confidence interval, 1.09-1.90), but no difference in mortality and other outcomes. Conclusions-Divergence from the recommended 7 to 8 hours of sleep is associated with a higher risk of mortality and cardiovascular events. Longer duration of sleep may be more associated with adverse outcomes compared with shorter sleep durations
Investigation of potential cognition factors correlated to fire evacuation
The design of a navigation system to support indoor fire evacuation depends not only on speed but also a relatively thorough consideration of the cognition factors. This study has investigated potential cognition factors which can affect the human behaviours and decision making during fire evacuation by taking a survey among indoor occupants in age of 20s under designed virtual scenarios. It mainly focuses on two aspects of Fire Responses Performances (FRP), i.e. indoor familiarity (spatial cognition) and psychological stress (situ-ated cognition). The collected results have shown that these cognition factors can be affected by gender and user height and they are correlated with each other in certain ways. It has also investigated users‟ attitudes to the navigation services under risky and non-risky conditions. The collected answers are also found to be correlated with the selected FRP factors. These findings may help to further design of personalized indoor navigation support for fire evacuation
Multi-Scale Action Effectiveness Research in the Lower Columbia River and Estuary, 2011 - FINAL ANNUAL REPORT
The study reported here was conducted by researchers at Pacific Northwest National Laboratory (PNNL), the Oregon Department of Fish and Wildlife (ODFW), the University of Washington (UW), and the National Marine Fisheries Service (NMFS) for the U.S. Army Corps of Engineers, Portland District (USACE). This research project was initiated in 2007 by the Bonneville Power Administration to investigate critical uncertainties regarding juvenile salmon ecology in shallow tidal freshwater habitats of the lower Columbia River. However, as part of the Washington Memorandum of Agreement, the project was transferred to the USACE in 2010. In transferring from BPA to the USACE, the focus of the tidal freshwater research project shifted from fundamental ecology toward the effectiveness of restoration in the Lower Columbia River and estuary (LCRE). The research is conducted within the Action Agencies Columbia Estuary Ecosystem Restoration Program (CEERP). Data reported herein spans the time period May 2010 to September 2011
- …