54 research outputs found
Beam-Energy Dependence of the Directed Flow of Protons, Antiprotons, and Pions in Au plus Au Collisions
Rapidity-odd directed flow (upsilon 1) measurements for charged pions, protons, and antiprotons near midrapidity (y = 0) are reported in root(S)(NN) = 7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeVAu+Au collisions as recorded by the STAR detector at the Relativistic Heavy Ion Collider. At intermediate impact parameters, the proton and net-proton slope parameter d upsilon(1) = d upsilon(1)vertical bar (y=0) shows a minimum between 11.5 and 19.6 GeV. In addition, the net-proton d upsilon(1) = d upsilon(1)vertical bar (y=0) changes sign twice between 7.7 and 39 GeV. The proton and net-proton results qualitatively resemble predictions of a hydrodynamic model with a first-order phase transition from hadronic matter to deconfined matter, and differ from hadronic transport calculations
Measurement of Longitudinal Spin Asymmetries for Weak Boson Production in Polarized Proton-Proton Collisions at RHIC
We report measurements of single- and double-spin asymmetries for W-+/- and Z/gamma* boson production in longitudinally polarized p + p collisions at root s = 510 GeV by the STAR experiment at RHIC. The asymmetries for W-+/- were measured as a function of the decay lepton pseudorapidity, which provides a theoretically clean probe of the proton's polarized quark distributions at the scale of the W mass. The results are compared to theoretical predictions, constrained by polarized deep inelastic scattering measurements, and show a preference for a sizable, positive up antiquark polarization in the range 0.05 < x < 0.2
Suppression of Upsilon production in d plus Au and Au plus Au collisions at root S-NN=200 GeV
We report measurements of Upsilon meson production in p + p, d + Au, and Au + Au collisions using the STAR detector at RHIC. We compare the Upsilon yield to the measured cross section in p + p collisions in order to quantify any modifications of the yield in cold nuclear matter using d + Au data and in hot nuclear matter using Au + Au data separated into three centrality classes. Our p + p measurement is based on three times the statistics of our previous result. We obtain a nuclear modification factor for Upsilon (1S + 2S + 3S) in the rapidity range vertical bar y vertical bar < 1 in d + Au collisions of R-dAu = 0.79 +/- 0.24(stat.) +/- 0.03(syst.) +/- 0.10(p + p syst.). A comparison with models including shadowing and initial state parton energy loss indicates the presence of additional cold-nuclear matter suppression. Similarly, in the top 10% most-central Au + Au collisions, we measure a nuclear modification factor of R-AA = 0.49 +/- 0.1(stat.) +/- 0.02(syst.) +/- 0.06(p + p syst.), which is a larger suppression factor than that seen in cold nuclear matter. Our results are consistent with complete suppression of excited-state Upsilon mesons in Au + Au collisions. The additional suppression in Au + Au is consistent with the level expected in model calculations that include the presence of a hot, deconfined Quark-Gluon Plasma. However, understanding the suppression seen in d + Au is still needed before any definitive statements about the nature of the suppression in Au + Au can be made735127137CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPRHIC Operations Group; NERSC Center at LBNL; KISTI Center in Korea; Open Science Grid consortium; National Science Foundation (NSF); Centre National de la Recherche Scientifique (CNRS); Ministry of Education and Science, Russian Federation; National Natural Science Foundation of China (NSFC); Chinese Academy of Sciences; Korean Research Foundation, GA; Ministry of Education, Youth & Sports - Czech Republic; FIAS of Germany; Department of Atomic Energy (DAE); Department of Science & Technology (India); Council of Scientific & Industrial Research (CSIR) - India; National Science Center, Poland; RosAtom of Russia ; RCF at BNL; United States Department of Energy (DOE);
United States Department of Energy (DOE); Ministry of Education, China; Ministry of Science and Technology, China; Ministry of Science, Education and Sports, Republic of Croatia; National Science Foundation (NSF); NSF - Directorate for Mathematical & Physical Sciences (MPS
Dielectron Mass Spectra from Au plus Au Collisions at root s(NN)=200 Ge V
We report the STAR measurements of dielectron (e(+)e(-)) production at midrapidity (vertical bar y(ee)vertical bar < 1) in Au + Au collisions at root s(NN) = 200 GeV. The measurements are evaluated in different invariant mass regions with a focus on 0.30-0.76 (rho-like), 0.76-0.80 (omega-like), and 0.98-1.05 (phi-like) GeV/c(2). The spectrum in the omega-like and phi-like regions can be well described by the hadronic cocktail simulation. In the rho-like region, however, the vacuum rho spectral function cannot describe the shape of the dielectron excess. In this range, an enhancement of 1.77 +/- 0.11(stat) +/- 0.24(syst) +/- 0.33(cocktail) is determined with respect to the hadronic cocktail simulation that excludes the rho meson. The excess yield in the rho-like region increases with the number of collision participants faster than the omega and phi yields. Theoretical models with broadened rho contributions through interactions with constituents in the hot QCD medium provide a consistent description of the dilepton mass spectra for the measurement presented here and the earlier data at the Super Proton Synchrotron energies
Beam Energy Dependence of Moments of the Net-Charge Multiplicity Distributions in Au plus Au Collisions at RHIC
We report the first measurements of the moments-mean (M), variance (sigma(2)), skewness (S), and kurtosis (kappa)-of the net-charge multiplicity distributions at midrapidity in Au + Au collisions at seven energies, ranging from root s(NN) = 7.7 to 200 GeV, as a part of the Beam Energy Scan program at RHIC. The moments are related to the thermodynamic susceptibilities of net charge, and are sensitive to the location of the QCD critical point. We compare the products of the moments, sigma(2)/M, S sigma, and kappa sigma(2), with the expectations from Poisson and negative binomial distributions (NBDs). The S sigma values deviate from the Poisson baseline and are close to the NBD baseline, while the kappa sigma(2) values tend to lie between the two. Within the present uncertainties, our data do not show nonmonotonic behavior as a function of collision energy. These measurements provide a valuable tool to extract the freeze-out parameters in heavy-ion collisions by comparing with theoretical models
Jet-Hadron Correlations in root s(NN)=200 GeV p plus p and Central Au plus Au Collisions
Azimuthal angular correlations of charged hadrons with respect to the axis of a reconstructed (trigger) jet in Au + Au and p + p collisions at root s(NN) = 200 GeV in STAR are presented. The trigger jet population in Au + Au collisions is biased toward jets that have not interacted with the medium, allowing easier matching of jet energies between Au + Au and p + p collisions while enhancing medium effects on the recoil jet. The associated hadron yield of the recoil jet is significantly suppressed at high transverse momentum (p(T)(assoc)) and enhanced at low p(T)(assoc) in 0%-20% central Au + Au collisions compared to p + p collisions, which is indicative of medium-induced parton energy loss in ultrarelativistic heavy-ion collisions
J/psi production at low p(T) in Au plus Au and Cu plus Cu collisions at root s(NN)=200 GeV with the STAR detector
The J/psi p(T) spectrum and nuclear modification factor (R-AA) are reported for p(T) < 5 GeV/c and vertical bar y vertical bar < 1 from 0% to 60% central Au + Au and Cu + Cu collisions at root s(NN) = 200 GeV at STAR. A significant suppression of p(T) - integrated J/psi production is observed in central Au + Au events. The Cu + Cu data are consistent with no suppression, although the precision is limited by the available statistics. R-AA in Au + Au collisions exhibits a strong suppression at low transverse momentum and gradually increases with p(T). The data are compared to high-p(T) STAR results and previously published BNL Relativistic Heavy Ion Collider results. Comparing with model calculations, it is found that the invariant yields at low p(T) are significantly above hydrodynamic flow predictions but are consistent with models that include color screening and regeneration
Beam-Energy Dependence of Charge Separation along the Magnetic Field in Au plus Au Collisions at RHIC
Local parity-odd domains are theorized to form inside a quark-gluon plasma which has been produced in high-energy heavy-ion collisions. The local parity-odd domains manifest themselves as charge separation along the magnetic field axis via the chiral magnetic effect. The experimental observation of charge separation has previously been reported for heavy-ion collisions at the top RHIC energies. In this Letter, we present the results of the beam-energy dependence of the charge correlations in Au + Au collisions at midrapidity for center-of-mass energies of 7.7, 11.5, 19.6, 27, 39, and 62.4 GeV from the STAR experiment. After background subtraction, the signal gradually reduces with decreased beam energy and tends to vanish by 7.7 GeV. This implies the dominance of hadronic interactions over partonic ones at lower collision energies
Intermediate Point Norm Optimal Iterative Learning Control
A Norm-Optimal Iterative Learning Control (NOILC) solution is developed for the problem when tracking is only required at a subset of isolated time points along the trial duration. Well-defined convergence properties are presented, along with design guidelines and supporting experimental results using an electromechanical test facility
- …