396 research outputs found

    Lettuce mosaic virus isolated from pea (Pisum sativum)

    Get PDF

    Targeting neonatal ischemic brain injury with a pentapeptide-based irreversible caspase inhibitor

    Get PDF
    Brain protection of the newborn remains a challenging priority and represents a totally unmet medical need. Pharmacological inhibition of caspases appears as a promising strategy for neuroprotection. In a translational perspective, we have developed a pentapeptide-based group II caspase inhibitor, TRP601/ORPHA133563, which reaches the brain, and inhibits caspases activation, mitochondrial release of cytochrome c, and apoptosis in vivo. Single administration of TRP601 protects newborn rodent brain against excitotoxicity, hypoxia–ischemia, and perinatal arterial stroke with a 6-h therapeutic time window, and has no adverse effects on physiological parameters. Safety pharmacology investigations, and toxicology studies in rodent and canine neonates, suggest that TRP601 is a lead compound for further drug development to treat ischemic brain damage in human newborns

    Melody, an ENU mutation in Caspase 3, alters the catalytic cysteine residue and causes sensorineural hearing loss in mice

    Get PDF
    Progeny from the Harwell N-ethyl-N-nitrosourea (ENU) recessive mutagenesis screen were assessed for auditory defects. A pedigree was identified with multiple progeny lacking response to a clickbox test. Auditory brainstem response (ABR) analysis showed that homozygous mutant mice were profoundly deaf and the line was named melody. We subsequently mapped this mutation to a 6-Mb region on chromosome 8 and identified a point mutation in melody that results in a C163S substitution in the catalytic site of Caspase 3, a cysteine protease involved in apoptosis. Melody fails to complement a null Caspase-3 mutant. Scanning electron microscopy (SEM) has revealed disorganised sensory hair cells and hair cell loss. Histological analysis of melody has shown degeneration of spiral ganglion cells in homozygote mice, with a gradient of severity from apical to basal turns. Melody heterozygotes also show evidence of loss of spiral ganglion neurons, suggesting that the C163S mutation may show dominant negative effects by binding and sequestering proteins at the active site. The melody line provides a new model for studying the role of Caspase 3 in deafness and a number of other pathways and systems

    Analyses of apoptotic regulators CASP9 and DFFA at 1P36.2, reveal rare allele variants in human neuroblastoma tumours

    Get PDF
    The genes encoding Caspase-9 and DFF45 have both recently been mapped to chromosome region 1p36.2, that is a region alleged to involve one or several tumour suppressor genes in neuroblastoma tumours. This study presents an update contig of the ‘Smallest Region of Overlap of deletions’ in Scandinavian neuroblastoma tumours and suggests that DFF45 is localized in the region. The genomic organization of the human DFF45 gene, deduced by in-silico comparisons of DNA sequences, is described for the first time in this paper. In the present study 44 primary tumours were screened for mutation by analysis of the genomic sequences of the genes. In two out of the 44 tumours this detected in the DFFA gene one rare allele variant that caused a non-polar to a polar amino acid exchange in a preserved hydrophobic patch of DFF45. One case was hemizygous due to deletion of the more common allele of this polymorphism. Out of 194 normal control alleles only one was found to carry this variant allele, so in respect of it, no healthy control individual out of 97 was homozygous. Moreover, our RT–PCR expression studies showed that DFF45 is preferably expressed in low-stage neuroblastoma tumours and to a lesser degree in high-stage neuroblastomas. We conclude that although coding mutations of Caspase-9 and DFF45 are infrequent in neuroblastoma tumours, our discovery of a rare allele in two neuroblastoma cases should be taken to warrant further studies of the role of DFF45 in neuroblastoma genetics

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death

    Maxadilan Prevents Apoptosis in iPS Cells and Shows No Effects on the Pluripotent State or Karyotype

    Get PDF
    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a structurally endogenous peptide with many biological roles. Maxadilan, a 61-amino acid vasodilatory peptide, specifically activates the PACAP type I receptor (PAC1). Although PAC1 has been identified in embryonic stem cells, little is known about its presence or effects in human induced pluripotent stem (iPS) cells. In the present study, we investigated the expression of PAC1 in human iPS cells by reverse transcriptase polymerase chain reaction (RT-PCR) and western blot analysis. To study the physiological effects mediated by PAC1, we evaluated the role of maxadilan in preventing apoptotic cell death induced by ultraviolet C (UVC). After exposure to UVC, the iPS cells showed a marked reduction in cell viability and a parallel increase of apoptotic cells, as demonstrated by WST-8 analysis, annexin V/propidium iodide (PI) analysis and the terminal transferase dUTP nick end labeling (TUNEL) assay. The addition of 30 nM of maxadilan dramatically increased iPS cell viability and reduced the percentage of apoptotic cells. The anti-apoptotic effects of maxadilan were correlated to the downregulation of caspase-3 and caspase-9. Concomitantly, immunofluorescence, western blot analysis, real-time quantitative polymerase chain reaction (RT-qPCR) analysis and in vitro differentiation results showed that maxadilan did not affect the pluripotent state of iPS cells. Moreover, karyotype analysis showed that maxadilan did not affect the karyotype of iPS cells. In summary, these results demonstrate that PAC1 is present in iPS cells and that maxadilan effectively protects iPS cells against UVC-induced apoptotic cell death while not affecting the pluripotent state or karyotype

    Caspase I-related protease inhibition retards the execution of okadaic acid- and camptothecin-induced apoptosis and PAI-2 cleavage, but not commitment to cell death in HL-60 cells

    Get PDF
    We have previously reported that the putative cytoprotective protease inhibitor, plasminogen activator inhibitor type 2 (PAI-2), is specifically cleaved during okadaic acid-induced apoptosis in a myeloid leukaemic cell line (Br J Cancer (1994) 70: 834–840). HL-60 cells exposed to okadaic acid and camptothecin underwent morphological and biochemical changes typical of apoptosis, including internucleosomal DNA fragmentation and PAI-2 cleavage. Significant endogenous PAI-2 cleavage was observed 9 h after exposure to okadaic acid; thus correlating with other signs of macromolecular degradation, like internucleosomal DNA fragmentation. In camptothecin-treated cells, PAI-2 cleavage was an early event, detectable after 2 h of treatment, and preceding internucleosomal DNA fragmentation. The caspase I selective protease inhibitor, YVAD-cmk, inhibited internucleosomal DNA fragmentation and PAI-2 cleavage of okadaic acid and camptothecin-induced apoptotic cells. YVAD-cmk rather sensitively and non-toxically inhibited camptothecin-induced morphology, but not okadaic acid-induced morphology. In in vitro experiments recombinant PAI-2 was not found to be a substrate for caspase I. The results suggest that caspase I selective protease inhibition could antagonize parameters coupled to the execution phase of okadaic acid- and camptothecin-induced apoptosis, but not the commitment to cell death. © 1999 Cancer Research Campaig

    GM-CSF Signalling Boosts Dramatically IL-1Production

    Get PDF
    GM-CSF is mostly known for its capacity to promote bone marrow progenitor differentiation, to mobilize and mature myeloid cells as well as to enhance host immune responses. However the molecular actions of GM-CSF are still poorly characterized. Here we describe a new surprising facet of this “old” growth factor as a key regulator involved in IL-1βsecretion. We found that IL-1β release, a pivotal component of the triggered innate system, is heavily dependent on the signaling induced by GM-CSF in such an extent that in its absence IL-1β is only weakly secreted. GM-CSF synergizes with LPS for IL-1β secretion mainly at the level of pro-IL-1β production via strengthening the NF-κB signaling. In addition, we show that expression of Rab39a, a GTPase required for caspase-1 dependent IL-1β secretion is greatly augmented by LPS and GM-CSF co-stimulation suggesting a potential GM-CSF contribution in enhancing IL-1β exocytosis. The role of GM-CSF in regulating IL-1β secretion is extended also in vivo, since GM-CSF R−/− mice are more resistant to LPS-mediated septic shock. These results identify GM-CSF as a key regulator of IL-1β production and indicate GM-CSF as a previously underestimated target for therapeutic intervention
    • …
    corecore