36 research outputs found

    Citizen science versus professional data collection: Comparison of approaches to mosquito monitoring in Germany

    Get PDF
    Due to the recent emergence of invasive mosquito species and the outbreaks of mosquito-borne diseases in Europe, research on the ecology and diversity of the mosquito fauna has returned to scientific agendas. Through a nationwide surveillance programme in Germany, mosquitoes have been monitored actively by systematically operated traps since 2011, and passively by the 'MĂĽckenatlas' (mosquito atlas) citizen science project launched in 2012. To assess the performance of both monitoring methods we compared the two respective datasets with regard to habitat coverage, species composition and the ability to detect invasive mosquitoes. The datasets include observations from the beginning of the project until the end of 2017. We found significant differences in species composition caused by land use types and the participants' recording activity. Active monitoring performed better in mapping mosquito diversity, whereas passive monitoring better detected invasive species, thereby using data from private premises scientists usually cannot access. Synthesis and applications. Active and passive monitoring is complementary. Combining them allows for the determination of mosquito diversity, efficient detection of emerging invasive species and the initiation of rapid-response actions against such invaders. The 'MĂĽckenatlas' sets an example for the usefulness of citizen science when included in a national monitoring programme, an approach that may be worth copying for tackling the global spread of arthropod vectors of disease agents

    Metabolomics in chemical ecology

    No full text
    Chemical ecology elucidates the nature and role of natural products as mediators of organismal interactions. The emerging techniques that can be summarized under the concept of metabolomics provide new opportunities to study such environmentally relevant signaling molecules. Especially comparative tools in metabolomics enable the identification of compounds that are regulated during interaction situations and that might play a role as e.g. pheromones, allelochemicals or in induced and activated defenses. This approach helps overcoming limitations of traditional bioassay-guided structure elucidation approaches. But the power of metabolomics is not limited to the comparison of metabolic profiles of interacting partners. Especially the link to other -omics techniques helps to unravel not only the compounds in question but the entire biosynthetic and genetic re-wiring, required for an ecological response. This review comprehensively highlights successful applications of metabolomics in chemical ecology and discusses existing limitations of these novel techniques. It focuses on recent developments in comparative metabolomics and discusses the use of metabolomics in the systems biology of organismal interactions. It also outlines the potential of large metabolomics initiatives for model organisms in the field of chemical ecology

    Metabolomics of intra- and extracellular metabolites from micro- and macroalgae using GC-MS and LC-MS

    No full text
    Comparative metabolomics is an emerging technique suitable for the monitoring of metabolic responses of organisms to external stimuli or stress factors like biotic interaction partners, nutrient limitation or adverse environmental conditions. Using data from comparative metabolomics, changes in primary metabolism can be unraveled and connected to the regulation of metabolic pathways. However, the technique is also suitable for an untargeted screening of primary and secondary metabolites. Thereby candidate metabolites can be identified that might play a functional role in the particular stress situation. Especially mass spectrometry-enabled techniques have found their way into many disciplines. Here we describe the extraction, derivatization, gas chromatography-mass spectrometry (GC-MS) as well as liquid chromatography-mass spectrometry (LC-MS) measurement and data analysis for a metabolic profiling of algae. We describe a general protocol for intracellular profiling of microalgae, and germ cells and thalli of macroalgae. The protocol outlines the procedure to extract, derivatize and measure the exo-metabolome of these organisms, i.e., the metabolites exuded into the seawater. 2 The method was initially developed for metabolomics of the diatom Skeletonema marinoi but proved to be suitable for a broad range of micro- and macroalgae after minor adaptations. The entire work-flow can be carried out in laboratories with basic equipment for chemical work and measurements can be recorded on most commercially available GC-MS and LC-MS systems

    A fast and direct liquid chromatography-mass spectrometry method to detect and quantify polyunsaturated aldehydes and polar oxylipins in diatoms

    No full text
    Polyunsaturated aldehydes (PUAs) are a group of microalgal metabolites that have attracted a lot of attention due to their biological activity. Determination of PUAs has become an important routine procedure in plankton and biofilm investigations, especially those that deal with chemically mediated interactions. Here we introduce a fast and direct derivatization free method that allows quantifying PUAs in the nanomolar range, sufficient to undertake the analysis from cultures and field samples. The sample preparation requires one simple filtration step and the initiation of PUA formation by cell disruption. After centrifugation the samples are ready for measurement without any further handling. Within one chromatographic run this method additionally allows us to monitor the formation of the polar oxylipins arising from the cleavage of precursor fatty acids. The robust method is based on analyte separation and detection using ultra high performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry (UHPLC-APCI MS) and enables high throughput investigations by employing an analysis time of only 5 min. Our protocol thus provides an alternative and extension to existing PUA determinations based on gas chromatographymass spectrometry (GC-MS) with shorter run times and without any chemical derivatization. It also enables researchers with widely available LC-MS analytical platforms to monitor PUAs. Additionally, non-volatile oxylipins such as x-oxo-acids and related compounds can be elucidated and monitored

    Comparison of bone-implant contact and bone-implant volume between 2D-histological sections and 3D-SRµCT slices

    Full text link
    Histological imaging is still considered the gold standard for analysing bone formation around metallic implants. Generally, a limited number of histological sections per sample are used for the approximation of mean values of peri-implant bone formation. In this study we compared statistically the results of bone-implant contact (BIC) and bone-implant volume (BIV) obtained by histological sections, with those obtained by X-ray absorption images from synchrotron radiation micro-computed tomography (SRµCT) using osseointegrated screw-shaped implants from a mini-pig study. Comparing the BIC results of 3-4 histological sections per implant sample with the appropriate 3-4 SRµCT slices showed a non-significant difference of 1.9 % (p = 0.703). The contact area assessed by the whole 3D information from the SRµCT measurement in comparison to the histomorphometric results showed a non-significant difference in BIC of 4.9 % (p = 0.171). The amount of the bone-implant volume in the histological sections and the appropriate SRµCT slices showed a non-significant difference by only 1.4 % (p = 0.736) and also remains non-significant with 2.6 % (p = 0.323) using the volumetric SRµCT information. We conclude that for a clinical evaluation of implant osseointegration with histological imaging at least 3-4 sections per sample are sufficient to represent the BIC or BIV for a sample. Due to the fact that in this study we have found a significant intra-sample variation in BIC of up to ± 35 % the selection of only one or two histological sections per sample may strongly influence the determined BIC

    Site-Specific Variations in Bone Mineral Density under Systemic Conditions Inducing Osteoporosis in Minipigs

    Get PDF
    Osteoporosis is a systemic bone disease with an increasing prevalence in the elderly population. There is conflicting opinion about whether osteoporosis affects the alveolar bone of the jaws and whether it poses a risk to the osseointegration of dental implants. The aim of the present study was to evaluate the effects of systemic glucocorticoid administration on the jaw bone density of minipigs. Thirty-seven adult female minipigs were randomly divided into two groups. Quantitative computed tomography (QCT) was used to assess bone mineral density BMD of the lumbar spine as well as the mandible and maxilla, and blood was drawn. One group of minipigs initially received 1.0 mg prednisolone per kg body weight daily for 2 months. The dose was tapered to 0.5 mg per kg body weight per day thereafter. The animals in the other group served as controls and received placebo. QCT and blood analysis were repeated after 6 and 9 months. BMD was compared between the two groups by measuring Hounsfield units, and serum levels of several bone metabolic markers were also assessed. A decrease in BMD was observed in the jaws from baseline to 9 months. This was more pronounced in the prednisolone group. Statistically significant differences were reached for the mandible (p < 0.001) and the maxilla (p < 0.001). The administration of glucocorticoids reduced the BMD in the jaws of minipigs. The described model shows promise in the evaluation of osseointegration of dental implants in bone that is compromised by osteoporosis
    corecore