306 research outputs found

    Comparing Experiments to the Fault-Tolerance Threshold

    Full text link
    Achieving error rates that meet or exceed the fault-tolerance threshold is a central goal for quantum computing experiments, and measuring these error rates using randomized benchmarking is now routine. However, direct comparison between measured error rates and thresholds is complicated by the fact that benchmarking estimates average error rates while thresholds reflect worst-case behavior when a gate is used as part of a large computation. These two measures of error can differ by orders of magnitude in the regime of interest. Here we facilitate comparison between the experimentally accessible average error rates and the worst-case quantities that arise in current threshold theorems by deriving relations between the two for a variety of physical noise sources. Our results indicate that it is coherent errors that lead to an enormous mismatch between average and worst case, and we quantify how well these errors must be controlled to ensure fair comparison between average error probabilities and fault-tolerance thresholds.Comment: 5 pages, 2 figures, 13 page appendi

    Regulating repression : roles for the Sir4 N-terminus in linker DNA protection and stabilization of epigenetic states

    Get PDF
    The Gasser laboratory is supported by the Novartis Research Foundation and the EU training network Nucleosome 4D. SK was supported by an EMBO long-term fellowship, a Schrodinger fellowship from the FWF, and the Swiss SystemsX.ch initiative/C-CINA; HCF by an EMBO long-term fellowship.Silent information regulator proteins Sir2, Sir3, and Sir4 form a heterotrimeric complex that represses transcription at subtelomeric regions and homothallic mating type (HM) loci in budding yeast. We have performed a detailed biochemical and genetic analysis of the largest Sir protein, Sir4. The N-terminal half of Sir4 is dispensable for SIR-mediated repression of HM loci in vivo, except in strains that lack Yku70 or have weak silencer elements. For HM silencing in these cells, the C-terminal domain (Sir4C, residues 747-1,358) must be complemented with an N-terminal domain (Sir4N; residues 1-270), expressed either independently or as a fusion with Sir4C. Nonetheless, recombinant Sir4C can form a complex with Sir2 and Sir3 in vitro, is catalytically active, and has sedimentation properties similar to a full-length Sir4-containing SIR complex. Sir4C-containing SIR complexes bind nucleosomal arrays and protect linker DNA from nucleolytic digestion, but less effectively than wild-type SIR complexes. Consistently, full-length Sir4 is required for the complete repression of subtelomeric genes. Supporting the notion that the Sir4 N-terminus is a regulatory domain, we find it extensively phosphorylated on cyclin-dependent kinase consensus sites, some being hyperphosphorylated during mitosis. Mutation of two major phosphoacceptor sites (S63 and S84) derepresses natural subtelomeric genes when combined with a serendipitous mutation (P2A), which alone can enhance the stability of either the repressed or active state. The triple mutation confers resistance to rapamycin-induced stress and a loss of subtelomeric repression. We conclude that the Sir4 N-terminus plays two roles in SIR-mediated silencing: it contributes to epigenetic repression by stabilizing the SIR-mediated protection of linker DNA; and, as a target of phosphorylation, it can destabilize silencing in a regulated manner.Publisher PDFPeer reviewe

    Seeking the Goal in the Process, the Process for the Goal: Organizational Learning in a Public Sector Change Project

    Get PDF
    This paper describes how a combination of process modelling and goal modelling techniques has been used to facilitate organizational learning. The case study comes from the public sector in the UK. The modelling techniques have helped users to rationalise about the existing processes and then to design how they would like the process to work. The paper describes how the users have been able to confront the complex issues involved. The experience suggests that the combination of the modelling techniques is important to the learning experience of the users involved

    Recovering Quantum Gates from Few Average Gate Fidelities

    Get PDF
    Characterizing quantum processes is a key task in the development of quantum technologies, especially at the noisy intermediate scale of today’s devices. One method for characterizing processes is randomized benchmarking, which is robust against state preparation and measurement errors and can be used to benchmark Clifford gates. Compressed sensing techniques achieve full tomography of quantum channels essentially at optimal resource efficiency. In this Letter, we show that the favorable features of both approaches can be combined. For characterizing multiqubit unitary gates, we provide a rigorously guaranteed and practical reconstruction method that works with an essentially optimal number of average gate fidelities measured with respect to random Clifford unitaries. Moreover, for general unital quantum channels, we provide an explicit expansion into a unitary 2-design, allowing for a practical and guaranteed reconstruction also in that case. As a side result, we obtain a new statistical interpretation of the unitarity—a figure of merit characterizing the coherence of a process

    Electrostrictive nonlinearity in optical fiber deduced from Brillouin gain measurements

    Get PDF
    The nonlinear refractive index has drawn considerable attention these past few years, because it may significantly perturbate long-range propagation of lightwaves in optical fibers. Two main origins to this nonlinearity have been identified: nonresonant electronic nonlinearity and electrostriction. This paper shows that the electrostrictive contribution to the nonlinear refractive index n, may indeed be straightfowardly calculated from Brillouin gain measurements. The Brillouin linear gain g, is dependent on material properties and in particular on the electrostrictive coefficient

    Randomizing multi product formulas for Hamiltonian simulation

    Get PDF
    Quantum simulation, the simulation of quantum processes on quantum computers, suggests a path forward for the efficient simulation of problems in condensed matter physics, quantum chemistry, and materials science. While the majority of quantum simulation algorithms are deterministic, a recent surge of ideas has shown that randomization can greatly benefit algorithmic performance. In this work, we introduce a scheme for quantum simulation that unites the advantages of randomized compiling on the one hand and higher order multi product formulas, as they are used for example in linear combination of unitaries LCU algorithms or quantum error mitigation, on the other hand. In doing so, we propose a framework of randomized sampling that is expected to be useful for programmable quantum simulators and present two new multi product formula algorithms tailored to it. Our framework reduces the circuit depth by circumventing the need for oblivious amplitude amplification required by the implementation of multi product formulas using standard LCU methods, rendering it especially useful for early quantum computers used to estimate the dynamics of quantum systems instead of performing full fledged quantum phase estimation. Our algorithms achieve a simulation error that shrinks exponentially with the circuit depth. To corroborate their functioning, we prove rigorous performance bounds as well as the concentration of the randomized sampling procedure. We demonstrate the functioning of the approach for several physically meaningful examples of Hamiltonians, including fermionic systems and the Sachdev Ye Kitaev model, for which the method provides a favorable scaling in the effor

    Spatial mapping and manipulation of two tunnel-coupled quantum dots

    Full text link
    The metallic tip of a scanning force microscope operated at 300 mK is used to locally induce a potential in a fully controllable double quantum dot defined via local anodic oxidation in a GaAs/AlGaAs heterostructure. Using scanning gate techniques we record spatial images of the current through the sample for different numbers of electrons on the quantum dots (i.e., for different quantum states). Owing to the spatial resolution of current maps, we are able to determine the spatial position of the individual quantum dots, and investigate their apparent relative shifts due to the voltage applied to a single gate

    Efficacy-aware Business Process Modeling

    Get PDF
    In business process design, business objective models can fulfill the role of formal requirement definitions. Matching process models against objective models would, for instance, enable sound comparison of implementation alternatives. For that purpose, objective models should be available independently of their concrete implementation in a business process. This issue is not addressed by common business process management concepts yet. Moreover, process models are currently not sufficiently expressive to determine business process efficacy in the sense of fulfilling a business objective. Therefore, this paper develops and integrates constructs required for efficacy-aware process modeling and apt to extend common modeling approaches. The concept is illustrated with a sample scenario. Overall, it serves as an enabler for progressive applications like automated process optimization

    Candida albicans repetitive elements display epigenetic diversity and plasticity

    Get PDF
    Transcriptionally silent heterochromatin is associated with repetitive DNA. It is poorly understood whether and how heterochromatin differs between different organisms and whether its structure can be remodelled in response to environmental signals. Here, we address this question by analysing the chromatin state associated with DNA repeats in the human fungal pathogen Candida albicans. Our analyses indicate that, contrary to model systems, each type of repetitive element is assembled into a distinct chromatin state. Classical Sir2-dependent hypoacetylated and hypomethylated chromatin is associated with the rDNA locus while telomeric regions are assembled into a weak heterochromatin that is only mildly hypoacetylated and hypomethylated. Major Repeat Sequences, a class of tandem repeats, are assembled into an intermediate chromatin state bearing features of both euchromatin and heterochromatin. Marker gene silencing assays and genome-wide RNA sequencing reveals that C. albicans heterochromatin represses expression of repeat-associated coding and non-coding RNAs. We find that telomeric heterochromatin is dynamic and remodelled upon an environmental change. Weak heterochromatin is associated with telomeres at 30?°C, while robust heterochromatin is assembled over these regions at 39?°C, a temperature mimicking moderate fever in the host. Thus in C. albicans, differential chromatin states controls gene expression and epigenetic plasticity is linked to adaptation
    • …
    corecore