29 research outputs found

    Intensity limitations of a gas cell for stopping, storing and guiding of radioactive ions

    Get PDF
    The possibility to use a gas cell filled by noble gas (He or Ar) for thermalizing, storing and transporting radioactive ions is explored by studying experimentally ion - electron recombination of stable Ni, resonantly ionized by laser light. Combined with a literature study on ionization chambers, especially developed for high-intensity applications, conclusions are drawn on the maximum intensity of the incoming ion beam. A practical limit is encountered when the space-charge induced voltage fully counteract the applied voltage on the electrodes collecting the electrons

    Quantifying the contribution of established risk factors to cardiovascular mortality differences between Russia and Norway.

    Get PDF
    Surprisingly few attempts have been made to quantify the simultaneous contribution of well-established risk factors to CVD mortality differences between countries. We aimed to develop and critically appraise an approach to doing so, applying it to the substantial CVD mortality gap between Russia and Norway using survey data in three cities and mortality risks from the Emerging Risk Factor Collaboration. We estimated the absolute and relative differences in CVD mortality at ages 40-69 years between countries attributable to the risk factors, under the counterfactual that the age- and sex-specific risk factor profile in Russia was as in Norway, and vice-versa. Under the counterfactual that Russia had the Norwegian risk factor profile, the absolute age-standardized CVD mortality gap would decline by 33.3% (95% CI 25.1-40.1) among men and 22.1% (10.4-31.3) among women. In relative terms, the mortality rate ratio (Russia/Norway) would decline from 9-10 to 7-8. Under the counterfactual that Norway had the Russian risk factor profile, the mortality gap reduced less. Well-established CVD risk factors account for a third of the male and around a quarter of the female CVD mortality gap between Russia and Norway. However, these estimates are based on widely held epidemiological assumptions that deserve further scrutiny

    Chronicles of nature calendar, a long-term and large-scale multitaxon database on phenology

    Get PDF
    We present an extensive, large-scale, long-term and multitaxon database on phenological and climatic variation, involving 506,186 observation dates acquired in 471 localities in Russian Federation, Ukraine, Uzbekistan, Belarus and Kyrgyzstan. The data cover the period 1890-2018, with 96% of the data being from 1960 onwards. The database is rich in plants, birds and climatic events, but also includes insects, amphibians, reptiles and fungi. The database includes multiple events per species, such as the onset days of leaf unfolding and leaf fall for plants, and the days for first spring and last autumn occurrences for birds. The data were acquired using standardized methods by permanent staff of national parks and nature reserves (87% of the data) and members of a phenological observation network (13% of the data). The database is valuable for exploring how species respond in their phenology to climate change. Large-scale analyses of spatial variation in phenological response can help to better predict the consequences of species and community responses to climate change.Peer reviewe

    Phenological shifts of abiotic events, producers and consumers across a continent

    Get PDF
    Ongoing climate change can shift organism phenology in ways that vary depending on species, habitats and climate factors studied. To probe for large-scale patterns in associated phenological change, we use 70,709 observations from six decades of systematic monitoring across the former Union of Soviet Socialist Republics. Among 110 phenological events related to plants, birds, insects, amphibians and fungi, we find a mosaic of change, defying simple predictions of earlier springs, later autumns and stronger changes at higher latitudes and elevations. Site mean temperature emerged as a strong predictor of local phenology, but the magnitude and direction of change varied with trophic level and the relative timing of an event. Beyond temperature-associated variation, we uncover high variation among both sites and years, with some sites being characterized by disproportionately long seasons and others by short ones. Our findings emphasize concerns regarding ecosystem integrity and highlight the difficulty of predicting climate change outcomes. The authors use systematic monitoring across the former USSR to investigate phenological changes across taxa. The long-term mean temperature of a site emerged as a strong predictor of phenological change, with further imprints of trophic level, event timing, site, year and biotic interactions.Peer reviewe
    corecore