210 research outputs found

    Liquid Biopsies

    Full text link

    Коллагенопатия VI типа. Болезнь Ульриха. Клинический случай

    Get PDF
    Institute of Mother and Child, Moldova, Chisinau, Centre of Reproductive Health and Medical Genetics, Moldova, Chisinau, University Medical Center Hamburg-Eppendorf, Germany, HamburColagenul tipul VI este un colagen microfibriliar localizat în matrixul extracelular predominant de țesuturi conjuctive. Este compus din 3 lanțuri α codate de trei gene independente. Mutațiile în aceste gene provoacă maladii musculare de un anumit grup care pot fi referiți ca miopatii lincate de colagenul VI. Aceste miopatii cuprind un spectru de maladii ce cuprind cazuri de la cele mai severe cazuri precum distrofia musculară congenitală Ullrich (DMCU) urmat de fenotipuri de tranziție severă spre miopatia mai ușoară Bethlem (MB). În adiție, fenotipul contractural, referit drept mioscleroza, este cunoscut și asociat cu mutația în gena COL6A2. DMCU a fost inițial descris într-o serie de articole din anii 1930 de către Otto Ullrich, care s-a referit la condiție drept, distrofia musculară atonică-sclerotică cu progresul contracturilor. MB a fost descrisă în 1976 de către Bethlem și van Wijngaarden drept o condiție autosomal dominantă găsitaă în 28 de indivizi din cadrul a 3 familii Olandeze, acești indivizi având specific contracții de flexie a degetelor. În acest articol noi descriem un caz a unui pacient Moldovean cu fenotip clinic de DMCU și rolul colagenului VI în patogeneza acestuia.Коллаген шестого типа представляет собой микрофибриллярный коллаген, локализованный в матриксе большинства соединительных тканей. Он состоит из трёх альфа цепей, кодирующихся тремя отдельными генами. Мутации в этих генах приводят к заболеваниям, известным как миопатии, связанные с коллагеном шестого типа. Эти миопатии включают в себя широкий спектр заболеваний, начиная от самых тяжёлых по типу врождённой мышечной дистрофии Ульриха (ВМДУ) через серию фенотипов переходной тяжести к более лёгкой миопатии Бетлема (МБ). Также известен преимущественно контрактурный фенотип, называемый миосклерозом и связанный с мутациями в гене COL6A2. ВМДУ была впервые описана Отто Ульрихом в серии статей, опубликованной в 1930-х годах, где он называл её «атоническо-склеротической мышечной дистрофией» с прогрессирующими контрактурами. МБ была описана в 1976 году Бетлемом и ван Винжгаарденом как аутосомно-доминантно наследуемое заболевание. Описание было составлено на основе анализа 28 больных из трёх голландских семей, имевших сгибательные контрактуры пальцев. В этой статье мы описываем клинический случай молдавского пациента с клиническим фенотипом ВМДУ и роль коллагена шестого типа в патогенезе болезни

    Fatal Myelotoxicity Following Palliative Chemotherapy With Cisplatin and Gemcitabine in a Patient With Stage IV Cholangiocarcinoma Linked to Post Mortem Diagnosis of Fanconi Anemia

    Get PDF
    Unrecognized genome instability syndromes can potentially impede the rational treatment of cancer in rare patients. Identification of cancer patients with a hereditary condition is a compelling necessity for oncologists, giving varying hypersensitivities to various chemotherapeutic agents or radiation, depending on the underlying genetic cause. Omission of genetic testing in the setting of an overlooked hereditary syndrome may lead to unexpected and unbearable toxicity from oncological standard approaches. We present a case of a 33-year-old man with an early-onset stage IV intrahepatic cholangiocarcinoma, who experienced unusual bone marrow failure and neutropenic fever syndrome as a consequence of palliative chemotherapy containing cisplatin and gemcitabine, leading to a fatal outcome on day 25 of his first chemotherapeutic cycle. The constellation of bone marrow failure after exposure to the platinum-based agent cisplatin, the presence of an early-onset solid malignancy and the critical appraisal of further phenotypical features raised suspicion of a hereditary genome instability syndrome. Whole-exome sequencing from buccal swab DNA enabled the post mortem diagnosis of Fanconi anemia, most likely linked to the fatal outcome due to utilization of the DNA crosslinking agent cisplatin. The patient's phenotype was exceptional, as he never displayed significant hematologic abnormalities, which is the hallmark of Fanconi anemia. As such, this case stresses the importance to at least question the possibility of a hereditary basis in cases of relatively early-onset malignancy before defining an oncological treatment strategy

    The analysis of heterotaxy patients reveals new loss-of-function variants of GRK5

    Get PDF
    G protein-coupled receptor kinase 5 (GRK5) is a regulator of cardiac performance and a potential therapeutic target in heart failure in the adult. Additionally, we have previously classified GRK5 as a determinant of left-right asymmetry and proper heart development using zebrafish. We thus aimed to identify GRK5 variants of functional significance by analysing 187 individuals with laterality defects (heterotaxy) that were associated with a congenital heart defect (CHD). Using Sanger sequencing we identified two moderately frequent variants in GRK5 with minor allele frequencies <10%, and seven very rare polymorphisms with minor allele frequencies <1%, two of which are novel variants. Given their evolutionarily conserved position in zebrafish, in-depth functional characterisation of four variants (p.Q41L, p.G298S, p.R304C and p.T425M) was performed. We tested the effects of these variants on normal subcellular localisation and the ability to desensitise receptor signalling as well as their ability to correct the left-right asymmetry defect upon Grk5l knockdown in zebrafish. While p.Q41L, p.R304C and p.T425M responded normally in the first two aspects, neither p.Q41L nor p.R304C were capable of rescuing the lateralisation phenotype. The fourth variant, p.G298S was identified as a complete loss-of-function variant in all assays and provides insight into the functions of GRK5

    On the problem of supersonic gas flow in two-dimensional channel with the oscillating upper wall

    Get PDF
    In the present paper we solve the problem of supersonic gas flow in two-dimensional channel with the moving upper wall making oscillations according to the harmonic law. In order to get a numerical solution for gas dynamics equations we have implemented a difference scheme with space and time approximation of the first order and one with space approximation of the second order. Depending on a type of harmonic law and initial gas inflow conditions, the peculiarities of angle-shock wave propagation in moving curvilinear domains have been investigated. It has been determined that the increase of oscillation amplitude causes the increase of shock wave intensity. It has been shown that under particular oscillation amplitude the moving wall has practically no effect on the flow within the domain

    A novel HSF4 gene mutation (p.R405X) causing autosomal recessive congenital cataracts in a large consanguineous family from Pakistan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hereditary cataracts are most frequently inherited as autosomal dominant traits, but can also be inherited in an autosomal recessive or X-linked fashion. To date, 12 loci for autosomal recessive cataracts have been mapped including a locus on chromosome 16q22 containing the disease-causing gene <it>HSF4 </it>(Genbank accession number <ext-link ext-link-id="NM_001040667" ext-link-type="gen">NM_001040667</ext-link>). Here, we describe a family from Pakistan with the first nonsense mutation in <it>HSF4 </it>thus expanding the mutational spectrum of this heat shock transcription factor gene.</p> <p>Methods</p> <p>A large consanguineous Pakistani family with autosomal recessive cataracts was collected from Quetta. Genetic linkage analysis was performed for the common known autosomal recessive cataracts loci and linkage to a locus containing <it>HSF4 </it>(OMIM 602438) was found. All exons and adjacent splice sites of the heat shock transcription factor 4 gene (<it>HSF4</it>) were sequenced. A mutation-specific restriction enzyme digest (H<it>ph</it>I) was performed for all family members and unrelated controls.</p> <p>Results</p> <p>The disease phenotype perfectly co-segregated with markers flanking the known cataract gene HSF4, whereas other autosomal recessive loci were excluded. A maximum two-point LOD score with a Zmax = 5.6 at θ = 0 was obtained for D16S421. Direct sequencing of HSF4 revealed the nucleotide exchange c.1213C > T in this family predicting an arginine to stop codon exchange (p.R405X).</p> <p>Conclusion</p> <p>We identified the first nonsense mutation (p.R405X) in exon 11 of <it>HSF4 </it>in a large consanguineous Pakistani family with autosomal recessive cataract.</p

    The Rare IL22RA2 Signal Peptide Coding Variant rs28385692 Decreases Secretion of IL-22BP Isoform-1, -2 and -3 and Is Associated with Risk for Multiple Sclerosis.

    Get PDF
    The IL22RA2 locus is associated with risk for multiple sclerosis (MS) but causative variants are yet to be determined. In a single nucleotide polymorphism (SNP) screen of this locus in a Basque population, rs28385692, a rare coding variant substituting Leu for Pro at position 16 emerged significantly (p = 0.02). This variant is located in the signal peptide (SP) shared by the three secreted protein isoforms produced by IL22RA2 (IL-22 binding protein-1(IL-22BPi1), IL-22BPi2 and IL-22BPi3). Genotyping was extended to a Europe-wide case-control dataset and yielded high significance in the full dataset (p = 3.17 × 10-4). Importantly, logistic regression analyses conditioning on the main known MS-associated SNP at this locus, rs17066096, revealed that this association was independent from the primary association signal in the full case-control dataset. In silico analysis predicted both disruption of the alpha helix of the H-region of the SP and decreased hydrophobicity of this region, ultimately affecting the SP cleavage site. We tested the effect of the p.Leu16Pro variant on the secretion of IL-22BPi1, IL-22BPi2 and IL-22BPi3 and observed that the Pro16 risk allele significantly lowers secretion levels of each of the isoforms to around 50%-60% in comparison to the Leu16 reference allele. Thus, our study suggests that genetically coded decreased levels of IL-22BP isoforms are associated with augmented risk for MS

    Gene co-expression analysis identifies brain regions and cell types involved in migraine pathophysiology

    Get PDF
    Migraine is a common disabling neurovascular brain disorder typically characterised by attacks of severe headache and associated with autonomic and neurological symptoms. Migraine is caused by an interplay of genetic and environmental factors. Genome-wide association studies (GWAS) have identified over a dozen genetic loci associated with migraine. Here, we integrated migraine GWAS data with high-resolution spatial gene expression data of normal adult brains from the Allen Human Brain Atlas to identify specific brain regions and molecular pathways that are possibly involved in migraine pathophysiology. To this end, we used two complementary methods. In GWAS data from 23,285 migraine cases and 95,425 controls, we first studied modules of co-expressed genes that were calculated based on human brain expression data for enrichment of genes that showed association with migraine. Enrichment of a migraine GWAS signal was found for five modules that suggest involvement in migraine pathophysiology of: (i) neurotransmission, protein catabolism and mitochondria in the cortex; (ii) transcription regulation in the cortex and cerebellum; and (iii) oligodendrocytes and mitochondria in subcortical areas. Second, we used the high-confidence genes from the migraine GWAS as a basis to construct local migraine-related co-expression gene networks. Signatures of all brain regions and pathways that were prominent in the first method also surfaced in the second method, thus providing support that these brain regions and pathways are indeed involved in migraine pathophysiology

    Expanding the clinical and mutational spectrum of Kaufman oculocerebrofacial syndrome with biallelic UBE3B mutations

    Get PDF
    Biallelic mutations of UBE3B have recently been shown to cause Kaufman oculocerebrofacial syndrome (also reported as blepharophimosis-ptosis-intellectual disability syndrome), an autosomal recessive condition characterized by hypotonia, developmental delay, intellectual disability, congenital anomalies, characteristic facial dysmorphic features, and low cholesterol levels. To date, six patients with either missense mutations affecting the UBE3B HECT domain or truncating mutations have been described. Here, we report on the identification of homozygous or compound heterozygous UBE3B mutations in six additional patients from five unrelated families using either targeted UBE3B sequencing in individuals with suggestive facial dysmorphic features, or exome sequencing. Our results expand the clinical and mutational spectrum of the UBE3B-related disorder in several ways. First, we have identified UBE3B mutations in individuals who previously received distinct clinical diagnoses: two sibs with Toriello-Carey syndrome as well as the patient reported to have a "new” syndrome by Buntinx and Majewski in 1990. Second, we describe the adult phenotype and clinical variability of the syndrome. Third, we report on the first instance of homozygous missense alterations outside the HECT domain of UBE3B, observed in a patient with mildly dysmorphic facial features. We conclude that UBE3B mutations cause a clinically recognizable and possibly underdiagnosed syndrome characterized by distinct craniofacial features, hypotonia, failure to thrive, eye abnormalities, other congenital malformations, low cholesterol levels, and severe intellectual disability. We review the UBE3B-associated phenotypes, including forms that can mimick Toriello-Carey syndrome, and suggest the single designation "Kaufman oculocerebrofacial syndrome”

    No additional prognostic value of genetic information in the prediction of vascular events after cerebral ischemia of arterial origin

    Get PDF
    Background: Patients who have suffered from cerebral ischemia have a high risk of recurrent vascular events. Predictive models based on classical risk factors typically have limited prognostic value. Given that cerebral ischemia has a heritable component, genetic information might improve performance of these risk models. Our aim was to develop and compare two models: one containing traditional vascular risk factors, the other also including genetic information. Methods and Results: We studied 1020 patients with cerebral ischemia and genotyped them with the Illumina Immunochip. Median follow-up time was 6.5 years; the annual incidence of new ischemic events (primary outcome, n=198) was 3.0%. The prognostic model based on classical vascular risk factors had an area under the receiver operating characteristics curve (AUC-ROC) of 0.65 (95% confidence interval 0.61-0.69). When we added a genetic risk score based on prioritized SNPs from a genome-wide association study of ischemic stroke (using summary statistics from the METASTROKE study which included 12389 cases and 62004 controls), the AUC-ROC remained the same. Similar results were found for the secondary outcome ischemic stroke. Conclusions: We found no additional value of genetic information in a prognostic model for the risk of ischemic events in patients with cerebral ischemia of arterial origin. This is consistent with a complex, polygenic architecture, where many genes of weak effect likely act in concert to influence the heritable risk of an individual to develop (recurrent) vascular events. At present, genetic information cannot help clinicians to distinguish patients at high risk for recurrent vascular events
    corecore