9 research outputs found

    Pervasive Regulatory Functions of mRNA Structure Revealed by High-Resolution SHAPE Probing

    No full text
    mRNAs can fold into complex structures that regulate gene expression. Resolving such structures de novo has remained challenging and has limited our understanding of the prevalence and functions of mRNA structure. We use SHAPE-MaP experiments in living E. coli cells to derive quantitative, nucleotide-resolution structure models for 194 endogenous transcripts encompassing approximately 400 genes. Individual mRNAs have exceptionally diverse architectures, and most contain well-defined structures. Active translation destabilizes mRNA structure in cells. Nevertheless, mRNA structure remains similar between in-cell and cell-free environments, indicating broad potential for structure-mediated gene regulation. We find that the translation efficiency of endogenous genes is regulated by unfolding kinetics of structures overlapping the ribosome binding site. We discover conserved structured elements in 35% of UTRs, several of which we validate as novel protein binding motifs. RNA structure regulates every gene studied here in a meaningful way, implying that most functional structures remain to be discovered

    Immediate response of mammalian target of rapamycin (mTOR)-mediated signalling following acute resistance exercise in rat skeletal muscle

    No full text
    The purpose of the present investigation was to determine whether mammalian target of rapamycin (mTOR)-mediated signalling and some key regulatory proteins of translation initiation are altered in skeletal muscle during the immediate phase of recovery following acute resistance exercise. Rats were operantly conditioned to reach an illuminated bar located high on a Plexiglass cage, such that the animals completed concentric and eccentric contractions involving the hindlimb musculature. Gastrocnemius muscle was extracted immediately after acute exercise and 5, 10, 15, 30 and 60 min of recovery. Phosphorylation of protein kinase B (PKB) on Ser-473 peaked at 10 min of recovery (282 % of control, P < 0.05) with no significant changes noted for mTOR phosphorylation on Ser-2448. Eukaryotic initiation factor (eIF) 4E-binding protein-1 (4E-BP1) and S6 kinase-1 (S6K1), both downstream effectors of mTOR, were altered during recovery as well. 4E-BP1 phosphorylation was significantly elevated at 10 min (292 %, P < 0.01) of recovery. S6K1 phosphorylation on Thr-389 demonstrated a trend for peak activation at 10 min following exercise (336 %, P = 0.06) with ribosomal protein S6 phosphorylation being maximally activated at 15 min of recovery (647 %, P < 0.05). Components of the eIF4F complex were enhanced during recovery as eIF4E association with eIF4G peaked at 10 min (292 %, P < 0.05). Events regulating the binding of initiator methionyl-tRNA to the 40S ribosomal subunit were assessed through eIF2B activity and eIF2α phosphorylation on Ser-51. No differences were noted with either eIF2B or eIF2α. Collectively, these results provide strong evidence that mTOR-mediating signalling is transiently upregulated during the immediate period following resistance exercise and this response may constitute the most proximal growth response of the cell

    Exercise-induced alterations in extracellular signal-regulated kinase 1/2 and mammalian target of rapamycin (mTOR) signalling to regulatory mechanisms of mRNA translation in mouse muscle

    No full text
    The present study examined the effects of an acute bout of treadmill exercise on signalling through the extracellular signal-regulated kinase (ERK)1/2 and mammalian target of rapamycin (mTOR) pathways to regulatory mechanisms involved in mRNA translation in mouse gastrocnemius muscle. Briefly, C57BL/6 male mice were run at 26 m min(−1) on a treadmill for periods of 10, 20 or 30 min, then the gastrocnemius was rapidly removed and analysed for phosphorylation and/or association of protein components of signalling pathways and mRNA translation regulatory mechanisms. Repression of global mRNA translation was suggested by disaggregation of polysomes into free ribosomes, which occurred by 10 min and was sustained throughout the time course. Exercise repressed the mTOR signalling pathway, as shown by dephosphorylation of the eukaryotic initiation factor (eIF)4E-binding protein-1 (4E-BP1), enhanced association of the regulatory-associated protein of mTOR with mTOR, and increased assembly of the tuberin–hamartin complex. In contrast, exercise caused no change in phosphorylation of either Akt/PKB or tuberin. Upstream of mTOR, exercise was associated with an increase in cAMP, protein kinase A activity, and AMP-activated protein kinase phosphorylation. Simultaneously, exercise caused a rapid and sustained activation of the MEK1/2–ERK1/2–p90RSK pathway, resulting in increased phosphorylation of downstream targets including eIF4E and the ribosomal protein (rp)S6 on S235/S236. Overall, the data are consistent with exercise-induced repression of mTOR signalling and global rates of mRNA translation, accompanied perhaps by up-regulated translation of selected mRNAs through regulatory mechanisms such as eIF4E and rpS6 phosphorylation, mediated by activation of the ERK1/2 pathway
    corecore