578 research outputs found
Decomposition unit Patent
Unit for generating thrust from catalytic decomposition of hydrogen peroxide, for high altitude aircraft or spacecraft reaction contro
LSST: Comprehensive NEO Detection, Characterization, and Orbits
(Abridged) The Large Synoptic Survey Telescope (LSST) is currently by far the
most ambitious proposed ground-based optical survey. Solar System mapping is
one of the four key scientific design drivers, with emphasis on efficient
Near-Earth Object (NEO) and Potentially Hazardous Asteroid (PHA) detection,
orbit determination, and characterization. In a continuous observing campaign
of pairs of 15 second exposures of its 3,200 megapixel camera, LSST will cover
the entire available sky every three nights in two photometric bands to a depth
of V=25 per visit (two exposures), with exquisitely accurate astrometry and
photometry. Over the proposed survey lifetime of 10 years, each sky location
would be visited about 1000 times. The baseline design satisfies strong
constraints on the cadence of observations mandated by PHAs such as closely
spaced pairs of observations to link different detections and short exposures
to avoid trailing losses. Equally important, due to frequent repeat visits LSST
will effectively provide its own follow-up to derive orbits for detected moving
objects. Detailed modeling of LSST operations, incorporating real historical
weather and seeing data from LSST site at Cerro Pachon, shows that LSST using
its baseline design cadence could find 90% of the PHAs with diameters larger
than 250 m, and 75% of those greater than 140 m within ten years. However, by
optimizing sky coverage, the ongoing simulations suggest that the LSST system,
with its first light in 2013, can reach the Congressional mandate of cataloging
90% of PHAs larger than 140m by 2020.Comment: 10 pages, color figures, presented at IAU Symposium 23
The disjointness of stabilizer codes and limitations on fault-tolerant logical gates
Stabilizer codes are a simple and successful class of quantum
error-correcting codes. Yet this success comes in spite of some harsh
limitations on the ability of these codes to fault-tolerantly compute. Here we
introduce a new metric for these codes, the disjointness, which, roughly
speaking, is the number of mostly non-overlapping representatives of any given
non-trivial logical Pauli operator. We use the disjointness to prove that
transversal gates on error-detecting stabilizer codes are necessarily in a
finite level of the Clifford hierarchy. We also apply our techniques to
topological code families to find similar bounds on the level of the hierarchy
attainable by constant depth circuits, regardless of their geometric locality.
For instance, we can show that symmetric 2D surface codes cannot have non-local
constant depth circuits for non-Clifford gates.Comment: 8+3 pages, 2 figures. Comments welcom
Efficient intra- and inter-night linking of asteroid detections using kd-trees
The Panoramic Survey Telescope And Rapid Response System (Pan-STARRS) under
development at the University of Hawaii's Institute for Astronomy is creating
the first fully automated end-to-end Moving Object Processing System (MOPS) in
the world. It will be capable of identifying detections of moving objects in
our solar system and linking those detections within and between nights,
attributing those detections to known objects, calculating initial and
differentially-corrected orbits for linked detections, precovering detections
when they exist, and orbit identification. Here we describe new kd-tree and
variable-tree algorithms that allow fast, efficient, scalable linking of intra
and inter-night detections. Using a pseudo-realistic simulation of the
Pan-STARRS survey strategy incorporating weather, astrometric accuracy and
false detections we have achieved nearly 100% efficiency and accuracy for
intra-night linking and nearly 100% efficiency for inter-night linking within a
lunation. At realistic sky-plane densities for both real and false detections
the intra-night linking of detections into `tracks' currently has an accuracy
of 0.3%. Successful tests of the MOPS on real source detections from the
Spacewatch asteroid survey indicate that the MOPS is capable of identifying
asteroids in real data.Comment: Accepted to Icaru
Concentrations of , radionuclides and some heavy metals in soil samples of Chochołowska Valley from Tatra National Park
This paper presents the results of determination of artificial and natural activity concentrations
and some heavy metals in soil samples from the region of one of the main valleys of Tatra National Park
(Chochołowska). Our investigation concentrated on and heavy metal levels in mountain soil taken
from Chochołowska Valley, which revealed great variability in their concentration. The results show considerably
small amounts of radionuclides and in the soils. Larger amounts of those elements can
be found in the organic surface horizons of the soils. The evaluation of the content of those elements must
be based on the bulk density analysis of the soil
Order preserving pattern matching on trees and DAGs
The order preserving pattern matching (OPPM) problem is, given a pattern
string and a text string , find all substrings of which have the
same relative orders as . In this paper, we consider two variants of the
OPPM problem where a set of text strings is given as a tree or a DAG. We show
that the OPPM problem for a single pattern of length and a text tree
of size can be solved in time if the characters of are
drawn from an integer alphabet of polynomial size. The time complexity becomes
if the pattern is over a general ordered alphabet. We
then show that the OPPM problem for a single pattern and a text DAG is
NP-complete
Plasma midregional proadrenomedullin (MR-proADM) concentrations and their biological determinants in a reference population
Background: Midregional proadrenomedullin (MR-proADM) is emerging as a prognostic biomarker for detecting the failure of multiple organs. Establishment of scientifically robust reference intervals facilitates interpretation of laboratory test results. The objectives of this study were (i) to establish reliable reference intervals for plasma MR-proADM using a commercially available automated fluoroimmunoassay in apparently healthy individuals, and (ii) to identify biological determinants of MR-proADM concentrations.
Methods: A total of 506 questionnaire-identified apparently healthy adults were enrolled in a single-center, cross-sectional study. A final reference group (n = 172) was selected after exclusion of obese individuals, those with increased values of laboratory biomarkers indicating asymptomatic myocardial injury or dysfunction, ongoing inflammation, diabetes, dyslipidemia and renal dysfunction and outliers.
Results: The 2.5th and 97.5th percentile intervals for MR-proADM values in the reference group (90% confidence interval) were 0.21 (0.19-0.23) and 0.57 (0.55-0.59) nmol/L, respectively. Although older age, higher values of HbA(1c), C-reactive protein, B-type natriuretic peptide and body mass index, together with a history of smoking and a decreased estimated glomerular filtration rate were significantly associated with increasing concentrations of MR-proADM in both univariate and multivariate analyses, magnitudes of these relationships were modest and did not substantially influence MR-proADM reference intervals. Sex-dependent difference in MR-proADM reference intervals was not detected [0.19 (0.16-0.22)-0.56 (0.54-0.60) nmol/L in females vs. 0.22 (0.20-0.25)-0.58 (0.57-0.63) nmol/L in males].
Conclusions: Our study successfully established robust reference intervals for MR-proADM concentrations in plasma. Considering the negligible influence of potential biological determinants on plasma MR-proADM, we recommend the adoption of single reference intervals for adult population as a whole
Duel and sweep algorithm for order-preserving pattern matching
Given a text and a pattern over alphabet , the classic exact
matching problem searches for all occurrences of pattern in text .
Unlike exact matching problem, order-preserving pattern matching (OPPM)
considers the relative order of elements, rather than their real values. In
this paper, we propose an efficient algorithm for OPPM problem using the
"duel-and-sweep" paradigm. Our algorithm runs in time in
general and time under an assumption that the characters in a string
can be sorted in linear time with respect to the string size. We also perform
experiments and show that our algorithm is faster that KMP-based algorithm.
Last, we introduce the two-dimensional order preserved pattern matching and
give a duel and sweep algorithm that runs in time for duel stage and
time for sweeping time with preprocessing time.Comment: 13 pages, 5 figure
- …