17 research outputs found

    Alien Plants Introduced by Different Pathways Differ in Invasion Success: Unintentional Introductions as a Threat to Natural Areas

    Get PDF
    BACKGROUND: Understanding the dimensions of pathways of introduction of alien plants is important for regulating species invasions, but how particular pathways differ in terms of post-invasion success of species they deliver has never been rigorously tested. We asked whether invasion status, distribution and habitat range of 1,007 alien plant species introduced after 1500 A.D. to the Czech Republic differ among four basic pathways of introduction recognized for plants. PRINCIPAL FINDINGS: Pathways introducing alien species deliberately as commodities (direct release into the wild; escape from cultivation) result in easier naturalization and invasion than pathways of unintentional introduction (contaminant of a commodity; stowaway arriving without association with it). The proportion of naturalized and invasive species among all introductions delivered by a particular pathway decreases with a decreasing level of direct assistance from humans associated with that pathway, from release and escape to contaminant and stowaway. However, those species that are introduced via unintentional pathways and become invasive are as widely distributed as deliberately introduced species, and those introduced as contaminants invade an even wider range of seminatural habitats. CONCLUSIONS: Pathways associated with deliberate species introductions with commodities and pathways whereby species are unintentionally introduced are contrasting modes of introductions in terms of invasion success. However, various measures of the outcome of the invasion process, in terms of species' invasion success, need to be considered to accurately evaluate the role of and threat imposed by individual pathways. By employing various measures we show that invasions by unintentionally introduced plant species need to be considered by management as seriously as those introduced by horticulture, because they invade a wide range of seminatural habitats, hence representing even a greater threat to natural areas

    First genome size estimations for some eudicot families and genera

    Get PDF
    First genome size estimations for some eudicot families and genera.- Genome size diversity in angiosperms varies roughly 2400-fold, although approximately 45% of angiosperm families lack a single genome size estimation, and therefore, this range could be enlarged. To contribute completing family and genera representation, DNA C-Values are here provided for 19 species from 16 eudicot families, including first values for 6 families, 14 genera and 17 species. The sample of species studied is very diverse, including herbs, weeds, vines, shrubs and trees. Data are discussed regarding previous genome size estimates of closely related species or genera, if any, their chromosome number, growth form or invasive behaviour. The present research contributes approximately 1.5% new values for previously unreported angiosperm families, being the current coverage around 55% of angiosperm families, according to the Plant DNA C-Values Database
    corecore