7 research outputs found

    Elemental Composition of PM2.5 and PM10 and Health Risks Assessment in the Industrial Districts of Chelyabinsk, South Ural Region, Russia

    Get PDF
    Air pollution impacts all populations globally, indiscriminately and has site-specific variation and characteristics. Airborne particulate matter (PM) levels were monitored in a typical industrial Russian city, Chelyabinsk in three destinations, one characterized by high traffic volumes and two by industrial zone emissions. The mass concentration and trace metal content of PM2.5 and PM10 were obtained from samples collected during four distinct seasons of 2020. The mean 24-h PM10 ranged between 6 and 64 μg/m3. 24-h PM2.5 levels were reported from 5 to 56 μg/m3. About half of the 24-h PM10 and most of the PM2.5 values in Chelyabinsk were higher than the WHO recommendations. The mean PM2.5/PM10 ratio was measured at 0.85, indicative of anthropogenic input. To evaluate the Al, Fe, As, Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn concentration in PM2.5 and PM10, inductively coupled plasma mass spectrometry (ICP-MS) was used. Fe (337–732 ng/m3) was the most abundant component in PM2.5 and PM10 samples while Zn (77–206 ng/m3), Mn (10–96 ng/m3), and Pb (11–41 ng/m3) had the highest concentrations among trace elements. Total non-carcinogenic risks for children were found higher than 1, indicating possible health hazards. This study also presents that the carcinogenic risk for As, Cr, Co, Cd, Ni, and Pb were observed higher than the acceptable limit (1 × 10−6)

    Elemental Composition of PM2.5 and PM10 and Health Risks Assessment in the Industrial Districts of Chelyabinsk, South Ural Region, Russia

    No full text
    Air pollution impacts all populations globally, indiscriminately and has site-specific variation and characteristics. Airborne particulate matter (PM) levels were monitored in a typical industrial Russian city, Chelyabinsk in three destinations, one characterized by high traffic volumes and two by industrial zone emissions. The mass concentration and trace metal content of PM2.5 and PM10 were obtained from samples collected during four distinct seasons of 2020. The mean 24-h PM10 ranged between 6 and 64 μg/m3. 24-h PM2.5 levels were reported from 5 to 56 μg/m3. About half of the 24-h PM10 and most of the PM2.5 values in Chelyabinsk were higher than the WHO recommendations. The mean PM2.5/PM10 ratio was measured at 0.85, indicative of anthropogenic input. To evaluate the Al, Fe, As, Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn concentration in PM2.5 and PM10, inductively coupled plasma mass spectrometry (ICP-MS) was used. Fe (337–732 ng/m3) was the most abundant component in PM2.5 and PM10 samples while Zn (77–206 ng/m3), Mn (10–96 ng/m3), and Pb (11–41 ng/m3) had the highest concentrations among trace elements. Total non-carcinogenic risks for children were found higher than 1, indicating possible health hazards. This study also presents that the carcinogenic risk for As, Cr, Co, Cd, Ni, and Pb were observed higher than the acceptable limit (1 × 10−6)

    Environmental Justice and the Use of Artificial Intelligence in Urban Air Pollution Monitoring

    No full text
    The main aims of urban air pollution monitoring are to optimize the interaction between humanity and nature, to combine and integrate environmental databases, and to develop sustainable approaches to the production and the organization of the urban environment. One of the main applications of urban air pollution monitoring is for exposure assessment and public health studies. Artificial intelligence (AI) and machine learning (ML) approaches can be used to build air pollution models to predict pollutant concentrations and assess environmental and health risks. Air pollution data can be uploaded into AI/ML models to estimate different exposure levels within different communities. The correlation between exposure estimates and public health surveys is important for assessing health risks. These aspects are critical when it concerns environmental injustice. Computational approaches should efficiently manage, visualize, and integrate large datasets. Effective data integration and management are a key to the successful application of computational intelligence approaches in ecology. In this paper, we consider some of these constraints and discuss possible ways to overcome current problems and environmental injustice. The most successful global approach is the development of the smart city; however, such an approach can only increase environmental injustice as not all the regions have access to AI/ML technologies. It is challenging to develop successful regional projects for the analysis of environmental data in the current complicated operating conditions, as well as taking into account the time, computing power, and constraints in the context of environmental injustice

    Urban environment monitoring in industrial city using remote sensing of snow cover

    No full text
    The dynamic development of modern cities requires new solutions to urban planning and management by local regional authorities. The paper focuses on ecological indicators based on Earth Remote Sensing Data (ERSD) of the snow cover with the purpose to evaluate the city and to plan ecological environment protection strategy. The paper deals with the method of using space images to assess the snow cover pollution of Chelyabinsk, a large Russian industrial city. The assessment of the snow cover of Chelyabinsk was carried out by comparing the heavy metals concentrations with the Landsat 8 data. The spectral indices were calculated for fourteen sites evenly distributed over the urban area of four types: courtyards, car parks, industrial zones and roads. We found a statistically significant difference between the Swirl/Green index and the site type and a correlation with the concentrations of dissolved and suspended forms of heavy metals in snow cover. Snow cover indices can be used as ecological indicators of urban environment

    Insights into Particle-Bound Metal(loid)s in Winter Snow Cover: Geochemical Monitoring of the Korkinsky Coal Mine Area, South Ural Region, Russia

    No full text
    Snow plays an important role in air quality and winter geochemical monitoring in the South Ural region. This study deals with the air pollution monitoring of particle-bound metal(loid) concentrations using snow cover around the deepest coal mine in Eurasia, the Korkinsky coal mine. We studied the concentrations and ratios of suspended and dissolved forms of metal(loid)s (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sb, Sr, and Zn) in snow samples. We examined 56 snow cover samples, collected at 12 sites located north, south, east and west of the Korkinsky coal mine. All snow samples were taken in January 2020. The spectral reflectance curves, cluster analysis, and spatial distribution maps were used to evaluate the potential sources of PM-bound metal(loid)s and the potential relationship among them. The highest concentrations (μg/L) were reported for Fe, Al, and Zn. In addition to the mine influence, burning coal for residential heating was identified as the major anthropogenic metal(loid) source. It was shown that elevated concentrations of some trace metals in snow samples were associated with southerly winds and the location of spoil heaps

    Different Effects of Phototherapy for Rat Glioma during Sleep and Wakefulness

    No full text
    There is an association between sleep quality and glioma-specific outcomes, including survival. The critical role of sleep in survival among subjects with glioma may be due to sleep-induced activation of brain drainage (BD), that is dramatically suppressed in subjects with glioma. Emerging evidence demonstrates that photobiomodulation (PBM) is an effective technology for both the stimulation of BD and as an add-on therapy for glioma. Emerging evidence suggests that PBM during sleep stimulates BD more strongly than when awake. In this study on male Wistar rats, we clearly demonstrate that the PBM course during sleep vs. when awake more effectively suppresses glioma growth and increases survival compared with the control. The study of the mechanisms of this phenomenon revealed stronger effects of the PBM course in sleeping vs. awake rats on the stimulation of BD and an immune response against glioma, including an increase in the number of CD8+ in glioma cells, activation of apoptosis, and blockage of the proliferation of glioma cells. Our new technology for sleep-phototherapy opens a new strategy to improve the quality of medical care for patients with brain cancer, using promising smart-sleep and non-invasive approaches of glioma treatment
    corecore