184 research outputs found

    Lectio praecursoria: The Interaction of Organisational Structure and Humans in Knowledge Integration

    Get PDF

    Lead contamination in raptors in Europe: a systematic review and meta-analysis

    Get PDF
    Lead contamination is a widely recognised conservation problem for raptors worldwide. There are a number of studies in individual raptor species but those data have not been systematically evaluated to understand raptor-wide lead exposure and effects at a pan-European scale. To critically assess the extent of this problem, we performed a systematic review compiling all published data on lead in raptors (1983–2019) and, through a meta-analysis, determined if there was evidence for differences in exposure across feeding traits, geographical regions, between hunting and non-hunting periods, and changes over time. We also reviewed the impact of lead on raptors and the likely main source of exposure. We examined 114 studies that were unevenly distributed in terms of time of publication and the countries in which studies were performed. Peer-reviewed articles reported data for 39 raptor species but very few species were widely monitored across Europe. Obligate (vultures) and facultative scavengers (golden eagle, common buzzard and white-tailed sea eagle) accumulated the highest lead concentrations in tissues and generally were the species most at risk of lead poisoning. We found no evidence of a spatial or decadal trend in lead residues, but we demonstrated that high lead blood levels relate to hunting season. Exposure at levels associated with both subclinical and lethal effects is common and lead from rifle bullets and shot is often the likely source of exposure. Overall, our review illustrates the high incidence and ubiquity of lead contamination in raptors in Europe. However, we did not find studies that related exposure to quantitative impacts on European raptor populations nor detailed studies on the impact of mitigation measures. Such information is urgently needed and requires a more harmonised approach to quantifying lead contamination and effects in raptors across Europe

    Recolonizing gray wolves increase parasite infection risk in their prey

    Get PDF
    The recent recolonization of Central Europe by the European gray wolf (Canis lupus) provides an opportunity to study the dynamics of parasite transmission for cases when a definitive host returns after a phase of local extinction. We investigated whether a newly established wolf population increased the prevalence of those parasites in ungulate intermediate hosts representing wolf prey, whether some parasite species are particularly well adapted to wolves, and the potential basis for such adaptations. We recorded Sarcocystis species richness in wolves and Sarcocystis prevalence in ungulates harvested in study sites with and without permanent wolf presence in Germany using microscopy and DNA metabarcoding. Sarcocystis prevalence in red deer (Cervus elaphus) was significantly higher in wolf areas (79.7%) than in control areas (26.3%) but not in roe deer (Capreolus capreolus) (97.2% vs. 90.4%) or wild boar (Sus scrofa) (82.8% vs. 64.9%). Of 11 Sarcocystis species, Sarcocystis taeniata and Sarcocystis grueneri occurred more often in wolves than expected from the Sarcocystis infection patterns of ungulate prey. Both Sarcocystis species showed a higher increase in prevalence in ungulates in wolf areas than other Sarcocystis species, suggesting that they are particularly well adapted to wolves, and are examples of “wolf specialists”. Sarcocystis species richness in wolves was significantly higher in pups than in adults. “Wolf specialists” persisted during wolf maturation. The results of this study demonstrate that (1) predator–prey interactions influence parasite prevalence, if both predator and prey are part of the parasite life cycle, (2) mesopredators do not necessarily replace the apex predator in parasite transmission dynamics for particular parasites of which the apex predator is the definitive host, even if meso‐ and apex predators were from the same taxonomic family (here: Canidae, e.g., red foxes Vulpes vulpes), and (3) age‐dependent immune maturation contributes to the control of protozoan infection in wolves

    Towards harmonisation of chemical monitoring using avian apex predators: identification of key species for pan-European biomonitoring

    Get PDF
    Biomonitoring in raptors can be used to study long-term and large-scale changes in environmental pollution. In Europe, such monitoring is needed to assess environmental risks and outcomes of chemicals regulation, which is harmonised across the European Union. To be effective, the most appropriate sentinels need to be monitored. Our aim was to identify which European raptor species are the likely most appropriate biomonitors when pollutant quantification is based on analysing tissues. Our current study was restricted to terrestrial exposure pathways and considered four priority pollutant groups: toxic metals (lead and mercury), anticoagulant rodenticides, pesticides and medicinal products. We evaluated information on the distribution and key ecological traits (food web, foraging trait, diet, preferred habitat, and migratory behaviour) of European raptors to identify the most appropriate sentinel species. Common buzzard (Buteo buteo) and/or tawny owl (Strix aluco) proved the most suitable candidates for many of the pollutants considered. Moreover, they are abundant in Europe, enhancing the likelihood that samples can be collected. However, other species may be better sentinels for certain pollutants, such as the golden eagle (Aquila chrysaetos) for lead, the northern goshawk (Accipiter gentilis) for mercury across areas including Northern Europe, and vultures (where they occur in Europe) are likely best suited for monitoring non-steroidal anti-inflammatory drugs (NSAIDs). Overall, however, we argue the selection of candidate species for widescale monitoring of a range of pollutants can be reduced to very few raptor species. We recommend that the common buzzard and tawny owl should be the initial focus of any pan-European raptor monitoring. The lack of previous widespread monitoring using these species suggests that their utility as sentinels for environmnetal pollution has not been widely recognised. Finally, although the current study focussed on Europe, our trait-based approach for identifying raptor biomonitors can be applied to other continents and contaminants

    The relationship between mental health, sleep quality and the immunogenicity of COVID-19 vaccinations.

    Get PDF
    Sleep modulates the immune response, and sleep loss can reduce vaccine immunogenicity; vice versa, immune responses impact sleep. We aimed to investigate the influence of mental health and sleep quality on the immunogenicity of COVID-19 vaccinations and, conversely, of COVID-19 vaccinations on sleep quality. The prospective CoVacSer study monitored mental health, sleep quality and Anti-SARS-CoV-2-Spike IgG titres in a cohort of 1082 healthcare workers from 29 September 2021 to 19 December 2022. Questionnaires and blood samples were collected before, 14 days, and 3 months after the third COVID-19 vaccination, as well as in 154 participants before and 14 days after the fourth COVID-19 vaccination. Healthcare workers with psychiatric disorders had slightly lower Anti-SARS-CoV-2-Spike IgG levels before the third COVID-19 vaccination. However, this effect was mediated by higher median age and body mass index in this subgroup. Antibody titres following the third and fourth COVID-19 vaccinations ("booster vaccinations") were not significantly different between subgroups with and without psychiatric disorders. Sleep quality did not affect the humoral immunogenicity of the COVID-19 vaccinations. Moreover, the COVID-19 vaccinations did not impact self-reported sleep quality. Our data suggest that in a working population neither mental health nor sleep quality relevantly impact the immunogenicity of COVID-19 vaccinations, and that COVID-19 vaccinations do not cause a sustained deterioration of sleep, suggesting that they are not a precipitating factor for insomnia. The findings from this large-scale real-life cohort study will inform clinical practice regarding the recommendation of COVID-19 booster vaccinations for individuals with mental health and sleep problems

    Immunogenicity and safety of coadministration of COVID-19 and influenza vaccination.

    Get PDF
    Seasonal influenza vaccination is established as important infection prevention measure, especially among highly exposed healthcare workers (HCWs) [1]. Coadministration with the third dose of COVID-19 vaccine could be an efficient strategy protecting HCWs from two major viral respiratory infections [2–4]. To date, the humoral immunogenicity and side effects of a coadministered third COVID-19 and a seasonal quadrivalent influenza vaccine are still unclear, the available data is limited in transferability to the general public [5–7]. This preference-based non-randomised controlled study examines the antibody-mediated immunogenicity and vaccine-related side effects of mRNA-based COVID-19 and seasonal influenza vaccine coadministration in HCWs

    Tail myology and flight behaviour: Differences between caracaras, falcons and forest falcons (Aves, Falconiformes)

    Get PDF
    Caracaras, falcons and forest falcons, which are representative of the three subfamilies of the family Falconidae, have different flight behaviour. Since, during flight, the tail works in coordination with the wings, the tail muscles could be indicative of the type of flight behaviour. The aim of this work was to describe in detail the little‐ known tail muscles of the Falconidae and to explore their possible association with this different behaviour, by using the muscle mass as an indicator. To this end, the tail muscles of 18 specimens representing the three subfamilies of Falconidae were dissected, weighed and their percentage to the body mass calculated. The possible differences in tail muscle mass between Falconinae and Polyborinae were explored with a Bayesian statistical approach. In all species, the muscles depressor caudae and levator caudae had the highest mass values (0.028%–0.329% and 0.120%– 0.274%, respectively), in accordance with the key movements performed during flight, that is, the tail depression and elevation. The total muscle masses of Falconinae and those of Polyborinae were significantly different (p < 0.05). This difference can be related with the different flight behaviour of falcons and caracaras, that is, fast and erratic flight, respectively.Centro de Estudios Parasitológicos y de Vectore

    Identification and Analysis of a New Hepadnavirus in White Storks

    Get PDF
    AbstractWe identified, cloned, and functionally characterized a new avian hepadnavirus infecting storks (STHBV). STHBV has the largest DNA genome of all avian hepadnaviruses and, based on sequence and phylogenetic analysis, is most closely related to, but distinct from, heron hepatitis B virus (HHBV). Unique for STHBV among the other avian hepadnaviruses is a potential HNF1 binding site in the preS promoter. In common only with HHBV, STHBV has a myristylation signal on the S and not the preS protein, two C terminally located glycosylation sites on the precore/core proteins and lacks the phosphorylation site essential for the transcriptional transactivation activity of duck-HBV preS protein. The cloned STHBV genomes were competent in gene expression, replication, and viral particle secretion. STHBV infected primary duck hepatocytes very inefficiently suggesting a restricted host range, similar to other hepadnaviruses. This discovery of stork infections unravels novel evolutionary aspects of hepadnaviruses and provides new opportunities for hepadnavirus research

    Enabling Detailed, Biophysics-Based Skeletal Muscle Models on HPC Systems

    Get PDF
    Realistic simulations of detailed, biophysics-based, multi-scale models often require very high resolution and, thus, large-scale compute facilities. Existing simulation environments, especially for biomedical applications, are typically designed to allow for high flexibility and generality in model development. Flexibility and model development, however, are often a limiting factor for large-scale simulations. Therefore, new models are typically tested and run on small-scale compute facilities. By using a detailed biophysics-based, chemo-electromechanical skeletal muscle model and the international open-source software library OpenCMISS as an example, we present an approach to upgrade an existing muscle simulation framework from a moderately parallel version toward a massively parallel one that scales both in terms of problem size and in terms of the number of parallel processes. For this purpose, we investigate different modeling, algorithmic and implementational aspects. We present improvements addressing both numerical and parallel scalability. In addition, our approach includes a novel visualization environment which is based on the MegaMol framework and is capable of handling large amounts of simulated data. We present the results of a number of scaling studies at the Tier-1 supercomputer HazelHen at the High Performance Computing Center Stuttgart (HLRS). We improve the overall runtime by a factor of up to 2.6 and achieve good scalability on up to 768 cores
    • 

    corecore