
ORIGINAL RESEARCH
published: 12 July 2018

doi: 10.3389/fphys.2018.00816

Frontiers in Physiology | www.frontiersin.org 1 July 2018 | Volume 9 | Article 816

Edited by:

Alfons Hoekstra,

University of Amsterdam, Netherlands

Reviewed by:

Pras Pathmanathan,

United States Food and Drug

Administration, United States

Mark Potse,

Inria Bordeaux - Sud-Ouest Research

Centre, France

*Correspondence:

Oliver Röhrle

roehrle@simtech.uni-stuttgart.de

Specialty section:

This article was submitted to

Computational Physiology and

Medicine,

a section of the journal

Frontiers in Physiology

Received: 08 November 2017

Accepted: 11 June 2018

Published: 12 July 2018

Citation:

Bradley CP, Emamy N, Ertl T,

Göddeke D, Hessenthaler A, Klotz T,

Krämer A, Krone M, Maier B, Mehl M,

Rau T and Röhrle O (2018) Enabling

Detailed, Biophysics-Based Skeletal

Muscle Models on HPC Systems.

Front. Physiol. 9:816.

doi: 10.3389/fphys.2018.00816

Enabling Detailed, Biophysics-Based
Skeletal Muscle Models on HPC
Systems
Chris P. Bradley 1, Nehzat Emamy 2,3, Thomas Ertl 3,4, Dominik Göddeke 3,5,

Andreas Hessenthaler 3,6, Thomas Klotz 3,6, Aaron Krämer 3,5, Michael Krone 3,4,

Benjamin Maier 2,3, Miriam Mehl 2,3, Tobias Rau 3,4 and Oliver Röhrle 3,6*

1 Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand, 2 Institute for Parallel and Distributed

Systems, University of Stuttgart, Stuttgart, Germany, 3 Stuttgart Centre for Simulation Sciences, University of Stuttgart,

Stuttgart, Germany, 4 Visualization Research Center of the University of Stuttgart, University of Stuttgart, Stuttgart, Germany,
5 Institute for Applied Analysis and Numerical Simulation, University of Stuttgart, Stuttgart, Germany, 6 SimTech Research

Group on Continuum Biomechanics and Mechanobiology, Institute of Applied Mechanics (CE), University of Stuttgart,

Stuttgart, Germany

Realistic simulations of detailed, biophysics-based, multi-scale models often require

very high resolution and, thus, large-scale compute facilities. Existing simulation

environments, especially for biomedical applications, are typically designed to allow for

high flexibility and generality in model development. Flexibility and model development,

however, are often a limiting factor for large-scale simulations. Therefore, new models

are typically tested and run on small-scale compute facilities. By using a detailed

biophysics-based, chemo-electromechanical skeletal musclemodel and the international

open-source software library OpenCMISS as an example, we present an approach to

upgrade an existing muscle simulation framework from a moderately parallel version

toward a massively parallel one that scales both in terms of problem size and in terms

of the number of parallel processes. For this purpose, we investigate different modeling,

algorithmic and implementational aspects. We present improvements addressing both

numerical and parallel scalability. In addition, our approach includes a novel visualization

environment which is based on the MegaMol framework and is capable of handling large

amounts of simulated data. We present the results of a number of scaling studies at the

Tier-1 supercomputer HazelHen at the High Performance Computing Center Stuttgart

(HLRS). We improve the overall runtime by a factor of up to 2.6 and achieve good

scalability on up to 768 cores.

Keywords: skeletal muscle mechanics, biophysical modeling, multi-scale modeling, scalability, high-performance

computing, numerical efficiency, visualization

1. INTRODUCTION

Even “simple” tasks like grabbing an object involve highly coordinated actions of our
musculoskeletal system. At the core of such coordinated movements are voluntary contractions
of skeletal muscles. Understanding the underlying mechanism of recruitment and muscle force
generation is a challenging task and subject to much research (e.g., Kandel et al., 2000; MacIntosh
et al., 2006). One of the few non-invasive and clinically available diagnostic tools to obtain insights

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2018.00816
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2018.00816&domain=pdf&date_stamp=2018-07-12
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:roehrle@simtech.uni-stuttgart.de
https://doi.org/10.3389/fphys.2018.00816
https://www.frontiersin.org/articles/10.3389/fphys.2018.00816/full
http://loop.frontiersin.org/people/63896/overview
http://loop.frontiersin.org/people/539137/overview
http://loop.frontiersin.org/people/577829/overview
http://loop.frontiersin.org/people/564744/overview
http://loop.frontiersin.org/people/496322/overview
http://loop.frontiersin.org/people/535446/overview
http://loop.frontiersin.org/people/535474/overview
http://loop.frontiersin.org/people/502290/overview
http://loop.frontiersin.org/people/495845/overview
http://loop.frontiersin.org/people/27963/overview

Bradley et al. Skeletal Muscle Models on HPC Systems

into the functioning (or disfunctioning) of the neuromuscular
system are electromyographic (EMG) recordings, i. e., measuring
the activation-induced, resulting potentials on the skin
surface (e.g., Merletti and Parker, 2004). Conclusions on
the neuromuscular system are often drawn from results obtained
through signal processing, although such signal processing
techniques typically ignore the underlying muscular structure.
Further limitations of (surface) EMG measurements are, for
example, that they only capture activity from muscle parts
close to the surface. This leads to difficulties in identifying,
for example, cross-talk (e.g., Farina et al., 2005). Moreover, an
EMG often only records weak signals due to layers of adipose
tissue, and, in some cases, is restricted to isometric contractions.
Hence, to obtain more holistic insights into the neuromuscular
system, computational models can be employed (for a review
see e.g., Mesin, 2013). Such models need to capture much
of the electro-mechanical properties of skeletal muscle tissue
and the interaction between neural recruitment and muscular
contraction.

The contractile behavior of skeletal muscle tissue has been
extensively modeled using lumped-parameter models such as
Hill-type skeletal muscle models (e.g., Zajac, 1989), continuum-
mechanical skeletal muscle models (e.g., Johansson et al., 2000;
Blemker et al., 2005; Röhrle and Pullan, 2007; Böl and Reese,
2008), or multi-scale, chemo-electromechanical skeletal muscle
models (e.g., Röhrle et al., 2008, 2012; Hernández-Gascón et al.,
2013; Heidlauf and Röhrle, 2013). To predict the resulting
EMG of a particular stimulation, there exist analytical models
(e.g., Dimitrov and Dimitrova, 1998; Farina and Merletti,
2001; Mesin and Farina, 2006) with short compute times, or
numerical approaches (e.g., Lowery et al., 2002; Mesin and
Farina, 2006; Mordhorst et al., 2015, 2017). For realistic muscle
geometries, however, numerical methods are almost unavoidable.
The chemo-electromechanical models as proposed by Röhrle
et al. (2012), Heidlauf and Röhrle (2013, 2014), or Heidlauf
et al. (2016) are particularly well-suited to incorporate many
structural and functional features of skeletal muscles. They
embed one-dimensional computational muscle fibers within a
three-dimensional skeletal muscle model and associate themwith
a particular motor unit. Moreover, those models can be directly
linked to motor neuron models either phenomenologically
(e.g., Heckman and Binder, 1991; Fuglevand et al., 1993) or
biophysically (e.g., Cisi and Kohn, 2008; Negro and Farina,
2011) to further investigate the relationship between neural and
mechanical behavior. The desired degree of detail and complexity
within these models requires the coupling of different physical
phenomena on different temporal and spatial scales, e.g., models
describing the mechanical or electrical state of the muscle tissue
on the organ scale and the bio-chemical processes on the cellular
scale (cf. section 2.1).

Being able to take into account all these different processes
on different scales requires a flexible multi-scale, multi-physics
computational framework and significant compute power. The
availability of computational resources restricts the number of
individual muscle fibers that can be considered within a skeletal
muscle. The chemo-electromechanical models as implemented
within the international open-source libraries OpenCMISS (e.g.,

Bradley et al., 2011; Heidlauf and Röhrle, 2013; Mordhorst
et al., 2015) allow general muscle geometries with about
1,000 embedded computational muscle fibers. As most skeletal
muscles, however, have significantly more fibers (ranging from
several thousands to more than a million McCallum, 1898;
Feinstein et al., 1955), the embedded muscle fibers geometrically
represent only a selection from the actual muscle fibers located in
its geometrical vicinity. While simulations with 1,000 fibers and
less can potentially provide some insights into the neuromuscular
system, some effects, such as the motor unit recruitment over the
full range of motor units and muscle fibers and their implication
on the resulting EMG, can not be estimated unless a detailed
and realistic model with a realistic number of muscle fibers is
simulated. This full model allows us to estimate the accuracy
of “reduced” models by comparing them to the output of the
detailed full “benchmark” model. Unless such comparisons are
carried out it is hard to make predictions on how additional
details such as, for example, more fibers or functional units
(motor units) affect the overall outcome—both in terms of
muscle force generation and in terms of computed EMG signals.

Highly optimized and highly parallel software exist in the
community for biomechanical applications, e.g., for chemo-
electromechanical heart models (Xia et al., 2012; Lafortune
et al., 2012; Gurev et al., 2015; Colli Franzone et al., 2015).
Skeletal muscle tissue and cardiac muscle tissue share many
similarities with respect to the underlying microstructure.
Therefore similar simulation techniques can be utilized both for
heart models and skeletal muscle models. However, significant
differences exist with respect to recruitment and action potential
propagation between cardiac and skeletal muscle tissue. Whilst
there is a homogeneous and continuous spreading of the
action potential across a three-dimensional myocardium, the
behavior of skeletal muscle exhibits highly heterogeneous
recruitment and action potential propagation—essentially each
muscle fiber can be recruited independently leading to complex
potential fields. Moreover, there exist feedback mechanisms,
e.g., afferent feedback, that directly modulate recruitment. To
simulate such complex physiological behavior, one requires
flexible computing frameworks and a careful analysis of different
parallelization strategies for specific applications like skeletal
muscle recruitment.

Most multi-purpose computational frameworks for
biomedical applications such as OpenCMISS, for example,
are developed to provide flexibility using parallel simulation
environments, but are typically not designed for highly parallel
simulations on Tier-1 supercomputers. This flexibility is
achieved through standards like CellML (e.g., Lloyd et al.,
2004) and FieldML (e.g., Christie et al., 2009). The respective
frameworks are utilized to enhance existing multi-physics
models for a wide range of (bioengineering) applications.
Most computational frameworks are designed to be run by
biomedical researchers on small-sized compute clusters. While
they typically can be compiled on large-scale HPC compute
clusters such as HazelHen at the HLRS in Stuttgart, they often
are not capable of exploiting the full potential of the hardware
for a number of reasons. Moreover, simulation run time is
typically considered less important than model complexity and

Frontiers in Physiology | www.frontiersin.org 2 July 2018 | Volume 9 | Article 816

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Bradley et al. Skeletal Muscle Models on HPC Systems

output. Hence, typical simulations of biomedical applications
are not necessarily optimized for numerical efficiency, parallel
scalability, the exploitation of novel algorithms, or file I/O. In
this paper, we demonstrate how one can exploit analysis tools,
suitable numerical techniques, and coupling strategies to obtain
an efficient chemo-electro-mechanical skeletal muscle model
that is suitable to be run on a large-scale HPC infrastructure.
The model is thus capable of running with a sufficient resolution
and number of muscle fibers to provide the required high-
resolution details. Once large-scale simulations of biomedical
applications have been solved with a high degree of detail, most
specialized visualization tools such as OpenCMISS-Zinc can no
longer handle the large amount of simulation data. Dedicated
visualization tools for large-scale visualizations are required. In
this work, the MegaMol framework (Grottel et al., 2015) has
been adapted to visualize the different biophysical simulation
parameters and the resulting EMG.

2. MODEL AND METHODS

2.1. The Multi-Scale Skeletal Muscle Model
Before outlining our the model in its full detail, we first
provide a brief overview on some anatomical and physiological
characteristics of skeletal muscles that are relevant. From an
anatomical point of view, skeletal muscles are a hierarchical
system. Starting from its basic unit, the so-called sarcomere,
several sarcomeres arranged in-series and in-parallel constitute
a cylindrically shaped myofibril. Several myofibrils arranged in-
parallel make up a skeletal muscle fiber and multiple muscle
fibers form a fascicle. All the fascicles together constitute an
entire muscle and these fascicles are connected together through
the extracellular matrix (ECM). From a physiological point of
view, several fibers are controlled by a single lower motor neuron
through nervous axons. The entire unit consisting of the lower
motor neuron, the axons and the respective fibers that are
innervated by the axons, is referred to as a motor unit. The
motor unit is the smallest unit within a skeletal muscle that can
voluntarily contract. The lower motor neuron sends rate-coded
impulses called action potentials (AP) to all fibers belonging to
the same motor unit (neural stimulation). Moreover, motor units
are activated in an orderly fashion, starting from the smallest, up
to the largest (recruitment size principle). After a motor neuron
stimulates a muscle fiber at the neuromuscular junction, an AP
is triggered and propagates along the muscle fiber, resulting in
a local activity (contraction). For more comprehensive insights
into muscle physiology and anatomy, we refer to the book of
MacIntosh et al. (2006).

As the focus of this research is on enabling the simulation
of biophysically detailed skeletal models on HPC architectures,
this section provides an overview of the multi-scale modeling
framework of our chemo-electromechanical skeletal muscle
model that is based on the work by Röhrle et al. (2012),
Heidlauf and Röhrle (2013, 2014), and Heidlauf et al. (2016).
These models can account for the main mechanical and electro-
physiological properties of skeletal muscle tissue, including a
realistic activation process and resulting force generation. These
results are realized by linking multiple sub-models, describing

different physical phenomena on different length and time scales.
To reduce the computational costs, the different sub-models are
simulated using different discretizations, i. e., spatial resolution
and time-step size. Data are exchanged between the sub-models
using homogenization and interpolation techniques. The link
to neuromuscular recruitment, i.e., an entire neuromuscular
model, is modeled using predefined stimulation trains for the
fibers associated with individual motor units. This recruitment
assumption can be replaced without any modifications with a
biophysical motor neuron model (e.g., Cisi and Kohn, 2008;
Negro and Farina, 2011).

2.1.1. The 3D Continuum-Mechanical Muscle Model
The physiological working range of skeletal muscles includes
large deformations. Therefore, we use a continuum mechanical
modeling approach that is based on the theory of finite elasticity
to simulate the macroscopic deformations and stresses in the
muscle tissue. In continuum mechanics, the placement function
χ describes the motion of a material point, i. e., it assigns every
material point with position X in the reference (non-deformed)
domain �0 ⊂ R

3 at a time t0 to a position x = χ(X, t) in the
actual (deformed) domain�t ⊂ R

3 at time t. The deformation of
the body at a material point can be described by the deformation

gradient tensor F : =
∂χ
∂X = ∂x

∂X , which is defined as the
partial derivative of the placement function χ with respect to the
reference configuration. The local displacement is defined by the
vector u = x− X.

The governing equation of the continuum mechanical model
is the balance of linear momentum. Under the assumption of
no acceleration (i.e., inertia forces vanish) and neglecting body
forces, the balance of linear momentum in its local form can be
written as

divP = 0 in �t for all t, (1)

where div(·) denotes the divergence operator and P is the first
Piola-Kirchhoff stress-tensor. To solve the balance of linear
momentum, one needs to define a constitutive equation that
relates P to deformation. The constitutive equation describes the
overall mechanical behavior of the muscle and can be divided
into a passive and an active component. The latter represents the
muscle’s ability to contract and produce forces. In this work, we
assume a superposition of the active and passive behavior, i. e., an
additive split of P.

Passive skeletal muscle tissue is assumed to be hyperelastic
and transversely isotropic. Consequently, the passive part to
the first Piola-Kirchhoff stress tensor Ppassive(F,M) depends
on the deformation gradient tensor F and a structure tensor
M = a0 ⊗ a0, which is defined by the muscle fiber direction
a0. The isotropic part of the passive stress-tensor assumes a
Mooney-Rivlinmaterial. It is enhanced by an additive anisotropic
contribution accounting for the specificmaterial properties in the
muscle fiber direction a0.

The active force is generated on a microscopic scale, i.e.,
within a half-sarcomere (the smallest functional unit of a muscle)
consisting of thin actin and thick myosin filaments. Based on
geometrical considerations of the half-sarcomere structure, it
is known that the active muscle force depends on the actual

Frontiers in Physiology | www.frontiersin.org 3 July 2018 | Volume 9 | Article 816

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Bradley et al. Skeletal Muscle Models on HPC Systems

half-sarcomere length lhs (force-length relation) (Gordon et al.,
1966). When a half-sarcomere is activated by calcium as a
secondary messenger, actin andmyosin filaments can form cross-
bridges and produce forces (cross-bridge cycling). The active
force state of the microscopic half-sarcomere is summarized
in an activation parameter γ that enters the macroscopic
constitutive equation. Furthermore, we assume that the active
stress contribution acts only along the fiber direction a0. When
considering only isometric or slow contractions, the active stress
tensorPactive(F,M, γ) can be defined as a function of the lumped
activation parameter γ , the deformation gradient tensor F, and
the structure tensor M. An additional force-length relationship
needs to be included within Pactive.

Finally, we assume skeletal muscle tissue to be incompressible,
which implies the incompressibility constraint det F = 1. The
resulting first Piola-Kirchhoff stress tensor reads

P(F,M, γ) = Ppassive(F,M)+ Pactive(F,M, γ)− pF−T , (2)

where p is the hydrostatic pressure, which enters the equation as
a Lagrange multiplier enforcing the incompressibility constraint.
The material parameters of the continuum-mechanical skeletal
muscles are fitted to experimental data (Hawkins and Bey, 1994),
and can be found in Heidlauf and Röhrle (2014).

2.1.2. The 1D Model for Action Potential Propagation
The electrical activity of skeletal muscles resulting from the
local activity of all muscle fibers can be analyzed by measuring
the extracellular potential. The bidomain-model is a framework
widely used in continuum mechanics to simulate the electrical
activity of living tissues (Pullan et al., 2005). It is based on
the assumption that the intracellular and extracellular spaces
homogeneously occupy the same domain. The intracellular and
extracellular spaces are electrically coupled by an electrical
current Im flowing across the cell membrane, i. e.,

− div qi = div qe = AmIm,

where qi and qe denote the current density in the intracellular and
extracellular space, respectively, and Am is the fiber’s surface to
volume ratio. The muscle fiber membrane is nearly impermeable
for ions and serves as a capacitor. However, ions can be
transported through the membrane by ion channels and active
ion pumps. This process can be mathematically described by
the biophysically motivated modeling approach proposed by
Hodgkin and Huxley (1952) which leads to the constitutive
equation

Im = Cm
∂Vm

∂t
+ Iion(y,Vm, Istim) , (3)

where Vm is the transmembrane potential, Cm is the capacitance
of the muscle fiber membrane (sarcolemma) and Iion is
the transmembrane-potential-dependent ionic current flowing
through the ion-channels and -pumps. Further state variables are
summarized in y, e. g., the states of different ion channels. Istim is
an externally applied stimulation current, e. g., due to a stimulus
from the nervous system. Assuming that the intracellular space

and extracellular space show the same anisotropy, which is the
case for 1D problems, the bidomain equations can be reduced
to the monodomain equation. We thus use the one-dimensional
monodomain equation in the domain Ŵt ⊂ R:

∂Vm

∂t
=

1

AmCm

(

∂

∂x

(

σeff
∂Vm

∂x

)

− AmIion
(

y,Vm, Istim
)

)

in Ŵt .

(4)
Here, x denotes the spatial coordinate along a one-dimensional
line, i.e., the fiber, and σeff is the effective conductivity.

2.1.3. The 0D Sub-cellular Muscle Model
The model proposed by Shorten et al. (2007) provides a basis to
compute the lumped activation parameter γ , which is the link
to the 3D continuum-mechanical muscle model. Its evolution
model is steered by the ionic current Iion of the 1D model. In
more detail, the 0D sub-cellular muscle model contains a detailed
biophysical description of the sub-cellular excitation-contraction
coupling pathway. Specifically, it models the depolarization of
the membrane potential in response to stimulation, the release
of calcium from the sarcoplasmic reticulum (SR) which serves
as a second messenger, and cross-bridge (XB) cycling. To
do so, the Shorten model couples three sub-cellular models:
A Hodgkin-Huxley-type model is utilized to simulate the
electrical potentials and ion currents through the muscle-fiber
membrane and the membrane of the T-tubule system. For
calcium dynamics, a model of the SR membrane ryanodine
receptor (RyR) channels (Ríos et al., 1993) is coupled to the
electrical potential across the T-tubule membrane and models
the release of calcium from the SR. Additionally, the calcium-
dynamics model describes diffusion of calcium in the muscle
cell, active calcium transport through the SR membrane via
the SERCA pump (sarco/endoplasmic reticulum Ca2+-ATPase),
binding of calcium to buffer molecules (e. g. , parvalbumin or
ATP), and binding of calcium to troponin enabling the formation
of cross-bridges. The active force generation is simulated by
solving a simplified Huxley-type model (Razumova et al., 1999),
which is the basis for calculating the activation parameter γ .

All incorporated sub-cellular processes are modeled with a set
of coupled ordinary differential equations (ODEs)

∂y

∂t
= Gy

(

y,Vm, Istim
)

, (5)

where Gy summarizes the right-hand-side of all the ODEs
associated with the state variables y which number, in the case
of the Shorten et al. model, more than 50.

The final activation parameter γ is computed from the state
variable vector y and the length and contraction velocity of
the half-sarcomere, lhs and l̇hs. For isometric or very slow
contractions, the contraction velocity can be neglected. Hence,
following Razumova et al. (1999) and Heidlauf and Röhrle
(2014), the activation parameter is calculated as

γ
(

y, lhs
)

= ff-l
(

lhs
) A2 − Amin

2

Amax
2 − Amin

2

. (6)

Here, the function ff-l
(

lhs
)

is the force-length relation for a
cat skeletal muscle by Rassier et al. (1999), A2 ∈ y is the

Frontiers in Physiology | www.frontiersin.org 4 July 2018 | Volume 9 | Article 816

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Bradley et al. Skeletal Muscle Models on HPC Systems

concentration of post power-stroke cross-bridges, Amax
2 is the

concentration of post power-stroke cross-bridges for a tetanic
contraction (100 Hz stimulation after 500 ms stimulation) and
Amin
2 is an offset parameter denoting the concentration of post

power-stroke cross-bridges in the resting state.

2.1.4. Summary of the Full Model
In summary, the chemo-electromechanical behavior of a skeletal
muscle is described by the following coupled equations:

0 = divP
(

F,M, γ (y, lhs)
)

in �t forall t, (7a)

∂Vm

∂t
=

1

AmCm

(

∂

∂x

(

σeff
∂Vm

∂x

)

−AmIion
(

y,Vm, Istim
)

)

on all fibers Ŵt , (7b)

∂y

∂t
= Gy

(

y,Vm, Istim
)

at all sarcomere positions. (7c)

Realistic material parameters and muscle fiber directions,
appropriate boundary and initial condition (i.e., Dirichlet
boundary conditions for the three-dimensional, continuum-
mechanical model to describe the displacement of a tendon and,
hence, of the skeletal muscle tissue, as a result of motion, or the
stimulus train, Istim(t)) for all fibers, need to be chosen (cf. section
3.1 for a particular example).

2.2. Numerical Methods
To enable multi-scale skeletal muscle models, e.g., such as the
ones described in section 2.1, to run efficiently and scalably on
(large-scale) clusters, we first present the numerical methods
as implemented in Heidlauf and Röhrle (2013) (section 2.2.1)
followed by algorithmic optimizations aiming to achieve efficient
and scalable code (section 2.2.2). To distinguish between the
implementation of Heidlauf and Röhrle (2013) and the new
optimized implementation, we denote the former as the baseline
implementation.

2.2.1. Discretization and Solvers

2.2.1.1. Spatial discretization
The sub-models of the multi-scale skeletal muscle model have
significantly different characteristic time and length scales.
To solve the overall model efficiently, different discretization
techniques and resolutions are required for the sub-models. In
Heidlauf and Röhrle (2013), as in this work, the continuum-
mechanics model is solved via the finite element method using
Taylor-Hood elements (i. e., a mixed formulation of tri-quadratic
and tri-linear Lagrange basis functions to approximate the
displacements and the hydrostatic pressure respectively). The
one-dimensional muscle fibers are represented by embedded,
one-dimensional finite element meshes with linear Lagrange
basis functions. Figure 1 (left) shows the embedding of ny ×

nz discretised 1D fibers within the 3D muscle domain �0

discretised with ex × ey × ez tri-quadratic finite elements, where
ex, ey, and ez are the number of elements in the x, y, and z
direction respectively. Each node of the 1D fiber mesh serves as
sarcomere position where one instance of the sub-cellular model
is calculated.

The different discretizations of the coupled multi-physics
problem require data to be transfered between the different
spatial discretizations. Within our model, the transfer of
information from the microscopic scale to the macroscopic scale
is realized via the activation parameter γ . The microscopic
sarcomere forces γ provided by the monodomain model are
projected to the macroscopic three-dimensional continuum-
mechanics model (γ → γ̄). This homogenization is performed
for all Gauss points in the 3D model by averaging the
γ values of all monodomain model nodes nearest to the
respective Gauss point. Similarly, the node positions of the one-
dimensional computational muscle fibers are updated from the
actual displacements u of the three-dimensional, continuum-
mechanicsmodel by interpolating the node positions via the basis
functions of the three-dimensional model. Based on this step, the
microscopic half-sarcomere lengths lhs(x) can be calculated.

2.2.1.2. Time discretization
To compute an approximate solution for Equation (7), the
different characteristic time scales of the 3D, 1D and 0D
problems can be exploited. The action potential propagates faster
than the muscle deformation, and the sub-cellular processes
evolve considerably faster than the diffusive action potential
propagation. From a computational point of view, it is desirable
to have common global time steps. To achieve this, we choose
dt3D/N = dt1D = K · dt0D with N, K ∈ N. Then, each discrete
time is uniquely defined as tm,n,k := m · dt3D+ n · dt1D+ k · dt0D,
with M ∈ N, n = 0, ..,N − 1 and k = 0, ..,K − 1. Moreover, state
values associated with time tm,n,k are denoted with the superscript
(·)m,n,k. Employing different time steps requires a time splitting
scheme. The baseline implementation in Heidlauf and Röhrle
(2013) uses a first-order accurate Godunov splitting scheme, for
which one time-step of the three-dimensional equation including
all sub-steps for the one-dimensional monodomain equation is
given by:

1. For n = 0, . . . ,N − 1 do

a. For k = 0, . . . ,K − 1 perform explicit Euler steps for
Equation (7c) and the 0D portion of Equation (7b).

b. Set Vm,n,0
m := Vm,n,K

m and ym,n+1,0
:= ym,n,K .

c. Perform one implicit Euler step for the 1D portion of
Equation (7b) to compute Vm,n+1,0

m .

2. Set Vm+1,0,0
m := Vm,N,0

m and ym+1,0,0
:= ym,N,0.

3. Calculate γ (ym+1,0,0, lm,0,0
hs

) and compute the homogenized
values γ̄ at the Gauss points of the 3D finite element mesh.

4. Calculate the activation parameter γ (ym+1, lm
hs
).

5. Solve Equation (7a).
6. Interpolate the actual configuration xm+1,0,0 to the fibers’

nodes for computing the local half-sacromere length lm+1,0,0
hs

.

Figure 1 (right) schematically depicts this algorithm.

2.2.1.3. Linear solvers
The coupled time stepping algorithm described above contains
two large systems of equations that need to be solved. The first
one results from the 3D elasticity problem (7a) and the second
one stems from an implicit time integration of the linear 1D
diffusion problem of the fiber (7b). In Heidlauf and Röhrle (2013)

Frontiers in Physiology | www.frontiersin.org 5 July 2018 | Volume 9 | Article 816

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Bradley et al. Skeletal Muscle Models on HPC Systems

FIGURE 1 | (Left) Schematic view of a 3D muscle domain that contains a given number of nx × ny muscle fibers per 3D partition, ex × ey × ez finite elements for the

3D model (7a), and sx nodes per fiber for (7b) and (7c). (Right) Schematic view of the multi-scale time stepping scheme based on a Godunov splitting of the

monodomain equation.

the linear systems are obtained by applying Newton’s method to
the 3D and 1D problems and are solved using GMRES (Saad and
Schultz, 1986) as implemented within the PETSc library (Balay
et al., 1997, 2015).

2.2.2. Algorithmic Optimizations
While section 2.2.1 describes the implementation as in
Heidlauf and Röhrle (2013), in the following paragraphs we
propose some algorithmic optimizations to improve numerical
efficiency.

2.2.2.1. Spatial discretization
We optimize the interpolation and homogenization routines,
and leave the spatial discretization as described in section 2.2.1
unchanged in this work: interpolation and homogenization steps
involve the transfer of information between values at Gauss
points of the 3D elements to nodes of the 1D fibers. To allow for a
general domain decomposition later on, a mapping between the
respective 3D and 1D finite elements is necessary. In Heidlauf
and Röhrle (2013), the homogenization was achieved using
a naive search over all locally stored fibers. This search was
performed for each 3D element. We replace this approach,
which exhibits quadratic complexity (in terms of the number of
involved elements), with a calculation of linear complexity. This
is achieved by calculating – in constant time – the indices of the
1D elements that are located inside a 3D element.

2.2.2.2. Second-order time stepping
To reduce computational cost, we replace the first-order
Godunov splitting with a second-order Strang splitting as
proposed by, e.g., Qu and Garfinkel (1999). A higher order means
that we advance from an O(dt) approach to an O(dt2) for a
given steplength dt in time. Second-order time-stepping schemes
reduce the discretization errormuch faster with a decreasing time
step size dt and thus, the required accuracy might be achieved

using larger time steps. Along with the change of the splitting
approach, we replace the explicit Euler method for Equation (7c)
and the 0D portion of Equation (7b) with the method of Heun
and employ an implicit Crank-Nicolson method for the diffusion
part of Equation (7b). In contrast to the simpler Godunov
splitting, Strang splitting uses three sub-steps per time step: a first
step with length dt1D/2 for the 0D part, a second step with length
dt1D for the diffusion, and a third step with length dt1D/2 again
for the 0D part. The modified algorithm at time tm,0,0 is given
by:

1. For n = 0, . . . ,N − 1 do

a. For k = 0, . . . ,K/2 − 1 perform explicit Heun steps for
Equation (7c) and the 0D portion of Equation (7b).

b. Set Vm,n,0
m := V

m,n,K/2
m .

c. Perform one implicit Crank-Nicolson step for the 1D
portion of Equation (7b).

d. Set V
m,n,K/2
m := Vm,n+1,0

m .
e. For k = K/2, . . . ,K − 1 perform explicit Heun steps for

Equation (7c) and the 0D portion of Equation (7b).
f. Set Vm,n+1,0

m := Vm,n,K
m and ym,n+1,0

:= ym,n,K .

2. Set Vm+1,0,0
m := Vm,N,0

m and ym+1,0,0
:= ym,N,0.

3. Calculate γ (ym+1,0,0, lm,0,0
hs

) and compute the homogenized
values γ̄ at the Gauss points of the 3D finite element mesh.

4. Solve Equation (7a).
5. Interpolate the displacements um+1,0,0 to the fibers’ nodes for

computing the local half-sacromere length lm+1,0,0
hs

.

The explicit Heun step in 1.a. and 1.d. (see above) is given by:

[

y

Vm

]pre

=

[

y

Vm

]m,n,k

+ dt0D

Gy

(

ym,n,k,Vm,n,k
m , Istim

)

−
1

Cm
Iion

(

ym,n,k,Vm,n,k
m , Istim

)

, (8a)

Frontiers in Physiology | www.frontiersin.org 6 July 2018 | Volume 9 | Article 816

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Bradley et al. Skeletal Muscle Models on HPC Systems

[

y

Vm

]m,n,k+1

=

[

y

Vm

]m,n,k

(8b)

+
dt0D

2

Gy

(

ym,n,k,Vm,n,k
m , Istim

)

+Gy

(

ypre,V
pre
m , Istim

)

−
1

Cm

(

Iion
(

ym,n,k,Vm,n,k
m , Istim

)

+Iion
(

ypre,V
pre
m , Istim

))

.

In 1.b., we solve the system resulting from the Crank-Nicolson
time discretization of the diffusion part in Equation (7b):

Vm,n+1,0
m = Vm,n,0

m +
dt1D

2AmCm

(

∂

∂x

(

σeff
∂Vm,n,0

m

∂x

)

+
∂

∂x

(

σeff
∂Vm,n+1,0

m

∂x

))

, (9)

2.2.2.3. Optimal complexity linear solver
The GMRES solver is a robust choice for general sparse systems
of linear equations but it does not exploit the symmetry, positive
definiteness and tri-diagonal structure of the 1D diffusion system.
For symmetric matrices the conjugate gradient (CG) solver
(Hestenes and Stiefel, 1952) is an appropriate iterative solver. For
tri-diagonal matrices one could even employ the most simple
Thomas algorithm (Thomas, 1949). To maintain flexibility, we
currently replace the GMRES solver by a direct solver from
the MUMPS library (Amestoy et al., 2001, 2006) that exploits
the structure and exhibits optimal complexity for tridiagonal
systems.

2.3. Domain Partitioning and Parallelization
For parallelization, the computational domains must be
partitioned appropriately. This is particularly challenging
for multi-scale problems, as considered in this work, as the
parallelization induces communication due to dependencies of
local data on data in neighboring partitions. To motivate the
discussion below, we briefly outline the main challenges in the
scope of this work:

1. Solving for the propagation of Vm, i. e., using an implicit
Euler or Crank-Nicolson method (equation 9) to solve the
monodomain equation (equation 4), requires communication
of data along a single fiber. The resulting communication cost
per process is thus linear in the number of fibers that are
split in the global 3D partitioning, and whose parts are thus
assigned to different partitions.

2. Computing the muscle displacements u of the 3D model
involves all processes. This is a result of using a finite
element discretization, which inherently requires peer-to-
peer communication between processes which share partition
boundaries. These costs are proportional to the surface area of
the 3D partitions.

3. Interpolating the muscle displacements u of the 3D muscle
mesh to 1D fiber mesh node positions and calculating lhs,
requires ghost layers at the partition boundaries containing
one layer of 3D elements. Note that for the reverse transfer,
the accumulation of the activation parameter γ from the 0D
model at the Gauss points of the elements in the 3D mesh,
i. e., computing γ̄ , does not involve communication since the

process is completely local as all 0D points are contained
within the respective 3D element and reside on the same
process.

2.3.1. Pillar-Like Domain Decomposition
In the baseline implementation by Heidlauf and Röhrle (2013),
the domain decomposition for parallel execution was hard-coded
for only four processes, following a partitioning ensuring that
entire fibers remain within the same partition at all times, which
is anatomically motivated. Since all skeletal muscle fibers are,
from an electrical point of view, independent of each other, this
is also computationally attractive as no quantities in the 0D and
1D sub-models need to be exchanged between fibers. We extend
the approach to an arbitrary number of processes, and keep the
structure of partitioning the 3D and 1D meshes in the same way,
such that quantities in the 3D, 1D and 0D models corresponding
to the same spatial location are stored on the same process.
This avoids unnecessary inter-process volume-communication
between the sub-models.

2.3.2. New Spatial Domain Decomposition
In addition to the extension of the pillar-like domain partitioning,
we investigate a second approach with nearly cube-shaped
partitions, cf. Figure 2. In contrast to partitioning strategies
based on space-filling curves such as Schamberger and Wierum
(2005), graph partitioning such as Miller et al. (1993) and Zhou
et al. (2010), or problem-specific approaches such as the pillar-
shaped partitioning, a cuboid partition has the advantage that the
interaction of one cuboid partition with others is guaranteed to
be planar and bounded by the maximum number of neighboring
partitions, i. e., 33 − 1 = 26. This allows communication with
reduced complexity and cost.

However, we cannot completely avoid obtaining sub-domains
at the boundary of the computational domain that have
less elements than other domains. Given a fixed number of
available cores, we thus maximize the number of employed
processes by adapting the number of sub-divisions in each axis
direction corresponding to a factorization of the total number of
processes. By carefully choosing the factorization, we reduce the
impact on sub-optimal load-balancing in these ‘nearly cuboid’
partitioning cases. By introducing the additional constraint
that each generated partition has to be larger than a specified
“atomic” cuboid of elements, we can easily ensure that each
process contains only entire fibers (pillar-like partition), a fixed
number of fiber subdivisions (cube-like partition), or anything in
between.

In summary, based on the communication dependencies 1
and 2 as described at the beginning of this section, we enhance the
original pillar-like domain partitioning in two ways: (i) we allow
for an arbitrary number of processes instead of a fixed number of
four processes and (ii) we introduce a new partitioning concept
with nearly cuboid partitions that minimize the partitioning’s
surface area.

Note, when considering the simulation of realistic muscle
geometries that cannot be discretized using rectangular elements,
e.g., using unstructured meshes, a domain decomposition into
pillar-like or nearly cuboid partitions is generally no longer
feasible. The same is true for a skeletal muscle with complex

Frontiers in Physiology | www.frontiersin.org 7 July 2018 | Volume 9 | Article 816

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Bradley et al. Skeletal Muscle Models on HPC Systems

FIGURE 2 | Visualization of pillar-like (Left) and cuboid (Right) domain decomposition approaches. Both depicted approaches partition the same domain into 16

subdomains with px , py , and pz subdivisions in x-, y-, and z-direction, respectively.

muscle fiber distributions. In such a case, one cannot ensure that
fibers are always contained within a single partition when using
a pillar-like domain decomposition. However, the strategy to aim
for minimal surface domains is always possible as it inherently
involves cutting fibers at process boundaries.

Within this work, we assume that it is possible to create nearly
optimal cube-shaped partitions.

2.4. Visualization of Muscle Simulations
Performing large scale simulations is only the first step to
gain an improved insight into the musculoskeletal system.
Visual analysis and interactive exploration of the simulation
data gives the opportunity to investigate every facet of large
and complex systems. General-purpose visualization tools like
ParaView (Ahrens et al., 2005) or VisIt (Childs et al., 2012a)
can only provide a first glimpse of such data sets. However, for
the above-mentioned in-depth analysis, a tailored visualization
tool is necessary. The standard visualization framework within
the OpenCMISS software project is OpenCMISS-Zinc. This
framework already offers a range of visualization techniques
for muscle fiber data, for example, a convex hull calculation to
construct a mesh geometry from point cloud data. However,
OpenCMISS-Zinc lacks important features that are required to
develop efficient visualizations intended to run on HPC systems.
These missing features are, for example, a suitable platform for
fast visualization prototyping, distributed rendering, or CPU-
based visualization. The open-source visualization framework
MegaMol (Grottel et al., 2015) fulfills these criteria and offers
additional functionality and features that are valuable for this
project. Therefore, we use MegaMol as the basis for improved
musculoskeletal visualizations. For example, one additional
feature is the infrastructure for brushing and linking that allows
for developing interactive visual analytics applications. MegaMol
also offers a built-in headless mode and a remote control
interface, which is crucial for HPC-based in-situ rendering.

In-situ visualization is an alternative approach to traditional
post-hoc data processing. The key idea is to process and
visualize data on the HPC system while the simulation is
running. Consequently, writing raw data to disk can be avoided
completely. Since our new visualization tool is intended to cope

with the visual analysis of large-scale muscle simulations, we
require an architecture that allows us to employ this approach
in the future. There are three different approaches that are
considered as in-situ visualization, identified by Childs et al.
(2012b). The first one is known as co-processing, where the
visualization tool runs simultaneously with the simulation and
accesses the simulations memory for further processing and
visualization. In the second approach, the visualization runs
on separate nodes and communicates data via a network. This
method is known as concurrent-processing. The last possibility,
the hybrid technique, directly accesses the simulation’s memory
and reduces the data for less network load while sending the
data to visualization nodes. We are planning to add the first
two methods—co-processing and concurrent processing—into
our implementation. However, we cannot completely disregard
the hybrid technique as we might need to identify the workload
of each node and the network traffic of a running large-scale
simulation with in-situ visualization first.

Interactive visualization typically uses graphics APIs like

OpenGL to employ the GPU for rendering. GPU-accelerated

rendering uses polygon rasterization, i. e., large numbers of

triangles can be processed and rendered in parallel. All geometric

objects that are rendered thus have to be represented by triangle
meshes. This visualization approach is, for example, also used
by OpenCMISS-Zinc. An alternative rendering approach to
GPU-accelerated rasterization is ray tracing. Here, one or more
view rays are computed for each pixel. Each ray is tested for
intersection with the objects in the scene in order to find out
which objects are visible at this pixel. Note that this approach
can not only render triangles but also all objects that have a
mathematical representation that can be used for computing the
ray-object intersection (e. g., spheres or cylinders). Ray tracing is
usually computed on the CPU and was traditionally only used
for high-quality offline rendering due to its higher computational
complexity. The combination of modern hardware and improved
algorithms, however, enables interactive ray tracing, even on
single desktop workstations.

MegaMol offers GPU rendering (rasterization) and CPU ray
tracing via a thin abstraction layer. The GPU rendering uses
the OpenGL API, whereas the CPU rendering is based on the

Frontiers in Physiology | www.frontiersin.org 8 July 2018 | Volume 9 | Article 816

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Bradley et al. Skeletal Muscle Models on HPC Systems

ray tracing engine OSPRay (Wald et al., 2017). In particular
the CPU-based ray tracing enables image synthesis on any
computer, regardless of the availability of dedicated GPUs. This
is especially important for HPC clusters, which are typically
not equipped with GPUs: Currently, only two of the top-ten
HPC systems in the Top500 list GPU systems. Since ray tracing
simulates the transport of light, it offers advanced rendering
and shading methods (e. g., global illumination and ambient
occlusion) that enhance the perception of depth. MegaMol is
currently not optimized for HPC usage. However, it provides the
necessary basic infrastructure for enabling distributed rendering
on an HPC system. Furthermore, MegaMol is already capable
of rendering discretized muscle fibers as continuous geometry.
The visual quality and scalability obtained by MegaMol using
integrated OSPRay ray tracing are discussed in section 3.4.

3. RESULTS

Before simulating realistic and complex models on HPC systems,
it is essential to first analyse numerical complexity, i. e., scalability
in terms of the size of the problem both for the baseline methods
described in section 2.2.1 and our optimized methods presented
in section 2.2.2. To avoid any geometrical effects stemming
from realistic geometries, we perform the analysis on a test
example introduced in section 3.1. As the old parallel code used
4 cores, only, in section 3.3 we restrict our analysis of the parallel
scalability to the proposed new parallelization strategies.

3.1. Test Scenario
As a test scenario, we use a generic cubic muscle geometry
(1 × 1 × 1 cm). The muscle fibers are aligned in parallel to
one cube-edge (the x-direction). The discretization in space and
time is as carried out as described in sections 2.2.1 and 2.2.2.
The discretization parameters will be specified for the respective
experiments. For the material parameters for the continuum-
mechanics model, the effective conductivity σeff, the surface-to-
volume ratio Am, and the membrane capacity Cm, we use exactly
the same values as reported in Heidlauf and Röhrle (2014).

To constrain the muscle, Dirichlet boundary conditions (zero
displacement) are used to fixate the following faces of the muscle
cube: the left and the right faces (faces normal to the x-direction),
the front face (face normal to the y-direction) and the bottom
face (face normal to the z-direction). Further, no current flows
over the boundary of the computational muscle fibers, i. e., zero
Neumann boundary conditions are assumed at both muscle fiber
ends. As far as the skeletal muscle recruitment is concerned, we
consider an isometric single-twitch experiment by stimulating
all fibers at their mid-points for t ∈ [0, 0.1ms] with Istim(t) =

1200µA/cm2. For all other t, Istim(t) is assumed to be 0.

3.2. Numerical Investigations
In the following, we present numerical experiments
demonstrating, in particular, the increase in efficiency with
the new second-order time discretization method. All runtimes
are measured in serial, on an Intel R© CoreTM i5-4590 CPU
(3.3 GHz, 32 GB RAM) for Secs. 3.2.1 and 3.2.2, and an
Intel R© XeonTM E7-8880 v3 CPU (2.3 GHz, 504 GB RAM) for
Secs. 3.2.3, 3.2.4, using the OpenCMISS implementation.

3.2.1. Time Discretization for the Sub-cellular Model
In a first step, we verify the convergence order of Heun’s method
experimentally. Therefore, we restrict ourselves to the reaction
term, i. e., step 1.a of the Godunov algorithm, but use Heun’s
method for Equation (7c) and the 0D portion of Equation (7b).
The diffusion term is thus completely neglected. We use the test
setup as presented in Sect. 3.1. To compare the accuracy of Heun’s
method with an explicit Euler method, we compare the values of
Vm and Iion at a stimulated material point on a muscle fiber while
varying the time step size dt0D. As a reference solution, we use the
solution calculated with Heun’s method for a very high resolution
(K : = dt1D/dt0D = 4096). We restrict ourselves to the time
interval [0, dt1D], with dt1D = 0.5µs. To compare the methods
in terms of efficiency, we measure the related compute times.
Figure 3A depicts the relative error depending on the number K
of 0D time steps while on the right the necessary CPU-times to
reach a certain accuracy for the different solvers are compared.

FIGURE 3 | (A) Relative error dependency on the number K of 0D time steps in [0,dt1D]. The error of Euler’s and Heun’s method shows the expected O(K−1) and

O(K−2) behavior. (B) Dependency of the runtime on the required accuracy for explicit Euler and Heun. We varied the time step dt0D between 5 · 20 and 5 · 2−12
µs

for Euler and between 5 · 20 and 5 · 2−11
µs for Heun.

Frontiers in Physiology | www.frontiersin.org 9 July 2018 | Volume 9 | Article 816

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Bradley et al. Skeletal Muscle Models on HPC Systems

Figure 3A shows the expected first-order convergence for
the explicit Euler method and second-order convergence for
Heun’s method. From an application point of view, however,
efficient computation (“Which accuracy can be achieved in which
runtime?”) is more important than the order of convergence.
Therefore, in order to reveal the potential of Heun’s method in
decreasing the runtime for a given required accuracy, we take into
account the different computation time per step of the methods.
Figure 3B shows that two Heun steps with dt0D = 2.5µs replace
50 forward Euler steps yielding a theoretical speedup of 12.5 for
the 0D-solver. At the same time, the error decreases by a factor
of approximately 3. All times are normalized with respect to the
CPU-time of a single step of the Euler method (K = 1).

3.2.2. Time Discretization for the Muscle Fibers
In a second experiment, we verify the convergence order of
the Strang splitting scheme, i. e., we couple 0D reaction and
1D diffusion. Again, the same test setup as above is considered
except that we use a larger time interval [0, 0.1ms] and vary the
number, N, of 1D time steps. Based on the previous results for the
isolated 0D problem, we choose K = 2 for the Strang-splitting
scheme and K = 5 for the Godunov-splitting scheme. This
ensures a comparable relative error for the 0D sub-problem while
saving computational time. The reference solution is computed
using a Strang-splitting scheme with dt1D = 0.25µs, yielding
Vm(0.1ms) ≈ −23.5219mV.

Figure 4A shows the relative errors of Vm (0.1ms) at a
stimulated sub-cell for the Godunov- and Strang-splitting
schemes. Comparable relative errors as for the Godunov scheme
with dt1D = 0.5µs are achieved for the Strang splitting
scheme with dt1D = 2 or 4µs. Qu and Garfinkel (1999) applied
the Strang splitting scheme on the monodomain equation in
cardiac conduction, using a different reaction term than in this
work. However, it is not entirely clear whether second order
convergence is exhibited by their numerical experiments. For
an electrocardiogram simulation Sundnes et al. (2005) used the
same scheme on the more general bidomain equation, achieving
a nearly second order scheme. In contrast to these works our
results show a true second-order error dependency. The resulting
speedups are depicted in Figure 4B by arrows pointing from

Godunov to Strang data points. There, the compute times are
normalized with respect to the compute time of the Godunov
scheme for dt1D = 0.5µs.

Based on a relative error in Vm of about 2 ·10−3, the improved
time stepping scheme achieves a speedup of 7.54, if the accuracy
requirement is weakened slightly. If the error constraint is not
weakened, we still obtain a speedup of 3.89. Note that, for more
restrictive error limits, the speedup achieved with a second-order
scheme will be even higher due to the higher convergence order.

3.2.3. Solving the Linear Systems of Equations in the

1D Model
In a further experiment, which solves a 1D diffusion problem,
we consider a single fiber inside one 3D element for the
time interval t ∈ [0, 3ms]. The Godunov splitting scheme
is employed with time step sizes dt1D = 5 · 10−3ms and
dt0D = 10−4ms, as the experiment is largely independent
of the splitting scheme. We compare the GMRES solver with
30 restarts against the CG solver and a direct solver from
the MUMPS library. Figure 5 shows the expected reduction
in the runtime for the CG and direct solvers. Although the
direct solver has a higher runtime for a small number of 1D
elements, it requires the lowest runtime for finer discretizations
and shows a linear complexity with the number of 1D
elements.

3.2.4. Runtime Analysis During Serial Execution of

the Full Model
In previous sections we considered subproblems of the
computational model. In this section we measure the overall
effect of the combined improvements. A complete single-twitch
scenario as described in section 3.1 is simulated for a time
span of [0, 1ms]. We compare all numerical and algorithmic
improvements of this paper against the baseline setting of
Heidlauf and Röhrle (2013).

The 3D spatial discretization comprises 8 Taylor-Hood finite
elements containing 36 muscle fibers (nx = ny = 6) in total.
For the baseline setting using the Godunov splitting scheme the
time steps are set to dt3D = 1ms, dt1D = 5 · 10−4ms and
dt0D = 10−4ms, i. e., N = 2000 and K = 5. For the Strang

FIGURE 4 | (A) Relative error dependency on the 1D time step size dt1D. The error of the Godunov- and Strang-splitting scheme shows the expected O(dt1D) and

O(dt21D) behavior, respectively. (B) Efficiency of different splitting schemes. Each scheme is performed for dt1D = 0.5, 1, 2 and 4µs.

Frontiers in Physiology | www.frontiersin.org 10 July 2018 | Volume 9 | Article 816

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Bradley et al. Skeletal Muscle Models on HPC Systems

splitting scheme the values are dt3D = 1ms, dt1D = 4 · 10−3ms
and dt0D = 2 · 10−3ms, i. e., N = 250 and K = 2. For the
baseline setting the linear system of equations arising from the
1D problem is solved using a restarted GMRES solver with a
restart after 30 iterations and relative residual tolerance of 10−5.
The improved simulation uses the direct solver as described in
section 2.2.2.3. To solve the 3D problem, Newton’s method from
the PETSc library is used with a relative and absolute tolerance of
10−8 and a backtracking line search approach with a maximum
number of 40 iterations.

FIGURE 5 | Comparison of the runtime for different linear solvers. A single

fiber is considered for the time t ∈ [0, 3ms].

To assess problem size scalability, we vary the number of 1D
elements along each muscle fiber and measure the runtimes of
the simulation components. Note that the number of sub-cellular
model instances is changed accordingly.

The results depicted in Figure 6 provide the following
insights: (i) The majority of the runtime is spent solving the
0D problem. (ii) The portion of runtime spent solving the 3D
problem is negligible. This is due to the low number of 3D
finite elements for the mechanics problem. Realistic models
would, however, require a finer resolution of the 3D problem.
(iii) The runtime for the other computational components
increases approximately linearly with the number of fiber
elements. This indicates a good scaling behavior with respect
to problem size. (iv) The computations of the macroscopic
variable lhs from the fiber nodes, the homogenized activation
parameter γ̄ (homogenization), as well as lhs (interpolation)
have almost no impact on the overall computational time.
However, interpolation is more time consuming as it involves
simultaneously traversing the fiber and the 3D meshes, whereas
homogenization requires only a single averaging operation for
each Gauss point of the 3D elements.

3.3. Parallel Scaling Experiments
In the following we conduct parallel scalability experiments to
investigate the behavior of the simulation on highly parallel
compute clusters. All experiments are conducted on HazelHen,
the Tier-1 supercomputer at the High Performance Computing
Center Stuttgart (HLRS). A dual-socket node of this Cray
XC40 contains two Intel R© Haswell E5-2680v3 processors with
base frequency of 2.5 GHz, maximum turbo frequency of 3.3
GHz, 12 cores each and 2 hyperthreads per core, leading to a

FIGURE 6 | Runtime for a simulated time interval t ∈ [0, 1ms] with a varying number of elements per fiber. 2× 2× 2 3D elements, 6× 6 1D fibers. Solid lines: baseline

implementation, Dashed lines: implementation with improvements of this paper.

Frontiers in Physiology | www.frontiersin.org 11 July 2018 | Volume 9 | Article 816

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Bradley et al. Skeletal Muscle Models on HPC Systems

total number of 48 possible threads per node. We present the
results of a strong scaling (Experiment #1) and weak scaling
experiments (Experiments #2 and #3) as well as an investigation
of partitioning strategies (Experiment #4).

3.3.1. Strong Scaling Measurements—Experiment #1
Strong scaling investigates the runtime for a fixed problem size
with respect to different process counts. Figure 7 depicts strong
scaling results for the specified problem with 13,824 1D elements.
Taking the first runtime measurement with 12 processes (T12) as
reference, the parallel efficiency for a process count p is computed
from the runtime Tp as Ep = (T12/Tp) · (p/12) and visualized in
the bottom plot of Figure 7. It can be seen that the 0D model
solver shows a good parallel efficiency of more than 80% whereas
the parallel efficiencies for the 3D solver and the 1D solver drop
below 50 and 30%, respectively. This matches the fact that the
half-sarcomere sub-models (0D) are completely independent of
each other whereas the solutions of 3D and 1D problems require
communication.

3.3.2. Weak Scaling Measurements—Experiment #2
For weak scaling, the problem size is increased proportional to
the number of processes. Thus, invariants are the number of

elements per process and the overall shape of the computational
domain. Here, we show weak scaling for both partitioning
strategies: partitioning only in y- and z-direction, i.e., pillar-like
partitioning, and cuboid partitioning. We start with 24 processes
on a single node of HazelHen with an initial partition consisting
of px× py× pz = 1× 6× 4 = 24 subdivisions for both pillar-like
and cuboid partitioning. Each partition contains ex × ey × ez =

2 × 2 × 2 = 8 3D elements per MPI rank. Further, we ensure
that each 3D element contains 2 × 2 fibers in x-direction with
three 1D elements per fiber, i.e., 12 1D elements per 3D element.
Hence, the initial problem is made up of 24 × 8 = 192 elements
and 12× 8× 4 = 384 fibers.

In the series of measurements for the two partitioning
strategies, further subdivisions are defined such that the
pillar-like or cuboid partitioning structure is maintained. The
refinements are obtained by first refining by a factor of 2 in
the x-direction, in the z-direction and then in the y-direction
before repeating the process. For the cuboid partitioning, we fix
the number of 3D elements that each MPI rank contains to be
2 × 2 × 2. For the pillar-like partitioning, the constraint is that
each sub-domain spans over all three-dimensional elements in
the x-direction, whose number varies with increasing problem
size. Therefore, the number of elements per MPI rank in y- and

FIGURE 7 | Strong scaling measurements—Experiment #1: Scenario with 12× 12× 8 = 1,152 3D elements, 24× 24 fibers (i.e., 13,824 1D elements), the cube

shaped partitioning strategy computed with 1–4 nodes with 12 processes per node. (Top) Total runtime and runtimes of solvers for the 0D, 1D and 3D problem, Tp,

(solid lines); projected runtimes for optimal scaling, Tp,opt = T12 · p/12 (dashed thin lines). (Bottom) Parallel efficiency Ep = Tp,opt/Tp.

Frontiers in Physiology | www.frontiersin.org 12 July 2018 | Volume 9 | Article 816

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Bradley et al. Skeletal Muscle Models on HPC Systems

z-direction is halved for each refinement in an alternating way.
This way, we double the number of partitions while maintaining
the constant number of eight 3D elements per MPI rank.
By allocating 24 processes on the 24 cores of each node (no
hyperthreading), we scale from 1 to 32 nodes, i. e., from 24
to 768 cores. Table 1 provides the details on the partitioning
and the number of three-dimensional and one-dimensional
elements.

Results are shown in Figure 8, and show that the solver

for the 3D model has a slightly higher computational time for
the pillar-like partitioning compared to the cuboid partitioning.
This is expected as the partition boundaries are larger and
induce more communication. For the 1D problem solver, pillars
are better as fibers are not subdivided between multiple cores
and no communication is needed. The reduced benefit from a
cuboid partitioning is due to the fact that the time spent on
communication is rather dominant compared to the time needed
to solve the rather small problem, e. g., only 3 ex = 6 1D
elements of a fiber are locally stored in each partition. This should
improve as one chooses larger sub-problem sizes, i. e., increases
the number of nodes per fiber.

Theoretically, the time needed to solve the 0D problem should
not be affected by the domain decomposition. However, due to
cache effects, the runtime for a cuboid partitioning is slightly
higher. Overall, this leads to a higher total computational time
for cuboid partitioning compared to the pillar-like partitioning.
This conclusion is, however, only valid for the chosen scenario
and for the relatively low number of cores. Note that extending
this scaling experiments to a larger numbers of cores is currently
limited due to memory duplications in the current code. This
needs to be first eliminated before conducting further scaling
studies.

3.3.3. Weak Scaling Measurements – Experiment #3
While the somewhat artificial setting in experiment #2 yields
perfect pillar-like or cuboid partitions, experiment #3 addresses a
more realistic setup, where we increase the number of processes
more smoothly, i.e., by less than a factor of two in each
step. With this, it is not possible anymore to choose perfect
cuboid or pillar-like partitions. Thus, we identify reasonable
parameters by solving an optimization problem that trades the
targeted aspect ratio of sub-domain shape against process counts.

TABLE 1 | Weak scaling measurements–experiment #2: Problem and partition sizes for 1 to 32 nodes with 24 processes per node, i.e., 24–768 cores of HazelHen.

Nodes 3D Elements 1D El. Pillars Cubes

pxex × pyey × pzez px × py × pz ex × ey × ez px × py × pz ex × ey × ez

1 2× 12× 8 2,304 1× 6× 4 2× 2× 2 1× 6× 4 2× 2× 2

2 4× 12× 8 4,608 1× 6× 8 4× 2× 1 2× 6× 4 2× 2× 2

4 4× 12× 16 9,216 1× 12× 8 4× 1× 2 2× 6× 8 2× 2× 2

8 4× 24× 16 18,432 1× 12× 16 4× 2× 1 2× 12× 8 2× 2× 2

16 8× 24× 16 36,864 1× 24× 16 8× 1× 1 4× 12× 8 2× 2× 2

32 8× 24× 32 73,728 1× 24× 32 8× 1× 1 4× 12× 16 2× 2× 2

FIGURE 8 | Weak scaling measurements–experiment #2: Total runtime as well as individual runtimes (solver for the 0D, 1D, and 3D problem) for the cuboid partitioning

(solid lines) and pillar-like partitions (dashed lines). The error bars indicate estimated standard deviation of runtimes on all involved processes of a single simulation run.

Frontiers in Physiology | www.frontiersin.org 13 July 2018 | Volume 9 | Article 816

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Bradley et al. Skeletal Muscle Models on HPC Systems

Note that the combination of the number of processes and
the number of elements leads to partitions at the boundary of
the computational domain that potentially have less elements
than interior partitions. Compared to the previous example, the
number of 3D elements per process is here only approximately
constant, with the pillar-like partitions getting closer to constant
size than the cuboid ones. The numbers of processes and the
dimensions of the computational domain are listed in Table 2.
Figure 9 presents the runtime results.

As already discussed above, the ODE solver for the 0D-
problem (yellow line) requires themajority of the runtime. This is
followed by the solution times for the 1D (red line) and 3D (green
line) sub-problems. The blue lines depict the duration of the
interpolation and homogenization between the node positions
of the 1D fibers and the 3D mesh. It can be seen that the
computational times stay nearly constant for increasing problem
size. As in the previous experiment, the 3D solver performs better
for cuboid partitioning whereas the 1D solver is faster for pillar-
like partitions. In this scenario, the cuboid partitioning slightly
outperforms the pillar-like partitioning, as expected.

As before, the memory consumption appears to be a
weakness. Therefore, additional tests investigating the memory

consumption per process at the end of the runtime were carried
out. The memory consumption for the presented scenario is
plotted in Figure 10 with respect to the overall number of 1D
elements. Also the average number of ghost layer elements
per process is depicted. Ghost layer elements are copies of
elements adjacent to the partition of a process, i.e., they belong
to the subdomain of a neighboring process. They are used as
data buffers for communication. We observe that the average
number of ghost elements per process for the 3D problem is
higher for pillar-like partitions (dashed black line) than for
the cuboid partitions (solid black line). A sharp increase of
memory consumption (magenta lines) is observed independent
of the partitioning scheme. This is due to duplications of global
data on each process, which will be eliminated in future work.
Compared to this effect, the difference between the number
of ghost elements needed for the two partitioning strategies is
negligible.

3.3.4. Dependency Between Runtime and Partition

Shape – Experiment #4
In our fourth scaling test, the dependency of the solver of the
3D continuum-mechanical problem on the partitioning strategy

TABLE 2 | Weak scaling measurements—experiment #3: Number of elements, number of fibers and partition sizes.

Nodes, 3D Elements 1D El. Pillars Cubes

Cores pxex × pyey × pzez px × py × pz ex × ey × ez px × py × pz ex × ey × ez

1, 24 16× 11× 7 14,784 1× 6× 4 16× 2× 2 4× 3× 2 4× 4× 4

2, 40 18× 19× 7 28,728 1× 10× 4 18× 2× 2 4× 5× 2 5× 4× 4

3, 60 18× 19× 11 45,144 1× 10× 6 18× 2× 2 4× 5× 3 5× 4× 4

4, 84 17× 27× 11 60,588 1× 14× 6 17× 2× 2 4× 7× 3 5× 4× 4

6, 140 38× 20× 7 63,840 1× 20× 7 38× 1× 1 10× 7× 2 4× 3× 4

8, 192 45× 16× 12 103,680 1× 16× 12 45× 1× 1 12× 4× 4 4× 4× 3

FIGURE 9 | Weak scaling measurements—experiment #3: Runtimes for different model components. The results for cuboid and pillar-like partitions are depicted by

solid and dashed lines, respectively. Different runtime components are encoded in colors, i. e., the total runtime in black, 0D solver in yellow, the 1D solver in red, the

3D solver in green, the interpolation in light blue and the homogenization in dark blue.

Frontiers in Physiology | www.frontiersin.org 14 July 2018 | Volume 9 | Article 816

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Bradley et al. Skeletal Muscle Models on HPC Systems

FIGURE 10 | Weak scaling measurements—experiment #3: Total memory consumption per process at the end of the runtime. The total memory consumption is

depicted in magenta and the average number of 3D ghost layer elements per process in black. Again, the solid lines represent cuboid partitioning and the dashed line

piller-like partitioning.

FIGURE 11 | Dependency between runtime and partition shape—experiment #4: Runtime in dependence on the average boundary area of the partitions. We show

the accumulated total computational time and the runtimes of the sub-problems as in the previous studies.

is investigated. We analyse how different domain decomposition
approaches, in particular approaches other than the previously
discussed pillar-like and cuboid partitioning schemes, affect the
runtime. A test case with 144 × 12 × 12 three-dimensional
elements is considered. The setup, otherwise, is as described
in section 3.1. To reduce the contributions of the 0D/1D sub-
problem and focus on the performance of the 3D components,
we include in each 3D element only two 1D fiber elements. The
domain is decomposed into a constant number of 144 partitions
by axis-aligned cutplanes in all possible ways. To distinguish
between the different partitioning variants, we compute the
average boundary surface area between the partitions for each
variant and relate this to runtime. The results are presented

in Figure 11. The smallest average surface area between the
partitions, which corresponds to the first data point in Figure 11,
is obtained for a partitioning with 144 partitions with 4 ×

6 × 6 elements each. The highest average surface area between
the partitions, which is the last data point within Figure 11, is
obtained for 144 partitions with 1 × 12 × 12 elements each. All
experiments are run on 12 nodes of Hazel Hen with 12 processes
per node. It can be seen that only the time needed to solve
the 3D continuum-mechanical problem increases monotonically
with respect to the average surface area between the partitions,
i. e., depends on the partitions’ shape. This is expected. Further,
the runtime ratio of the 3D solver between the partitioning with
the smallest and largest average surface area is 1 : 4.3.

Frontiers in Physiology | www.frontiersin.org 15 July 2018 | Volume 9 | Article 816

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Bradley et al. Skeletal Muscle Models on HPC Systems

3.4. Visualization Results
In this section, we describe the results obtained using our
new ray-tracing-based visualization within the MegaMol system.
Our goal is to demonstrate the capabilities of our rendering
approach for the interactive visualization of complex, real-world
simulation data sets. Therefore, we used data from previous
simulations to showcase these visualization capabilities, in
particular, data from the Tibialis Anterior simulation performed
by Heidlauf and Röhrle (2013). Analyzing and optimizing
existing code for HPC infrastructures is best performed with test
cases for which the geometry has a minimal influence. Under
this consideration, the cuboid muscle test case introduced in
section 2.1.4 would have been an obvious choice. However,
in contrast to the Tibialis Anterior data, the cuboid muscle
test case is too small and simple to demonstrate the full
capabilities of our new visualization approach for complex
geometries.

Our test data set consists of 3,600 fibers, which are discretized
into a total of 144,000 1D elements. The consecutive elements
along each fiber are connected via tubes to visualize the fibers.
Figure 12 shows a rendering created by MegaMol (Grottel et al.,
2015) using our integration of the CPU ray tracing engine
OSPRay (Wald et al., 2017). Color is used to illustrate values

of the elements, in this case the local membrane potential. The
interactive ray tracing offers very high image quality, including
global illumination effects that increase the perception of spatial
details. This is especially visible with the shadows between
fibers, which help to perceive the distance between them as
well as deformations of the individual fibers with respect to
their neighbors. That is, our visualization approach not only
delivers publication-quality images, which is often not possible
for interactive visualization of large data using classical rendering
approaches, but it is also beneficial for the visual analysis of
local details as well as the overall spatial impression of the
data.

To test the scaling behavior of our OSPRay integration into
MegaMol, we measured the rendering performance of four
different-sized systems. We used synthetic data sets ranging from
106 to 1.4 · 109 elements rendered as sphere geometries. Spheres
are the most basic visualization primitive and can be rendered
very fast, therefore, they are typically used as a baseline case for
performance tests using large data sets. We also compare the
CPU ray tracing performance with a GPU-based ray casting,
which is a fast and efficient way to render large numbers of
particles (e.g., Reina and Ertl, 2005). The CPU ray tracing uses
a P-k-d tree by Wald et al. (2015) for fast ray traversal. This

FIGURE 12 | The discretized 1D muscle fibers are rendered as continuous tubes to show the characteristics and implicit geometry (with the distinct fiber directions of

the superficial and deep part of the Tibialis Anterior) of the individual strands. The color coding shows the distribution of parameter values along the fibers (local

membrane potential; red: low, blue: high).

FIGURE 13 | Average rendering performance (frames per second, FPS) for four different data sets measured on four different CPU architectures (blue, green, red,

cyan; triangle markers). For reference, the rendering performance of a GPU-based ray casting measured on a high-end GPU is provided (violet; circle marker).

Frontiers in Physiology | www.frontiersin.org 16 July 2018 | Volume 9 | Article 816

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Bradley et al. Skeletal Muscle Models on HPC Systems

tree is a memory-efficient hierarchical data structure used for
space partitioning. All measurements were executed on a single
desktop PC at a resolution of 1280× 720 pixels. Figure 13 shows
the results obtained by different Intel CPUs for the OSPRay
rendering compared to the GPU rendering on a high-end Nvidia
consumer graphics card (Nvidia Titan XP). As observable, the
GPU-based rendering outperforms the CPU-based ray tracing
only for the smallest test case. For more than 107 spheres, the
OSPRay ray tracing clearly outperforms the GPU rendering. This
result agrees with our earlier findings presented in (Rau et al.,
2017).

In summary, the CPU-based ray tracing approach that we
chose is superior to classical GPU-based rendering not only
in terms of image quality but also in terms of scalability for
very large data sets. This is important for the visual analysis
of HPC simulation data, which constantly increases in size as
well as complexity due to improvements in simulation codes
as well as the availability of faster HPC hardware. Our results
demonstrate that real-time ray tracing is a viable solution
nowadays for rendering large muscle fiber simulation data sets
compared to classical rasterization-based approaches. It delivers
not only superior image quality, which is beneficial for visual
analysis, but also higher rendering performance even on single
desktop PCs.

4. DISCUSSION

Using models to gain new insights into the complex physiological
or anatomical mechanisms of biological tissue, or to better
interpret and understand experimentally measured data, requires
accurate and detailedmodels of the underlyingmechanisms. This
can lead very quickly to highly complex and computationally
extremely demanding models. Software packages such as
OpenCMISS are designed to build up computational models for
a variety of complex biomechanical systems, e.g., for the chemo-
electromechanical behavior of skeletal muscles after recruitment,
the mechanics of the heart, the functioning of the lung, etc. Such
software packages might already run within a parallel computing
environment, but are not necessarily optimized to run large-
scale simulations on large-scale systems such as HazelHen, the
Tier-1 system in Stuttgart. Thus, before being able to exploit
the full capabilities of supercomputers, they have to be analyzed
and optimized to achieve good scaling properties—ideally perfect
scaling meaning that the simulation of a twice as large problem
on twice as many nodes/cores requires the same runtime as the
original setup.

Within this paper, we have demonstrated that the chemo-
electromechanical multi-scale skeletal muscle model as
introduced in section 2.1 and implemented in OpenCMISS
is capable of running significant large-scale model setups
in a parallel compute environment. We have simulated the
deformation of a skeletal muscle in which 34, 560 randomly
activated fibers are discretized with 103, 680 1D elements.
Due to the algorithmic optimizations a meaningful compute
time reduction was achieved. Further, by utilizing a standard
test case, we have been able to show good strong and weak

scaling properties for a small number of compute nodes. For
the partitioning of the domain, two different approaches have
been considered: a pillar-like partition along fiber directions
and a minimal-surface partitioning. The solution times of
the 3D and the 1D solver mainly depend on the domain
partitioning. The 1D solver profits from pillar-like partitions,
while the 3D solver exhibits lower runtimes for cube-like
minimal-surface partitions. In addition to its advantage in
terms of communication complexity for large numbers of
parallel processes, the minimal-surface domain decomposition
strategy investigated here is generalizable to arbitrary geometry
settings even for unstructured meshes based, for example, on
graph-partitioning methods.

However, for more realistic large-scale simulations, further
aspects concerning the model, algorithms, implementation,
and visualization need to be considered: a more complicated
chemo-electromechanical model that includes, for example, the
mechanical behavior of titin (Heidlauf et al., 2016, 2017) and
further important biophysical details such as metabolism, a
biophysical recruitment model (Heidlauf et al., 2013), and a
feedback mechanism from the spindles and the golgi-tendon
organs to the neuromuscular system; simulation and visualizing
of the surface EMG to further test motor unit decomposition
algorithms; novel or custom-tailored efficient numerical schemes
for new model components and coupling with the existing ones;
or integrating chemo-electro-mechanical modeling approaches
to extend forward simulations using continuum-mechanics
musculoskeletal system models Röhrle et al. (2017) in order
to drive them not only through optimization Valentin et al.
(2018) but also by means of neural recruitment, and hence
obtain a deeper insight into neuromuscular recruitment
principles.

Our goal is to set up large-scale simulations for a single
chemo-electromechanical skeletal muscle model with a realistic
number of fibers (e. g., about 300,000) of realistic length.
The results of these simulations need to be visualized and
analyzed for which we extend MegaMol to offer novel,
comprehensive visualizations that allow users to interactively
explore the complex behavior of muscle fiber simulation
data. We will validate our simulation by comparisons of the
simulated surface EMG of a muscle with experimental data
obtained via non-invasive and clinically available diagnostic
tools. Finally, our simulations can serve as a new tool
to investigate the interplay of the underlying complex and
coupled mechanisms leading from neural stimulation to force
generation.

AUTHOR CONTRIBUTIONS

All authors have equally contributed to the conception and design
of the work, data analysis and interpretation, drafting of the
article, and critical revision of the article. Hence, the author
list appears in alphabetical order. In addition NE, TK, AK,
BM, and TR have conducted the simulations and summarized
their results. All authors fully approve the content of this
work.

Frontiers in Physiology | www.frontiersin.org 17 July 2018 | Volume 9 | Article 816

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Bradley et al. Skeletal Muscle Models on HPC Systems

FUNDING

This research was funded by the Baden-Württemberg Stiftung as
part of the DiHu project of the High Performance Computing
II program, the Intel R©Parallel Computing Center program,

and the Deutsche Forschungsgemeinschaft (DFG) as part of
the International Graduate Research Group on Soft Tissue
Robotics—Simulation-Driven Concepts and Design for Control
and Automation for Robotic Devices Interacting with Soft
Tissues (GRK 2198/1).

REFERENCES

Ahrens, J., Geveci, B., and Law, C. (2005). “ParaView: an end-user tool for large

data visualization,” inVisualizationHandbook, eds C. Hansen and C. R. Johnson

(Burlington: Butterworth-Heinemann), 717–731.

Amestoy, P. R., Duff, I. S., L’Excellent, J.-Y., and Koster, J. (2001). A fully

asynchronous multifrontal solver using distributed dynamic scheduling. SIAM

J. Matrix Anal. Appl. 23, 15–41. doi: 10.1137/S0895479899358194

Amestoy, P. R., Guermouche, A., L’Excellent, J.-Y., and Pralet, S. (2006). Hybrid

scheduling for the parallel solution of linear systems. Parallel Comput. 32,

136–156. doi: 10.1016/j.parco.2005.07.004

Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K.,

et al. (2015). PETSc Users Manual. Technical Report ANL-95/11 - Revision 3.6,

Argonne National Laboratory.

Balay, S., Gropp, W. D., McInnes, L. C., and Smith, B. F. (1997). “Efficient

management of parallelism in object oriented numerical software libraries,” in

Modern Software Tools in Scientific Computing, eds E. Arge, A. M. Bruaset, and

H. P. Langtangen (Basel: Birkhäuser Press), 163–202.

Blemker, S. S., Pinsky, P. M., and Delp, S. L. (2005). A 3D model of muscle reveals

the causes of nonuniform strains in the biceps brachii. J. Biomech. 38, 657–665.

doi: 10.1016/j.jbiomech.2004.04.009

Böl, M., and Reese, S. (2008). Micromechanical modelling of skeletal muscles based

on the finite element method. Comput. Methods Biomech. Biomed. Eng. 11,

489–504. doi: 10.1080/10255840701771750

Bradley, C. P., Bowery, A., Britten, R., Budelmann, V., Camara, O., Christie,

R., et al. (2011). OpenCMISS: a multi-physics & multi-scale computational

infrastructure for the VPH/Physiome project. Progr. Biophys. Mol. Biol. 107,

32–47. doi: 10.1016/j.pbiomolbio.2011.06.015

Childs, H., Brugger, E., Whitlock, B., Meredith, J., Ahern, S., Pugmire, D., et al.

(2012a). “VisIt: an end-user tool for visualizing and analyzing very large data,”

in High Performance Visualization: Enabling Extreme-Scale Scientific Insight,

eds E. Wes Bethel, H. Childs, and C. Hansen (New York, NY: Chapman and

Hall/CRC), 357–372.

Childs, H., Ma, K.-L., Yu, H., Whitlock, B., Meredith, J., Favre, J., et al. (2012b). In

Situ Processing. Technical report, Ernest Orlando Lawrence Berkeley National

Laboratory, Berkeley, CA .

Christie, G. R., Nielsen, P. M., Blackett, S. A., Bradley, C. P., and Hunter, P. J.

(2009). Fieldml: concepts and implementation. Philos. Trans. R. Soc. Lond. A

Math. Phys. Eng. Sci. 367, 1869–1884. doi: 10.1098/rsta.2009.0025

Cisi, R. R., and Kohn, A. F. (2008). Simulation system of spinal cord motor nuclei

and associated nerves and muscles, in a web-based architecture. J. Comput.

Neurosci. 25, 520–542. doi: 10.1007/s10827-008-0092-8

Colli Franzone, P., Pavarino, L., and Scacchi, S. (2015). Parallel multilevel solvers

for the cardiac electro-mechanical coupling. Appl. Numerical Math 95, 140–

153. doi: 10.1016/j.apnum.2014.11.002

Dimitrov, G. V., and Dimitrova, N. A. (1998). Precise and fast calculation of the

motor unit potentials detected by a point and rectangular plate electrode. Med.

Eng. Phys. 20, 374–381. doi: 10.1016/S1350-4533(09)00014-9

Farina, D., and Merletti, R. (2001). A novel approach for precise simulation of

the emg signal detected by surface electrodes. IEEE Trans. Biomed. Eng. 48,

637–646. doi: 10.1109/10.923782

Farina, D., Merletti, R., and Stegeman, D. F. (2005). Biophysics of the Generation of

EMG Signals. Hoboken, NJ: Wiley-Blackwell.

Feinstein, B., Lindegård, B., Nyman, E., and Wohlfart, G. (1955). Morphologic

studies of motor units in normal human muscles. Cells Tissues Organs 23,

127–142. doi: 10.1159/000140989

Fuglevand, A. J., Winter, D. A., and Patla, A. E. (1993). Models of recruitment and

rate coding organization in motor-unit pools. J. Neurophysiol. 70, 2470–2488.

doi: 10.1152/jn.1993.70.6.2470

Gordon, A. M., Huxley, A. F., and Julian, F. J. (1966). The variation in isometric

tension with sarcomere length in vertebrate muscle fibres. J. Physiol. 184,

170–192. doi: 10.1113/jphysiol.1966.sp007909

Grottel, S., Krone, M., Müller, C., Reina, G., and Ertl, T. (2015). MegaMol – A

Prototyping Framework for Particle-Based Visualization. IEEE Trans. Visual.

Comput. Graph. 21, 201–214. . doi: 10.1109/TVCG.2014.2350479

Gurev, V., Pathmanathan, P., Fattebert, J.-L., Wen, H.-F., Magerlein, J.,

Gray, R. A. et al. (2015). A high-resolution computational model of

the deforming human heart. Biomech. Model. Mechanobiol. 14, 829–849.

doi: 10.1007/s10237-014-0639-8

Hawkins, D., and Bey, M. (1994). A comprehensive approach for studying muscle-

tendon mechanics. J. Biomech. Eng. 116, 51–55. doi: 10.1115/1.2895704

Heckman, C., and Binder, M. D. (1991). Computer simulation of the steady-state

input-output function of the cat medial gastrocnemius motoneuron pool. J.

Neurophysiol. 65, 952–967. doi: 10.1152/jn.1991.65.4.952

Heidlauf, T., Klotz, T., Rode, C., Altan, E., Bleiler, C., Siebert, T., et al. (2016). A

multi-scale continuum model of skeletal muscle mechanics predicting force

enhancement based on actin–titin interaction. Biomech. Model. Mechanobiol.

15, 1423–1437. doi: 10.1007/s10237-016-0772-7

Heidlauf, T., Klotz, T., Rode, C., Siebert, T., and Röhrle, O. (2017). A continuum-

mechanical skeletal muscle model including actin-titin interaction predicts

stable contractions on the descending limb of the force-length relation. PLoS

Comput. Biol. 13:e1005773. doi: 10.1371/journal.pcbi.1005773

Heidlauf, T., Negro, F., Farina, D., and Rohrle, O. (2013). “An integrated model of

the neuromuscular system,” in 2013 6th International IEEE/EMBS Conference

on Neural Engineering (NER) (San Diego, CA: IEEE) 227–230.

Heidlauf, T., and Röhrle, O. (2013). Modeling the chemoelectromechanical

behavior of skeletal muscle using the parallel open-source software

library openCMISS. Comput. Math. Methods Med. 2013, 1–14.

doi: 10.1155/2013/517287

Heidlauf, T., and Röhrle, O. (2014). A multiscale chemo-electro-mechanical

skeletal muscle model to analyze muscle contraction and force

generation for different muscle fiber arrangements. Front. Physiol. 5:498.

doi: 10.3389/fphys.2014.00498

Hernández-Gascón, B., Grasa, J., Calvo, B., and Rodríguez, J. F. (2013).

A 3D electro-mechanical continuum model for simulating skeletal

muscle contraction. J. Theor. Biol. 335, 108–118. doi: 10.1016/j.jtbi.2013.

06.029

Hestenes, M., and Stiefel, E. (1952). Methods of conjugate gradients for solving

linear systems. J. Res. Natl. Bureau Stand. 49:409. doi: 10.6028/jres.049.044

Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of membrane

current and its application to conduction and excitation in nerve. J. Physiol.

117, 500–544. doi: 10.1113/jphysiol.1952.sp004764

Johansson, T., Meier, P., and Blickhan, R. (2000). A finite-element model for

the mechanical analysis of skeletal muscles. J. Theor. Biol. 206, 131–149.

doi: 10.1006/jtbi.2000.2109

Kandel, E. R., Schwartz, J. H., Jessell, T. M., et al. (2000). Principles of Neural

Science, Vol. 4. New York, NY: McGraw-Hill.

Lafortune, P., Arís, R., Vázquez, M., and Houzeaux, G. (2012). Coupled

electromechanical model of the heart: parallel finite element formulation. Int.

J. Numerical Methods Biomed. Eng. 28, 72–86. doi: 10.1002/cnm.1494

Lloyd, C. M., Halstead, M. D., and Nielsen, P. F. (2004). Cellml: its

future, present and past. Progress Biophys. Mol. Biol. 85, 433–450.

doi: 10.1016/j.pbiomolbio.2004.01.004

Lowery, M. M., Stoykov, N. S., Taflove, A., and Kuiken, T. A. (2002). A multiple-

layer finite-element model of the surface emg signal. IEEE Trans. Biomed. Eng.

49, 446–454. doi: 10.1109/10.995683

MacIntosh, B., R., Gardiner, P., F., and McComas, A., J. (2006). Skeletal Muscle:

Form and Function, 2nd Edn. Human Kinetics.

Frontiers in Physiology | www.frontiersin.org 18 July 2018 | Volume 9 | Article 816

https://doi.org/10.1137/S0895479899358194
https://doi.org/10.1016/j.parco.2005.07.004
https://doi.org/10.1016/j.jbiomech.2004.04.009
https://doi.org/10.1080/10255840701771750
https://doi.org/10.1016/j.pbiomolbio.2011.06.015
https://doi.org/10.1098/rsta.2009.0025
https://doi.org/10.1007/s10827-008-0092-8
https://doi.org/10.1016/j.apnum.2014.11.002
https://doi.org/10.1016/S1350-4533(09)00014-9
https://doi.org/10.1109/10.923782
https://doi.org/10.1159/000140989
https://doi.org/10.1152/jn.1993.70.6.2470
https://doi.org/10.1113/jphysiol.1966.sp007909
https://doi.org/10.1109/TVCG.2014.2350479
https://doi.org/10.1007/s10237-014-0639-8
https://doi.org/10.1115/1.2895704
https://doi.org/10.1152/jn.1991.65.4.952
https://doi.org/10.1007/s10237-016-0772-7
https://doi.org/10.1371/journal.pcbi.1005773
https://doi.org/10.1155/2013/517287
https://doi.org/10.3389/fphys.2014.00498
https://doi.org/10.1016/j.jtbi.2013.06.029
https://doi.org/10.6028/jres.049.044
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1006/jtbi.2000.2109
https://doi.org/10.1002/cnm.1494
https://doi.org/10.1016/j.pbiomolbio.2004.01.004
https://doi.org/10.1109/10.995683
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Bradley et al. Skeletal Muscle Models on HPC Systems

McCallum, J. B. (1898). On the Histogenesis of the Striated Muscle Fibre, and the

Growth of the Human Sartorius Muscle. Johns Hopkins Hospital Bulletin.

Merletti, R., and Parker, P. (2004). Electromyography - Physiology, Engineering, and

Noninvasive Applications. Hoboken, NJ: John Wiley & Sons.

Mesin, L. (2013). Volume conductor models in surface electromyography:

Computational techniques. Comput. Biol. Med. 43, 942–952.

doi: 10.1016/j.compbiomed.2013.02.002

Mesin, L., and Farina, D. (2006). An analytical model for surface emg generation in

volume conductors with smooth conductivity variations. IEEE Trans. Biomed.

Eng. 53, 773–779. doi: 10.1109/TBME.2006.872825

Miller, G. L., Teng, S.-H., Thurston,W., andVavasis, S. A. (1993). “Automatic mesh

partitioning,” in Graph Theory and SparseMatrix Computation (New York, NY:

Springer), 57–84.

Mordhorst, M., Heidlauf, T., and Röhrle, O. (2015). Predicting electromyographic

signals under realistic conditions using a multiscale chemo-electro-

mechanical finite element model. Interface Focus 5, 1–11. doi: 10.1098/rsfs.

2014.0076

Mordhorst, M., Strecker, T., Wirtz, D., Heidlauf, T., and Röhrle, O. (2017). POD-

DEIM reduction of computational EMG models. J. Comput. Sci. 19, 86–96.

doi: 10.1016/j.jocs.2017.01.009

Negro, F., and Farina, D. (2011). Decorrelation of cortical inputs and motoneuron

output. J. Neurophysiol. 106, 2688–2697. doi: 10.1152/jn.00336.2011

Pullan, A. J., Cheng, L. K., and Buist, M. L. (2005). Mathematically Modelling the

Electrical Activity of the Heart: From Cell to Body Surface and Back Again.

Singapore: World Scientific.

Qu, Z., and Garfinkel, A. (1999). An advanced algorithm for solving partial

differential equation in cardiac conduction. IEEE Trans. Biomed. Eng. 46,

1166–1168. doi: 10.1109/10.784149

Rassier, D. E., MacIntosh, B. R., and Herzog, W. (1999). Length dependence of

active force production in skeletal muscle. J. Appl. Physiol. 86, 1445–1457.

doi: 10.1152/jappl.1999.86.5.1445

Rau, T., Krone, M., Reina, G., and Ertl, T. (2017). “Challenges and opportunities

using Software-Defined visualization in MegaMol,” in Workshop on Visual

Analytics, Information Visualization and Scientific Visualization (WVIS) in

the 30th Conference on Graphics, Patterns and Images (SIBGRAPI’17), eds N.

Ferreira, L. G. Nonato, and F. Sadlo (Niterói).

Razumova, M. V., Bukatina, A. E., and Campbell, K. B. (1999). Stiffness-distortion

sarcomere model for muscle simulation. J. Appl. Physiol. 87, 1861–1876.

doi: 10.1152/jappl.1999.87.5.1861

Reina, G., and Ertl, T. (2005). “Hardware-accelerated glyphs for mono-and dipoles

in molecular dynamics visualization,” in EuroVis, eds K. Brodlie, D. Duke, and

K. Joy (Leeds: CiteSeerX), 177–182.

Ríos, E., Karhanek, M., Ma, J., and González, A. (1993). An allosteric model of the

molecular interactions of excitation-contraction coupling in skeletal muscle. J.

Gen. Physiol. 102, 449–481. doi: 10.1085/jgp.102.3.449

Röhrle, O., Davidson, J. B., and Pullan, A. J. (2008). Bridging scales: a

three-dimensional electromechanical finite element model of skeletal

muscle. SIAM J. Sci. Comput. 30, 2882–2904. doi: 10.1137/0706

91504

Röhrle, O., Davidson, J. B., and Pullan, A. J. (2012). A physiologically based, multi-

scale model of skeletal muscle structure and function. Front. Physiol. 3:358.

doi: 10.3389/fphys.2012.00358

Röhrle, O., and Pullan, A. J. (2007). Three-dimensional finite element

modelling of muscle forces during mastication. J. Biomech. 40, 3363–3372.

doi: 10.1016/j.jbiomech.2007.05.011

Röhrle, O., Sprenger, M., and Schmitt, S. (2017). A two-muscle, continuum-

mechanical forward simulation of the upper limb. Biomech. Model

Mechanobiol. 16, 743–762. doi: 10.1007/s10237-016-0850-x

Saad, Y., and Schultz, M. H. (1986). Gmres: a generalized minimal residual

algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist.

Comput. 7, 856–869. doi: 10.1137/0907058

Schamberger, S., and Wierum, J.-M. (2005). Partitioning finite element

meshes using space-filling curves. Fut. Gener. Comput. Syst. 21, 759–766.

doi: 10.1016/j.future.2004.05.018

Shorten, P. R., O’Callaghan, P., Davidson, J. B., and Soboleva, T. K. (2007). A

mathematical model of fatigue in skeletal muscle force contraction. J. Muscle

Res. Cell Motil. 28, 293–313. doi: 10.1007/s10974-007-9125-6

Sundnes, J., Lines, G. T., and Tveito, A. (2005). An operator splitting method for

solving the bidomain equations coupled to a volume conductor model for the

torso. Math. Biosci. 194, 233–248. doi: 10.1016/j.mbs.2005.01.001

Thomas, L. H. (1949). Elliptic problems in linear difference equations over

a network. Watson Scientific Computing Laboratory Report, Columbia

University, New York, NY.

Valentin, J., Sprenger, M., Pfluger, D., and Rohrle, O. (2018). Gradient-based

optimization with b-splines on sparse grids for solving forward-

dynamics simulations of three-dimensional, continuum-mechanical

musculoskeletal system models. Int. J. Numer. Method Biomed. Eng. 34:e2965.

doi: 10.1002/cnm.2965

Wald, I., Johnson, G., Amstutz, J., Brownlee, C., Knoll, A., Jeffers, J., et al. (2017).

OSPRay - a CPU ray tracing framework for scientific visualization. IEEE Trans.

Visual. Comput. Graphics 23, 931–940. doi: 10.1109/TVCG.2016.2599041

Wald, I., Knoll, A., Johnson, G. P., Usher,W., Pascucci, V., and Papka,M. E. (2015).

“CPU ray tracing large particle data with balanced P-k-d trees,” in 2015 IEEE

Scientific Visualization Conference (Chicago: SciVis), 57–64.

Xia, H., Wong, K., and Zhao, X. (2012). A fully coupled model for

electromechanics of the heart. Comput. Math. Methods Med. 2012:927279.

doi: 10.1155/2012/927279

Zajac, F. E. (1989). Muscle and tendon properties models scaling and application

to biomechanics and motor. Crit. Rev. Biomed. Eng. 17, 359–411.

Zhou, M., Sahni, O., Devine, K. D., Shephard, M. S., and Jansen, K. E. (2010).

Controlling unstructured mesh partitions for massively parallel simulations.

SIAM J. Sci. Comput. 32, 3201–3227. doi: 10.1137/090777323

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Bradley, Emamy, Ertl, Göddeke, Hessenthaler, Klotz, Krämer,

Krone, Maier, Mehl, Rau and Röhrle. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Physiology | www.frontiersin.org 19 July 2018 | Volume 9 | Article 816

https://doi.org/10.1016/j.compbiomed.2013.02.002
https://doi.org/10.1109/TBME.2006.872825
https://doi.org/10.1098/rsfs.2014.0076
https://doi.org/10.1016/j.jocs.2017.01.009
https://doi.org/10.1152/jn.00336.2011
https://doi.org/10.1109/10.784149
https://doi.org/10.1152/jappl.1999.86.5.1445
https://doi.org/10.1152/jappl.1999.87.5.1861
https://doi.org/10.1085/jgp.102.3.449
https://doi.org/10.1137/070691504
https://doi.org/10.3389/fphys.2012.00358
https://doi.org/10.1016/j.jbiomech.2007.05.011
https://doi.org/10.1007/s10237-016-0850-x
https://doi.org/10.1137/0907058
https://doi.org/10.1016/j.future.2004.05.018
https://doi.org/10.1007/s10974-007-9125-6
https://doi.org/10.1016/j.mbs.2005.01.001
https://doi.org/10.1002/cnm.2965
https://doi.org/10.1109/TVCG.2016.2599041
https://doi.org/10.1155/2012/927279
https://doi.org/10.1137/090777323
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

	Enabling Detailed, Biophysics-Based Skeletal Muscle Models on HPC Systems
	1. Introduction
	2. Model and Methods
	2.1. The Multi-Scale Skeletal Muscle Model
	2.1.1. The 3D Continuum-Mechanical Muscle Model
	2.1.2. The 1D Model for Action Potential Propagation
	2.1.3. The 0D Sub-cellular Muscle Model
	2.1.4. Summary of the Full Model

	2.2. Numerical Methods
	2.2.1. Discretization and Solvers
	2.2.1.1. Spatial discretization
	2.2.1.2. Time discretization
	2.2.1.3. Linear solvers

	2.2.2. Algorithmic Optimizations
	2.2.2.1. Spatial discretization
	2.2.2.2. Second-order time stepping
	2.2.2.3. Optimal complexity linear solver

	2.3. Domain Partitioning and Parallelization
	2.3.1. Pillar-Like Domain Decomposition
	2.3.2. New Spatial Domain Decomposition

	2.4. Visualization of Muscle Simulations

	3. Results
	3.1. Test Scenario
	3.2. Numerical Investigations
	3.2.1. Time Discretization for the Sub-cellular Model
	3.2.2. Time Discretization for the Muscle Fibers
	3.2.3. Solving the Linear Systems of Equations in the 1D Model
	3.2.4. Runtime Analysis During Serial Execution of the Full Model

	3.3. Parallel Scaling Experiments
	3.3.1. Strong Scaling Measurements—Experiment #1
	3.3.2. Weak Scaling Measurements—Experiment #2
	3.3.3. Weak Scaling Measurements – Experiment #3
	3.3.4. Dependency Between Runtime and Partition Shape – Experiment #4

	3.4. Visualization Results

	4. Discussion
	Author Contributions
	Funding
	References

