185 research outputs found
Dark matter density profiles: A comparison of nonextensive theory with N-body simulations
Density profiles of simulated galaxy cluster-sized dark matter haloes are
analysed in the context of a recently introduced nonextensive theory of dark
matter and gas density distributions. Nonextensive statistics accounts for
long-range interactions in gravitationally coupled systems and is derived from
the fundamental concept of entropy generalisation. The simulated profiles are
determined down to radii of ~1% of R_200. The general trend of the relaxed,
spherically averaged profiles is accurately reproduced by the theory. For the
main free parameter kappa, measuring the degree of coupling within the system,
and linked to physical quantities as the heat capacity and the polytropic index
of the self-gravitating ensembles, we find a value of -15. The significant
advantage over empirical fitting functions is provided by the physical content
of the nonextensive approach.Comment: 6 pages, 3 figures, accepted for publication in A&
Internal kinematics of isolated modelled disk galaxies
We present a systematic investigation of rotation curves (RCs) of fully
hydrodynamically simulated galaxies, including cooling, star formation with
associated feedback and galactic winds. Applying two commonly used fitting
formulae to characterize the RCs, we investigate systematic effects on the
shape of RCs both by observational constraints and internal properties of the
galaxies. We mainly focus on effects that occur in measurements of intermediate
and high redshift galaxies. We find that RC parameters are affected by the
observational setup, like slit misalignment or the spatial resolution and also
depend on the evolution of a galaxy. Therefore, a direct comparison of
quantities derived from measured RCs with predictions of semi-analytic models
is difficult. The virial velocity V_c, which is usually calculated and used by
semi-analytic models can differ significantly from fit parameters like V_max or
V_opt inferred from RCs. We find that V_c is usually lower than typical
characteristic velocities derived from RCs. V_max alone is in general not a
robust estimator for the virial mass.Comment: 9 pages, 15 figures, accepted for publication in A&
Internal kinematics of modelled interacting disc galaxies
We present an investigation of galaxy-galaxy interactions and their effects
on the velocity fields of disc galaxies in combined N-body/hydrodynamic
simulations, which include cooling, star formation with feedback, and galactic
winds. Rotation curves (RCs) of the gas are extracted from these simulations in
a way that follows the procedure applied to observations of distant, small, and
faint galaxies as closely as possible. We show that galaxy-galaxy mergers and
fly-bys disturb the velocity fields significantly and hence the RCs of the
interacting galaxies, leading to asymmetries and distortions in the RCs.
Typical features of disturbed kinematics are significantly rising or falling
profiles in the direction of the companion galaxy and pronounced bumps in the
RCs. In addition, tidal tails can leave strong imprints on the rotation curve.
All these features are observable for intermediate redshift galaxies, on which
we focus our investigations. We use a quantitative measure for the asymmetry of
rotation curves to show that the appearance of these distortions strongly
depends on the viewing angle. We also find in this way that the velocity fields
settle back into relatively undisturbed equilibrium states after unequal mass
mergers and fly-bys. About 1 Gyr after the first encounter, the RCs show no
severe distortions anymore. These results are consistent with previous
theoretical and observational studies. As an illustration of our results, we
compare our simulated velocity fields and direct images with rotation curves
from VLT/FORS spectroscopy and ACS images of a cluster at z=0.53 and find
remarkable similarities.Comment: 13 pages, 14 figures, accepted for publication in A&A, some
improvements and changes, main conclusions are unaffecte
The effects of ram-pressure stripping on the internal kinematics of simulated spiral galaxies
We investigate the influence of ram-pressure stripping on the internal gas
kinematics of simulated spiral galaxies. Additional emphasis is put on the
question of how the resulting distortions of the gaseous disc are visible in
the rotation curve and/or the full 2D velocity field of galaxies at different
redshifts. A Milky-Way type disc galaxy is modelled in combined
N-body/hydrodynamic simulations with prescriptions for cooling, star formation,
stellar feedback, and galactic winds. This model galaxy moves through a
constant density and temperature gas, which has parameters similar to the
intra-cluster medium (ICM). Rotation curves (RCs) and 2D velocity fields of the
gas are extracted from these simulations in a way that follows the procedure
applied to observations of distant, small, and faint galaxies as closely as
possible. We find that the appearance of distortions of the gaseous disc due to
ram-pressure stripping depends on the direction of the acting ram pressure. In
the case of face-on ram pressure, the distortions mainly appear in the outer
parts of the galaxy in a very symmetric way. In contrast, in the case of
edge-on ram pressure we find stronger distortions. The 2D velocity field also
shows signatures of the interaction in the inner part of the disc. At angles
smaller than 45 degrees between the ICM wind direction and the disc, the
velocity field asymmetry increases significantly compared to larger angles.
Compared to distortions caused by tidal interactions, the effects of
ram-pressure stripping on the velocity field are relatively low in all cases
and difficult to observe at intermediate redshift in seeing-limited
observations. (abridged)Comment: 9 pages, 11 figures, accepted for publication in A&
2D velocity fields of simulated interacting disc galaxies
We investigate distortions in the velocity fields of disc galaxies and their
use to reveal the dynamical state of interacting galaxies at different
redshift. For that purpose, we model disc galaxies in combined
N-body/hydrodynamic simulations. 2D velocity fields of the gas are extracted
from these simulations which we place at different redshifts from z=0 to z=1 to
investigate resolution effects on the properties of the velocity field. To
quantify the structure of the velocity field we also perform a kinemetry
analysis. If the galaxy is undisturbed we find that the rotation curve
extracted from the 2D field agrees well with long-slit rotation curves. This is
not true for interacting systems, as the kinematic axis is not well defined and
does in general not coincide with the photometric axis of the system. For large
(Milky way type) galaxies we find that distortions are still visible at
intermediate redshifts but partly smeared out. Thus a careful analysis of the
velocity field is necessary before using it for a Tully-Fisher study. For small
galaxies (disc scale length ~2 kpc) even strong distortions are not visible in
the velocity field at z~0.5 with currently available angular resolution.
Therefore we conclude that current distant Tully-Fisher studies cannot give
reliable results for low-mass systems. Additionally to these studies we confirm
the power of near-infrared integral field spectrometers in combination with
adaptive optics (such as SINFONI) to study velocity fields of galaxies at high
redshift (z~2).Comment: 12 pages, 18 figures, accepted for publication in A&A, high
resolution version can be found at
http://astro.uibk.ac.at/~thomas/kronberger.pd
On the influence of ram-pressure stripping on interacting galaxies in clusters
We investigate the influence of ram pressure on the star-formation rate and
the distribution of gas and stellar matter in interacting model galaxies in
clusters. To simulate the baryonic and non-baryonic components of interacting
disc galaxies moving through a hot, thin medium we use a combined
N-body/hydrodynamic code GADGET2 with a description for star formation based on
density thresholds. Two identical model spiral galaxies on a collision
trajectory with three different configurations were investigated in detail. In
the first configuration the galaxies collide without the presence of an ambient
medium, in the second configurations the ram pressure acts face on on the
interacting galaxies and in the third configuration the ram pressure acts edge
on. The ambient medium is thin ( g/cm), hot (3 keV K) and has a relative velocity of 1000 km/s, to mimic an average
low ram pressure in the outskirts of galaxy clusters. The interaction
velocities are comparable to galaxy interactions in groups, falling along
filaments into galaxy clusters. The global star formation rate of the
interacting system is enhanced in the presence of ram pressure by a factor of
three in comparison to the same interaction without the presence of an ambient
medium. The tidal tails and the gaseous bridge of the interacting system are
almost completely destroyed by the ram pressure. The amount of gas in the wake
of the interacting system is % of the total gas of the colliding
galaxies after 500 Myr the galaxies start to feel the ram pressure. Nearly
in mass of all newly formed stars are formed in the wake of the
interacting system at distances larger than 20 kpc behind the stellar discs.
(abrigded)Comment: 11 pages, 12 figures, accepted for publication in MNRA
Internal kinematics of spiral galaxies in distant clusters III. Velocity fields from FORS2/MXU spectroscopy
(Abridged) We study the impact of cluster environment on the evolution of
spiral galaxies by examining their structure and kinematics. Rather than
two-dimensional rotation curves, we observe complete velocity fields by placing
three adjacent and parallel FORS2 MXU slits on each object, yielding several
emission and absorption lines. The gas velocity fields are reconstructed and
decomposed into circular rotation and irregular motions using kinemetry. To
quantify irregularities in the gas kinematics, we define three parameters:
sigma_{PA} (standard deviation of the kinematic position angle), Delta phi (the
average misalignment between kinematic and photometric position angles) and
k_{3,5} (squared sum of the higher order Fourier terms). Using local,
undistorted galaxies from SINGS, these can be used to establish the regularity
of the gas velocity fields. Here we present the analysis of 22 distant galaxies
in the MS0451.6-0305 field with 11 members at z=0.54. In this sample we find
both field (4 out of 8) and cluster (3 out of 4) galaxies with velocity fields
that are both irregular and asymmetric. We show that these fractions are
underestimates of the actual number of galaxies with irregular velocity fields.
The values of the (ir)regularity parameters for cluster galaxies are not very
different from those of the field galaxies, implying that there are isolated
field galaxies that are as distorted as the cluster members. None of the
deviations in our small sample correlate with photometric/structural properties
like luminosity or disk scale length in a significant way.
Our 3D-spectroscopic method successfully maps the velocity field of distant
galaxies, enabling the importance and efficiency of cluster specific
interactions to be assessed quantitatively.Comment: accepted for publication in A&A, high resolution version available at
http://www.astro.rug.nl/~kutdemir/papers
X-ray measured metallicities of the intra-cluster medium: a good measure for the metal mass?
Aims. We investigate whether X-ray observations map heavy elements in the
Intra-Cluster Medium (ICM) well and whether the X-ray observations yield good
estimates for the metal mass, with respect to predictions on transport mech-
anisms of heavy elements from galaxies into the ICM. We further test the
accuracy of simulated metallicity maps. Methods. We extract synthetic X-ray
spectra from N-body/hydrodynamic simulations including metal enrichment pro-
cesses, which we then analyse with the same methods as are applied to
observations. By changing the metal distribution in the simulated galaxy
clusters, we investigate the dependence of the overall metallicity as a
function of the metal distribution. In addition we investigate the difference
of X-ray weighted metal maps produced by simulations and metal maps extracted
from artifcial X-ray spectra, which we calculate with SPEX2.0 and analyse with
XSPEC12.0. Results. The overall metallicity depends strongly on the
distribution of metals within the galaxy cluster. The more inhomogeneously the
metals are distributed within the cluster, the less accurate is the metallicity
as a measure for the true metal mass. The true metal mass is generally
underestimated by X-ray observations. The difference between the X-ray weighted
metal maps and the metal maps from synthetic X-ray spectra is on average less
than 7% in the temperature regime above T > 3E7 K, i.e. X-ray weighted metal
maps can be well used for comparison with observed metal maps. Extracting the
metal mass in the central parts (r < 500 kpc) of galaxy clusters with X-ray
observations results in metal mass underestimates up to a factor of three.Comment: 7 pages, 9 figures, accepted for publication in A&
Metal enrichment of the intra-cluster medium over a Hubble time for merging and relaxed galaxy clusters
We investigate the efficiency of galactic mass loss, triggered by
ram-pressure stripping and galactic winds of cluster galaxies, on the chemical
enrichment of the intra-cluster medium (ICM). We combine N-body and
hydrodynamic simulations with a semi-numerical galaxy formation model. By
including simultaneously different enrichment processes, namely ram-pressure
stripping and galactic winds, in galaxy-cluster simulations, we are able to
reproduce the observed metal distribution in the ICM. We find that the mass
loss by galactic winds in the redshift regime z>2 is ~10% to 20% of the total
galactic wind mass loss, whereas the mass loss by ram-pressure stripping in the
same epoch is up to 5% of the total ram-pressure stripping mass loss over the
whole simulation time. In the cluster formation epochs z<2 ram-pressure
stripping becomes more dominant than galactic winds. We discuss the
non-correlation between the evolution of the mean metallicity of galaxy
clusters and the galactic mass losses. For comparison with observations we
present two dimensional maps of the ICM quantities and radial metallicity
profiles. The shape of the observed profiles is well reproduced by the
simulations in the case of merging systems. In the case of cool-core clusters
the slope of the observed profiles are reproduced by the simulation at radii
below ~300 kpc, whereas at larger radii the observed profiles are shallower. We
confirm the inhomogeneous metal distribution in the ICM found in observations.
To study the robustness of our results, we investigate two different
descriptions for the enrichment process interaction.Comment: 11 pages, 13 figures, accepted for publication in A&A, high
resolution version can be found at
<http://astro.uibk.ac.at/~wolfgang/kapferer.pdf
- …