862 research outputs found

    Remarkable symmetries in the Milky Way disk's magnetic field

    Full text link
    Using a new, expanded compilation of extragalactic source Faraday rotation measures (RM) we investigate the broad underlying magnetic structure of the Galactic disk at latitudes ∣b∣|b| ≲15∘\lesssim 15^{\circ} over all longitudes ll, where our total number of RM's in this low-latitude range of the Galactic sky is comparable to those in the combined Canadian Galactic Plane Survey(CGPS) at ∣b∣<4∘|b| < 4^{\circ} and the Southern Galactic Plane (SGPS) ∣b∣<1.5∘|b| < 1.5^{\circ} survey. We report newly revealed, remarkably coherent patterns of RM at ∣b∣|b| ≲15∘\lesssim 15^{\circ} from l∼270∘l \sim 270^{\circ} to ∼90∘\sim 90^\circ and RM(ll) features of unprecedented clarity that replicate in ll with opposite sign on opposite sides of the Galactic center. They confirm a highly patterned bisymmetric field structure toward the inner disc, an axisymmetic pattern toward the outer disc, and a very close coupling between the CGPS/SGPS RM's at ∣b∣≲3∘|b| \lesssim 3^{\circ} ("mid-plane") and our new RM's up to ∣b∣∼15∘|b| \sim 15^{\circ} ("near-plane"). Our analysis also shows the approximate zz-height -- the vertical height of the coherent component of the disc field above the Galactic disc's mid-plane -- to be ∼1.5\sim 1.5kpc out to ∼6\sim 6 kpc from the Sun. This identifies the approximate height of the transition layer to the halo field structure. We find no RM sign change across the plane within ∣b∣∼15∘|b| \sim 15^{\circ} in any longitude range. The prevailing {\it disc} field pattern, and its striking degree of large scale ordering confirm that our side of the Milky Way has a very organized underlying magnetic structure, for which the inward spiral pitch angle is 5.5∘ ±1∘5.5^{\circ}\, \pm 1^{\circ} at all ∣b∣|b| up to ∼12∘\sim 12^{\circ} in the inner semicircle of Galactic longitudes. It decreases to ∼0∘\sim 0^{\circ} toward the anticentre.Comment: 7 pages, 5 figures, Version 3. Accepted 2011 for publication in Publications of the Astronomical Society of Australia(PASA

    A summary of observational records on periodicities above the rotational period in the Jovian magnetosphere

    Get PDF
    The Jovian magnetosphere is a very dynamic system. The plasma mass-loading from the moon Io and the fast planetary rotation lead to regular release of mass from the Jovian magnetosphere and to a change of the magnetic topology. These regular variations, most commonly on several (2.5–4) days scale, were derived from various data sets obtained by different spacecraft missions and instruments ranging from auroral images to in situ measurements of magnetospheric particles. Specifically, ion measurements from the Galileo spacecraft represent the periodicities, very distinctively, namely the periodic thinning of the plasma sheet and subsequent dipolarization, and explosive mass release occurring mainly during the transition between these two phases. We present a review of these periodicities, particularly concentrating on those observed in energetic particle data. The most distinct periodicities are observed for ions of sulfur and oxygen. The periodic topological change of the Jovian magnetosphere, the associated mass-release process and auroral signatures can be interpreted as a global magnetospheric instability with analogies to the two step concept of terrestrial substorms. Different views on the triggering mechanism of this magnetospheric instability are discussed

    Row Spacing and Productivity of Russian Wild Rye Pastures in Semiarid Environments

    Get PDF
    To sustain forage yields in dry years in semiarid climates, row spacings \u3e59cm have been recommended for Russian wild rye [Psathyrostachys juncea (Fisch.) Nevski] (Lawrence & Heinrichs, 1968). However, wide row spacings promote weed invasion, soil erosion, and elevated plant crowns resulting in a rough, washboard ground surface (Kilcher, 1961). Jefferson and Kielly (1998) suggested a 30-cm row spacing for optimum sustainable forage yields in Russian wild rye in the semiarid prairie region of Canada. This study aimed to evaluate the relationship between row spacing and productivity of Russian wild rye at two semiarid sites near Mandan, in the northern Great Plains region of the USA (46º 48\u27 N latitude, 100º 55\u27 W longitude)

    Fossil AGN jets as ultra high energy particle accelerators

    Full text link
    Remnants of AGN jets and their surrounding cocoons leave colossal magnetohydrodynamic (MHD) fossil structures storing total energies ~10^{60} erg. The original active galacic nucleus (AGN) may be dead but the fossil will retain its stable configuration resembling the reversed-field pinch (RFP) encountered in laboratory MHD experiments. In an RFP the longitudinal magnetic field changes direction at a critical distance from the axis, leading to magnetic re-connection there, and to slow decay of the large-scale RFP field. We show that this field decay induces large-scale electric fields which can accelerate cosmic rays with an E^{-2} power-law up to ultra-high energies with a cut-off depending on the fossil parameters. The cut-off is expected to be rigidity dependent, implying the observed composition would change from light to heavy close to the cut-off if one or two nearby AGN fossils dominate. Given that several percent of the universe's volume may house such slowly decaying structures, these fossils may even re-energize ultra-high energy cosmic rays from distant/old sources, offsetting the ``GZK-losses'' due to interactions with photons of the cosmic microwave background radiation and giving evidence of otherwise undetectable fossils. In this case the composition would remain light to the highest energies if distant sources or fossils dominated, but otherwise would be mixed. It is hoped the new generation of cosmic ray experiments such as the Pierre Auger Observatory and ultra-high energy neutrino telescopes such as ANITA and lunar Cherenkov experiments will clarify this.Comment: 11 pages, 6 figures, additional references and explanations. Accepted for publication in MNRA

    Generation of helical magnetic fields from inflation

    Full text link
    The generation of helical magnetic fields during single field inflation due to an axial coupling of the electromagnetic field to the inflaton is discussed. We find that such a coupling always leads to a blue spectrum of magnetic fields during slow roll inflation. Though the helical magnetic fields further evolve during the inverse cascade in the radiation era after inflation, we conclude that the magnetic fields generated by such an axial coupling can not lead to observed field strength on cosmologically relevant scales.Comment: 4 pages, 1 figure; Contribution to the proceedings of the International Conference on Gravitation and Cosmology (ICGC), Goa, India, December, 201

    MgII absorption systems with W_0 > 0.1 \AA for a radio selected sample of 77 QSOs and their associated magnetic fields at high redshifts

    Full text link
    We present a catalogue of MgII absorption systems obtained from high resolution UVES/VLT data of 77 QSOs in the redshift range 0.6 < z < 2.0, and down to an equivalent width W_0 > 0.1 \AA. The statistical properties of our sample are found to be in agreement with those from previous work in the literature. However, we point out that the previously observed increase with redshift of dN/dz for weak absorbers, pertains exclusively to very weak absorbers with W_0 < 0.1 \AA. Instead, dN/dz for absorbers with W_0 in the range 0.1-0.3 \AA actually decreases with redshift, similarly to the case of strong absorbers. We then use this catalogue to extend our earlier analysis of the links between the Faraday Rotation Measure of the quasars and the presence of intervening MgII absorbing systems in their spectra. In contrast to the case with strong MgII absorption systems W_0 > 0.3 \AA, the weaker systems do not contribute significantly to the observed Rotation Measure of the background quasars. This is possibly due to the higher impact parameters of the weak systems compared to strong ones, suggesting that the high column density magnetized material that is responsible for the Faraday Rotation is located within about 50 kpc of the galaxies. Finally, we show that this result also rules out the possibility that some unexpected secondary correlation between the quasar redshift and its intrinsic Rotation Measure is responsible for the association of high Rotation Measure and strong intervening MgII absorption that we have presented elsewhere, since this would have produced an equal effect for the weak absorption line systems, which exhibit a very similar distribution of quasar redshifts.Comment: Accepted for publication in ApJ. 12 pages, 8 figure

    A Magnetized Local Supercluster and the Origin of the Highest Energy Cosmic Rays

    Full text link
    A sufficiently magnetized Local Supercluster can explain the spectrum and angular distribution of ultra-high energy cosmic rays. We show that the spectrum of extragalactic cosmic rays with energies below ∼1020\sim 10^{20} eV may be due to the diffusive propagation in the Local Supercluster with fields of ∼10−8−10−7\sim 10^{-8} - 10^{-7} Gauss. Above ∼1020\sim 10^{20} eV, cosmic rays propagate in an almost rectilinear way which is evidenced by the change in shape of the spectrum at the highest energies. The fit to the spectrum requires that at least one source be located relatively nearby at ∼10−15\sim 10-15 Mpc away from the Milky Way. We discuss the origin of magnetic fields in the Local Supercluster and the observable predictions of this model.Comment: 11 pages, 2 figures, submitted to PR

    Magnetohydrodynamics and Plasma Cosmology

    Full text link
    We study the linear magnetohydrodynamic (MHD) equations, both in the Newtonian and the general-relativistic limit, as regards a viscous magnetized fluid of finite conductivity and discuss instability criteria. In addition, we explore the excitation of cosmological perturbations in anisotropic spacetimes, in the presence of an ambient magnetic field. Acoustic, electromagnetic (e/m) and fast-magnetosonic modes, propagating normal to the magnetic field, can be excited, resulting in several implications of cosmological significance.Comment: 9 pages, RevTeX, To appear in the Proceedings of the Peyresq X Meeting, IJTP Conference Serie

    Heating Hot Atmospheres with Active Galactic Nuclei

    Full text link
    High resolution X-ray spectroscopy of the hot gas in galaxy clusters has shown that the gas is not cooling to low temperatures at the predicted rates of hundreds to thousands of solar masses per year. X-ray images have revealed giant cavities and shock fronts in the hot gas that provide a direct and relatively reliable means of measuring the energy injected into hot atmospheres by active galactic nuclei (AGN). Average radio jet powers are near those required to offset radiative losses and to suppress cooling in isolated giant elliptical galaxies, and in larger systems up to the richest galaxy clusters. This coincidence suggests that heating and cooling are coupled by feedback, which suppresses star formation and the growth of luminous galaxies. How jet energy is converted to heat and the degree to which other heating mechanisms are contributing, eg. thermal conduction, are not well understood. Outburst energies require substantial late growth of supermassive black holes. Unless all of the approximately 10E62 erg required to suppress star formation is deposited in the cooling regions of clusters, AGN outbursts must alter large-scale properties of the intracluster medium.Comment: 60 pages, 12 figures, to appear in 1997 Annual Reviews of Astronomy and Astrophysics. This version supersedes the April 2007 version in Reviews in Advance (references and minor corrections were added), and is similar to the one scheduled to appear in Volume 45 of ARA
    • …
    corecore