446 research outputs found

    The Impact of User Behaviours on the Socialisation Process in Enterprise Social Networks

    Get PDF
    The success of teams in enterprise social networks (ESN) is of high importance in today’s project-based and digitised work environments. In this context, onboarding of new hires or allocated team members means the adoption of group characteristics and behaviours. Studies identified cohesion and trust as part of the socialisation process and found communication behaviours that facilitate socialisation. ESN not only enable efficient communication or relationship building, they also make the socialisation processes visible and analysable. In this paper, we propose to use metrics from social network analysis (e.g. extraversion, openness and proactiveness) to operationalise communication behaviours identified as positive for socialisation. First evaluations with two ESN data sets in OLS, beta regression and multilevel models sparsely support the influence on closeness, which we expect to reflect the level of group integration

    Accommodated Emoji Usage: Influence of Hierarchy on the Adaption of Pictogram Usage in Instant Messaging

    Get PDF
    Communication Accommodation Theory predicts to what extent individuals accommodate their verbal and nonverbal behaviour by converging it towards their conversation partner or diverging it away from them to gain social approval and to decrease social distance. Especially individuals in lower hierarchy positions accommodate their communication behaviour towards individuals in higher hierarchy positions. Nowadays, computer- and smartphone-mediated communication are common ways to communicate, for example via instant messaging. However, instant messenger lack in transporting nonverbal cues. To fill this gap, emoji are used increasingly. A study was conducted to examine how individuals in lower hierarchy positions converge their emoji usage towards individuals in higher hierarchy position. The results support the assumption that the higher hierarchy is perceived, the more emoji accommodation is shown

    University satellite institutes as exogenous facilitators of technology transfer ecosystem development

    Get PDF
    Universities can contribute to knowledge-based regional development not only in their home region but also in other regions. In a number of countries, universities have established university satellite institutes in additional (host) regions to promote research and technology transfer there. We investigate the role of university satellite institutes in the industrial development of regions, which, albeit not economically marginal, suffer from a weak knowledge infrastructure, limited absorptive capacities for external knowledge in the business sector and hence a low degree of attractiveness for non-local knowledge actors. Despite policy recommendations in favor of establishing satellite institutes, there has only been limited empirical research on this phenomenon, particularly concerning technology transfer ecosystem development. To fill this gap, we provide an exploratory case study of university satellite institutes in the Pearl River Delta of China’s Guangdong province. We show how such institutes can be successful in facilitating the development of their host region’s technology transfer ecosystems and demonstrate why they should be conceptually included in our existing understanding of third mission activities. Our research centers on the interplay of geographical proximity and non-spatial, organized proximity in the development of interregional knowledge bridges and entrepreneurial opportunities. We argue that the university’s geographical proximity is only successful if the satellite institute, by facilitating organized proximity, promotes the geographical proximity of further knowledge actors, hereby propelling ecosystem development. © 2021, The Author(s)

    Microbiota independent effects of oligosaccharides on Caco-2 cells -A semi-targeted metabolomics approach using DI-FT-ICR-MS coupled with pathway enrichment analysis

    Get PDF
    Milk oligosaccharides (MOS) and galactooligosaccharides (GOS) are associated with many benefits, including anti-microbial effects and immune-modulating properties. However, the cellular mechanisms of these are largely unknown. In this study, the effects of enriched GOS and MOS mixtures from caprine and bovine milk consisting mainly 6'-galactosyllactose, 3'-sialyllactose, and 6'-sialyllactose on Caco-2 cells were investigated, and the treatment-specific metabolomes were described. In the control, the cells were treated with a sugar mix consisting of one-third each of glucose, galactose and lactose. A local metabolomics workflow with pathway enrichment was established, which specifically addresses DI-FT-ICR-MS analyses and includes adaptations in terms of measurement technology and sample matrices. By including quality parameters, especially the isotope pattern, we increased the precision of annotation. The independence from online tools, the fast adaptability to changes in databases, and the specific adjustment to the measurement technology and biomaterial used, proved to be a great advantage. For the first time it was possible to find 71 active pathways in a Caco-2 cell experiment. These pathways were assigned to 12 main categories, with amino acid metabolism and carbohydrate metabolism being the most dominant categories in terms of the number of metabolites and metabolic pathways. Treatment of Caco-2 cells with high GOS and glucose contents resulted in significant effects on several metabolic pathways, whereas the MOS containing treatments resulted only for individual metabolites in significant changes. An effect based on bovine or caprine origin alone could not be observed. Thus, it was shown that MOS and GOS containing treatments can exert microbiome-independent effects on the metabolome of Caco-2 cells

    SnCN₂: A Carbodiimide with an Innovative Approach for Energy Storage Systems and Phosphors in Modern LED Technology

    Get PDF
    The carbodiimide SnCN2_{2} was prepared at low temperatures (400 °C–550 °C) by using a patented urea precursor route. The crystal structure of SnCN2_{2} was determined from single‐crystal data in space group C2/c (no. 15) with a=9.1547(5), b=5.0209(3), c=6.0903(3) Å, ÎČ=117.672(3), V=247.92 Å3^{3} and Z=4. As carbodiimide compounds display remarkably high thermal and chemical resistivity, SnCN2_{2} has been doped with Eu and Tb to test it for its application in future phosphor‐converted LEDs. This doping of SnCN2_{2} proved that a color tuning of the carbodiimide host with different activator ions and the combination of the latter ones is possible. Additionally, as the search for novel high‐performing electrode materials is essential for current battery technologies, this carbodiimide has been investigated concerning its use in lithium‐ion batteries. To further elucidate its application possibilities in materials science, several characterization steps and physical measurements (XRD, in situ XANES, Sn Mössbauer spectroscopy, thermal expansion, IR spectroscopy, Mott‐Schottky analysis) were carried out. The electronic structure of the n‐type semiconductor SnCN2_{2} has been probed using X‐ray absorption spectroscopy and density functional theory (DFT) computations

    I-BEAT: New ultrasonic method for single bunch measurement of ion energy distribution

    Full text link
    The shape of a wave carries all information about the spatial and temporal structure of its source, given that the medium and its properties are known. Most modern imaging methods seek to utilize this nature of waves originating from Huygens' principle. We discuss the retrieval of the complete kinetic energy distribution from the acoustic trace that is recorded when a short ion bunch deposits its energy in water. This novel method, which we refer to as Ion-Bunch Energy Acoustic Tracing (I-BEAT), is a generalization of the ionoacoustic approach. Featuring compactness, simple operation, indestructibility and high dynamic ranges in energy and intensity, I-BEAT is a promising approach to meet the needs of petawatt-class laser-based ion accelerators. With its capability of completely monitoring a single, focused proton bunch with prompt readout it, is expected to have particular impact for experiments and applications using ultrashort ion bunches in high flux regimes. We demonstrate its functionality using it with two laser-driven ion sources for quantitative determination of the kinetic energy distribution of single, focused proton bunches.Comment: Paper: 17 Pages, 3 figures Supplementary Material 16 pages, 7 figure

    A numerical study of Bi-periodic binary diffraction gratings for solar cell applications

    Get PDF
    In this paper, a numerical study is made of simple bi-periodic binary diffraction gratings for solar cell applications. The gratings consist of hexagonal arrays of elliptical towers and wells etched directly into the solar cell substrate. The gratings are applied to two distinct solar cell technologies: a quantum dot intermediate band solar cell (QD-IBSC) and a crystalline silicon solar cell (SSC). In each case, the expected photocurrent increase due to the presence of the grating is calculated assuming AM1.5D illumination. For each technology, the grating period, well/tower depth and well/tower radii are optimised to maximise the photocurrent. The optimum parameters are presented. Results are presented for QD-IBSCs with a range of quantum dot layers and for SSCs with a range of thicknesses. For the QD-IBSC, it is found that the optimised grating leads to an absorption enhancement above that calculated for an ideally Lambertian scatterer for cells with less than 70 quantum dot layers. In a QD-IBSC with 50 quantum dot layers equipped with the optimum grating, the weak intermediate band to conduction band transition absorbs roughly half the photons in the corresponding sub-range of the AM1.5D spectrum. For the SSC, it is found that the optimised grating leads to an absorption enhancement above that calculated for an ideally Lambertian scatterer for cells with thicknesses of 10 ?m or greater. A 20um thick SSC equipped with the optimised grating leads to an absorption enhancement above that of a 200um thick SSC equipped with a planar back reflector
    • 

    corecore