52 research outputs found

    VisIVOWeb: A WWW Environment for Large-Scale Astrophysical Visualization

    Get PDF
    This article presents a newly developed Web portal called VisIVOWeb that aims to provide the astrophysical community with powerful visualization tools for large-scale data sets in the context of Web 2.0. VisIVOWeb can effectively handle modern numerical simulations and real-world observations. Our open-source software is based on established visualization toolkits offering high-quality rendering algorithms. The underlying data management is discussed with the supported visualization interfaces and movie-making functionality. We introduce VisIVOWeb Network, a robust network of customized Web portals for visual discovery, and VisIVOWeb Connect, a lightweight and efficient solution for seamlessly connecting to existing astrophysical archives. A significant effort has been devoted for ensuring interoperability with existing tools by adhering to IVOA standards. We conclude with a summary of our work and a discussion on future developments

    Integrating virtual reality and gis tools for geological mapping, data collection and analysis: An example from the metaxa mine, santorini (Greece)

    Get PDF
    In the present work we highlight the effectiveness of integrating different techniques and tools for better surveying, mapping and collecting data in volcanic areas. We use an Immersive Virtual Reality (IVR) approach for data collection, integrated with Geographic Information System (GIS) analysis in a well-known volcanological site in Santorini (Metaxa mine), a site where volcanic processes influenced the island’s industrial development, especially with regard to pumice mining. Specifically, we have focused on: (i) three-dimensional (3D) high-resolution IVR scenario building, based on Structure from Motion photogrammetry (SfM) modeling; (ii) subsequent geological survey, mapping and data collection using IVR; (iii) data analysis, e.g., calculation of extracted volumes, as well as production of new maps in a GIS environment using input data directly from the IVR survey; and finally, (iv) presentation of new outcomes that highlight the importance of the Metaxa Mine as a key geological and volcanological geosite

    Towards an end-to-end analysis and prediction system for weather, climate, and Marine applications in the Red Sea

    Get PDF
    AbstractThe Red Sea, home to the second-longest coral reef system in the world, is a vital resource for the Kingdom of Saudi Arabia. The Red Sea provides 90% of the Kingdom’s potable water by desalinization, supporting tourism, shipping, aquaculture, and fishing industries, which together contribute about 10%–20% of the country’s GDP. All these activities, and those elsewhere in the Red Sea region, critically depend on oceanic and atmospheric conditions. At a time of mega-development projects along the Red Sea coast, and global warming, authorities are working on optimizing the harnessing of environmental resources, including renewable energy and rainwater harvesting. All these require high-resolution weather and climate information. Toward this end, we have undertaken a multipronged research and development activity in which we are developing an integrated data-driven regional coupled modeling system. The telescopically nested components include 5-km- to 600-m-resolution atmospheric models to address weather and climate challenges, 4-km- to 50-m-resolution ocean models with regional and coastal configurations to simulate and predict the general and mesoscale circulation, 4-km- to 100-m-resolution ecosystem models to simulate the biogeochemistry, and 1-km- to 50-m-resolution wave models. In addition, a complementary probabilistic transport modeling system predicts dispersion of contaminant plumes, oil spill, and marine ecosystem connectivity. Advanced ensemble data assimilation capabilities have also been implemented for accurate forecasting. Resulting achievements include significant advancement in our understanding of the regional circulation and its connection to the global climate, development, and validation of long-term Red Sea regional atmospheric–oceanic–wave reanalyses and forecasting capacities. These products are being extensively used by academia, government, and industry in various weather and marine studies and operations, environmental policies, renewable energy applications, impact assessment, flood forecasting, and more.</jats:p

    Towards an end-to-end analysis and prediction system for weather, climate, and marine applications in the Red Sea

    Get PDF
    Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 102(1), (2021): E99-E122, https://doi.org/10.1175/BAMS-D-19-0005.1.The Red Sea, home to the second-longest coral reef system in the world, is a vital resource for the Kingdom of Saudi Arabia. The Red Sea provides 90% of the Kingdom’s potable water by desalinization, supporting tourism, shipping, aquaculture, and fishing industries, which together contribute about 10%–20% of the country’s GDP. All these activities, and those elsewhere in the Red Sea region, critically depend on oceanic and atmospheric conditions. At a time of mega-development projects along the Red Sea coast, and global warming, authorities are working on optimizing the harnessing of environmental resources, including renewable energy and rainwater harvesting. All these require high-resolution weather and climate information. Toward this end, we have undertaken a multipronged research and development activity in which we are developing an integrated data-driven regional coupled modeling system. The telescopically nested components include 5-km- to 600-m-resolution atmospheric models to address weather and climate challenges, 4-km- to 50-m-resolution ocean models with regional and coastal configurations to simulate and predict the general and mesoscale circulation, 4-km- to 100-m-resolution ecosystem models to simulate the biogeochemistry, and 1-km- to 50-m-resolution wave models. In addition, a complementary probabilistic transport modeling system predicts dispersion of contaminant plumes, oil spill, and marine ecosystem connectivity. Advanced ensemble data assimilation capabilities have also been implemented for accurate forecasting. Resulting achievements include significant advancement in our understanding of the regional circulation and its connection to the global climate, development, and validation of long-term Red Sea regional atmospheric–oceanic–wave reanalyses and forecasting capacities. These products are being extensively used by academia, government, and industry in various weather and marine studies and operations, environmental policies, renewable energy applications, impact assessment, flood forecasting, and more.The development of the Red Sea modeling system is being supported by the Virtual Red Sea Initiative and the Competitive Research Grants (CRG) program from the Office of Sponsored Research at KAUST, Saudi Aramco Company through the Saudi ARAMCO Marine Environmental Center at KAUST, and by funds from KAEC, NEOM, and RSP through Beacon Development Company at KAUST

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    The Mediterranean Decision Support System for Marine Safety dedicated to oil slicks predictions

    Get PDF
    In the Mediterranean sea the risk from oil spill pollution is high due to the heavy traffic of merchant vessels for transporting oil and gas, especially after the recent enlargement of the Suez canal and to the increasing coastal and offshore installations related to the oil industry in general. The basic response to major oil spills includes different measures and equipment. However, in order to strengthen the maritime safety related to oil spill pollution in the Mediterranean and to assist the response agencies, a multi-model oil spill prediction service has been set up, known as MEDESS-4MS (Mediterranean Decision Support System for Marine Safety). The concept behind the MEDESS-4MS service is the integration of the existing national ocean forecasting systems in the region with the Copernicus Marine Environmental Monitoring Service (CMEMS) and their interconnection, through a dedicated network data repository, facilitating access to all these data and to the data from the oil spill monitoring platforms, including the satellite data ones, with the well established oil spill models in the region. The MEDESS-4MS offer a range of service scenarios, multi-model data access and interactive capabilities to suite the needs of REMPEC (Regional Marine Pollution Emergency Response Centre for the Mediterranean Sea) and EMSA-CSN (European Maritime Safety Agency-CleanseaNet)

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    JET type out flow from process installations

    No full text
    Przedstawiono wyniki badań mających na celu opis wypływów awaryjnych typu jet oraz geometrii wypływającej strugi cieczy ze szczelin o różnym kształcie. Zaobserwowano zjawisko obrotu o 180° wypływającego ze zbiornika strumienia cieczy. Zjawisko to obserwowano dla wszystkich przebadanych szczelin wypływowych i mediów doświadczalnych. Odległość miejsca obrotu strugi zależała wyłącznie od bezwzględnej długości szczeliny i nadciśnienia w zbiorniku. Zaproponowano opis matematyczny zjawiska.Experimental data concerningjet type outflow from a vessel and geometry of liquid stream outflowing from cracks of different shapes were presented in the paper. A phenomenon of 180° turn of liquid stream outflowing from tank cracks for every examined cracks shape and liquids were observed. A distance from the crack in tank wall to the turn point depended on the crack absolute length and vessel overpressure. The mathematical description of phenomenon was proposed

    Single and two-phase outflows from holes located on the walls of pressure vessels

    No full text
    Przedstawiono wyniki badań dotyczących jednofazowych i dwufazowych wypływów cieczy z otworów o złożonych kształtach, usytuowanych na ściance zbiornika ciśnieniowego. Badania miały na celu określenie wartości współczynników wypływu cieczy.Experimental results concerning one- and two-phase outflows from holes on the walls of pressure vessel are presented. The aim of study was to determine the values of discharge coefficients

    Investigation of liquid outflows from holes of complex shape located on the walls of a pressure pipeline

    No full text
    Badano wypływy cieczy z otworów w postaci szczelin, usytuowanych na ściankach rurociągu ciśnieniowego. Uzyskane wyniki dotyczące wartości współczynników wypływu przedstawiono w funkcji liczby Reynoldsa obliczanej dla otworu wypływowego.Liquid outflows from holes in a form of slit located in pressure pipeline walls are investigated experimentally. The results concerning values of discharge coefficients are presented as a function of the Reynolds number calculated for the outflow hole
    corecore