5,613 research outputs found

    TB182: Agricultural Land Changes in Maine: A Compilation and Brief Analysis of Census of Agriculture Data, 1850-1997

    Get PDF
    The purpose of this study is to compile the best available long-term historical information on agricultural land use in Maine and to briefly analyze these data to develop a statewide description of Maine\u27s land use history from the mid-1800s to present. Our emphasis is on compiling statistically based information and, in particular, land use data reported in the Census of Agriculture. Objectives were (1) to compile available statewide data on agricultural land and land cover (LULC) in Maine, 1850-1997; (2) to examine temporal and spatial patterns in the LULC of Maine; and (3) to discuss the implications of the major trends in LULC for selected natural resources of current economic and ecological concern.https://digitalcommons.library.umaine.edu/aes_techbulletin/1026/thumbnail.jp

    Hypertonicity-affected genes are differentially expressed in clear cell renal cell carcinoma and correlate with cancer-specific survival

    Get PDF
    The heterogeneity of renal cell carcinoma (RCC) subtypes reflects the cell type of origin in the nephron, with consequences for therapy and prognosis. The transcriptional cues that determine segment-specific gene expression patterns are poorly understood. We recently showed that hypertonicity in the renal medulla regulates nephron-specific gene expression. Here, we analyzed a set of 223 genes, which were identified in the present study by RNA-Seq to be differentially expressed by hypertonicity, for the prediction of cancer-specific survival (CSS). Cluster analyses of these genes showed discrimination between tumor and non-tumor samples of clear cell RCC (ccRCC). Refinement of this gene signature to a four-gene score (OSM score) through statistical analyses enabled prediction of CSS in ccRCC patients of The Cancer Genome Atlas (TCGA) (n = 436) in univariate (HR = 4.1; 95% CI: 2.78-6.07; p = 4.39 × 10(-13)), and multivariate analyses including primary tumor (T); regional lymph node (N); distant metastasis (M); grading (G)(p = 2.3 × 10(-5)). The OSM score could be validated in an independent ccRCC study (n = 52) in univariate (HR = 1.29; 95% CI = 1.05-1.59; p = 0.011) and multivariate analyses (p = 0.016). Cell culture experiments using RCC cell lines demonstrated that the expression of the tumor suppressor ELF5 could be restored by hypertonicity. The innovation of our novel gene signature is that these genes are physiologically regulated only by hypertonicity, thereby providing the possibility to be targeted for therapy

    Asymptotic behaviour of the spectrum of a waveguide with distant perturbations

    Full text link
    We consider the waveguide modelled by a nn-dimensional infinite tube. The operator we study is the Dirichlet Laplacian perturbed by two distant perturbations. The perturbations are described by arbitrary abstract operators ''localized'' in a certain sense, and the distance between their ''supports'' tends to infinity. We study the asymptotic behaviour of the discrete spectrum of such system. The main results are a convergence theorem and the asymptotics expansions for the eigenvalues. The asymptotic behaviour of the associated eigenfunctions is described as well. We also provide some particular examples of the distant perturbations. The examples are the potential, second order differential operator, magnetic Schroedinger operator, curved and deformed waveguide, delta interaction, and integral operator

    Feasibility study for a numerical aerodynamic simulation facility. Volume 1

    Get PDF
    A Numerical Aerodynamic Simulation Facility (NASF) was designed for the simulation of fluid flow around three-dimensional bodies, both in wind tunnel environments and in free space. The application of numerical simulation to this field of endeavor promised to yield economies in aerodynamic and aircraft body designs. A model for a NASF/FMP (Flow Model Processor) ensemble using a possible approach to meeting NASF goals is presented. The computer hardware and software are presented, along with the entire design and performance analysis and evaluation

    Non-relativistic effective theory of dark matter direct detection

    Full text link
    Dark matter direct detection searches for signals coming from dark matter scattering against nuclei at a very low recoil energy scale ~ 10 keV. In this paper, a simple non-relativistic effective theory is constructed to describe interactions between dark matter and nuclei without referring to any underlying high energy models. It contains the minimal set of operators that will be tested by direct detection. The effective theory approach highlights the set of distinguishable recoil spectra that could arise from different theoretical models. If dark matter is discovered in the near future in direct detection experiments, a measurement of the shape of the recoil spectrum will provide valuable information on the underlying dynamics. We bound the coefficients of the operators in our non-relativistic effective theory by the null results of current dark matter direct detection experiments. We also discuss the mapping between the non-relativistic effective theory and field theory models or operators, including aspects of the matching of quark and gluon operators to nuclear form factors.Comment: 35 pages, 3 figures, Appendix C.3 revised, acknowledgments and references adde

    New Physics Signals in Longitudinal Gauge Boson Scattering at the LHC

    Full text link
    We introduce a novel technique designed to look for signatures of new physics in vector boson fusion processes at the TeV scale. This functions by measuring the polarization of the vector bosons to determine the relative longitudinal to transverse production. In studying this ratio we can directly probe the high energy E^2-growth of longitudinal vector boson scattering amplitudes characteristic of models with non-Standard Model (SM) interactions. We will focus on studying models parameterized by an effective Lagrangian that include a light Higgs with non-SM couplings arising from TeV scale new physics associated with the electroweak symmetry breaking, although our technique can be used in more general scenarios. We will show that this technique is stable against the large uncertainties that can result from variations in the factorization scale, improving upon previous studies that measure cross section alone

    Turning aggression into an object of intervention: Tinkering in a crime control pilot study

    Get PDF
    Real-world experiments that test new technologies can affect policy and practice by introducing new objects of intervention through tinkering; the ad hoc work of realigning relations in the face of frictions, surprises, and disturbances that occur when introducing a technology. In a pilot study on aggression detection, tinkering moved aggression in and out of the human body. In the end, the pilot defined aggression as a set of acoustic-physical variables representing the aroused human body, alongside other signals of aggression. How aggression as an object intervention was shaped by tinkering is relevant because it involved inclusions and exclusions by the authorities who identified aggression, the methods they applied, and mandate for intervention. A focus on relations that are tinkered within a real-world experiment permits critical engagement with this format. Although the real-world experimental format is credited with producing knowledge about a technology's ‘actual’ performance, actors and events at the pilot study location were made only selectively relevant. Analyses of real-world experiments should therefore explain how experiments selectively make the world relevant, giving only particular objects of intervention a truth status

    Heavy Squarks at the LHC

    Full text link
    The LHC, with its seven-fold increase in energy over the Tevatron, is capable of probing regions of SUSY parameter space exhibiting qualitatively new collider phenomenology. Here we investigate one such region in which first generation squarks are very heavy compared to the other superpartners. We find that the production of these squarks, which is dominantly associative, only becomes rate-limited at mSquark > 4(5) TeV for L~10(100) fb-1. However, discovery of this scenario is complicated because heavy squarks decay primarily into a jet and boosted gluino, yielding a dijet-like topology with missing energy (MET) pointing along the direction of the second hardest jet. The result is that many signal events are removed by standard jet/MET anti-alignment cuts designed to guard against jet mismeasurement errors. We suggest replacing these anti-alignment cuts with a measurement of jet substructure that can significantly extend the reach of this channel while still removing much of the background. We study a selection of benchmark points in detail, demonstrating that mSquark= 4(5) TeV first generation squarks can be discovered at the LHC with L~10(100)fb-1
    corecore