
CQ2tJC &V7

FEASIBILITY STUDY

FOR A

NUMERICAL AERODYNAMIC SIMULATION FACILITY

i(NASA-CR-152287) FEASIBILITY STUDY 'FORA N79-26068

NUMERICAL AERODYNAMIC SIMULATION FACILITY.

VOLUME 1 Final Report (Control Data Corp ,

St. Paul, Minn.) 626-p HC A99/HF A01' Unclas
•CSCL 14B G3/0§ 28381

By: N.R. Lincoln

Contributions by: C. N. Arnold
R. 0. Bergman
D. B. Bonstrom
T. W. Brinkman
S-H. J. Chiu
S. S. Green
S. D. Hansen
D. L. Klein
H. E. Krohn
R. P. Prow

MAY 1979

Distribution of this report is provided in the interest of information
exchange. Responsibility for the contents resides in the authors or
organization that prepared it.

Prepared under Contract No. NAS2-9896

CONTROL DATA CORPORATION
Research and Advanced Design Laboratory
4290 Fernwood Street
St. Paul, Minnesota 55112

for

AMES RESEARCH CENTER

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

https://ntrs.nasa.gov/search.jsp?R=19790017897 2020-03-21T22:01:32+00:00Z

FEASIBILITY STUDY

FOR A

NUMERICAL AERODYNAMIC SIMULATION FACILITY

Volume I - Final Report

By: N. R. Lincoln

Contributions by: C. N. Arnold
R. 0. Bergman
D. B. Bonstrom
T. W. Brinkman
S-H. J. Chiu
S. S. Green
S. D. Hansen
D. L. Klein
H.,E. Krohn
R. P. Prow

Distribution of this report is provided in the interest of information
exchange. Responsibility for the contents resides in the authors or
organization that prepared it.

Prepared under Contract No, NAS2-9896

CONTROL DATA CORPORATION
Research and Advanced Design Laboratory
4290 Fernwood Street
St. Paul, Minnesota 55112

for

AMES RESEARCH CENTER

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

PREFACE

This report consists of five volumes and a summary report. The

summary gives an overview of the project which is documented in

detail in the report. Volume V contains Control Data

proprietary information and, as such, is given to a limited

distribution (NASA only). The five volumes are as follows:

Volume I - Final Report

- Division 1 - General Narrative and Rationale

Division 2 - Implicit Method Description and Code

Division 3 - Explicit Method Description and Code

Division 4 - Weather/Climate Application Study

Division 5 - Technology Survey Update

Division 6 - NASF Reliability-Availability Evaluation

Division 7 - Maintenance Study for the NASF

Division 8 - Maintenance Software Alternatives

Division 9 - Installation Organization/Operation

Division 10 - NASF Physical Requirements Update

Division 11 - System Simulation Summary and Results

Volume II - Hardware Specifications/Descriptions

Division 1 - FMP Functional Specification,

Division 2 - FMP Instruction Descriptions

Division 3 - System Hardware Descriptions

Division 4 - Loosely Coupled Network Description

Volume III - FMP Language Specification/User Manual

Volume IV - Simulation Model User Manuals

Volume V - Cost and Schedule Projections

(Limited Distribution)

TABLE OF CONTENTS

PAGE

DIVISION 1

1.0 INTRODUCTION .I................ ... 1-1

1-2
1.1 OBJECTIVES

1.2 INTERRELATIONSHIPS OF T1HEVAR-IOUS S-TUD-I-E-S.......-5

1.3 THIS REPORT AND THE OVERALL PROJECT. 1-6

1.4 DEPTH OF STUDY 1-7

2.0 FMP DESIGN 1-10

2.1 HARDWARE 1-10

2.1.1 MEMORY SYSTEM.................... 1-11

1-14
2.1.1.1 LEVEL 1 MEMORY

1-14
2.1.1.2 LEVEL 2 MEMORY

2.1.1.3 LEVEL 3 MEMORY 1-15

2.1.1.4 MEMORY TO MEMORY DATA FLOW 1-16

2.1.2 FUNCTIONAL PARALLELISM 1-18

2.1.3 THE MAP UNITS. 1-21

2.1.4 THE SCALAR UNIT. 1-34

2.1.5 THE VECTOR UNITS 1-34

2.2 THE FMP OPERATION.................. 1-39

2.3 RATIONALE SUMMARY....... 1-41

2.3.1 RELIABILITY, AVAILABILITY, and MAINTAINABILITY 1-42

2.3.1.1 EFFECT OF PARTS COUNT. 1-43

2.3.1.2 TRANSIENT ERRORS 1-45

2.3.2 BUILDABILITY 1-47

2.3.3 PERFORMANCE. 1-49

2.3.4 MAINTENANCE. 1-57

2.3.5 MICROCODE CONTROL AND FAULT ISOLATION. 1-66

2.3.6 VALIDITY AND VERACITY. 1-69

2.3.6.1 ASSUMPTIONS. 1-70

2.3.6.2 VALIDITY DERIVATION................. 1-70

3.0 SOFTWARE DESIGN. 1-72

3.1 LANGUAGE ANALYSIS AND DEFINITION 1-72

3.1.1 EVOLUTION LEADING TO SPECIFICATION 1-72

3.1.2 OBSERVATIONS AND RATIONALE 1-76'

3.2 FMP LANGUAGE DESCRIPTION 1-77

3.2.1 THE BASE DOCUMENT. *.......................... 1-78

3.2.2 THE ANSI 77 SPECIFICATION.............. 1-82

3.2.3 THE CYBER 200 FORTRAN 77 ADDITIONS 1-83

3.2.4 FMP FORTRAN EXTENSIONS 1-83

3.2.4.1 THE LEVEL STATEMENT. 1-83

3.2.4.2 DYNAMIC VARIABLES.. ' 1-85

3.2.4.3 EXPLICIT DEFINITION OF DYNAMIC VARIABLES...... 1-91

3.2.4.4 DYNAMIC ARRAYS 1-95

3.2.4.5 EXPLICIT DEFINITION OF DYNAMIC ARRAY ELEMENTS. 1-96

3.2.4.6 SUBROUTINE COMMUNICATION OF DYNAMIC VARIABLES. 1-98

3.2.5 COMPILER STRATEGY. 1-99

3.2.5.1 DO LOOP "GET READY"................. 1-99

ii

TABLE OF CONTENTS

PAGE

3.2.5.2 INFERRED TRANSPOSE OF MATRIX 1-102

3.3 COMPILER'FUNCTIONAL CHARACTERISTICS. 1-103

3.3.1 SOURCE CODE.......... 1-103

3.3.2 OBJECT CODE. 1-105

3.3.3 CONSTRUCTS 1-106

3.3.4 PERFORMANCE...... 1-111
.

3.3.5 OBJECT LIBRARY 1-112

3.3.6 LINKING AND LOADING 1-113............

3.3.7 OPERATIONAL CHARACTERISTICS. 1-115

3.4 OPERATING SYSTEM FUNCTIONAL CHARACTERISTICS. 1-117

3.4.1 GENERAL. 1-117

3.4.2 JOB FLOW 1-121

3.4.3 INTERACTIVE OR BATCH?. 1-123

3.4.4 EXTERNAL CHARACTERISTICS 1-123

3.4.5 INTERNAL CHARACTERISTICS 1-125

3.4.6 MANAGEMENT TASKS 1-126

3.4.6.1 STORAGE. 1-126

3.4.6.2 PROCESSING 1-127

3.4.7 PERFORMANCE CRITERIA 1-128

4.0 FLOW MODEL PROCESSOR SIMULATION AND ANALYSIS . 1-130

4.1 FMP SIMULATOR..... 1-130

4.2 BENCHMARKS FOR THIS STUDY................ 1-132

4.3 FUTURE METRIC STRATEGY . . ;. 1-136

4.4 BENCHMARK SPECIFICATION... 1-140

5.0 PERFORMANCE ANALYSIS AND EVALUATION......1-143

5.1 THREE-DIMENSIONAL IMPLICIT CODE. 1-143

5.2 THREE-DIMENSIONAL EXPLICIT CODE. 1-153

5.3 SPECTRAL WEATHER MODEL 1-156

5.4 FINITE DIFFERENCE WEATHER MODEL.. 1-158

5.5 REFLECTIONS ON THE PERFORMANCE ANALYSIS. 1-159,

5.6 BOTTOM LINE. 1-161

6.0 SYSTEM DESIGN.. 1-163

6.1 SYSTEM TRAFFIC FLOW. 1-165

6.2 SYSTEM SOFTWARE. 1-166

6.3 SYSTEM AVAILABILITY................. 1-167

7.0 FACILITIES STUDY 1-169

7.1 RISK ANALYSIS. 1-170

7.2 LOGISTICS SUPPORT... 1-170

7.3 PHYSICAL REQUIREMENTS. 1-171

APPENDIX A. .I........... 1-A-I

APPENDIX B. .I........................ 1-B-I

APPENDIX C. .I....................... 1-C-I

iii

TABLE OF CONTENTS

PAGE

APPENDIX D. .I...........- D-1

APPENDIX E. .I........................-E-1

APPENDIX F. .I....................... 1-F-I

DIVISION 2 THE THREE-DIMENSIONAL AERODYNAMIC

IMPLICIT 	CODE

1.0 	 INTRODUCTION.................. 2-1

2.0 	 CODING STRATEGY FOR THE 3-D IMPLICIT ALGORITHM . 2-2

2.1 	 MEMORY HIERARCHY 2-2

2.1.1 	 MAIN MEMORY... 2-2

2.1.2 	 INTERMEDIATE MEMORY. 2-3

2.1.3 	 BACKING STORAGE 2-3

2.2 	 FUNCTIONAL PARALLELISM 2-4

3.0 	 THE STEP SUBROUTINE. 2-7

3.1 	 SLABS. 2-7

3.2 	 J-SWEEP DIRECTION................. 2-11

3.3 	 BTRI 2-19

3.4 	 K AND L SWEEPS 2-20

4.o 	 THE RIGHT-HAND SIDE COMPUTATION. 2-25

5.0 	 RIGHT-HAND SIDE--VISCOSITY AND TURBULENCE

COMPUTATIONS 2-29

5.1 	 VISRHS ... 2-29

5.2 MUTUR. 2-29

APPENDIX A. 2-A-i

APPENDIX B. 2-B-I

DIVISION 3 THE THREE-DIMENSIONAL

1.0 	 OVERVIEW 3-1

2.0 	 OVERALL ANALYSIS 3-3

2.1 	 Data Handling. 3-5

2.2 	 Speed Optimization 3-6

3.0 	 IMPLICIT METHOD. 3-10

4.0 	 EXPLICIT METHOD. 3-14

5.0 METHOD OF CHARACTERISTICS 	 3-16

6.0 	 IMPLICATIONS 3-21

iv

TABLE OF CONTENTS

PAGE

APPENDIX A.......... 3-A-1

APPENDIX B 3-B-I

APPENDIX C. 3-C-1

DIVISION 4

1.0 INTRODUCTION 4-1

2.0 THE GISS MODEL 4-6

3.0 GISS MODEL VECTORIZATION 4-14

4.0 THE MIT MODEL. 4-20

5.0 SPECTRAL CODE ANALYSIS 4-30

APPENDIX A. 4-A-I

APPENDIX B. 4-B-I

APPENDIX C. 4-C-I

APPENDIX D..... 4-D-I

DIVISION 5 TECHNOLOGY SURVEY UPDATE

DIVISION 6 NASF RELIABILITY-AVAILABILITY EVALUATION

FMP Reliability Evaluation............... .. 6-I

APPENDIX A......................... 6-A-i

APPENDIX B. 6-B-I

APPENDIX C. 6-C-I

Introduction .. . _............ 5-I

Critical Circuit Technologies 5-I

Auxiliary Memory Technologies. 5-4

NASF System Reliability Evaluation. 6-3

APPENDIX D................. . 6-D-I
.......

APPENDIX E. 6-E-I

APPENDIX F....... 6-F-1

V

TABLE OF CONTENTS

PAGE

APPENDIX G. 	 6-G-1

APPENDIX H. 6-H-I

DIVISION 7 	MAINTENANCE STUDY FOR THE NUMERICAL

AERODYNAMIC SIMULATION FACILITY

Strategy Assumptions. 7-1

Field Organization.... 7-1

Preventive Maintenance. 7-2

Computer Aided Maintenance 7-3

Maintenance Software. 7-3

Logistics 7-4

Technical Support..................... 7-4

Maintenance, Non-CDC Equipment. 7-4

DIVISION 8 	MAINTENANCE SOFTWARE ALTERNATIVES

FOR THE 1980s

1.0 Introduction 	 8-1

2.0 Existing Maintenance Software Overview 8-2

2.1 General Features.. 	 8-2

2.1.1 Maintenance Control Unit 	 8-2

2.1.2 CPU Off-line Diagnostics 	 8-2

2.1.3 CPU On-line Diagnostics. 	 8-3

2.1.4 PDC Diagnostics. 	 8-3

2.1.5 Fault Isolation. 	 8-3

2.1.6 Error Logging and Recovery 	 8-4

2.2 Summary... 8-4

3.0 Alternatives For The 1980s 	 8-5

3.1 System Recommendations . . .	 8-5
...........

3.2 Hardware Recommendations 8-7

3.3 Future Maintenance Software Development. 8-8

3.3.1 Fault Isolation	 8-8

3.3.2 Operational Summation...... 	 8-8

3.3.3 Loosely Coupled Network I/O. 	 8-8

3.3.4 Application of Gate Simulation Data Base 8-9

3.3.5 On-line. 	 8-9

3.3.6 Error Logging.................... 	 8-9

3.3.7 Recovery. 	 8-10

3.3.8 Concurrent Maintenance 	 8-10

4.0 Implementation Goals and Strategy. 8-11

4.1 Goals. 	 8-11

4.2 Strategy 	 8-11

4.2.1 Hardware Strategy. 8-12

4.2.2 Operating System Strategy. 	 8-12

4.2.3 Maintenance Software Strategy. 8-12

vi

TABLE OF CONTENTS

PAGE

4.3 	 Attainability................... . 8-12

DIVISION 	9 INSTALLATION ORGANIZATION/OPERATION

Manpower Requirements........... 9-1

Data Center Supplies................. . .. 9-6

Services....................... . .. 9-8

Summation................. 9-10

DIVISION 	10 NASF PHYSICAL REQUIREMENTS UPDATE

DIVISION 	11 SYSTEM SIMULATOR SUMMARY AND RESULTS

1.0 	 Definition of System to be Simulated....... . 11-1

1.1 	 Stations 11-3

1.1.1 	 The SPS. 11-3

1.1.2 	 The FMP......... 11-4
.................

1.1.3 The DSK. 	 11-5

1.1.4 The GRF.. 	 11-5

1.2 The Loosely Coupled Network....... 11-6

1.3 System Philosophy, Principles, and Groundrules 11-8

2.0 Simulator Characteristics. 11-10

2.1 	 Code Structure 11-10

2.1.1 	 Central Theme - LCN Mechanics........... 11-10

2.1.2 	 Code Modules for Device Classes.. 11-11

2.2 	 Macroscopic Assumptions: Special Notes

Concerning the SPS. 11-12

3.0 	 The Simulator as a Tool. ... 11-14

3.1 	 Simulator Input. 11-14

3.2 	 Two Simulators. . . . 11-15
..............

3.3 	 Simulation Techniques.. 11-15

3.3.1 	 Full Run - Truncated Run 11-15

3.3.2 	 Light Load - Heavy Load. 11-16

3.3.3 	 Key Diagnostics. 11-17

3.4 	 Trial Runs on Three Different LCNs*......... 11-18

4.0 	 Results From Simulating The "NASF Usage Model" 11-23

4.1 	 Translation of Usage Model into Workload Input

for Simulator. 11-23

4.2 	 An Example Simulation................ 11-30

4.2.1 	 Characteristics of the Run 11-31

4.2.1.1 	 Job Arrivals 11-31

4.2.1.2 	SPS Utilization. .*.,.*.*.,.......................11-32

4.2.1.3 	The FMP Execution Queue. 11-34

4.2.1.4 	 FMP Utilization... 11-34

4.2.1.5 	Throughput and Turnaround Statistics 11-34

4.2.2 	 General System Response.. 11-36

4.2.3 	 Variations on the Example. 11-37

vii

4.3

TABLE OF CONTENTS

PAGE

4.2.3.1 	 Different Arrival Statistics 11-37

4.2.3.2 	Different LCN Geometry 11-37

4.2.3.3 	Effect of Change in SPS Performance and Load 11-38

4.2.3.4 	 Effect of Changing the Priority of a

Job Class... . . **.*.*.*.*.....................11-38

4.2.3.5 	 Simul.ation. of the- N-ig-ht Shift Workload 11-39

Conclusions. 11-39

11-A-I
APPENDIX 	A.

REFERENCES. 	 R-1

viii

DIVISION 1

GENERAL NARRATIVE AND RATIONALE

1.0 INTRODUCTION

The technological advances that seem to create a new break
through in high speed computer development each passing day

unquestionably excite the scientists whose investigations demand

seemingly limitless amounts of computational power. Until

recent developments in reliable production of high performance

Large Scale Integration (LSI) and automated computer design

methodology, such insatiable computational requirements had to

be met, mainly, by manufacturers of 'standard product'

computers. The goals of such standard product machines were

necessarily linked to the business objectives of the producing

manufacturer. These objectives, of necessity, have been the

result of compromises made between many complex factors -- cost,

performance, compatibility, software support, product line

integration, and the realities of design, schedule, and

manufacturability. On the surface, at least, the production of

a 'special purpose' computer could avoid these numerous

compromises, and thus achieve performance levels for a narrow

range of problem charcteristics substantially in excess of what

the standard product machines could yield. This premise is

based on the assumption that the special purpose machine and the

standard product machine would be built from similar if not

identical technologies, and, with similar if not identical design

techniques.

The reason such an approach has not been truly practical for a

manufacturer until recent innovations in design and silicon

technology have occurred is simply the high degree of risk

involved in such a project. The risks are considerable -- cost

overrun, schedule delays, reliability, maintainability, software

development lead time, attaining performance objectives being

just a few that haunt any prospective vendor of a massive

central computer system. The risks to the consumer are equally

great; however, a clever consumer can at least make the

manufacturer assume the burden of financial risk for the

hardware itself with judicious use of contract clau'ses. Despite

the incredible risks, the potential for solving a heretofore

unsolvable class of problems on such a computing ensemble may

justify the challenge, particularly if the special purpose

computing facility is successful, resulting in a clear-cut

savings in time and dollars.

A particular class of problems has been identified as offering

the potential for great gains in cost and time if the

appropriate computing system can be found to house them. This

set of problems is the simulation of fluid flow around

1-I

three-demensional bodies, both in wind tunnel environments and

in free space. The application of numerical simulations to this

field of endeavor promises to yield economies in aircraft design

due to reductions in tunnel tests, model designs and

construction, and various flight conditions. In addition,

particularly in transonic flow analysis, numerical simulation

may produce results that would be obscured in physical tunnel

tests. This class of problems also exhibits other computational--
characteristics such as massivequantities-of data required for

three-dimensional meshes and extremely heavy arithmetic load for

each solution. A large central processing system capable of

crunching the Navier-Stokes solution seems to be called for in

this case. Such a system must be capable of holding the data

associated with these very large problems, achieving a problem

solution in a reasonable amount of time (say about 10 minutes),

and then ordering the results in a form that can be easily

understood.

The question then arises, "Can a specially designed computer

system be built which will provide the necessary power for this

specific set of problems?". A corollary question is "Will a

specially designed computer system for flow modeling yield

performance substantially greater (a factor of at least 10

times) than a high-performance standard product available in the

same time frame?".

It is this set of questions that has been raised by NASA, and

submitted to those manufacturers who profess an interest in

extremely high performance computer development. To answer

these basic questions and those questions which derive from

them, such as "What are the risks and costs of such a project?"

NASA had engaged Control Data Corporation to pursue a two year

study into the feasibility of construction of a centralized

Numerical Aerodynamic Simulation Facility (NASF) in the time
frame of 1980-1984. This study has been segmented into three
parts -- documented in references 1 and 2, and in this report -
each of which address in increasing detail the characteristics
and feasibility of a full scale NASF.

1.1 OBJECTIVES

As understood by Control Data, the ultimate goal of NASA is to

create a facility for flow simulations that can cope with the

volume of data needed for three-dimensional models and with

complex computations necessary for a continually maturing

mathematical solution to the flow equations. This goal is

achievable to the extent that sufficient computer power is

available to provide system throughput,which can suffice for

effective aircraft design as well as meaningful flow research.

NASA-Ames researchers have determined that a maximum allowable

compute time for the efficient conduct of aerodynamic design is

on the order of ten minutes per full solution. In addition, the

production models have been determined to need meshes on the

order of 1OOx1O0x1OO data points. These two qualities

immediately circumscribe the memory and arithmetic performance

1-2

requirements for the computational portion of the NASF. The

computer industry's best projections for the period 1980-1984 do

not reveal any potential standard products that can achieve

sustained performance of even 1/10 of the requisite

calculational performance of the NASF, let alone the memory

capacity. The overall objective of the NASF studies has been

then to determine if and how a specialized computer system might

be built in this time frame to meet NASA flow modeling goals. A

somewhat invisible objective of these three study efforts has

been to test the corporate willingness of candidate

manufacturers to engage in this high risk activity. Throughout

the remainder of this report, this last 'hidden" objective must

be kept in mind, since despite the best affirmations of

feasibility and success for the NASF, the absence of vendor

interest or support will guarantee that the endeavor will never

be launched.

Given the overall objectives, the first study period wa-s

commenced with the following objectives:

a)'Assessment of architectural and technology alternatives

to creation of the main computational component of the

NASF, the Flow Model Processor (FMP).

b) Instructing NASA personnel in the implications of a)

above.

c) Identifying computational characteristics of simulation

codes.

d) Establishing at least one hardware model, using

realistic technology that could achieve the goals of

the NASF.

e) Preliminary risk analysis for the conduct of such a

project.

f) Identifying the key software development considerations

for such a large scale system.

At the conclusion of the first study it was determined that a

computer system could be designed around the characteristics of

the Navier-Stokes solutions employed by NASA-Ames researchers.

To a minimal extent a machine structure was arrived at that

could conceivably be constructed with technologies that should

be available in the 1980-1984 period. An extension was then

launched to the first study, intended to further refine the FMP

architecture and to develop additional information for NASA

planners who were then deeply involved in making the NASF a

reality. The objectives of this study were thus -similar in

nature to those of the first period, with the exception that

certain aspects were to be scrutinized 'in much greater detail:

a) Review of technological developments as they might apply

to the construction of the FMP.

b) Detailed modeling of the FMP to provide structural

simulation of candidate code sequences.

1-3

c) Analysis of the three-dimensional flow models as they

would perform on the proposed FMP structure.

d) Development of detailed reliability data from more

refined knowledge of the FMP design.

e) Specification of the general functional capabilities

needed for the software systems for the FMP and their

relationship to the NA-SF i-n which it is imbedded.

This second study concluded again that a machine of the

essential power was buildable and could be made to meet

acceptable standards of reliability, availability, and

maintainability (RAM). Before such a large scale effort could

be launched however, additional material needed to be developed.

Hence the institution of the final "study" effort of the NASF

project. The overall objective of this effort was to provide

additional detail and additional answers to NASA scientists and

planners so that they might begin the lengthy and arduous

procurement process for such a system. The objectives of this

final study in order of original importance were:

a) Derivation of detailed and reliable cost data for every

segment of the project.

b) Validation of the FMP design for functionality and

performance at a design level more detailed than the

previous structural model.

c) Simulation and analysis of the data flow among the major

FMP components.

d) Development of total NASF system load analytical

techniques to provide for configuration evaluation.

e) Detailed specification of programming languages and

operating system structure for the FMP.

f) Examination of two computational models with dissimilar

characteristics to the aerodynamic codes, specifically

a spectral weather code and a finite-difference weather

code, to determine their performance on the special

purpose flow model processor.

g) Simulation of the final FMP design in execution of the

four identified performance metrics: the 3-D implicit

and 3-D explicit Navier-Stokes solutions developed by

Ames and the spectral and finite-difference weather

models developed by other NASA. agencies.

h) Development of probable system loads created by

potential users of the NASF when it becomes fully

operational.

1-4

i) Final update on technological alternatives in the

1980-1984 period for construction of an FMP.

1.2 INTERRELATIONSHIPS OF THE VARIOUS STUDIES

All study efforts under this NASF project since its inception

have been cooperative and interactive in form and style as

regards the relationship between NASA investigators and Control

Data engineers. It is also impossible to discuss any reasonable

conclusions in this final report without taking into account the

other side of this study "triangle", the efforts of the

alternate contractor, Burroughs Corporation, as they pursued the

same objectives on behalf of NASA. The three-way interaction of

these parties, Ames, Control Data, and Burroughs, has not only

served NASA's aims well but, at Control Data it is believed that

the final FMP and NASF structures of both vendors have benefited

by the competitive emphasis that two parallel approaches has

provided. Thus, once the first study was completed and

published, the heavy reliability emphasis placed by Control Data

was adopted in part by Burroughs' designers. In a similar way,

Burroughs' continuing concentration on the problems of data flow

and accessing in the Navier-Stokes codes were brought to Control

Data's attention and affected many redesign decisions for the

FMP.

It can then be seen that each study to date owes not only its

objectives to the groundwork laid by the previous studies, but

even more importantly, each subsequent study derives much

material from the evaluation of the competitive report for the

previous effort as well as from extensive critique of each study

by NASA-Ames personnel. The result of this is that in many

instances major structural changes have been made and remade as

each study progressed. In addition, conclusions have been drawn

and redrawn in several areas due the interaction mentioned

before and the changing perspective that comes with the passage

of time. For example, the original choice for a bulk, random

access memory (RAM) for the Control Data version of the FMP was

designated as "bubble memory", with Charge Coupled Devices (CCD).

being givbn second place in consideration. In the intervening

two years of these studies, actual hardware has been

constructed, certain componentry has come into production and

newer components have reached unexpected cost levels. The

result is that the intermediate storage for the Control Data FMP

is now conceived as consisting of large scale RAM chips of

moderate performance, in place of the CCD or bubble memory

originally chosen.

This report cannot completely supplant, the material developed in

the previous study periods. Instead its contents may be said to

selectively replace or update previously reported data or

conclusions in addition to providing new material in those areas

not covered in prior studies. Thus this report, combined with

references 1 and 2 constitute all the material developed by this

contr.actor to assist and support the procurement of an

1-5

NASF, as well as providing guiding information to aid NASA in

its decision processes about the entire project. Given the

dynamic nature of the technological evolution, and more

importantly the state of the economic climate that directs major

manufacturing decisions, many of the approaches and conclusions

reached herein can be said to remain valid for a period of no

more than a year. This does not mean that the recommendations

and predictions given for, say year 1983 will not prove to be

correct. What it does mean is that if there is as much as a one

year delay in initiating any of the next steps in the NASF

procurement, design and construction, the choices for

technology, architecture, and support processor systems might be

radically altered to achieve better cost, performance, and

reliability levels.

1.3 THIS REPORT AND THE OVERALL PROJECT

To provide as much quantitative assurance as possible that the

proposed NASF project is feasible, it has been necessary to

develop almost all of the hardware and software components to a

relatively high degree of detail. In the case of the design

chosen by Control Data, this has meant selecting a technology,

which is in existence and whose manufacturability and

performance have already been proven. Using this technology a

detailed architecture was developed and from that a design

carried to enough detail that a reliable simulation could be

produced for it, and relatively high-confidence component counts

projected. In addition the support processing system needed to

be sized and costed. What is represented in this report then is

a model for a NASF/FMP ensemble using a possible approach to

meeting NASF goals. If this specimen system is truly feasible,

then it follows that there are other systems equally feasible,

and NASA's concern about feasibility is satisfied. The

candidate system offered in this report represents one which, at

this point in development, Control Data considers the best

possibility in terms of performance, reliability, and true

buildability with minimum risk.

In no way should this candidate architecture and design become

one that is specified for the final NASF, since there are still

alternatives to be investigated. It should be emphasized that

the structure and design numbers offered in this report are to

support the possibility of a successful conclusion to NASA's

search for an effective facility. The design and structure

included here should be evaluated only in light of determining

feasibility of the proposed NASF, and should not necessarily be

considered as the candidate architecture for such a project to

be compared with other competitive schemes, except where Control

Data has called attention to the effects of architectural

differences on some problem formulations.

1-6

1.4 DEPTH OF STUDY

Since this study, as well as others, is to form the basis of the

procurement of the complete NASF it must necessar-ily provide as

much detail as possible to support the many activities required

of NASA and the NASF manufacturer. Given the broad scope of

this study and limitations on the resources available, it was

not entirely possible to pursue all aspects of the study to the

same level of detail. The various tasks were thus met in a

somewhat dynamically assigned priority order:

a) The need for detailed and exhaustive cost data by NASA

in the summer of 1978 to assist the preparation of

funding requests became the focal point of most of the

project's technical resources during the early period

of this study. Control Data attempted, within the

tight time constraints, to conduct a cost analysis for

production of the NASF similar to those analyses

undertaken for its own product families. Though it was

desired that a confidence factor of 10% be ascribed to

this activity, the brief time availaable for full cost

detailing made this goal almost impossible to achieve.

Instead each major factor was given a separate

confidence factor, with the expectation that as this

study progressed some of the costing.could be

reevaluated and confidence improved. In fact, the
degree to which some of the unknowns of the summer of

1978 were understood has not improved substantially,

and probably will not until actual software design has

been carried to completion. This is due to the fact

that the major cost uncertainties revolve around the

software implementation and maintenance strategies. A

good deal of detailed hardware design had to be

completed to provide the performance and cost data for

this study. In the area of FMP hardware the confidence

in the cost data has improved to where it is thought to

be within the variance goal of 10 percent, for the most

part.

b) Hardware redesign of the FMP was a continuing operation

during this study period in response to criticisms from

Ames, new aspects of the flow codes that were revealed,

and the necessity for improving the performance of the

FMP on the weather codes. A greater design concern was

the reduction of component counts to improve the cost

and reliability of the FMP. This led to the reduction

of the number of vector pipelines to 5 (4 active and

one spare) using a technological "trick" to double the

processing bandwidth of the resulting pipelines. -_

c) Development of the FMP simulator as a reliable and

useful tool for measuring code execution, was a

continuing task as the changing characteristics of the

machine design had to be injected into the simulator,

1 -7

and operational use of the simulator revealed

diagnostic and analytical aids that needed to be

added.

d) Development of the NASF system model simulator began in

mid 1978 and, as more has become known about the

probable environment of the Ames NASF, this simulator

has become more important as an evaluative tool for

both CDC and NASA reseachers.

e) Development of an FMP programming lanugage which was

acceptable to potential NASF users, compiler writers

and language standards specialists became an

interactive exercise with many alternatives weighed,

rejected, or criticized. The final outcome of this

effort is given in the section on language analysis and

design.

f) Encoding of the implicit 3-D flow model in this language

was done to demonstrate the language and how it would

be mapped into machine instructions for the FMP.

g) Encoding of portions of the explicit code was done to

illustrate the operation of the FMP on code sequences

not necessarily similar in computational

characteristics to the implicit code.

h) Analysis of the mathematical and computational

characteristics of the weather codes was done to

determine what the effect of the FMP architecture would

be on those models.

i) Operating system software for the FMP and the full NASF

system was examined and functional characteristics

defined for those components not already available in

the standard software that will be available on the

front-end machines (support processing systems).

j. A study of the reliability, availability, and

maintainability of the FMP was conducted by Control

Data Supercomputer Operations reliability specialists.

k) A review of previous technological projections and

recommendations was conducted to provide update

information on what is realistically available to NASF

implementers in the 1980-1984 timeframe.

1) The cost data provided NASA in 1978 was reviewed and

updated wherever possible with-more recent

projections.

1-8

A number of activities were not carried out to the extent

desired at the outset of this study effort. In some cases

resource and time limitations dictated this deficiency, in

others changing priorities or interests led to truncating a

particular study effort. Some examples of this are:

a) A full-fledged and detailed specification of the FMP

operating systems was not produced. The vestigial

nature of this operating system (described in reference

2) truly eliminates the need for extensive operating

system functions, however the placement of some

functions (data editing and analysis, for example) has

net yet been decided for the NASF, and thus uncertainty

remains as to the need for certain functions in the

-FMP.

b) A full coding and simulation of the weather models was

not done by Control Data. Some portions of the

spectral model were coded into FMP FORTRAN and results

estimated. In addition, some investigation of the

finite difference was done. Discussion of these

activities, is presented in Division 4.

c) A full coding and simulation of the explicit 3-D flow

model was not done. Instead portions of this code

which had characteristics dissimilar to the implict

code were vectorized in the most straightforward manner

possible. This effort was conducted to resolve two

questions.

1) 	If the FMP is designed primarily to be

efficient for the implicit code, what is the

degradation in performance to be expected of

codes with different computational behavior,

.such as the explicit code?

2) 	What level of performance is achievable by a

"first attempt" at utilizing the FMP on the

part of new FMP programmers?

1-9

2.0 FMP DESIGN

2.1 HARDWARE

The FMP that is described here is the result of an evolution in

thinking and implementation since the first attempt to arrive at

a sufficient machine structure for the flow model solutions in

the first study period of this project. It is, admittedly,

based- on- the processing concepts that have emerged from the

Control Data STAR-100 and CYBER 200 computer systems. To

improve the project's chances for success it has been alleged

from the outset that a good deal of the design, implementation,

and software development must be grounded on existing work, or

work in progress; the risk of beginning literally "from scratch"

on an effort of this magnitude is too great to tempt rational

developers into making the attempt. The basic principles for

creation of the Control Data Flow Model Processor are then:

a) A massive, centralized -memory system which serves as the

coordinating medium for data transfer and processng

control with sufficient porting to be provided in this

memory for a multiplicity of concurrent processes to be

carried out.

b) The maximization of functional parallelism which employs

concurrency along functional lines rather than

providing a multitude of concurrent but identical

functional elements.

c) The minimization of the number of identical parallel

processing elements through the use of the most

aggressive- technologies available. It is claimed that

two processing elements -operating at a clock cycle of

two nanosecond-s-provides superior control,

interconnection, and reliability characteristicsto an

ensemble of forty processors operating at a 40

nanosecond clock cycle, although on the surface both

would seem to yield an effective processing rate of one

step every nanosecond. (Appendix A provides additional

information on clock rates as a measure of

performance.)

d) A high bandwidth and multi-access I/O connection to all

other processors and storage media in the system, to

provide multipathing for system availability as well as

for performance reasons.

e) The employment of a FMP-type processor as a

computational engine only, leaving all tasks other than

the mathematical solution of flow equations to other,

conventional processors attached to the system.

1-10

Given these desirable principles, a hardware design for the FMP

can be completed within the constraints of technology

availability, reliability, and maintainablity considerations,

and tradeoffs involving physical dimensions, power, cooling, and

interconnection limitations. The significance of these tradeoff

considerations will now be examined for each major component of

the FMP discussing the rationale behind the design presented in

detail in the FMP functional and instruction specifications

which can be found in Volume II of this report.

2.1.1 MEMORY SYSTEM

Far and away the most important part of the FMP is the memory

system, both in impact on the entire design and in cost for the

entire machine. Memory capacity is dictated by the requirements

of current and projected production problems, and by the

predicted needs of a class of research problems that may employ

the FMP. If the nominal production problem is based on metric

dimensions of 100x1OOx1OO elements, then the implicit code in

its present form will require 9 million 64-bit words to retain

just the flow variables. Another 5 million words are needed for

temporary results generated by each sweep required of the

"independent sweep method" of flow code solution. Another

couple of million words will be needed to hold locally temporary

vectors throughout the various subroutines in the flow codes.

The nominal space requirements can then be roughly guaged at 16

million words.

To make the FMP work most efficiently the capability is needed

to "stage-in" or "roll-in" one job whilst another is in process

so that no time is lost while transferring all the data to be

used in and out of the FMP. A buffer space of from 9 to 16

million words seems to be indicated by this strategy.

The term 'roll-in/roll-out' is derived from the Control Data

CYBER 70/170 scheme for memory management when a multiplicity of

jobs are contending for the CPU. The term usually referred to

the act of moving a job's entire CPU memory space onto disk to

make room for aother job. It was usually performed by hand on

the CDC 6600, and invoked only when the job in memory had a

an
probability of spending a protracted amount of time in idle

state (while an archived tape was being located by the operator,

for example). A small, but vital set of data about the job's

status was retained by the operating system so that it could be

'rolled in' at a-later time and restarted. In variants of this

'roll--in/roll-out' scheme the job, or portions of it, could be

moved to extended memory, rather than to disk, to be restored

later. In the FMP, the normal mode of.operation for batch jobs

will consist of readying a complete image of the job on disk,

transferring that image to the Backing Store (including code,

data base, and supporting parameters), and when space permits in

the Intermediate Memory, rolling in the job from Backing Store

to Intermediate Memory. At the completion of a job, its entire

image is rolled out to backing storage and thence to disk, under

some circumstances leaving the job of further data reduction

1-11

of the rolled-out data to the SPS, or perhaps another job

executed on the FMP itself. The basic ability to perform a

roll-in/roll-out operation opens a pandora's box of

possibilities for complicating the operating system. Performing

checkpoint-restart images, for recovery in the event of a system

failure, is one possible use of the roll-in/roll-out facility.

Another would be 'interrupt roll-out' where, under special

circumstances, the SPS (perhaps at the request of the user)

interrupts the present job in the CPU-.. The job. could be

roIled-out to backing storage or disk until the SPS either

performs an ABORT or CONTINUE function. Note that once these

facilities are in place, the incentive to take the next

potentially fatal step into time-sharing could become too

enticing. It is at this point that the systems developers must

exert some degree of discipline on FMP operating system design,

so that the FMP doesn't become an abused, general-purpose,

time-sharing machine, instead of a special-purpose,

batch-oriented computational engine.

Finally, the research problems that are contemplated may require

basic CPU-contained data bases of the order of 30 to 100 million

elements that must be accessed at speeds higher than can be

provided by existing rotating mass storage systems. Thus the

apparent resulting requirement is for a production code memory

of from 16 to 40 million words with expandability to about 200

million words.

Given the current technological predictions on componentry, it

is not possible to construct a single, homogenous memory out of

one single technology that would provide this range of memory

capacity, and still meet the bandwidth requirements of the

concurrent functional elements of the FMP.

The overall block diagram (figure 1) shows the FMP to possess a

three-level hierarchy of memory. Each level is designed with a

particular set of bandwidth, access time, cost, and component

counts commensurate with the volume of data contained. That is,

in short,, the larger the capacity the slower will be the access

time and the lower the bandwidth, in exchange for a significant

reduction in cost and failure rate on a per-bit basis. A fourth

"invisible" level of memory exists which consists of extremely

high performance components (effective access times on the order

of 3-8 nanoseconds) which are used as register files and high

speed buffers in the internal design of all functional units of

the FMP.

1-12

14M WA/APA e

5"

Fl

--
-- erO.PM~w

el
We ASl~USO.QA XA.. 154JtACS

.......
-

Mror
Nf,r

Figure 1. Basic FMP Configuration

2.1.1.1 LEVEL 1 MEMORY

The first, and most crucial memory is that called Main Memory

(or LEVEL 1 memory). It is this memory that provides the

effective bandwidth to supply operands to all parallel

functional units. Not only is bandwidth a consideration but

single-element access time must be minimized in this level of

memory so that those processes which are necessarily "purely"

scalar can be carried out at the-maximum rate, and essential

"transpose" operations on single elements can be accomplished in

minimum tme. This level of memory then contains the most

powerful and dense memory technology available. At this time

the practical limits prescribe the use of a high speed bipolar

.Random Access Memory (RAM) part which is organized as a 4096 by

access time of 16-20 nanoseconds.
1-bit storage device with an

sheer cost and number of such devices needed to build a
The

basic million-word unit of high performance memory make it

impossible to use this technology uniformly throughout the

machine. A reasonable limit, based on parts count reliability,

power and cooling requirements, and the physical geometry for

such a memory which affects access time, is the construction of

8 million 64-bit words employing this technology. If problems

can be done in 32-bit mode, this memory could house 16 million

32-bit elements. The speed of this memory part makes it

possible to organize the memory into four sets of eight banks

which, when strobed in a systematic way, can deliver data (or

accept data for storage) at rates up to 1024 bits per set every

CPU clock cycle.

This memory is organized in modules and ports with a 32-bit

Thus the single
half-word as the smallest writable segment.

error correctioni double error detection system (SECDED) is

organized in a sjimilar manner providing 7 bits of error

correction/detection for every 32 bits of data stored in

memory.

The minimum configuration of this Main Memory is 2 million

words, a size necessary to preserve the banking relationships

which support the large bandwidth of this memory system. Address

trunks and other controls are provided for possible later

technological extensions to memory chips of up to 65K bits. In

this case the maximum memory available for LEVEL 1 could be 128

million words. It must be pointed out that such a component is

not forseen (at the requisite performance levels) for at least

five or six years (well beyond the target time frame).

Additionally, such parts will be more expensive than the current

componentry, and thus might motivate a search for a more dense,

and much less expensive part for the other memory hierarchies.

2.1.1.2. LEVEL 2 MEMORY

Since the maximum practical size of the high performance memory

has been limited by engineering fiat to 8 million words, some

1-14

means must be sought for holding the bulk of the nominal flow

model data. There exists at present one memory -system composed

of medium performance '32K by 1-bit semiconductor devices (two

16K by 1-bit chips per package) which can provide a reasonably

high bandwidth and single-element access times of approximately

125 nanoseconds. The projection by technological experts that a

131K by 1-bit device (two 64K by 1-bit chips per package).for

this system will be available in the timeframe of FMP

construction has been established with high confidence. A

medium performance system can thus be configured for data

storage of from 8 to 32 million 64-bit words (16 to 64 million

32-bit words) with peak bandwidths on the order of 20 billion

bits per second. This memory would be organized on a 64-b-it

basis with 8 bits of SECDED for every 64-bit word.

Note that such a memory trades off an access speed 4 times

slower than the Main Memory and a bandwidth 12 times slower for

a parts count reduction of 8 times for the same volume of

memory, and probable cost ratio in favor of the LEVEL 2 memory

of 4-6 to one.

The very nature of Intermediate Memory (LEVEL 2) implies that

the time required is greater to deliver data to other functional

elements (Vector or Scalar Units, for example), thus some

electronic delays are permissible in transmission lines between

the Intermediate Memory and the other memory systems. This

means that the LEVEL 2 memory can be engineered into a

stand-alone unit which eases expandability (for the range of

memory configurations) and improves accessibility for

maintenance actions.

It is in LEVEL 2 memory that the bulk of all flow model data

will reside for the large production problems. Smaller problems

may, in fact, be totally contained in the 8 million-word Main

Memory. The remainder of the LEVEL 2 memory will be used to

stage other jobs in and out while the current job is in

progress.

2.1.1.3 LEVEL 3 MEMORY

To simplify hardware scheduling of input and output and to

provide a moderate performance memory for the large research

problems, a third level of memory is shown on the block diagram

(figure 1). This memory would be limited to block transfers only

of 32K elements each. By establishing, this limitation several

high density, low cost, slow access technologies can be

employed. This block transfer characteristic is paticularly

useful when considering the employment of charge coupled device

(CCD) technology. Although the beginning of a particular block

may take several milliseconds to reach the output port of the

CCD shift register, this wait can be avoided by starting data

transfer at any point in the block with the limitation to always

transfer an entire block. At the cost of some counters in the

CCD memory system and the Swap Unit to which it is attached, the

access time to select a given block can be reduced to near

zero.

1-15

The LEVEL 3 memory supplies or accepts data at an effective rate

32 bits every clock cycle at its single data port. This data

moves to/from Intermediate Memory (LEVEL 2) via the Swap Unit.

If a 9 million-word job has been set up and held in this memory

awaiting execution, it can be rolled in to Intermediate Memory

in 18 million clock cycles which is approximately 288

milliseconds, assuming no major conflicts in access to either

the LEVEL 2 or LEVEL 3 memory. Since the expected length of

execution for the- nominal job is on the order of 5 to 10

minutes, there is obviously a large window in which the 288

milliseconds can be expended.

The LEVEL 3 memory can be absent from the FMP configuration if

initial installation requirements cannot justify its purchase;

in this case however, there will be some degradation in

performance where "explicit" input and output are required by

the executing code. The transfers to disk cannot be scheduled

by the hardware, since a ready-resume LEVEL 3 memory is the

normal I/O mechanism for the FMP. Therefore I/O transfers

directly to rotating mass storage may involve many "lost

revolutions" due to the priorities given the Map and Vector

Units for memory access.

A better alternative to initially configuring the LEVEL 3 memory

would be to install a minimum CCD memory-system of 8 million

words, even though this is a smaller capacity than the necessary

32 million words in LEVEL 2 memory (word = 64 bits plus SECDED).

Software and hardware would thus operate exactly as it would in

the final configuration. The LEVEL 3 memory is designed for a

maximum of 256 million words, while current parts projections

offer a practical limit of 128 million words for the 1980-1984

construction period.

2.1.1.4 ,MEMORY TO MEMORY DATA FLOW

Further knowledge of the memory hierarchy might be gained by

following the movement of data through the FMP as it might occur

for a large production problem. The initial flow field and mesh
coordinates will have been stored on rotating mass storage (RMS)

prior to initiating data tran-sfer for a particular job.

1) While other jobs are in progress on the FMP, the
incoming job's data is moved from RMS to the Backing
Store through a buffer in Intermediate Memory. The I/O
channel connections to the serial data trunk can
provide 50 megabits of data at peak rate, however, the
disk transfer rate is 38 megabits per second. With
four channels transferring in parallel the rate is 4 x
38 = 152 megabits per second, but, on the average-, half
the time of each is spent reading and half is

1-16

spent writing. Also, latency and gaps on disk reduce

the effective rate approximately by 2. Therefore, the

nominal 9,000,000 word data base (576,000,000 bits of

data) can be moved in 576,000,000/((38,000,000 x

4/2)/2) = 15.16 seconds, if no other memory conflicts

or trunk conflicts exist. In reality the time required

will be somewhat greater than this, as other demands

for Intermediate Memory and Backing Store take priority

over the I/O transfer. Sufficient bandwidth is

provided to make this factor negligible. Intermediate

Memory bandwidth is 21.3 gigabits per second of which

about one-fourth (or 5.3 gigabits per second) is

available to I/0 transfer.

2) 	Once the data is completely stored in the Backing Store

(LEVEL 3 memory) the job is ready for staging into.

Intermediate Memory for execution. As stated

previously, this staging process requires about 288

milliseconds for the entire data base.

3) 	During job execution the flow model program moves slabs

of data from Intermediate Memory to Main Memory using

the Map Unit. When processing is completed these slabs

are moved back to Intermediate Memory. At the

conclusion of the job, the resulting data base is

swapped back to the Backing Store (or rolled out of

Intermediate Memory). While the job is in execution,

the program may call for the dumping of all or portions

of the flow variables for output to the user. These I/O

operations are normally staged to the Backing Store and

then scheduled for transfer to RMS in block transfers

at the convenience of the hardware system.

4) 	The final solution variables and intermediate ones

dumped during execution are transferred back to RMS for

further editing and evaluation by the support

processing system.

Note that the Backing Store is not necessary for execution of

the nominal job streams, but in the event that it is absent, the

FMP may not be fully utilized. For example, some codes may

require a high utilization of Intermediate Memory for data,

leaving a small portion of memory available for staging

operations. If one-third of the Intermediate Memory is reserved

as a staging buffer for the next job, a minimum of 2 times 15.16

seconds will then be required to accomplish the transfer out of

Intermediate Memory of a previous job's data and transfer into

Intermediate Memory of the next job's data. This is a

theoretical minimum of 30.32 seconds. It is possible that some

jobs executing in the FMP will finish before the nominal data

transfer can be completed and thus the FMP will become idle.

For larger research problems where the data base cannot be

completely held within the Intermediate Memory, a segment, or

1-17

perhaps all, of the data would be held in the Backing Store, and

transferred in "slices", "slabs", or "pencils" to the

Intermediate Memory and thence dismembered by appropriate map

operations. For such cases a Backing Store memory is required.

2.1.2 FUNCTIONAL PARALLELISM

One of the significant outcomes of the initial studies for the

NASF was the unanimous conclusion that the computational power

of the FMP would have to come from parallel processing

techniques as well as ,from aggressive use of state-of-the-art

technology. A major difficulty in the effective employment of

parallel processes lies in the means of hardware and software

control of such assemblies.

While good progress has been made in programming and management

of parallel jobs and, in many cases, parallel tasks in large

systems, the focusing of a multitude of identical processors on

a single task has not yet reached practical utility in the field

of general problem solving, particularly of the type seen in the

NASA flow models. One current solution to the programming and

control problem has been the evolution of "vector processing"

which can perform arithmetic on a data stream (vector) at rates

dependent on how many vector operands can be processed in a

given clock cycle. This rate is a function of the bandwidth of

the "vector unit" and the data ports that feed it. It is a

reasonably simple design problem to provide a range of vector

unit bandwidths, either by using extremely fast technology in

the vector hardware, pipelining the data through the units, or

by providing several identical arithmetic elements in a pipeline

all of which operate in "lock-step". The designer may also

choose any combination or all of the above options to derive

arithmetic performance. The key feature of this approach is

that the programmer thinks and codes in terms of vectors without

attempting to provide separate control to the system for each

one of the vector processing elements. If this programming

approach is carefully controlled, the user can be made ignorant

of the actual number of parallel arithmetic elements actually

enagaged at any one moment. The hardware control becomes one of

identical operation of such parallel arithmetic units, each on a

different portion of the incoming data stream.

An examination of the flow codes shows that arithmetic

processing is only a fragment of the total functional processing

that must be done, since the data must be organized into vectors

where necessary, or must undergo some form of scalar calculation

in some cases. As is common in existing computer systems,

direct methods exist for the parallel execution of arithmetic

functions while data is being transferred concurrently to and

from I/O channels; so too, the FMP can perform a variety of data

movement activities, all simultaneous with vector arithmetic

processing.

1-18

This concept of concurrent, asynchronous -execution of different

functions upon the data in memory is the major programming and

hardware-control principle of Control Data's proposed Flow Model

Processor. The functions which can operate in parallel in this

mode are:

1. 	Input/Output

2. 	 Backing Store swaps

3. 	 Intermediate Memory map operations

4. 	 Main Memory map operations

5. 	 Scalar processing, including management of the

instruction stream

6. 	Vector processing

Input/output execution is similar to that in most other modern

day processors. Control of the actual data transfers is handled

by the Programmable Device Controllers (PDC) that attach the I/O

channels to the network trunk. Requests to the PDC are found in

the form of software "messages" which are stored in Intermediate

Memory by the Operating System.

Backing Store swaps are handled by the Swap Unit, which behaves

much the same as the PDC does in I/O transfers. Requests for

swap operations are stored in Intermediate Memory by the

Operating System and processed by "firmware" in the Swap Unit.

The 	previous functions are directed and controlled by software

conventions established by developers of the Operating System

and 	firmware. The remaining four parallel functions are

hardware implemented processes that are initiated from the

single FMP instruction stream-. Once initiated, each separate

function proceeds somewhat asynchronously until it is complete.

Should one function depend on the data being processed by

another function, the compiler can establish this relationship

and 	ensure that hardware interlocks will prevent one operation

from starting until its predecessor is complete, through the

setting of dependency "keys". The coordination.of Vector and

Map 	Unit functions is handled by the Streaming Control -Unit

which resolves dependency conflicts, organizes and distributes

the 	setup data, and initiates the'appropriate streaming

operation.

Streaming operations involve the processing of sequentially

stored (or vector).data. The optimal performance.of the memory

system of the FMP is achieved when all memory accesses are

coordinated and a group of elements can be acquired at each

access. The FMP memory design goal is to guarantee that groups

of elements can be accessed and transferred to functional units

on a regular and continuous basis thus providing an unbroken

stream of operands to all attached parallel processors. The

Streaming Control Unit (see figure 2) delivers the appropriate

setup data to the Map and Vector Units and then initiates the

unit's activity. The scheduling of memory requests and the

buffering of data are then handled by the specific functional

unit (Intermediate Map Unit, Main Map Unit, Vector Streaming

Unit).

1-19

http:coordination.of

u"wo 4oP

$tA

4 4_ I StCAA/A' UN/

0

-ro

1.a

I A ro 1rrcR0ssoar

Figure 2. 'Streaming Control Unit

The Map Units can operate independently with their own memory

(Intermediate or Main Memory) and thus proceed concurrently, or

they can be linked to perform transfer (map) operations between

the two levels of memory. In all instances, the Scalar and

Vector Units operate concurrently with any or all other

functional units.

2.1.3 THE MAP UNITS

Block diagrams~shown in figures 3 and 4 display the organization

of the two Map Units. The specification and function of these

systems are detailed in Volume II. The major function of the

Map Units is to organize data from the original mesh structure

into optimal length vectors for processing by the Vector Unit

and then to reorganize the results into other mesh structures.

The various transformations that provide the functions to be

called mapping operations are described below.

1-21

tOOOR 1710

READ I O

-~rXM
MrO/rA

1 M009

ADORJSS

AON$

2,

1"'

P50

Mk

SloA
A

ADDW304WI4

A0 IQSEScnr0

SAC%~ N,.'S~ D XNt ,4'

Figure 3. Main Map Unit

rwT'crOsv
FROM r cf.~ - EATS,

COAIT4OLa

FILE D~A~T L

DATA

AODAS

soll

_______44___INriO X

ORS58 I

, r

Fiur 4. Ineredat

91

Map

de

Unit

R2

AOll

nrA

1. 	COMPRESS--A linearly stored vector of input elements is

input to the Map Unit, along with a binary string of

bits, one bit for each 64/32-bit data element. Each bit

of the bit string is ex-amined in order and if it is a

one, the. corresponding data element from the input

vector is transmitted to the result vector. If the bit

is a zero the corresponding element from the input

stream is discarded (not transmitted to the result

vector). Th-i-s is ill-ustrated in figure 5.

BIT VECTOR 11 10 11 11 lo l l1

A
SOURCE VECTOR A(O) A(l) A(2) A(3) A(4) A(5) Afi)

RESULT VECTOR [R(0) R(1) 8(2) 1R(3) R(n)

COMPRESS SOURCE WORD VECTOR A
BY BIT VECTOR B

GIVING RESULT WORD VECTOR R

COMPRESS ON "0"s IN B
(SELECT ON "1"s IN B)

Figure 5. Example of Compress

1-24

2. 	MASK--This operation inputs two vectors of data

elements and a single bit stream. As shown in figure

6, the input data streams could be labeled. A and B. The

bit stream is examined one bit at a time. If the

examined bit is a one the corresponding element from

the A data stream is transmitted to the result vector,

and the corresponding element from the B stream

discarded,. If the bit is a zero the corresponding

element from the .B stream is transmitted to the result

vector, and the corresponding element of the A stream

discarded.

SOURCE VECTOR A(O) A(l)IA(2)IA(3)IA(4) A(5)

II
RESULT VECTOR H(O I2u111 R(2) R(3)- RQ A(S) R(n)

SOBCVETO
SORCVCTR (0) 8(1)1 B(2) B(3) B8(4) 83(5) 8(n)

BITVECTOR C1 1 0 11 1 0 1 1-1=

MASK WORD VECTOR A
AND WORD VECTOR B

UNDER CONTROL OF BIT VECTOR C
TO GIVE RESULT VECTOR R

SELECT A STREAM ON "1"s OF BIT VECTOR
(SELECT B STREAM ON "O"s OF BIT VECTOR)

Figure 6. Example of Mask

1-25

3. 	MERGE--This operation merges elements of two input data

s--reams (A and B) according to a binary string of bits.

(see figure 7) If the examined bit of the string is a

one the next available element-from the A stream is

transmitted to the result vector; if the bit is a zero

the next available element of the B stream is

transmitted to the result vector. No element is.

discarded from either stream. The effect is to combine

all elements -of the- input stteams into a single

vector.

SOURCE VECTOR A AO)IA(1) A(2) A(3) A(4) I A() A(6)IA(7)A(i)

RESULT VECTOR R(O) :R(1) R(2) R(3) R(4) R(5) R(6) R(7) R(h)

SOURCE VECTOR

3IT VECTOR

[B(O) B(O) I8(2) 18(3 B(4) B(5) I6(6)1 B(7)

C1 0 1 1 0 1 0 0

MERGE SOURCE WORD VECTOR A
AND SOURCE WORD VECTOR B

UNDER CONTROL OF BIT VECTOR C
TO GIVE RESULT WORD VECTOR R

SELECT A STREAM ON "1"s IN C
SELECT BSTREAM ON "0"s IN C

Figure 7. Example of Merge

1-26

A variant of this instruction (shown in figure 8)

discards B stream elements if the bit is a one, but

does not discard A stream elements under any

circumstances. The effect of the operation is to

simultaneously decompress the A stream and insert the

decompressed elements into the corresponding positions

of the B stream.

A0
SOURCE VECTOR A(O) A(1) A(2) A(3) A(4) A(5) A(6) A(7) Ai)

RESULT VECTOR R (0) R1) R(2) R(3)R (4) R(5) RI6 R(7)" t R(n)

SOURCE VECTOR B()1 3) B(2) B(3) B(4) B(5) 8(6) B(I-

BITVECTOR C 1 10 1 1 0 1 _0 _ 0--
DECOMPRESS IS A COMBINED
MERGE AND MASK FUNCTION

DECOMPRESS SOURCE WORD VECTOR A
AND SOURCE WORD VECTOR B

UNDER CONTROL OF BIT VECTOR C
TO GIVE RESULT WORD VECTOR R

SELECT A STREAM ON "'"s IN C
SELECT B STREAM ON "0"s IN C

A STREAM IS MERGED

B STREAM IS MASKED

Figure 8. Example of Decompress

1-27

These .three operations facilitate the selection of data from a

matrix according to either preset criteria (a presto red bit

ve'tor) or data/execution dependent criteria (there are several

instruc'ions which generate the bit strings, called "control

vect6rs" based on data comparisons by the Vector Unit). The

compress, mask, and merge 6perations are not required for

optimum performance of the 3-D implicit code, but-are useful for

the explicit codes and essential to weather and structures

codes.

The key instruction in soliing the implicit code on the FMP

aside from the arithmetic operations are:

4. 	GATHER--The primary function of the Gather operation is

to collect non-contiguous data elements.into

sequentially stored vectors which can then be processed

effibiently by the Vector Units. The hardware can

collect non-sequential records; A record is a group of

sequentially stored elements which are accessed as a

single entity 'by the Gather operation. Non-sequential

single elements can 4lso be collected by treating them

as sing'le-element records. Figure 9 illustrates the

single-record Gather.

The elements (or 'records) to be moved are seIected

either b'y means df a list of indexe§, each of which

points to a record in memory, or by means of a

"stride", which determines the number of elements to be

skipped before another record, i's selected. In figure 9

' fixed stride of 10 was utilized to cause the movement

of elements 00, 10, 20, 30, 40, 50, 60, 70, 80, and 90

to the sequential vector X. The vector Y in figure 9

was formed by using a list of indexes which pointed to

elements 340, 630, 570, 493, 294, 596, 699, 798, 897,

and 697 of the original mesh. Note that the selected

elements need not, appear in any particular order and

thus can be essentially random. In place of a single

element the indexed list could.point to records of

data. For example the record length, RL, could be

'specified as 10 elements. The first record would begin'

at element 340 and would proceed sequentially through

element 349. The next record would begin at the

element pointed to by the next index, 630, and continue

through element 639. Of course, in this cas%, result

vector Y would be 10 times as long as in the

single-element exdmple.

1-28

x y

00 340

1o 630

20 570

30 493

40 294

50 596

60 699

70 798

80 897

9069

03 13 23 63 71 83 	 9

07 17 27 37 	47 57. 67 77 87T92

08 18 28 35848 55 6575 85 95

09 9 29 i 949 69 79 89 99 959

Figure 9. 	Examples of Gather with Fixed Stride =10 and

with Index List

1-29

In figure 10 the result vector is composed of records

stride intervals
of length RL=10 taken from the mesh at

The Map Unit then takes the
(ST=30) of 30 elements.

first record beginning at element 00, moving ten

elements for that-record, then it applies the stride of

30 to the first element address and begins the next

record at element 30.

Gather Record with Fixed Stride = 30
Figure 10.

1-30

The FMP provides for gather operations using strides in

two directions (ST=n,m). Figure 11 shows the effect of

using the two strides. First the hardware begins at

element 00 and moves a record of length 1 (element). A

stride of 10 is then applied (first stride) and the

next record moved from element 10. Ten such records

(NR=10) are moved, then the hardware restarts at the

first element, applying the stride of 100 elements

(second stride) and begins the process all over again

until the specified vector length (VL=20) is filled.

Strides may consist of any positive or negative integer

value. It can be seen that with this instruction,

two-dimensional and three-dimensional arrays can be

transposed with a single gather instruction.

1-31

90 91 9

30 19150

901b1190

1-32

5. SCATTER--The scatter function operates as the inverse

of the Gather in all of its options. Instead of

collecting discontiguous elements however, this

function distributes records (or elements) into memory

according to the fixed stride or strides (ST=n,m) as

specified in the instruction, or according to the list

of indexes (for random storage of data). The scatter

operation is illustrated in figure 12.

AM () 10 15 AM20 	 A' 1 _
2200

06 	 A() 1 6 11 16 21
A(I ' '- A(3) _ A(4)

17 -	 MV1A(5) 2 7 12 17 22
AM(--- 4'A(6) A(5)

08 A 3 8 13 18 23

A(7)V

-4 9 14 19 24

SCATTER WORD VECTOR A
TO WORD VECTOR'R

USING INDEX VECTOR I

USE VECTOR A IN RECORDS OF TWO WORDS

EACH WORD IN I IS ADDED TO THE R
BASE ADDRESS TO COMPUTE ASTORE
ADDRESS IN R FOR THE FIRST WORD
OF EACH RECORD

Figure 12. Example of Scatter

1-33

These five operations can be performed one at a time

independently and concurrently in each of the Map Units, one

operating with the Main Memory (LEVEL 1) and one operating with

the Intermediate Memory (LEVEL .2). The two Map Units can be

combined to perform Gather or Compress from LEVEL 2 to LEVEL 1

or Scatter from LEVEL 1 to LEVEL 2.

2.1.,4 THE SCALAR UNIT

The control of the entire FMP ensemble is accomplished by

centralized decoding of a single instruction stream in the

Scalar Unit and distribution of the controls for-Vector, Map,

and I/O operations to other separate units. The Scalar Unit is

described in detail in the functional specification found in

Volume II. Since this element is the executing heart of the

FMP, it has been decided that this unit should consist of the

most mature design and technology available. The CYBER 203

Scalar Unit was chosen since it meets the requirements for

performance and architecture ("distributed operation"), and

'
possesses extensive diagnostic programs for a large machine

structure.

2.1.5 THE VECTOR UNITS

The 	major arithmetic, processing by the FMP is performed by the

Vector Unit assembly (Vector Ensemble)-, which consists of four

identical, separately controlled units (pipelines), plus one

additional unit which acts as an on-line spare. One Vector Unit

is diagrammed in block schematic form and discussed in detail in

the functional specification (see Volume II). The key features

of the Vector Units are:

1) 	"Double Clocking"--The employment of pipelining of

arithmetic operations makes it possible to use a faster

clock cycle for these units than is required by the

Scalar and Map Units. By using a clock period half

that of the other FMP elements, the throughput of each

unit can be doubled and the number of such units

otherwise required reduced by half. This permits the

designers to reduce the hardware components

substantially over a normal "full clock" design. The

reduction is not fully one-half, but rather closer to

35% since additional "latches" must be included in the

design to hold operands between' logic stages because of

the speed' of the faster clock.

2) 	"Variable Redundancy"--The reliability of the FMP is
crucial to its success as a major facility. Since the
Vector Units constitute a major portion of the
non-memory hardware, the highest failure probabilities
are then found in these units. Various techniques have

been suggested (and discussed in more detail in refs. 1

and 2) for ensuring the validity of results

1-34

from the Vector Units. Two most prominent candidates

were data parity (1 bit for every 8 bits of data) and

modulus arithmetic. While these techniques provide

proven validation of most of the data paths in an

arithmetic unit they are not effective for the high

speed multiply networks desired for the FMP, and they

provide no surveillance of the variety of control

networks engaged in the Vector Units.

A very attractive option is to provide total redundancy of

Vector Units, each with its own control and data paths. Then a

pair of units could check each other. This approach is fraught

with two difficulties. First, the amount of additional hardware

more than doubles the volume of parts (and hence

interconnections) needed for the Vector Units, and thus

increases the likelihood of component failure to unacceptable

levels. Second, the impact of the additional hardware is seen

in much higher machine cost, and additional chassis volume which

can affect vector startup timing.

An engineering compromise is possible for this dilemma. The

system could provide the completely redundant hardware which

could be used for validation of answers, or for improving

performance. The extent to which the redundancy is controlled

would be a function of the programmer or compiler's intent or

capability. The block diagram of the-Vector Unit shown in

figure 13 displays the use of redundant hardware as there are

duplicate frontend adders, duplicate multiply units, duplicate

complement networks, and duplicate backend adders in each Vector

Unit. By providing four Vector Units of this type, the memory

bandwidth can be matched and a minimum operation rate for 64-bit

add, subtract and multiply can reach a useful limit of 500

megaflops with fully redundant checking of all arithmetic except

for Divide. Since the Divide operation uses the same hardware

(except for the divide table) as the Add/Sub operation, the

redundant checking of the Add and Subtract is relied upon to

verify the probable reliability of the Divide operation.

1-35

A11

$R3g

sQ~ "A

ON3

SOneC 13.aoe Vector Unit~wx
~~~~Fgr 




In figure 13 four checking units (CHECK A,B,C and D) are
 
provided to compare the results from the various functional
 
elements in the Vector Unit. Any combination of check units can
 
be enabled for an operation, and if an error is detected by an
 
enabled checker, a flag is sent to the Maintenance Control Unit
 
(MCU) and the Vector Units are halted within six clock cycles of
 
the failure detection. In the simplest case, where 500
 
-megaflops is an adequate processing rate, data is fed from
 
memory via buses SRI and SR2 and selected through the
 
corresponding trunks in the Vector Unit. This means that data
 
on SRI would be selected through TRUNK A and TRUNK C and data on
 
SR2 would be selected on TRUNKS B and D. The identical
 
functions and path selections would then be enabled for both
 
halves of the unit. The vector operation
 

C=A B
 

with A coming from SRI, B coming from SR2, and C going to memory
 
on AWl, would follow the path through FRONTEND ADDER 1 and
 
FRONTEND ADDER 2 with the corresponding results being compared
 
in CHECK A. -The unnormalized add results would then be passed
 
through the multiply network and the corresponding results of
 
this "pass" operation compared in CHECK B. The final
 
postnormalization is performed in the backend adders and those
 
results compared in CHECK C. The data then passes through the
 
SECDED generator which appends 14 bits of error correction code
 
(per 64 bits of data) and is transmitted to memory. Note that
 
the complement networks are not engaged in this particular
 
operation, however the data from trunks B and D (which should be
 
identical) is automatically gated through these complement
 
networks by the Vector Unit so that the results may be checked
 
in CHECK D.
 

The above example demonstrates the use of total redundancy in
 
the Vector Unit. To ensure that as-much hardware as possible is
 
being checked accurately, each element of the Vector Unit
 
possesses its own control circuitry. The operation codes sent
 
from the Scalar Unit carry a one-bit parity to each unit, which
 
verifies its own operation code validity. All clocking,
 
fan-out, fan-in, and microcode sequencing is then done entirely
 
within that unit. This means that not only are the data paths
 
verified, but the control sequencing and control fan-out are
 
verified for each unit. This is a key part of the FMP Vector
 
Unit design.
 

In many instances however, the 500 megaflop rate is not
 
satisfactory, particularly since the FMP objective is a
 
sustained rate of at least 1000 megaflops. To achieve higher
 
processing rates some of the additional hardware in each Vector
 
Unit must be brought into play. Take as an example
 

R=(A+B)*C
 

with A coming from SRI, B coming from SR2, C coming from SR3,
 
and R returning to memory on AWl.
 

1-37
 



The A and B operands are processed by FRONTEND ADDER 1 while the
 
C operand passes through FRONTEND ADDER 2. Since the results
 
coming from the two frontend adders cannot be identical in this
 
case, CHECK A is turned off. The sum A+B is then fed to
 
MULTIPLY 1 via MUX 1B and the multiplier C is fed through MUX
 
1A. At the same time the frontend adder output is fed to
 
MULTIPLY 2 via MUX 2A, and the multiplier is transmitted through
 
MUX 2B. Thus the multiplier results can also be checked in
 
CHECK B-. By selecting SR2 through TRUNK D -as well as TRUNK B,
 
identical data will be fed through the complement network
 
(although it has no use in this particular operation) and thus
 
the results can be compared in CHECK D. The results of the
 
multiply operation are post-normalized in BACKEND ADDER 1 and
 
also BACKEND ADDER 2 so that they may be compared in CHECK C.
 
The resulting normalized results are then sent to-memory after
 
SECDED has been generated.
 

In this example, three pairs of the four sets of arithmetic
 
elements are checked for validity at each clock cycle. Depending
 
on the operation desired and the processing rate required, the
 
amount of checking can be varied from 100% to no worse than 25%
 
of the actual hardware in the unit. Since an operation such as
 

R=(A*B)+(C*D)
 

will have different results emerging from the corresponding
 
multiply elements, frontend adders, and complement networks, it
 
might be desirable in some critical cases to force the object
 
code to break up the operation into three parts, at a consequent
 
loss in performance, in order to assure the validity of the
 
answers:
 

TI=A*B
 
T2=C*D
 
R=TI+T2
 

This technique can be quite costly in storage space allocation
 
however, and given a large mix of dyadic and triadic operations
 
in the Vector Units, it can be expected that on a probabilistic
 
basis the confidence in the results should be close to 100%, if
 
the variable redundancy technique is used. It is obvious that
 
the FMP compiler should provide a compile time option which
 
restricts the generation of object code to simple monadic
 
operations where a programmer wishes to achieve 100% checking of
 
results.
 

The additional spare Vector Unit is physically connected to the
 
data trunks at all times. The trunk network can be
 
electronically switched by the Maintenance Control Unit (MCU) to
 
extricate any failing Vector Unit, and reconfigure the system so
 
that four non-failing units (including the spare) are placed
 
back on-line. Since the spare unit is always connected to the
 
trunk, it can be made to behave in identical fashion (function
 
and data) with one of the other units, except for returning
 
results to memory.
 

1-38
 



This unit is then checked in a continuous manner as are the
 
other operating units. A comparator is also provided which
 
compares the outputs of the spare unit and the unit which it is
 
tracking; the MCU is notified of any non-compare. In addition,
 
the spare unit can be logically isolated from the other units
 
and then driven by the MCU (at a greatly reduced rate),
 
returning results to the MCU, such that it'can be at least
 
partially diagnosed while the other units are performing useful
 
work.
 

The Vector Units are capable of operating in 64-bit, 32-bit or
 
mixed mode. When operating in 32-bit mode all arithmetic
 
functions except divide can produce two floating-point results
 
per cycle. Thus, a single Vector Unit can perform
 

A*(B+C*D)
 

in 32-bit mode and effectively yield 3 operations * 2 operands = 
6 results per cycle on one of two output ports. (The other
 
output port can provide a partial result of that which appears
 
at the first port, dependent on what the operations are; this is
 
not considered in this example.) Using existing, high
 
performance LSI technology, this cycle for the Vector Units can
 
realistically be set at 8 nanoseconds. Four Vector Units would
 
then produce 24 results every 8 nanoseconds, or 3'results every
 
nanosecond, for a peak operations rate of 3000 megaflops.
 

2.2 THE FMP OPERATION
 

To illustrate the operation of the FMP a sequence of code is
 
extracted from the three-dimensional implicit solution (appendix
 
B):
 

930 RJ=Q(2:KMAX-1,L:L+LSM,6,*).
 

940 XKL=X(*,L-1:L+LSM+I1,2:JMAX-1)
 

950 YKL=Y(*,L-1:L+LSM+1,2:JMAX-I)
 

960 ZKL=Z(*,L-1:L+LSM+I1,2:JMAX-1)
 

970 XK=(XKL(3:KMAX,2:LSL+1,*)-XKL(1:KMAX-2,2:LSL+1,*))*DY2
 

980 YK=(YKL(3:KMAX,2:LSL+1,*)-YKL(I:KMAX-2,2:LSL+I,*))*DY2
 

990 ZK=(ZKL(3:KMAX,2:LSL+I1,*)-ZKL(1:KMAX-2,2:LSL+1,*))*DY2
 

1000 XL=(XKL(*,3:LSL,*)-XKL(*,1:LSL-2,*))*DZ2
 

1010 YL=(YKL(*,3:LSL,*)-YKL(*,1:LSL-2,*))*DZ2
 

1020 ZL=(ZKL(*,3:LSL,*)-ZKL(*,1:LSL-2,*))*DZ2
 

1030 XX(1)=(YK*ZL-ZK*YL)*RJ(*,*,2:JMAX-1)
 

1-39
 



Found in lines 930 through 960 is a sequence of map operations
 
which move data from Intermediate Memory (LEVEL 2) to Main
 
Memory (LEVEL 1) as gather record operations. The stream of
 
instructions is delivered to the Scalar Unit which first
 
performs whatever scalar setup of addresses and lengths is
 
necessary for the first map function (line 930). In this case
 
it consists of computing the length of the records to be 
transmited since the array Q is dynamic and its dimensions must
 
be computed at object time. The base addresses for the map
 
operations must also be computed at the same time. The map
 
operations is then sent to the Streaming Control Unit (SCU),
 
which is assumed to be idle at the moment.
 

Since the map operation transmits data between the LEVEL 1 and
 
LEVEL 2 memories, the Streaming Control Unit engages both Map
 
Units, set up the data paths, and transmits the appropriate
 
internal functions to both units. While this process is
 
underway the Scalar Unit continues executing scalar instructions
 
which perform the interpretation of statement 940, computing
 
record lengths and base addresses and transmitting the map
 
instruction to the Streaming Control Unit. Since the Map Units
 
are now busy moving data for the fist operation, the incoming
 
map instruction is queued in the Streaming Control Unit. The
 
Scalar Unit continues instruction decode after this second map
 
operation is accepted by the SCU. A third map operation is then
 
set up and transmitted to the Streaming Control Unit. A fourth
 
map operation is set up, transmitted, and queued by the SCU.
 
The Scalar Unit continues processing the instruction stream,
 
which probably contains other scalar setup operations, until the
 
vector arithmetic called out by statement 970 is encountered.
 
This vector instruction is set up and sent to the Streaming
 
Control Unit. However, this instruction contains a dependency
 
key of "01" which prohibits execution until the corresponding
 
key becomes not busy. Since this key was assigned as a write
 
key to the second map instruction, the vector instruction will
 
wait in the SCU until this key becomes not busy, signifying that
 
the corresponding data (Vector XKL) has been completely mapped
 
into Main Memory.
 

The Scalar Unit proceeds to execute more instructions until the
 
next vector operation (statement 980) is encountered. Since the
 
first vector operation is held up and not yet in the streaming
 
queue, the Scalar Unit cannot issue any more stream instructions
 
to the SCU. The Scalar Unit then pauses until the previosly
 
issued vector instruction becomes free of its dependency key
 
conflict. Upon completion of the map operation for Vector XKL,
 
the next map operation is immediately commenced (for Vector
 
YKL). The vector operation is then initiated on the XKL data,
 
the Scalar Unit then can issue the vector instruction for
 
statement 980. Since the map operations proceed at a much
 
slower rate than the vector operations, the vector operation at
 
970 will be done before the map operation which moves YKL data
 
to Main Memory is complete. The next vector operation is then
 
held up for its data (Vector YKL) by the same dependency key
 
mechanism (although with a different key) as
 

1-40
 



described previously. In this instance again, -the Scalar Unit
 
will pause until the dependency key becomes not busy. This same
 
process continues for the Vector ZKL.
 

The sequence of pauses illustrated herein obviously affect the
 
performance potential of the FMP. For that reason the actual
 
code generated for this example includes prefetching the vectors
 
XKL, YKL, and ZKL with the Map Units long before they are needed
 
by the vector arithmetic. In actual fact, the fetching of the
 
next set of data for these arrays is carried on concurrently
 
with the vector arithmetic on the current XKL, YKL, and ZKL
 
data.
 

Once the vector operation at statement at 990 is initiated by
 
the Vector Unit, because its dependency key has become non-busy,
 
the remaining vector operations are set up and queued in the
 
Streaming Control Unit without conflict since no dependency key
 
is needed (the data is already known to be available).
 

Statements 970 through 1020 illustrate the use of two functional
 
elements in each pipeline (a subtract operation followed by a
 
multiply), which yields a floating-point rate of 1000 megaflops
 
peak value. Statement 1030 performs two multiplies and one
 
subtract in one instruction and thus yields 1500 megaflops peak
 
rate computation in 64-bit mode. The remaining multiply by RJ
 
is combined into a later vector arithmetic operation.
 

2.3 RATIONALE SUMMARY
 

The FMP hardware described in this report represents an example
 
of a processor which, in the best judgment of RADL personnel,
 
can be built and utilized in the period beginning in 1983-1984,
 
and which will meet the performance and reliability goals (1
 
gigaflop, 95% availability) established as minimum by NASA-Ames.
 
The final form represented here is necessarily the result of
 
many complex tradeoffs involving schedule, timing, technology,
 
manufacturing considerations, and the crucial reliability,
 
availability, and maintainability (RAM) factors that must be
 
taken into account for such a large assemblage of equipment.
 
Some of the architectural decisions are obviously linked to
 
Control Data's experience with the STAR-1O0 and the CYBER 200
 
family of Vector processors. A further, practical linkage
 
involves the use of systems and diagnostic software for the FMP
 
that can be derived at minimal risk from the CYBER 200 systems.
 
The thought process that has been involved in these design
 
decisions has extended through prior study periods into this
 
present study with the appropriate rationale documented in
 
previous reports (refs. 1, 2). For the most part these rationale
 
remain unchanged from the previous studies but, since they are
 
so critical to the outcome of the project, it is desirable to
 
restate them here in order of priority to FMP success.
 

1-41
 



2.3.1 RELIABILITY, AVAILABILITY, and MAINTAINABILITY
 

Although the FMP was founded on the premise of producing the
 
fastest computer in existence in the 1980's in exchange for some
 
"tailoring" of the hardware to match specific algorithms, the
 
major consideration throughout the FMP design project has been
 
that of reliability. The corollary issues of availability and
 
maintainability were also included in this area of priority
 
concerns. In another section of this report these topics are
 
defined and discussed in more detail. Here the effect of these
 
considerations on the FMP structure will be covered.
 

The overriding concern of designers for a system as large as the
 
FMP is the parts count and the effect of this count on RAM. The
 
hierarchial memory was arrived at (as previously discussed) by
 
evaluating the performance and capacity requirements arising
 
from the characteristics of the flow models. The high
 
performance Main Memory was specified on the basis of the most
 
powerful memory system currently available, the CYBER 200 two
 
million word, 128 billion bits per second, central memory. This
 
memory system utilizing the recently available 4096-bit RAM
 
chip, can hold 8 million words and achieve the same high
 
performance levels as the 2 million word system. This memory
 
requires over 175,000 parts. If a larger memory, say of 32
 
million words, were desired then over 700,000 parts would be
 
required. Given a nominal failure rate goal of .01% of all
 
parts per 1000 hours that would mean 70 failures per 1000 hours
 
or a failure evey 14 hours. Even with single-error correction,
 
double-error detection (SECDED) networks protecting the memory,
 
the FMP would encounter an unacceptable level of interruptions
 
as the probability of a double-bit error occurring becomes quite
 
high.
 

At the expense of lower performance, another level of memory
 
could be built of 65K-bit chips to produce a memory system of 32
 
million words with only 38,000 parts (approximately).
 

Finally, if 128-256 million words are necessary for the solution
 
of some research problems, the 65K part again becomes inadequate
 
to the task as so many parts are needed in the memory that the
 
failure rate reached intolerable levels, despite the employment
 
of SECDED. Another storage hierarchy is thus indicated using
 
higher capacity, lower performance memory components. If the
 
predicted 256K-bit CCD memory part becomes available, the memory
 
part count becomes approximately 36,000, with a concomittantly
 
acceptable failure rate. The realistic production of 1 million
 
bit bubble chips (which would reduce parts count for this level
 
of memory to around 9000) appears to be possible in the 1982
 
timeframe. The design goals for LEVEL-3 bandwidth currently
 
preclude the use of bubbles however, because of the relatively
 
slow serial transfer rate of bubble technology.
 

1-42
 



2.3.1.1 	 EFFECT OF PARTS COUNT
 

The table below gives approximate chip counts for the major
 
elements of the FMP. Chip types are as follows:
 

* 	CPU - LSI and Other (microcode memory/high speed
 
buffers)
 

* Main.Memory - 4K x 1-bit bipolar RAM
 
" Intermediate Memory - 128K x 1-bit MOS RAM
 
* Backing Store 	- 256K x 1-bit CCD
 

The memory chip counts include approximately 10% which are for
 
control and interface; the balance is the indicated type of
 
memory chip.
 

Estimated Chip Count for FMP
 

Element 	 Chip Count
 

CPU 	 11K LSI*
 
13K Other*
 

Main Memory 	 185K
 

Intermediate
 
Memory 20K
 

Backing Store 	 40K
 

* LSI is the CDC LSI-168 gate array; 
other chips are for microcode memory
 
and high speed buffers.
 

Overall reliability is determined largely by parts count and
 
that effect influences design decisions about the memory. What
 
are the other effects of parts count? First, the FMP logic
 
should be examined to see how reliability can be affected by
 
parts count in the remainder of the CPU. Control Data chose for
 
the FMP the most technologically aggressive circuit family, in
 
terms of density and speed, that can be expected to be available
 
in the period identified for construction of the NASF. This
 
family consists of Large Scale Integration (LSI) circuits of
 
speed on the order of 700-900 picoseconds for typical logic
 
elements. With this component the Scalar, Vector, Map, Memory
 
Interface, and Streaming Control Units can be built using about
 
18,600 parts. This design would involve the building of nine
 
Vector Units, each operating at a 16-nanosecond clock cycle.
 
Although 18,600 parts are a relatively small number compared to
 
the Main, Intermediate, and Backing Store Memories, it must be
 
remembered that most of the memory parts are protected by
 
S-ECDED, while a good deal of the CPU logic is not. By
 
double-clocking the Vector Units (described previously) it is
 

1-43
 



possible to construct the FMP with only five Vector Units (four
 
operating units and one spare) with a consequent reduction in
 
LSI parts of approximately 5400 or about 25%.
 

A second effect of parts count is the need for interconnection
 
of the parts involving solder and pressure connections, bonds,
 
and metalized paths. The impact of interconnections is
 

secondary to part failure rate in the reliability calculations,
 
but still significant for a large ensemble such as the FMP
 
(refer to Division 6).
 

A third effect of parts count is subtly linked to the
 
availability and maintainability of a hardware network. Once a
 

failure occurs, what is the probability that it can be corrected
 

automatically, thus requiring no emergency maintenance activity?
 
Further, if a maintenance action is required, what is the
 
probability that the failing part can be isolated within a
 
minimal time objective "TR" (Time to Repair)? These
 
probabilities directly influence the probable RAM (reliability,
 
availability, and maintainability) objectives for the FMP.
 

By basing the FMP on a large, homogeneous memory system, the
 

designers have attempted to make maximum use of memory
 
characteristics to affect the RAM. Memory, delightfully,
 
consists of well ordered parts with limited interconnection. The
 
use of SECDED on memory data not only provides a first level of
 
defense against memory failures (by automatically correcting
 
single errors), but provides information (via the check bits)
 
which can be analyzed by the Maintenance Control Unit (MCU) to
 
assist Service Engineers in the isolation of the failing
 
components in minimum time. While there are failure modes in
 
the memories that cannot be detected or corrected by SECDED
 
(such as power bus, address line, and read/write strobe
 
failures) over 98% of the memory parts are covered by SECDED.
 

SECDED should be carried throughout all data paths wherever
 
possible to provide automatic correction, as well as detection,
 
to the maximum extent. In the FMP, SECDED has been carried into
 
the Vector Units up to the point where the data enters the unit
 
and the check bits can no longer be retained (the data will be
 
altered by arithmetic operations). SECDED is regenerated for
 
results emerging from the Vector Units being transmitted back to
 
memory. Double failures in these data paths (in the Map and
 
Vector Units) will yield check bits that can aid the engineer in
 
fault isolation in minimum time.
 

1-44
 



2.3.1.2 TRANSIENT ERRORS
 

A word must be said about the most infuriating culprit in large
 
systems,.transient errors in data and control. A totally
 
failing component will generally make itself known rather
 
quickly, either through the mechanism of the SECDED error
 
detection system, on-line diagnostics, or abysmal failure of a
 
"stable" production code. In large complexes of hardware. such
 
as the FMP, the possibility for transients occurring due to
 
induced noise, bus fluctuations, marginal part operation,
 
vibration, and perhaps such magical influences as gamma rays
 
must be considered despite the best engineering efforts at
 
shielding, margin testing and power system overdesign. Since a
 
good portion of the system will be protected by SECDED, the
 
effects of transients in the system will be invisible, except
 
for a random, uncorrelated error report made by the SECDED
 
networks to the MCU. There are-times however, when a "hard"
 
error in a data path, due to a component failure, will be
 
correctable by SECDED except when a coincident transient
 
appears. The probability of this situation occurring is
 
dependent on the probability that at any one time there will be
 
failing, but correctable, component errors in the system. This
 
situation further depends on real failure rates and maintenance
 
strategies.
 

Remembering that a double SECDED error will cause a system

interruption, one must evaluate the frequency of maintenance
 
replacement of components being compensated for by SECDED and
 
the possible existence of transient errors occurring which could
 
cause double errors to appear. A beginning maintenance strategy
 
is therefore projected which minimizes the number of failed
 
components being left in the machine in a given 24 hour period.
 
As experiential data is accumulated, it may well be possible
 
that the probabilities of transient errors, or coincident double
 
component failures, in a given network may permit a more liberal
 
maintenance policy, with consequent-cost savings. At present,
 
with the rate of transient failures impossible to determine
 
until the hardware system is buil't, it seems necessary to
 
specify the most conservative maintenance strategy with its
 
attendant high costs (see maintenance study report and
 
maintenance action assumptions in Divisions 6 and 7).
 

1-45
 



Another, and potentially more dangerous, consequence is the
 
possibility of undetected transient errors occurring which
 
affect critical result data. FMP users must be able to depend
 
on their solutions without having to run a problem three times
 
to set a majority vote on the most probable correct answer. As
 
stated previously, a solid component failure should make itself
 
evident during on-line diagnosis of the FMP, which is performed
 
periodically during -job execution. A solid, uncorrected,
 
component failure might occur during a particular solution
 
execution causing some or all results to be invalid. Generally,
 
before these results can be propogated to other jobs or users,
 
the on-line maintenance diagnostics would have found the error
 
and warned the installation that jobs run since the last
 
diagnostic pass are probably specious. While it is acceded that
 
a totally redundant system would make the user instantly aware
 
of the possibly invalid results, the cost and parts count for
 
such a system make it prohibitive to build.
 

A transient error causes more havoc, however, since it may occur
 
at a time when diagnostics are not being run, or at a place that
 
cannot be checked by SECDED or by the Vector Unit's variably
 
redundant comparators. Results from such runs would contain
 
invalid data with no warning as to the fact that an error
 
occurred which negates the particular run.
 

There are then two kinds of undetected errors that can yield bad
 
results. One which can be diagnosed at a later time, and hence
 
cause the user to invalidate that set of answers, requires some
 
degree of systems management and human action in evaluating the
 
diagnostic messages to determine what, if any, results should be
 
discarded. The second kind of undetected error will not be
 
known to the user, but it will be based on the very small
 
probability that a transient error occurs under undetectable
 
circumstances. With over 95% of the hardware networks in the
 
FMP being protected by SECDED and by the checking of the Vector
 
Units, and with on-line diagnostics being employed on a regular
 
basis to ensure a certain level of confidence is maintained in
 
the machine, the probability of producing undetected errors in
 
results is necessarily unknown but theoretically should be
 
extremely low.
 

The effect that these types of failures (undetected by SECDED or
 
vector checkers) have is to require a portion of the FMP power
 
to be expended on a continuous basis throughout the operating
 
day to establish a minimum confidence level. The interval and
 
extent of diagnostic execution is determined by the maximum
 
allowable period of time before results must be flagged invalid,
 
and the time required for diagnostic operation to achieve a
 
threshold of confidence. Thus, diagnostics become an additional
 
"job load" on the FMP that must be taken into account when
 
evaluating the total system throughput. (See discussion in
 
System Simulation section later in this volume.)
 

1-46
 



2.3.2 BUILDABILITY
 

The second most important consideration in creating the FMP is
 
ensuring that the machine can be built at all in the timeframe
 
required. A major factor, of course, is the parts and
 
interconnect count described previosly. Obviously, it would be
 
possible to conceive a machine that would entail the assembly of
 
so many components that the sheer volume of soldering, bolting,.
 
and hookup exceeds the limit of errorless construction. The
 
resulting chaos involved in removing fabrication errors
 
(differentiated from component failures) might prove to
 
overwhelm the manufacturing operation.
 

A second and equally important factor in determining
 
buildability is the choice of component technology, not only
 
electronic but mechanical, power, and cooling. The choice of
 
circuit components naturally determines the rquirements for
 
cooling and power, while influencing packaging decisions meant
 
to maximize the density of circuitry for performance and space
 
reasons.
 

The original feasibility of the Control Data FMP was based on a
 
postulated family of LSI circuits with densities of 500 gates
 
and speeds under 500 picoseconds per gate. The painful process
 
of creating a high technology, such as high speed LSI, and
 
carrying it through volume production, made it clear by the
 
second phase of this study that a 1982-1983 built FMP would have
 
to be constructed out of extant technologies. Thus effort was
 
applied to increase the parallelism of the architecture to
 
achieve the gigaflop goal with existing circuit and packaging
 
families. The cuilmination of this decision is found in the
 
design described in this report. Certainly, if a family of
 
logic could be found that was twice as fast, then the number of
 
parallel units could be halved with the very desirable reduction
 
in parts. Certainly, if a family-of-memory components could be
 
found with densities of 2 to 4 times that of the existing
 
technologies the parts counts, failure rates, and probably cost
 
of the memory systems could be reduced accordingly.
 

It is the inevitable hope of designers and consumers of the FMP
 
that the system could benefit from the most up-to-date,
 
aggressive technologies available. To that end, each of the
 
studies has examined technology futures with an eye to employing
 
new developments in the FMP. Unfortunately, the choice of
 
technologies cannot be delayed until after all design is
 
complete and the machine is about to be constructed. The
 
technological choices are integral to the initial architectural
 
approach, the development of tools to support design and
 
construction, design techniques, and the detailed design itself.
 
Therefore, the FMP described in this report is heavily

predicated on the use of the family of parts, 4K bipolar RAM,
 
65K MOS RAM, 256K CCD memory, and Fairchild F200K logic. With
 
this family, a machine can be built to meet the minimum
 
reliability and performance goals established by NASA. Any
 

1-47
 



major change (doubling speed or density, for example) in
 
available technology would make a reassessment of the existing
 
design from the ground up an essential task in an effort to
 
reduce cost and parts counts.
 

The technolgical possibilities that appear to loom over the 1980
 
horizon are tantalizing to consider for the FMP if, and only if,
 
the FMP were to be constructed, say, b.eginning in 1984-1985. Not
 
only would solid progress be evident on high speed silicon
 
parts, but the potential of the gallium arsenide technology
 
should be proven (see technology update report, Division 5). It
 
would then be conceivable that a machine with a two gigaflop
 
computation rate and half the logic hardware might be built at
 
very reasonable cost. The difficulty with proposing a delay in
 
FMP development to await these "futures" to come to fruition is
 
that there are too many unpredictable factors that can effect
 
the outcome of such strategy:
 

a) There is no doubt that the scientific problems presently
 
known in development of either higher density/speed LSI
 
or gallium arsenide logic components can be overcome.
 
The essential question is -- in what time frame can
 
they be solved?
 

b) The willingness of vendors such as Motorola, Fairchild
 
or Texas Instruments to make the resource commitments
 
and capital investments necessary to bring new, high
 
technology devices, into production is based only partly
 
on technical feasibility. The projected profitability
 
of a particular manufacturing line (based on volume and
 
price expectations)-, the capital outlay requirements,
 
and the general state of the economy are governing
 
factors on the availability of the high performance,
 
high risk, essentially low volume components that
 
designers seek for FMP-type-machines.
 

The effect of these issues on the architecture and design is
 
obvious. A second, less visible, effect is the development time
 
and resources needed to create and productize the tools
 
necessary to utilize the new technologies. The time has passed
 
when an engineer could gather a box of transistors (or small
 
scale integration chips), sketch out a piece of design, and
 
breadboard the affair with his own soldering iron. The very
 
nature of LSI means that designers commit whole ensembles to
 
single silicon slices requiring complex steps in manufacture.
 
Design analysis and simulation software for a particular
 
technology must be in place and operational before that
 
technology can be effectively employed. There is a definite
 
lead-time then between technology selection, useful design and
 
simulation, and final circuit components that can be as long as
 
five to seven years. The significance of these lead-times and
 
uncertainties is that although there may be some technological
 
"magic" awaiting the computer community in 1984-1985, it is not
 
possible to consider using such components for the NASA FMP
 
without incurring grave risk to schedule and buildability.
 
Hence, the somewhat conservative choice of
 

1-48
 



Fairchild LSI logic, for which a vast assemblage of design and
 
manufacturing software and procedures is now available.
 

2.3.3 PERFORMANCE
 

Not last, or even least, in consideration is the element of
 
performance for which the FMP project was originally created. At
 
the outset, a minimum threshold of one billion floating- point
 
operations per second was established for solutions of the
 
Navier-Stokes equations. In theory, this level could be
 
achieved by a single processor operating at a clock cycle of one
 
nanosecond, or 1000 processors operating at a clock cycle of one
 
microsecond. In practice, a one-nanosecond cycle time for
 
floating-point operations on numbers with 48-bit coefficients is
 
not yet achievable, while the harnessing of 1000 slow processors
 
creates massive headaches in design of interconnection and
 
control, not to mention programming. These issues-have been
 
discussed at length in preceding reports. The major tradeoffs
 
in memory systems capability, number, and speed of vector units
 
and performance of circuit technology have also been covered in
 
previous reports as well as preceding discussion in this report.
 
In the aggregate then; the search for performance has
 

involved:
 

a) determining the peak vector arithmetic rate to support a
 
sustained solution rate of at least 1 gigaflop;
 

b) designing the minimum hardware conglomeration to provide
 
the peak vector rate, and minimize vector startup;
 

c) 	isolating those functions in the implicit and explicit
 
code which limit the FMP from maintaining the sustained
 
rate;
 

d) designing a fully concurrent map unit system to perform
 
those non-arithmetic tasks in parallel with
 
computation;
 

e) 	designing a memory system that could supply the peak
 
vector bandwidth plus the data rates needed by the map
 
units;
 

f) testing the resulting structure with code sequences
 
taken from the various flow metrics;
 

g) 	reworking the design to improve the performance of those
 
limiting cases that are of significance;
 

h) testing the programmability of the flow codes with the
 
resulting structure;
 

i) 	going back to step c) and trying again.
 

1-49
 



The conclusions reached for each of these items form the basic
 
rationale for the design of the FMP as it now appears:
 

a) At the outset it was assumed that the arithmetic
 
processing bandwidth of the FMP would have to be
 
substantially greater than the minimum threshold of
 
1000 megaflops in order to arrive at a sustained rate
 
of that minimum. This premise arises from the
 
experience with-ex-ist-ng htgh perfbrmance computers in
 
actual use. The theoretical peak rate of the Control
 
Data 7600 is limited to the issue rate of a new
 
instruction every 27.5 nanoseconds which yields at best
 
36 megaflops. The measured peak rate for
 
memory-to-memory operations, however, is closer to
 
12-15 megaflops, due to the loads-, stores, and inter
register transfers. The nominal rate assigned to the
 
7600 for production codes is 3-5 megaflops in actual
 
use. The STAR-100 possesses a peak vector rate of 50
 
megaflops in 64-bit mode. In certain large production
 
codes, thesustained rate is shown to be 20 megaflops
 
which is a reduction of 2.5 to one over the peak rate.-

Other competitive machines demonstrate a similar
 
degradation of 2-3 times from peak performance for a
 
sustained rate.
 

These observations led the FMP architects to set vector
 
processing rate goals of 2-3 gigaflops peak rate for
 
initial design evaluation. If later it proved possible
 
to improve the ratio between sustained and peak rates,
 
the 2-3 gigaflop objective might be reduced somewhat.
 

b) The hardware necessary to meet the 2-3 gigaflop peak
 
rate could-have been chosen from a variety of options,
 
but pipelining was selected for two practical reasons:
 

1) 	Parts and interconnection count analysis indicated
 
that pipelines could be built with fewer of these
 
critical items than a multiplicity of processing
 
units yielding the same compute power.
 

2) 	A substantial amount of design and development had
 
already been completed on suitable pipeline
 
elements for the Control Data CYBER 200 family of
 
supercomputers.
 

An assemblage of 32 identical arithmetic pipelines, each
 
operating at 16 nanoseconds to achieve a 2-gigaflop rate is
 
a perspicuously brute-force approach to the problem. The
 
volume of hardware this would entail seriously strained the
 
limits of buildability, which had been given higher
 
priority than performance. The limit of pain in hardware
 
seemed to indicate that eight pipelines, which would have
 
the 	ability to perform more than one arithmetic process per
 
clock cycle demanded the maximum allowable
 

1-50
 



componentry. The need for error checking led to the
 
"variably" redundant structure that has been described
 
previously, while the desire to have still fewer circuits
 
motivated the design of "doubly" clocked units. As a
 
result of these deliberations, the final Vector Units could
 
deliver 64-bit result operands to memory at the rate of one
 
per pipeline for each of four pipelines every eight
 
nanoseconds.
 

Since this represents a result rate to memory of only 500
 
megaflops, how can the units be alleged to maintain rates
 
commensurate with the 1-gigaflop requirement? Analysis of
 
the three-dimensional implicit code showed that a majority
 
of arithmetic expressions involved an average of three
 
processes:
 

From the BTRI subroutine (see appendix B) line 4450:
 

U25=(B1(2,5)-L21*U15)*L22
 

If each pipeline could perform all three operations on the
 
data for each result CU25) returned to memory per clock
 
cycle, then the arithmetic result rate could be bumped to
 
3*500=1500 megaflops. Using this technique as a basis, the
 
implicit code was analyzed to determine if this "triadic"
 
facility would be fully utilized. It was found by hand
 
calculated estimates that the FMP would probably operate at
 
an average rate of 1200 megaflops for the whole code,
 
assuming the data could be delivered to and- removed from
 
the pipeline to match that rate.
 

In some instances it is not possible to keep the maximum
 
number of arithmetic elements in the pipeline busy with
 
"triadic" or "dyadic" operations. For example, from lines
 
1070 and 1080 of the implicit-code (see appendix B)
 

1070 D(1,2)=XX(1)*HDX
 
1080 D(1,3)=XX(2)*HDX
 

two separate vector operations would normally be generated
 
by the FORTRAN compiler, with a consequent result rate of
 
500 megaflops for each separate multiply. The FMP provides
 
two separate data trunks to memory and four separate data
 
trunks from memory which permits more intelligently
 
generating one instruction to perform both multiplies
 
concurrently. In this case the four pipelines behave as if
 
they were eight, and no data comparison is done by the
 
CHECK networks in the pipelines.
 

Another use of the two separate result streams to memory is
 
the storing of partial results on one trunk and full
 
results on another. For example, take the sequence from
 
the BTRI subroutine, lines 4720 and 4730:
 

4720 D1=L11*C1(1,M)
 
4730 D2=L22*(C1(2,M)-L21*D1)
 

1-51
 



wherein the result D1 could be stored to memory on the AWl
 
result trunk while the partial result (C1(2,M)-L21*D1)

could be stored via AW2, for later use. Note that in this
 
case the capability of the Vector Units for performing
 
three arithmetic operations per clock cycle is achieved by
 
a simple compiler technique of combining functions from
 
"common subexpression analysis".
 

The 1.2 gigaflop rate is, of course, not the 2-3 times
 
safety factor the designers had been seeking. Achieving
 
that would require doubling the hardware complex to 8 of
 
the triadic, eight-nanosecond pipelines to yield 2*1.2=2.4
 
gigaflops. This would in turn require a doubling of the
 
memory bandwidth at the cost of additional hardware and
 
trunks that again strain the buildability constraints. Two
 
other avenues were open to ameliorate this situation:
 

1) 	Use of 32-bit arithmetic--The CYBER 200 family
 
provides a dual arithmetic system which is used for
 
improving throughput, as well as data storage, for
 
those problems that can tolerate the reduced
 
significance. The design of pipelines for this
 
dual mode demonstrates that the additional hardware
 
needed to split a 64-bit pipeline into two 32-bit
 
pipelines, dynamically and when the occasion
 
warrants, is insignificant. In the CYBER 200
 
structure such pipelines can then deliver two
 
32-bit results for every one 64-bit result, in most
 
cases doubling the result rate of the pipelines.
 
If this technique is applied to the FMP, then four
 
FM? pipelines could produce a peak rate of 8 result
 
operands delivered to memory every 8 nanoseconds.
 
This means that if a single arithmetic operation is
 
performed for each result, a minimum of one
 
gigaflop is reached in 32-bit mode. However, when
 
the triadic capability of the pipelines is applied
 
to 32-bit mode, a peak rate of 3000 megaflops is
 
attainable. In the projected case for the implicit
 
code this would mean a result rate of 2*1.2=2.4
 
gigaflops computation rate. At least for 32-bit
 
cases this architecture, with minimal hardware,
 
provides the purported 3 gigaflop peak rate. The
 
determination of whether or not certain
 
computations can be done in 32-bit mode seems to
 
elude even the most expert numerical analysts, and
 
most probably must await empirical testing of
 
algorithms in both modes. Since in all likelihood
 
computations could most effectively be done in a
 
mixture of 32-bit and 64-bit forms, depending on
 
knowledge of the numerical behavior of a given
 
calculation, the FMP Vector Units have included the
 
ability to perform operations on mixed 32/64-bit
 
data streams.
 

1-52
 



2) 	Maximize the utilization of the Vector Units---

What if the computations must be done in 64-bit
 
mode and latitude has been exhausted for adding
 
more hardware for parallel processing? If the
 
ensemble could be made to function at near 100% of
 
its capacity (full triadic functions, full time for
 
the whole code), then the 1.2 gigaflop rate would
 
be maintained as the average rate thus achieving
 
the "quintain". It was at this point that the
 
concept of a "tailored" machine for a particular
 
problem environment (wind tunnel flow models)
 
became an aid. Using metrics provided by Ames
 
which were chosen to reflect the desired
 
characteristics, it was possible to determine what
 
hardware emphasis was needed to maximize vector
 
unit utilization. This leads to the next step.
 

c) Once a memory bandwidth and vector unit capability were
 
established, it became necessary to prove that it could
 
be utilized effectively or the design had to be changed

accordingly. Beginning in the first study Control Data
 
had concentrated primarily on the storage capacity of
 
realistically assembled memory systems and the
 
producibility of sufficient arithmetic power.
 
Throughout these early study efforts, Ames personnel
 
cautioned that the data flow required by the large flow
 
model might dominate all other considerations. Using
 
the Vector Units to maximum capacity requires the
 
organization of data into-linearly stored vectors of
 
data in memory which can be transferred in groups of
 
elements at each single memory request. Some means had
 
to be found to perform this organization in parallel
 
with computations and without impacting the vector
 
rate.
 

d) The concept of independent Map Units which could operate
 
concurrently with each other and with the Vector Units
 
arose naturally from this analysis. An initial desire
 
for these units to be as simple as possible had to be
 
compromised with the activities that seemed to be
 
natural to assign to them. If the Vector Units were to
 
be solely concerned with arithmetic processing, then
 
all other memory-to-memory vector operations would have
 
to be performed by the Map Units. The functions to be
 
executed in the Map Units were identified by reviewing
 
STAR-100/CYBER 200 experience with vector processing
 
and examination of the candidate metrics (aerodynamic
 
and weather models).
 

At first a single Map Unit seemed to be sufficient for
 
the known purposes, moving data only within Main
 
Memory, with all other LEVEL 2 data being transmitted
 
in block form. The split operator method of the
 
implicit code gave rise to easily isolated "transpose"
 
and 	"slicing" operations that could just as well be
 

1-53
 



performed on the data as it is moved between the LEVEL
 
1 and LEVEL 2 memories. A pair of seemingly identical
 
units (for programming flexibility) were then
 
specified. Many programming alternatives become
 
evident from this structure, none of which have.been
 
explored during this study. An example might be the
 
performing of full transpose operations on meshes-and
 
mesh segments in Intermediate Memory wh-ire
 
s-imul-tan-eously performing different transposes on other
 
data in Main Memory. As will be seen later from
 
simulation results, the existing metrics do not fully
 
ex-ploit this concurrency to the degree that seems
 
possible (see section 5).
 

e) The memory system then becomes the key to the entire
 
design of the FMP, as it must supply continuous streams
 
of data not only to the Vector Units but to the
 
concurrently operating Map Units. This is accomplished
 
by taking the identical memory units used in the CYBER
 
200 family and increasing the apparent number of memory
 
modules by dividing an existing physical module into
 
four separate accesses. Thus where the CYBER 200
 
memory can deliver a peak rate of 1024 bits every 20
 
nanoseconds (actually the memory system can provide
 
data for a range of clock cycles from 10-20
 
nanoseconds), the FMP system delivers 4096 bits of data
 
(ignoring SECDED) every 16 nanoseconds for a peak
 
bandwidth of 256 billion bits per second. The block
 
diagram shown in figure 14 displays the basic design of
 
the Memory Interchange which manages the data and
 
address streams for the memory system. It is this unit
 
and the data buffering in the Vector and Map Units that
 
guarantee sustained data rates to all elements in the
 
Vector Unit, no matter what the degree of activity is
 
for all components requesting memory. It should be
 
pointed out that the number of LSI panels and cabling
 
for this scheme are considered to be at the maximum
 
allowable by current manufacturing technology. It is
 
felt that no way exists in which this memory system
 
could be extended realistically, and thus no way that a
 
doubling of arithmetic units could be supported with
 
current design and packaging techniques.
 

1-54
 



bi t DA DArA OjrA AORI 14Q5 A00.0 ZDR0.5D A 04. DAA DAIA 

(2A W/ 0TA/N = ,Aw 

W40 A"-DD 

A 

RIXtS . AC '1 
srv~m~a N V//or// P~/P 

Figue it. Meorynterha'g 



f) 	The structure of the FMP as it has passed through its
 
various gestative phases has been tested by estimating
 
the performance of selected segments of the implicit,
 
explicit and weather models which are being used as the
 

-
analytical metrics for this study . More will be said
 
about this matter in later discussions of the
 
simulation.systems for the FMP. The FMP design as it
 
now stands is the culmination of this iterative
 
structuring-, testing, and restructuring effort, and
 
does meet the performance requirements of at least the
 
implicit code.
 

g) Primary emphasis in the analytical effort has always
 
been focused on the three-dimensional implicit model.
 
Only in the, last weeks of the study, as CDC engineers
 
had satisfactorily solved the problems in the
 
buildability and RAM features of the FMP, was the -full
 
impact of the hardware architecture known with regard
 
to the implicit code. Since that time the FMP design
 
has been evaluated against the remaining three metrics.
 
On a "first try" basis, each of the other metrics have
 
yielded less than the desired 1000 megaflop
 
computational rate. In some cases, the initial mapping
 
of the scalar algorithms did not match the
 
architectural strengths of the FMP. Complete
 
reanalysis and recoding in these cases is called for.
 
Shortcomings in the design have been unearthed also. At
 
somepoint in the study however, "tinkering" with the
 
design had to end, so that a final report could be
 
completed. Although no design changes are contemplated
 
to optimize the other metric codes at this time, work
 
is continuing on finding appropriate restatement of
 
these codes in the proposed FMP FORTRAN which can
 
approach the 1-gigaflop goal for each metric program.
 

h) 	Coupled with all of the above issues has been the
 
problem of programmability, about which more will be
 
stated in the "Software Section" of this report. As
 
hardware features were added or modified in the basic
 
FMP structure, their effect on a possible FORTRAN
 
language system had to be assessed. The continuation
 
of a basic single instruction stream, multiple data
 
stream (SIMD) architecture obviated the need for many
 
FORTRAN language-changes, while the-ability of a
 
compiler to schedule, stack, and overlap map operations
 
with vector operations impacted the design of the Map
 
Unit and Streaming Control Unit, particularly with
 
regard to the need for and implementation of the
 
"dependency keys".
 

i) Needless to say the process of steps c) through h) are
 
iterative and will continue in some form even after
 
submission of this report. Once a prototype FMP has
 
been "poured in- concrete" as the result.of need to
 
freeze design for this report, analysts can spend
 

1-56
 

http:result.of


considerble time learning what the structure really
 
holds in store for programmers, particularly of
 
applications in the areas of the NASF metrics
 
(aerodynamics and weather).
 

2.3.4 MAINTENANCE
 

The discussion of first priorities earlier covered the concept
 
of RAM--Reliability, Availability, and Maintainability. The
 
design considerations under that heading dealt primarily wi-th
 
probablistic circumstances affecting RAM, particularly due to
 
the volume of parts and interconnections. Another aspect of the
 
hardware that must be considered in a different light is the
 
marriage of hardware, firmware, software, and procedures to
 
maximize the availability of the FMP. Supporting documents (see
 
Divisions 7 and 8) have been-prepared by Control Data
 
specialists'as "position paper's" on the maintenance strategy and
 
diagnostic strategy that should be pursued for FMP-scale
 
systems.
 

A cornerstone of FM? availability is the ability for the system
 
to recover, diagnose, isolate, and be repaired in the minimum
 
interval of time lost to the consumer. In addition to the
 
issues discussed in the position papers, certain aspects of the
 
FMP impel offering some supplementary commentary.
 

a) The maintenance function as a hardware concept---


The magnitude of the NASF makes complex interactions of
 
its constituents inevitable. The quantity and
 
complexity of the elemental relationships in this
 
system further ensure that even trained personnel will
 
find the evaluation of many-system failures difficult
 
or nearly impossible in the brief time allowable for
 
interruptions during operational hours.. Computerized
 
assistance is mandated in this situation, however none
 
of the potentially failing computers in the system can
 
be expected to diagnose itself. A separate computer
 
could be given this task, but if it becomes itself
 
debilttated then it could become more of a debit than
 
of value to the overall availability of the system as a
 
useful resource. The need then is for an abstract
 
concept that can be fleshed out, and farmed out to the
 
appropriate programmable processors in the system. The
 
reason for discussing the maintenance function in the
 
abstract is that it first can be created and described
 
as if it were a centralized function, despite the fact
 
that in actual implementation it is distributed as
 
widely as the functions it is trying to manage.
 

1-57
 



Philosophy--Each programmable entity in a system must
 
possess means to disclose to the outside world the
 
existence and nature of any failure that might occur,
 
even when the flaw is correctable. A failing entity
 
should not be required to diagnose itself, let alone
 
cure itself, but should provide the maximum information
 
about itself as possible, as would a patient in a
 
clinic, to speed the diagnosis and treatment process.
 
The maintenance function, like a concientious physician
 
or health service, must collect, collate, and analyze
 
all physical symptoms in health as well as for illness.
 
For like the physician to whom every clue and pattern
 
could be significant, the contemporary system
 
practitioner needs every allusion in pursuit of quick
 
repair. Diagnosis and collection of maintenance clues
 
must be included in the normal workload of each system
 
component.
 

Implementation--From the outset of design all hardware
 
and software components must become subscribers to the
 
philosophy. "Hooks" must be built into all elements of
 
the system where engineering analysis indicates
 
potential need and practicability. What does this mean
 
to the FMP?
 

First some means of testing, measuring, and sampling
 
the activity of critical networks must be engineered
 
into all critical networks of the system. This implies
 
that some systematic study should be done to identify
 
the critical networks. In the FMP some obvious places
 
to put the diagnostic "stethoscope" come to mind. The
 
SECDED checking networks not only must supply error
 
indicators, but also should provide "Polaroid" glimpses
 
of the failing data segment and associated addresses to
 
the maintenance monitoring system. The comparator
 
networks in the Vector Units must also feed failure
 
information. Not only an error flag should be
 
recorded, but the actual data mismatch must be frozen
 
and registered in the error logging of the laintenance
 
system.
 

In the FMP, SECDED check bits are carried as far along
 
data trunks as possible so that the trunks and
 
intervening paths can be corrected, as well as the
 
memory. This does not mean that the SECDED checking
 
networks need be limited to the trunk ends, as
 
isolation then becomes more difficult. Instead, the
 
checking networks can be placed at strategic locations
 
in the system. The current design calls for placement
 
of SECDED checking in all hardware blocks where the
 
symbol SECDED appears in figure 15. SECDED correction,
 
however is limited to the ends of the trunks only.
 

1-58
 



CIwSPO A 

SECDED 

r,~~~P 

SCDED 

AI, 

C 

0WI5rid, 

SECDED 

SCALAR1 

SECDCESD 

, 

for 

Ve" tor 

EC 

0,s 

AI4 

'IUWx',,,¢£ m", 

rW AfI~tM'S) 

Figure 15. SECDED in the FMP 



As can be seen in the block diagram of figure 15, Main
 
Memory SECDED will be checked at the Memory Interchange
 
as the data ts transmitted to the Vector Unit. The
 
SECDED is-again checked within the Vector Unit, and any
 
correction applied there, if needed. The major
 
difference between these two SECDED networks is that
 
since the first network does not actually modify bits
 
in the data stream to perform correction, it can be .an
 
"out-of--li-ne" -crcuttry which does not add time to the
 
data path. The potential correction of data in the
 
Vector Unit, however requires logic to be interposed in
 
the data path at a consequent cost of several
 
nanoseconds in transmission time-. The isolation aid
 
that the additional SECDED checking gives should be
 
obvious from the diagram. A SECDED error reported by
 
all port checking units in the Memory Interchange, for
 
example, would point to a basic data failure in memory.
 
A single port SECDED failure would indicate a problem
 
in that particular port's trunk hardware. An error
 
reported only by the Vector Unit SECDED network
 
indicates a failure in the data trunk or the paths in
 
the Vector Streaming Unit (which include high speed
 
shift networks).
 

This simple example illustrates the complex
 
combinations of symptoms that need to be evaluated in
 
light of the architecture to arrive at a specific
 
failure point where the maintenance engineer can begin
 
his search. A computerized correlation and display of
 
the possible failure points would surely speed up the
 
isolation process.
 

In addition to the SECDED and Vector Unit comparators,
 
certain second order error detection and reporting
 
schemes are employed in the FMP.
 

* 	 Illegal function detection---Each of the
 
independent units possesses fewer operating
 
modes than the function codes transmitted to
 
them are, capable of encoding. For example, not
 
all of the 256 potential operations available
 
in the main instruction stream are legal. Thus
 
all illegal functions, when detected, bring the
 
FMP to a halt and send a flag to the
 
Maintenance Control Unit (MCU).
 

* 	 Time-out detection---Certain of the FMP units
 
expect a maximum allowable time for response to
 
function and memory access requests. If the
 
maximum time is exceeded the FMP is -halted and
 
an error flag sent to the MCU.
 

* 	Monitoring counters---Counters internal to the
 
FMP can sample various activities of the FMP,
 
including the running clock, and can transmit
 

1-60
 



the accumulated data to the MCU on a regular
 
basis. In addition to the obvious utility in
 
performance measurement and optimization,
 
certain measurements may provide a clue to
 
incipient failures in the system. For example,
 
if a vector operation of length 1000 elements
 
consistently runs slower than some nominal
 
value, there may be a component failure in the
 
memory request scheduling logic of the Vector
 
Streaming Unit. Note that this failure is
 
subtle, since all answers may be correct, but
 
the program runs slower than the hardware
 
design would normally permit.
 

.	 Self checking---Some networks may have a 

built-in ability to generate and check simple 
test cases during idle periods. For example, 
an address adder in the Vector Streaming Unit 
might have alternative input selects that 
permit the injection of all "zeroes" and all
 
"ones" patterns with a built-in check for the
 
correct carry, generate and overflow bits.
 
Since the adders are highly underutilized many
 
idle cycles would be available for such
 
checking.
 

How does the FMP hardware gather all of this data from
 
its various limbs and actually notify the appropriate
 
maintenance function? Each separate network in the FMP
 
that generates error data, transmits this data to the
 
I/O Unit where special hardware in I/O PORT 0 (see
 
figure 16) locks up the information in static registers
 
and sets a flag indicating that maintenance data is
 
present. Any PDC (programmable device controller)
 
connected to this port can-and will sample this flag
 
and related registers, forming a message directed to
 
the "maintenance function" (note this is the abstract
 
of a specific hardware that used to be called the
 
"maintenance unit"). Maintenance function messages are
 
put on the network trunk where they are transmitted to
 
all other attached processors. Any processor which
 
recognizes itself as an "addressee" for maintenance
 
functions will read the entire message and turn over
 
the contents to stored programs which will analyze the
 
maintenance information given.
 

1-61
 



Nw) 

A.I ANKAll. . IASSMSC. 

441P 4 l R1400W Il 

Figure 16. FMP 
1/0 Unit
 



The potential exists then for several computers on the
 
network to possess all or part of the maintenance
 
function software. Which computer provides the
 
specific maintenance service depends on which processor
 
has its "turn in the barrel", or is available to assist
 
the FMP. In other circumstances the service may be
 
performed by the lowest level processor that can handle
 
the task. For example, a small miniprocessor such as
 
the CYBER 18 might be attached to the trunk for system
 
statistics gathering and initialization purposes. A
 
correctable SECDED error might be reported on the
 
trunk, and this small processor given the
 
responsibility for collecting the data and storing it
 
on disk for later analysis. A total failure of one
 
Vector Unit, however, when reported by messages on the
 
network trunk, might require the use of one of the
 
major front-end processors to determine what strategy
 
is to be followed (launch immediate.repairs since the
 
workload is light, swap out the unit and perform
 
automatic on-line diagnostics, etc. ...). The content
 
and not the addressee of maintenance messages determine
 
which of the system resources will perform the
 
maintenance action. In some cases the small CYBER 18
 

'
 might be off-line for maintenance, and thus the SECDED
 
error recording must be handled by another processor in
 
the network. The system must not allow the information
 
to be lost. Returning to the anthropomorphic simile of
 
the physician and patient, the FMP puts out a cry for
 
help and the most competent individual capable of
 
rendering first aid attends the victim.
 

In like manner all other components of the NASF place
 
messages on the trunks to provide operational and error
 
information to be received and processed by the
 
maintenance function. The-PDCs themselves place error
 
and operating data messages on their own trunks. The
 
support processor system hardware may not provide
 
specific electronic linkages to the network and
 
attached maintenance functions, however it should be
 
clear that maintehance function messages can be
 
generated by operating system software as well as by
 
hardware.
 

The maintenance function need not, and must not, be
 
purely passive in nature. Those elements charged with
 
maintenance function responsibilities must be able to
 
deadstart, restart, and recover any system component by
 
transmitting special messages on the trunk. The
 
maintenance entity must be ableto make decisions about
 
resource allocation and turn trunks, processors,
 
peripheral devices, and remote accesses on or off as
 
system failures make such actions necessary. Certain
 
diagnostic sequences will hav-e to be initiated, and
 
oftimes monitored by the maintenance function.
 

1-63
 



b) 	The maintenance function as a software concept---


In 	the previous discussion on hardware there are many
 
implied objectives for the designer.- Some electronic 
"hook" must be designed into new components so that 
maintenance functions transmitted on the network can 
affect some hardware operation, as for example the 
concept of "SYSTEM MASTER CLEAR". The hardware honks-, 
however, can only provide information which must be 
collated and analyzed. The initiation of maintenance 
actions and the evaluation of maintenance data must be 
done by one or more software systems. Error data can 
be created by software also. The maintenance strategy 
must consider the relationship of software to the 
maintenance hardware system. Some points to be 
included in such ruminations:
 

* 	All maintenance software, with the exception of
 
network trunk interface firmware, must be
 
"transportable". This means that any one or
 
any group of maintenance functions can be
 
"farmed out" to any of the processors in the
 
NASF. Transportability implies the use of a
 
commonly available higher-level language that
 
would be supported on all programmable
 
processors in the system. The growing
 
universality of PASCAL as a systems programming
 
language makes this the prime candidate for
 
maintenance software. In addition to the
 
language, the structure of all maintenance
 
software must be carefully specified, tightly
 
controlled, and implemented in a disciplined
 
manner. In specific terms this means that a
 
small diagnostic monitor with standard software
 
interfaces must be created in such a way that
 
it 	can fit in the smallest processor that might
 
be 	assigned maintenance functions. The
 
standard interfaces necessary would consist of
 
common message formats for communicating with
 
the outside world (via the network trunk), a
 
common set of diagnostic primitives (or calls
 
to kernel subroutines), and a common set of
 
definitions of data and procedures as well as
 
common data descriptions which would be
 
incorporated as declarations in each PASCAL
 
program.
 

* 	All operating system software should provide
 
maintenance oriented messages in the same
 
manner as the hardware in the FMP and network
 
trunk. These messages should provide normal
 
operating information (such as "time-stamped"
 
job start/stop messages) as well as warnings of
 
exceptional conditions. Examples of this
 

1-64
 



latter message traffic would be: abnormal job
 
termination, failure to receive responses from
 
other processors in the system, impossible
 
conditions detected within the operating system
 
such as table overflows, missing pointers, etc.
 
The concept of collecting, recording, and
 
disseminating maintenance data to other
 
processors should be fundamental in the design
 
and implementation of all operating system
 
components and not just merely a set of hooks
 
to 	emplace in developing systems.
 

* 	 Critical maintenance functions.such as system
 
shut-down, restart, and recovery must be
 
provided in at least two different processors
 
with appropriate interlocks so that only one of
 
the pair will respond to emergency conditions.
 

* 	 The maintenance software must provide
 
additional security safeguards for access to
 
maintenance data and for permission to invoke
 
maintenance software functions. A powerful
 
tool in the maintenance arsenal will be the
 
remote access (via standard interactive
 
terminals) to the FMP by specialists not
 
necessarilyresident at the NASF site. This
 
can only be permitted if adequate protection is
 
afforded the system from illicit use of the
 
maintenance capabilities. The level of
 
security must be greater than that which is
 
nominally acceptable for commercially available
 
computer based systems. The reason is obvious,
 
since remote access could be obtained to
 
functions which affect the actual hardware
 
operation. Certainly the software system must
 
be able to prevent catastrophic events from
 
being initiated while the system is in
 
production mode.
 

c) 	The maintenance function as a -procedural concept---


In 	Division 7 the subject of maintenance strategy is
 
discussed. In addition to the hardware and software
 
that are designed into the NASF, a procedural strategy
 
which concerns itself with manpower (numbers and
 
qualifications), organization, economics,
 
methodologies, and tradeoffs in the maintenance process
 
must be designed as well. One of the major operating
 
costs of the NASF will be that of the maintenance
 
support function. Not only must a sufficient number of
 
trained personnel be available for emergency service,
 
but personnel, equipment, and parts must be on site to
 
perform regular preventative maintenance. The costs of
 
maintaining the maximum work force and parts inventory
 

1-65
 



can be prohibitive and must be weighed against the
 
alternative probabilities of system failures during
 
time of operational use.
 

2.3.5 MICROCODE CONTROL AND FAULT ISOLATION
 

A powerful tool for computer designers, made possible by

aivances in memory technology, is the microcode control of logic

networks. Although quite often stored in ROM
 
(Read-Only-Memory), microcode can 
also be stored in standard RAM
 
(Random Access Memory) and loaded into the CPU at every system

"deadstart" (or power-up, or "coldstart"). The use of
 
reloadable microcode permits the incorporation of design

improvements in the control systems without changing components
 
or rewiring logic in the computer at a field installation. A
 
class of memory technology is now available that permits the 
use
 
of microcode control for even the highest performance logic

family, with a minimum of auxiliary hardwired control necessary
 
to meet the speed requirements of most networks.
 

The Control Data FMP design is based on the use of this high

performance microcode, which is distributed within each
 
functional element rather than being centralized in a main
 
control unit. In addition to the concept of "distributed
 
microcode", the machine employs a "two-dimensional microcode"
 
structure which is utilized for on-line diagnosis and fault
 
isolation. Figure 17 sketches the concept it appears to the
as 

hardware designers.
 

1-66
 



ON-LINE DIAGNOSTIC
 
STARTING ADDRESS
 

N WORDS 
OF M BITS 

WIDE CONTROL SEQUENCE 

STARTING LOCATIONS 

SEQ 

M BITSj SPARE 

ADDRESS OF 
NEXT WORD 

*INPUTS PROIMl 
HARDWARE-

Figure 17. Microcode Memory
 

1-67
 



The microcode memory consists of a semiconductor system capable
 
of storing N words of M bits in a high speed RAM technology
 
package. Control is achieved by reading a word from this memory
 
and distributing the bits to actual hardware gates in the CPU.
 
In the example shown, bits m through n are used to control the
 
next address to be read from the memory. Bit 7 is shown being
 
sent directly to a hardware AND gate which controls some data
 
path. Bits 8 and 9 are sent to a hardware 2-to-4 decode network
 
which converts the two-bit code into four distinct control
 
signals which are then transmitted to data path controls
 
elsewhere in the network.
 

A typical modus operandi for such a microcode is for it to
 
receive an initial starting address from an outside source (say
 
for example, a function code being sent from the Scalar Unit to
 
the Vector Unit). This address points to one of three legal
 
starting addresses in the microcode memory. The first control
 
word is then read from that memory and its bits disseminated to
 
the appropriate hardware. The next word to be read is then
 
determined from the SEQ field of the first word, and the process
 
continues until either the microcode shuts itself off and awaits
 
a new external address, or perhaps, enters an "idle loop"
 
(sequence of do-nothing microcode instructions).
 

Since memory systems are usually packaged in convenient sized
 
units (for example, a single efficient block might be 32 words
 
of 32 bits), the designer usually finds that after he has
completed his control structuring there are unused memory
 
locations and unused bits in each distributed memory
 
(crosshatched areas in figure 17). The two dimensions of this
 
microcode are evident from the diagram -- depth (number of
 
words) and width (number of bits). The realistic designer will
 
first set aside some of the spare depth and width for possible
 
later design improvements. However, the need for reliability
 
and availability dictate that a certain amount of words and bits
 
be.allocated to the maintenance function. Some of the bits
 
might be connected to gating networks which are not used during
 
normal operation. Others might be sent as codes to the
 
Maintenance Control Unit as error flags.
 

The spare words in the memory might be employed in two ways:
 

" 	First the idle loop, which the microcode normally enters
 
while awaiting a new function, might be extended to use
 
these words to initiate self-checking actions in some of
 
the networks. An example previously given was the
 
forced generation of all zeroes to an adder network. At
 
the same time, one of the spare bits might enable an all
 
zeroes check to be performed at the output of the adder.
 
If 	this check is not satisfied an error flag could be
 
sent to the MCU.
 

* 	Second, an external source (such as the MCU could
 
initiate a microcode sequence at one of the spare words
 
(labeled ON-LINE DIAGNOSTIC STARTING ADDRESS in the
 

1-68
 



figure). This sequence could perform certain unique
 
network control not available in normal operation. An
 
example of this would be the defeating (shutting off) of
 
the generated carries in an adder network so that only
 
the partial sums are transmitted to the output trunks.
 
In some cases this might aid isolation of failures a
 
great deal. Once the sequence is completed the microede
 
might then return to its normal idle loop.
 

A third diagnostic and isolation aid is the ability to load a
 
completely different microcode into the memory from the
 
maintenance station (this function is called "down-loading"; or
 
"downstream loading"). Down-loading of the normal operational
 
microcode is always done at system startup time, since the RAM
 
memory is volatile. It can also be done independently to any
 
independent functional element in an off-line manner by the
 
maintenance station. This version of the microcode would be
 
called the fault isolation microcode. It may consist of one or
 
several loads'of microcode which trigger and test the logic
 
networks at the gate level. The intent of this system is to
 
provide back to the maintenance station sufficient analysis to
 
permit the determination of fault location to the smallest
 
replaceable component level. Loading of such microcode into one
 
Vector Unit does not affect any other unit, therefore it is
 
possible for the MCU to switch into operation the spare Vector
 
Unit, load isolation microcode into the failing Vector Unit and
 
perform isolation exercises in that unit while the remainder of
 
the FMP continues normal operation.
 

It should be obvious that the designer must design fault
 
isolation into the FMP from the start, and not just be content
 
with using whatever spare words and bits may abound. The design
 
philosophy for. the FMP has been to add whatever extra bits and
 
words are necessary to make achievement of the replaceable
 
component isolation goal a reality, within the constraints that
 
too many words and too many bits may take up too much ro.om or
 
too much access time as to be feasible.
 

2.3.6 VALIDITY AND VERACITY
 

The primary objective of this study has been to arrive at a
 
system design which can be built and utilized effectively within
 
a very tight development time schedule. The willingness of NASA
 
and manufacturers such as Control Data to launch into the actual
 
construction of such a facility with all its visibility and all
 
its risks will be determined not only by allegations of
 
achievable goals, but more importantlyby the confidence upon
 
which all parties can rely on the cost, performance, schedule
 
and RAM goals.
 

A summary of statements regarding the validity or correctness of
 
the conclusions on hardware design as far as is known today are
 
presented here.
 

1-69
 



2.3.6.1 ASSUMPTIONS
 

1. 	Design would not commence until mid-1980 at the
 
earliest.
 

2. 	A FORTRAN compiler can be produced which can generate
 
and schedule machine instructions from the implicit
 
metric as shown in appendices B and C.
 

3. 	The entire system design and manufacture would be
 
conducted by a single vendor, with choice of new
 
equipments installed with this system left to that
 
vendor.
 

4. 	The implicit metric reflects the most probable
 
performance characteristics of the major load of
 
production jobs on the FMP.
 

5. 	The system load data provided by Ames is at least
 
within 20% of reflecting the 1984-1989 production
 
environment.
 

6. 	Installation and operation of the NASF can be phased
 
over a period of 12 months as more and larger elements
 
are needed to support the increasing workload (for
 
example, the Backing Store need not be installed at the
 
outset to meet initial program development and
 
production operation. Then it could be installed in
 
increments.)
 

7. 	Sufficient funding and compute power will be available
 
for the duration of the development project to support
 
extensive simulation of the FMP and the system at all
 
levels (system, block, and gate-level models).
 

2.3.6.2 VALIDITY DERIVATION
 

1. 	All circuit components costs, failure modes,
 
quantities, and complexity are based on existing parts
 
now in production with the exception of the Backing

Store technology.
 

2. 	The Backing Store estimates are based on MOS
 
technologies now in production, and scaled for the more
 
complex chips in that memory.
 

3. 	Where sufficient production volumes have not yielded
 
sufficient experiential data (as in the case of the
 
LSI-168 gate array and Intermediate Memory chip)
 
conservative learning curves for failures and costs
 
were utilized.
 

1-70
 



4. 	The packaging, power, and cooling technologies were
 
taken directly from computer products already in
 
existence.
 

5. 	Gate-level design of some of the key FMP elements, or
 
portions of those elements (such as the Memory, PDC,
 
Scalar Unit), have been completed and either put. into
 
practice or simulated in detail as part of standard
 
product development on other CDC projects.
 

6. 	Design and simulation techniques are identical to those
 
employed for other large scale computer development
 
efforts.
 

7. 	To the extent that time and resources have permitted,
 
the design of the FMP has been carried to the point
 
where all manufacturing and performance aspects are
 
expected to be within 10%.
 

8. 	All other system components in the NASF are taken from
 
the warehouse of existing system devices, for purposes
 
of calibrating cost, performance, and physical
 
requirements. Since forthcoming products will
 
undoubtedly improve with respect to all three
 
parameters, the current estimates are considered highly
 
reliable and quite conservative.
 

Finally, as a bottom line, based on two decades of effort to
 
build and support machines of this class, Control Data believes
 
that if the requirements reflect reality and the system design
 
truly meets the performance objectives of the projected
 
production environment, then the entire NASF is producible in
 
the specified time frame and will be effective in its given
 
role.
 

1-71
 



3.0 SOFTWARE DESIGN
 

The success of the FMP rests not only on the ability of the
 
hardware to attain its performance goals, but also on the
 
effectivity of the software system that supports the hardware.
 
The first concern is that the problem statement be matched to
 
the computer architecture to maximum effect. This is a function
 
of the programming language characteristics as well as the
 
capability of the compiler to make automatic deci-s-i-ons,
 
transparent to the programmer, regarding the scheduling and
 
optimization of the FMP hardware resources. The major effort in
 
this study has been to attack these two aspects of FMP software
 
design.
 

The 	overall FMP capability for initiating new jobs and
 
scheduling system interactions such as I/O with a minimum of
 
lost time to the production jobs is a second software design
 
concern which has been addressed in these three NASF studies.
 
This report will discuss the current conclusions on these
 
issues, and will include updates of previous study findings in
 
these areas.
 

3.1 LANGUAGE ANALYSIS AND DEFINITION
 

At the outset of the first NASF study Control Data concluded
 
that a special purpose language would have to be developed for
 
the FMP to ensure that the best match was made between language
 
and problem algorithm, and between language and machine
 
architecture. The pragmatics of the expected operating
 
environment made it impossible to ignore the imperative of
 
maintaining a FORTRAN-like language for most, if not all,
 
applications programming. Language design for the FMP would
 
focus entirely on the applications development aspect of program
 
statement, leaving the operating system and support software
 
development in the hands of the extant system language "fad".
 

3.1.1 EVOLUTION LEADING TO SPECIFICATION
 

Two rationale dominate the CDC recommendation for a special
 
language for the FMP.
 

1. The possibility that compiler technology will develop

"production" language processors that can unravel the
 
existing scalar FORTRAN metrics into sequences suitable
 
for 	parallel computational elements is an exciting

object to pursue, but the risk of failure at this stage
 
is quite high. This alternative must not be abandoned
 
by researchers however.
 

2. 	In the long run, applications programmers will benefit
 
from conceiving of their problem solutions in parallel
 
form, rather than letting a "smart" compiler invisibly
 

1-72
 



transform their code. By making the inherent
 
parallelism visible, the programmer c-an assist the
 
compiler in the production of -optimum machine
 
instruction sequences.
 

Demonstrating RADL researchers resolve and-technical opinions,
 
at least five different approaches were attempted at defining a
 
programming language which met the criteria of compilability,
 
consistency, clarity, and most of all, acceptability to the
 
potential user community (NASAAmes). The approaches began in
 
the initial study period by beginning with a single language
 
construct to FORTRAN and thence experimenting with the resulting
 
language using -the implicit and explicit metrics. As
 
shortcomings were encountered in use, an additional construct
 
was created and added to the language specification. In that
 
manner, a draft language enhancement to FORTRAN was developed
 
during most of the first study. In the main, these extensions
 
were reasonably acceptable to those programmers who considered
 
them, however they did not meet the criteria of consistency and
 
compilability, appearing much like a set of patches.
 

A quick remedy for this was to reduce the extensions to a
 
manageable size and ignore some of the picky programming details
 
(such as data movement) that arose; so evolved 'the CODO
 
(concurrent DO) constructs described in reference 1. As the
 
second study began, it became obvious that other considerations
 
might weight heavily- on decisions regarding language.
 

1. 	The expected system development time for the NASF would
 
severely strain the best efforts of any compiler
 
development team. To reduce development risks an
 
existing compiler would have to be adapted to the FMP
 
usage. Otherwise, the first years of NASF production
 
would be fraught with the problems inherent in any new,
 
complex compiler system.
 

2. 	The acquisition of "parallel programming" insight is
 
painful on first go for even the most highly skilled
 
analysts. The process of learning new thought
 
processes, researching and developing new parallel
 
algorithms is, in its initial stages, quite lengthy and
 
requires great diligence.
 

3. 	STAR-100 experience was beginning to show the direction
 
that algorithms could take, and an inventory of useful
 
programs,,sukprograms and functions was being developed
 
that might be of great value, in their most mature
 
forms by 1984, to a widely used system such-as the
 
NASF. If some means could be found to utilize all of
 
this background derived from the STAR experience, much
 
time and effort might be saved, hence costs and risks
 
might be reduced.
 

1-73
 



This thinking led down the STAR-100 byway, in an attempt to
 
directly apply the STAR-100 FORTRAN language extensions to FMP
 
programming. The obvious advantage of this was that programs
 
could be coded, reformatted, debugged, and even small production
 
runs made on existing computing systems. The disadvantage was
 
that although the language was consistent and obviously
 
compilable, the user acceptance was near zero. The major,
 
objections by NASA were:
 

1. 	The need for explicitly describing vector data
 
structure and vector operations made it difficult to
 
develop algorithms without being intimately familiar
 
with the internal hardware design. For
 
three-dimensional simulation problems this was an
 
undesirable requirement, since most creative resources
 
are expected to be needed in just solving the physics
 
and mathematics of the model solutions.
 

2. 	Some changes -were needed in the STAR-100 FORTRAN to
 
accommodate the differences in architecture between the
 
FMP and STAR. This meant that the compiler could not
 
be retained in its original form in any case.
 

3. 	Some notational forms were clumsy, but required by the
 
compiler. There were too many additional constructs to
 
learn besides the normal FORTRAN constructs.
 

4-. 	 The existing metric code would have to be severely
 
disrupted to organize the code in a form suitable for
 
optimum machine operation using the extensions.
 

Control Data was asked to go back to "square one" and attempt to
 
provide a FORTRAN system where most of, if not all, the machine
 
architecture could be "hidden from view" of the programmer,
 
relieving him to deal with the mathematical and physical
 
intricacies of his problem. Interaction with Ames programmers
 
revealed the fact that they objected to the explicit knowledge
 
and manipulation of Vectors of the STAR form but had no
 
reservations about dealing with an abstract collection of data
 
called an array, or a subarray, as an entity in an single
 
computation. Thus the programmers claimed they would be happy
 
with the ability to state solutions like:
 

PROGRAM TEST
 

DIMENSION A(100,100,100),B(100,100,100)
 

A=B*B
 

where the entire meshes A and B take part in the one operation.
 
Further, the manipulation of subsets or subarrays of arrays was
 
also acceptable, as long as the compiler worried about
 
partitioning the actual arithmetic operations into sequences of
 
suitable vector operations for the FMP. Thus:
 

A(1:10,1,1):B(1:10,1,1)
 

1-74
 



10 

which causes the first column of B (ten elements) to be moved to
 
the first column of the array A.
 

It is easily apparent that this same operation could be
 
restatted as a conventional FORTRAN DO loop:
 

DO 10 I=1,10
 

A(I,I,I)=B(I,I,,I)
 

but the clearly recognized movement of a column of data in the
 
subarray form describes the desired action, while statement 10
 
above might be submerged in a morass of statements in a much
 
larger DO loop in I. The clarity of intent is not only more
 
open to the casual reader but to the compiler itself which has
 
to deal with messy DO constructs containing IF-ELSE blocks, GOTO
 
and CALL statements which may make the simple array move
operation impossible to determine when stated in DO loop form.
 

Given this assistance and guidance, RADL set about reconciling
 
those desires and previously stated constraints with another new
 
set of considerations:
 

1. 	The final FMP form arrived at in this study
 
deliberately separated the data movement (map)
 
operations from arithmetic operations in terms of
 
hardware and control. Some of the resulting
 
concurrency could be discerned automatically by the
 
compiler, but a modest amount of language assistance
 
might make it possible to fully utilize the concurrency
 
and maximize vector unit activity.
 

2. 	 Tradeoffs in FMP architecture resulted in a three-level
 
memory hierarchy which cannot be entirely hidden from
 
the programmer due to the vast differences in
 
performance levels and constraints on data storage
 
(only BLOCK transfers are permitted to/from LEVEL 3,
 
for example).
 

3. 	The ANSI FORTRAN 77 specification was finally adopted
 
in final form and commitments to implement this
 
language' as the new US standard were practically
 
imposed on American computer manufacturers. Hence all
 
CDC FORTRAN compilers were rapidly to turn into ANSI 77
 
processors.
 

4. 	Some of the non-vector extensions of the STAR-100
 
compiler proved to be quite valuable in programming for
 
the STAR and CYBER 200 machines. The subarray
 
reference notation, IMPLICIT, CHARACTER, and extended
 
intrinsic functions have demonstrated high utility in
 
production codes.
 

1-75
 



5. The need to base the FMP compiler on an existing
 
compiler is still considered imperative to meet the
 
NASF development schedule. This is particularly true
 
if the language construct additions or changes can be
 
minimized.
 

The outcome of these deliberations,is offered in Volume III, FMP
 
FORTRAN Language Specification. A more detailed discussion and
 
demonstration of the language facilities is included in
 
subsequent sections of this report.
 

3.1.2 OBSERVATIONS AND RATIONALE
 

The preceding discussion has concerned the evolution of thought
 
and deed that led to the language specification given with this
 
report; however, some additional commentary should be offered.
 

1. 	Programs and algorithms developed for the STAR/CYBER
 
200 family can be directly transferred to FMP FORTRAN
 
by converting the explicit vectors to subarrays. This
 
can 	be done easily with a mechanical "SIFT"
 
(conversion) program. STAR "Descriptors" can be
 
directly converted to the more flexible DYNAMIC
 
variable.
 

2. 	Dynamic assignment of-memory levels using the DEFINE
 
statement makes it possible to use the identical
 
production code for small problems (which would fit
 
entirely in Main Memory and operate quite efficiently)
 
and large codes (which need to be based in Intermediate
 
Memory, with the slow map times thus incurred), without
 
recompiling. The programmer may, if he wishes, take
 
direct control of temporary space allocation for large
 
arrays.
 

3. 	Scalar algorithms may be vectorized directly in many
 
cases by redefining all scalars as arrays or subarrays
 
with DYNAMIC statements.
 

4. 	In the examples in the implicit code report the full
 
subarray reference notation is used. In many instances
 
this would be unnecessary once the compiler could
 
detect these cases from the normal array notation
 
imbedded in a DO loop. The subarray references were
 
retained since it was felt that they more clearly
 
describe "what's going on".
 

1-76
 



5. 	Some form of dynamic redefinition of data structures is
 
necessary in parallel systems to avoid being bound by
 
the static characteristics imposed by DIMENSION which
 
makes it difficult to store adjacent elements together,
 
column-for-column and plane-for-plane, (This is,
 
incidentally, an opinion stated by Dick McHugh of CDC
 
in 1976, but not put into practice until now.)
 

6. 	 Although compilers can now allegedly process and
 
incorporate more than a single module at a time, and
 
thus vectorize across CALL statements, the use of a
 
single generalized subroutine (with its inevitable IF
 
statements used to pick out special cases) is basically
 
inimical to automatic, OPTIMUM vectorization (notice
 
the emphasis on OPTIMUM!). The recoding of STEP
 
brought the XXM, YYM, and ZZM subroutines in-line, not
 
only to aid vectorization but to eliminate redundant
 
data transfers (for example the use of the array RJ,
 
lines 930, 1030, 1040 of appendix B). In a similar
 
vein, VISMAT needs to be brought in-line so that the
 
subroutine call to ZZM can be eliminated and the data
 
previously computed reused.
 

3.2 FMP LANGUAGE DESCRIPTION
 

The 	base-language chosen by Control Data for FMP applications
 
programming is ANSI FORTRAN 77. A set of extensions to this
 
basic language has been defined for the CYBER 200 family, and
 
these extensions have been further augmented by specific FMP
 
features intended to assist the compiler in producing optimum
 
code for the FMP. The choice of ANSI FORTRAN 77 was based on
 
the following considerations:
 

a) The FORTRAN language, imperfect as it may be, is
 
commonly known, and has become the de facto "lingua
 
franca" of the American computer community. It can be
 
expected that all potential front-end or support
 
processors will supply FORTRAN compilers as part of
 
their standard software system. Thus most applications
 
programming outside the FMP will most likely be done in
 
FORTRAN.
 

b) The ANSI 77 version of FORTRAN will shortly become the
 
official standard language specified in all government
 
procurements (and thus quickly be required in all
 
commercial computer purchases). Absolute requirements
 
for vendor supply of ANSI FORTRAN 77 compilers are
estimated to be imposed in the middle of 1980. It is
 
expected that after some interim period following the
 
introduction of the ANSI 77 requirement this updated
 
FORTRAN will become the sole FORTRAN language supported
 
as "standard" by the offerers of NASF processors other
 
than the special purpose FMP.
 

1-77
 



Volume III of this report contains a specification of the
 
proposed ANSI FORTRAN 77 language, as amended for the FMP, in
 
the form of a programmers'-reference manual. The specification
 
consists of an original CYBER 200 (STAR) FORTRAN manual, with
 
line and page changes incorporated as insertions to the
 
original. This was done to make visible to potential users the
 
differences between ANSI 66 (as represented by the CYBER 200
 
FORTRAN) and ANSI 77, as well as the differences between CYBER
 
200 FORTRAN vector features and FMP vectoriiation aids.
 

The language specification can be viewed as four distinct
 
entities:
 

1. 	The basic reference manual.
 
2. 	Changes needed to make the language fully ANSI 77
 

compatible.
 
3. 	CYBER 200 FORTRAN 77 additions (beyond ANSI 77).
 
4. 	FMP FORTRAN extensions.
 

This language, as described in Volume III, was used for the
 
recoding of the implicit and explicit aerodynamic flow codes as
 
presented in this report.
 

3.2.1 THE BASE DOCUMENT
 

The reference manual (Volume III) provides a FORTRAN language
 
originally based on ANSI FORTRAN 66. Extensions to permit
 
implicit and explicit vectorization for the STAR computer were
 
added to the language. Data types such as BIT and CHARACTER
 
were included to support the string processing capabilities of
 
the STAR architecture. Additional vector constructs were added,
 
such as DESCRIPTOR and DOUBLE DESCRIPTOR, to provide a
 
"shorthand" means of invoking standard and sparse vector
 
operations. The explicit vector constructs that were added for
 
STAR have been replaced by more flexible constructs for the FMP
 
version of the FORTRAN language.
 

The 	majority of the dialect described in this base document is
 
familiar to all FORTRAN programmers. One construct that was
 
added to STAR FORTRAN has proven to be quite useful in the
 
analysis and programming of FMP codes, and thus deserves some
 
discussion here; that construct is SUBARRAY notation, and
 
rationale for it follows.
 

In the early developmental days of the first "vector" or
 
"parallel" machines (ILLIAC IV, STAR, TI-ASC, and PEPE) compiler
 
developments discovered that automatic vectorization of FORTRAN
 
code was made difficult by common programming practices that
 
incurred no penalties on scalar computers. Such practices 'could
 
be represented by a DO loop of the form
 

DO 10 I=1,1000
 
A(I)=B(I)*C(I)
 

CALL GLUMPF(A(I),B(I))
 

10 A(I)=A(I)**2
 

1-78
 



If the CALL statement were not present, even primitive compilers
 
could automatically create vector operations for the arithmetic
 
assignment statements shown. The introduction of
 
discontinuities such as this, when all program modules cannot be
 
compiled together, makes vectorization nearly impossible. If, in
 
fact, the arithmetic could be vectorized, the programmer could
 
restate his intentions as
 

DO 100 I=1,1000
 
100 A(I)=B(I)*C(I)
 

DO 101 I=1,1000
 
101 CALL GLUMPF(A(I),B(I))
 

DO 102 I=1,1000
 
102 A(I)=A(I)**2
 

The compiler is thus assisted in its vectorization task by the
 
programmer restating the data flow more explicitly, although a
 
bit ponderously. To get optimum results on the-new generations
 
of vector machines, it has become necessary to make the
 
programmer conscious of the "parallel" or "vector" nature of his
 
programs so that problem restatements can be done intelligently.
 
The consciousness must also extend to the data allocation
 

schemes, since some processors possess memory hierarchies with
 
significant performance differentials at each memory level,
 
while other processors require linear, sequential storage of
 
data for optimal vector performance. Additionally, some form of
 
"shorthand" would be desirable to reduce the coding effort while
 
improving readability.
 

Early in the 1970s, several different computer developers
 
proposed a set of extensions to the ANSI FORTRAN committee for
 
the description of operations on whole arrays or portions of
 
arrays called "subarrays". These recommendations, while not
 
approved by the committee, appeared to have sufficient support
 
that they were implemented in at least four different vendors'
 
compilers, one of those being the STAR FORTRAN 66 compiler.
 

Basically, subarray notation can be thought of as another means
 
for describing processing that is commonly assigned to DO loops.
 
The simplest case is to perform operations over an entire
 
array:
 

DIMENSION A(100,100,100),B(100,100,100),C(100,100,100)
 

DO 10 I:1,100
 
DO 10 J=1,100
 
DO 10 K=1,100
 
A(I,J,K)=B(I,J,K)+C(I,J,K)
 

10 CONTINUE
 

In this instance the programmer wishes to operate on the entire
 
matrices A, B, and C.' It is obvious that the order of the
 
subscripts is not important for
 

A(J,K,I)=B(J,I)+C(J,K,I)
 

1-79
 



10 

will yield the same results as the previous assignment
 
statement, provided the matrices A, B, and C are not
 
equivalenced or overlapped in some ridiculous COMMON block
 
allocation.
 

The simplest subarray representation for this case would be
 

DIMENSION A(100,100,100),C(100,100,100),B(100,100,100)
 

A detailed specification of forms and uses for subarray notation
 
can be found in chapter 10 of Volume III (FMP FORTRAN REFERENCE
 
MANUAL). The case shown here uses the asterisk (*) to represent
 
the fact that the full subscript range is to be used, hence the
 
ADD operation will take place over the entire array. The
 
compiler and hardware can perform this function according to
 
whatever subscript order is optimal for that architecture!
 

An array variable may appear without any subscripts, in which
 
case the entire array is processed in normal subscript order.
 
Thus
 

A=B+C
 

is eqivalent to
 

AS(*,E**):=B( *,*,*)+C (*,*,
 

in the example above.
 

What if the need were to process only a single column of the
 
matrices?
 

DIMENSION A(100,100,100),B(100,100,100),C(100,100,100)
 

DO 10 I=1,100
 
A(I,1,1)=B(I,1,1)+C(I,1,1)
 

This sequence would perform the single-column addition of B and
 

C. In subarray notation this could be stated
 

DIMENSION A(100,100,100),B(100,100,100),C(100,100,100)
 

A(*,1,1)=B(*, 1,1)+iC(*,1, 1)
 

A significant feature of this notation is that a programmer
 
working on a large code can spot such a statement in the middle
 
of many pages of source code and know instantly that a columnar
 
operation is being invoked, without having to hunt upstream in
 
the listing (perhaps for several pages) to find a related DO
 
loop.
 

1-80
 



10 

So much for the shorthand programming of DO loops provided by
 
the asterisk operator, which can appear in any or all of the
 
subscript positions in an array reference. What happens if one
 
wishes to deal with portions of the array other than the
 
commonly encountered:
 

A(*,*,) ----- the first vertical plane of the mesh
 
A(*,I,*)-----the first orthogonal plane of the mesh
 

* )
A(I,*, -----the first horizontal plane of the mesh
 

What if only the interior points in the matrices were to be
 
processed leaving all of the outside planes untouched? In normal
 
FORTRAN this would become
 

DIMENSION A(100,100,100),B(100,100,100),C(100,100,100)
 

DO 10 I=2,99
 
DO 10 J=2,99
 
DO 10 K=2,99
 

A(I,J,K)=B(I,J,K)+C(I,J,K)
 

Using subarray notation the three-level, nested DO loop could be
 
replaced by
 

A(2:99,2:99,2:990=B(2:99,2:99,2:99)+C(2:99,2:99,2:99)
 

where the normal subscript is replaced by the construct
 

ni:n2
 

nl=starting subscript value (may be integer constant or
 
variable expression), nl<n2
 

n2=ending subscript value (integer constant or variable
 
expression), nl<n2
 

If every other element in the interior mesh were to be skipped,
 
the optional construct
 

A(2:99:2,2:99:2,2:99:2)=B(2:99:2,2:99:2,2:99:2)+C(2:99:2,
 
2:99:2,2:99:2)
 

is permitted which is represented in general by
 

-n1:n2:n3
 

where n3 is the increment value for that subscript, which may be
 
an integer constant or integer variable expression, and must be
 
greater than zero.
 

Now this latter example certainly doesn't appear to be a
 
shorthand version of the desired processing, yet when DO loops
 
must be inserted in "dusty deck" FORTRAN to assist in
 
vectorization, this construct can be a better alternative. More
 
importantly it forces the programmer to think "parallel"
 

1-81
 



10 

in terms of "planes", "solids", and other forms of the subarray.
 
Further, the pathological subarray case just given doesn't
 
appear very often in real code and thus shouldn't frighten
 
programmers from the use of the construct.
 

How is this notation used in practice? In the recoding of the
 
implicit code, the original flow variable mesh is treated-in
 
"slabs" which can be fit into Main Memory. A slab could- be
 
seweral columns- in the L dtr-etion o-f the mesh, with each slab
 
consisting of JMAX times KMAX elements. If static FORTRAN
 
variables were used (and they were not used in the actual
 
implicit recoding), the following might appear in a sample
 
code.
 

DIMENSION Q(iO0,iOO,6,100),X(100,100,10)
 

DO 10 L=1,LMAX,1O
 
X(*,*,*)=QC*,*,I,L:L+9)
 

CONTINUE
 

In this example, every,pass through the loop another slab of 10
 
columns is moved to the temporary matrix X. This case was given
 
to show the admixture permitted of fixed subscripts (the ,,1, in
 
the Q reference), asterisks, and subarray subscripting with
 
integer variables (L:L+9).
 

The subarray notation is a powerful tool for assisting the
 
compiler and for documentation purposes. It was used,
 
extensively in the implicit code vectorization to demonstrate
 
its use in a variety of cases. Subarray notation is also key to
 
the implicit and explicit definition of DYNAMIC variables, to be
 
discussed in a later section of this language description.
 

3.2.2 THE ANSI 77 SPECIFICATION
 

Rev.iew of the reference manual in Volume III will show that each
 
ANSI 77 revision appears on a page separate from the original
 
base document, with letters keying the location of each
 
insertion into the reference manual. The significant changes of
 
the ANSI 77 effort worth noting are:
 

* 	 Major revisions in the I/O forms, and use of internal
 
files to eliminate ENCODE/DECODE statements.
 

* 	The "Zero-Trip" DO loop, which tests the DO variable at
 
the beginning of the loop instead of the end.
 

* 	The addition of TYPE CHARACTER.
 

1-82
 



3.2.3 THE CYBER 200 FORTRAN 77 ADDITIONS
 

Incorporated in the revision pages, along with the ANSI 77
 
insertions, are several additions felt necessary to fully
 
support the CYBER 20 computer family, and also the FMP. The
 
most significant item in this category is the inclusion of a
 
HALF PRECISION variable and array type plus half-precision
 
implicit functions. Both the CYBER 200 and the FMP can utilize
 
the 32- bit and 64-bit formats available for faster arithmetic
 
throughput, as well as more compact storage for some arrays. The
 
addition of HALF to FORTRAN 77 is essential to providing access
 
to this feature.
 

3.2.4 FMP FORTRAN EXTENSIONS
 

Although the base document revised as stated above would offer a
 
fairly rich programming language, it was found that a few
 
additional extensions designed primarily for the FMP would
 
improve the chances that compiled code would make optimum use of
 
the FMP. These extensions consist of two declaratives, LEVEL and
 
DYNAMIC, and one executable statement, DEFINE. Although these
 
extensions are described in the FORTRAN reference manual (Volume
 
III), they are crucial to the recoding performed on the
 
three-dimensional implicit and explicit flow codes supplied, by
 
Ames. Some tutorial commentary thus seems necessary at this
 
point to explain why the extensions have been created and how
 
they were intended for use.
 

3.2.4.1 THE LEVEL STATEMENT
 

Rationale:
 

In any computer possessing a hierarchical memory system, where a
 
performance differential exists in the use of each level of the
 
hierarchy, the programmer is faced with the need to make
 
judicious choices in the area of data allocation. It is true
 
that compilers can attempt to automatically allocate-data to the
 
hierarchy, and in some virtual memory systems the hierarchy is
 
managed by the operating system, however, a minor error in
 
judgment as to where data should be placed (or which data to be
 
paged) can have major impact on the system performance. For
 
optimal use of the hardware resources, the programmer who knows
 
the actual data flow must allocate and schedule the major data
 
blocks in his program.
 

The use of the two-level memory in the CDC 7600/CYBER 176 has
 
required that programmers deal with split data allocation in an
 
explicit manner. Note that even with this facility, the
 
compiler and operating system still make use of the second level
 
memory for I/O buffers and subprogram "roll-in", quite'
 

1-83
 



independent of the programmer's actions. The concern is for an
 
extension which forces the programmer to consider the data
 
allocation issue directly and then assist the compiler by
 
instructing it where data should be placed. This is even more
 
true in the FMP where the programmer is confronted with three
 
levels of memory and problems that will consume almost all
 
available memory space at each level. Hence, the inclusion of
 
the LEVEL statement.
 

Form:
 

A description of the LEVEL statement can he found in chapter 6
 
(page 6-3.1A) of Volume III (FMP FORTRAN specification). The
 
LEVEL statement is a declarative, used to assign variables and
 
arrays to a specific level of memory. The default allocation of
 
data, in the absence of a LEVEL statement is always to Main
 
Memory (level 1).
 

LEVEL n Vnaml,Vnam2,...,Vnamm
 

where n is an integer or integer PARAMETER whose values can be
 

1----- Main Memory
 
2-----Intermediate Memory
 
3----- Backing Store
 

and Vnaml,...,Vnamm are symbolic names of variables, arrays,
 
dynamic variables, or dynamic arrays (dynamic
 
types will be discussed in a subsequent section).
 

Scalar variables may be allocated to either level 1 or level 2
 
memory but not to level 3 (Backing Store). This is because the
 
Backing Store is only accessed in large blocks, and a single
 
scalar reference would require moving an entire block to or from
 
the Backing Store, creating a very inefficient use of that
 
system.
 

Examples:
 

LEVEL 1 A,B,C(100,100)
 

This statement would assign the scalar variables A and B to Main
 
Memory and the 10,000-element array C to Main Memory.
 

DIMENSION X(100,100),Y(100,100)
 

LEVEL 3 X,Y,Z(100,100)
 

This level statement would assign the three arrays X, Y, and Z
 
to the Backing Store.
 

LEVEL P1 X,Y,Z
 

1-84
 



This statement would assign the variables X, Y, and Z to either
 
LEVEL 1 or level 2 memory depending on the value of the integer
 
parameter P1 (see PARAMETER statement in Volume III). If the
 
value of P1 is greater than 2 at compile time, a compiler
 
diagnostic will be produced and the data will be assigned to
 
LEVEL 1 memory by default.
 

3.2.4.2 DYNAMIC VARIABLES
 

Rationale:
 

Two major stumbling blocks are encountered in an attempt to
 
convert existing algorithms and programs to a vector machine of
 
the CYBER 200 type. First, since it is most efficient to
 
process whole meshes (or at the very least major subarrays of
 
such meshes) to maximize utilization of the many parallel
 
elements in today's machines, the language must provide
 
facilities for dealing in the largest subarrays practicable. The
 
fixed DIMENSION statement makes it difficult to move subarrays
 
about while ensuring maximum contiguous storage of data.
 
Second, the conversion of simple scalar variables to array (or
 
'slice') form requires converting all scalar references to array
 
references. These two items need to be dealt with for an
 
effective FMP implementation.
 

First difficulty, first: memory space is wasted when problem
 
variable dimensions are less than the maximum specified by
 
static variable DIMENSION statements.
 

Given the statements
 

DIMENSION Q(100,100,6,100),X(100,100,100),Y(100100,100),
 
1 Z(100,100,100)
 

KMAX=50
 
JMAX=50
 

LMAX=50
 

DO 10 J=1,JMAX
 
DO 10 K=1,KMAX
 
DO 10 L=1,KMAX
 

READ(TAPE 1)(Q(J,K,1,L),X(J,K,L),Y(J,K,L),Z(J,K,L))
 

10 CONTINUE
 

the data stored into each of the arrays Q, X, Y, AND Z will not
 
be in contiguous locations. Arrays X, Y, and Z will each have
 
data stored in the first 50 elements (a half-column) of the
 
first 50 columns of the first 50 planes. But, since the
 
dimensions are 100 x 100 x 100, each of the first 50 planes will
 
have half-columns of data followed by half-columns of empty
 
space for the first 50 columns, and this will be followed by a
 

1-85
 



half-plane (5000 elements) of empty space before the data for
 
the next plane begins. In addition, the last 50 planes will be
 
totally empty (500,000 elements) making a total of 875,000 (50 x
 
50 x 50 + 100 x 50 x 50 + 100 x 100 x 50) empty elements
 
discontiguously through each of the X, Y, and Z arrays

(1,000,000 elements each). In a similar manner (but more
 
complex because of a fourth dimension), the Q array will have a
 
total of 5,875,000 empty memory elements thtnughthe tota-l of
 
6,000,000. Ag-ain, these will be discontiguous in sizes from 50
 
to 3,055,050 elements.
 

This leads to a waste memory space being unused because of the
 
'static' definition imposed by the DIMENSION statement. In
 
addition, the longest vector possible in this case (without

performing a gather operation) would be 50 elements. If the
 
data could be stored contiguously as though the DIMENSION
 
statement in this instance were
 

DIMENSION Q(50,50,6,50)
 

subarray operations of the form
 

would invoke a single vector operation of length 50*50 elements.
 

Most FORTRAN compilers provide for variable dimensioning in
 
subprograms as:
 

DIMENSION A(L,M,6,N)
 

where L, M, and N are normally passed as parameters. However,
 
the dimensions normally cannot be changed during execution of
 
the subroutine. A preferred method would be the ability to
 
'reshape' arrays dynamically during any subprogram execution to
 
maximize the use of the FMP Vector Units, and to improve the
 
data storage demands.
 

The second difficulty revolves around the desirability to
 
transform scalar algorithms as directly as possible, with little
 
intervention. For example, the original code includes:
 

DIMENSION M(100,100,100),B(100,100,10l)
 

DO 10 J=1,100
 
DO 10 K=1,100
 
DO 10 L=1,100
 

Al1=A(J,K,L)
 
A12=A(J,K-1,L)
 
A13=A(J,K+1,L)
 
A(J,K,L)=A11*(A12+A13)
 

10 CONTINUE
 

1-86
 



This loop could be vectorized in J but not in the K di rection
 
because of the recursion there. For simplicity's sake it would
 
be desirable-to let the original scalar variables All, A12, and
 
A13 become vector variables of length 100, without the need to
 
insert a new dimension statement as might be normally required:
 

DIMENSION A(100,100,100),B(100,100,100)
 
DIMENSION Al1(100),A12(100),A13(100)
 

DO 10 K=1,100
 

DO 10 L=1,100
 

A1l(*)=A(*,K,L)

A12(*)=A(*,K-1,L)
 

A13(*)=A(*,K+1,L)
 

A(*,K,L)=A11(*)*(A12(*)+A13(*)
 
10 CONTINUE
 

To alleviate the difficulty involved in a vectorization effort,
 
a new data type was created--DYNAMIC--which represents arrays
 
and subarrays whose dimensions are established at execution time
 
instead of at compile time. The first usage is-shown by
 
restating the previous example:
 

DIMENSION A(100,100,100),B(100,100,100)
 
DYNAMIC A11,A12,A13
 

DO 10 K=1,100
 
DO 10 L=1,100
 

Al1=A(*,K,L)

A12=A(*,K-1,L)
 

A13=A(*,K+1,L)
 
A(*,K,L)A1l*(A12+Al3)
 

10 CONTINUE
 

Here the original scalar variables have been declared DYNAMIC,
 
meaning that they become pointers to subarrays which will be
 
allocated at execution time in the area of memory called
 
'DYNAMIC SPACE'. This memory area is what remains in each
 
hierarchical level memory after all code, scalar variables,
 
statically dimensioned arrays, buffers, and sundry system data
 
are allocated.
 

The beginning of current dynamic memory is pointed at by a
 
canonical register in the FMP register file called the Dynamic
 
Space Pointer. As data space is needed for temporary variables
 
and vectors by the object code, space is allocated and the
 
pointer updated. In this example 100 words of dynamic space
 
would be allocated for each of the dynamic variables All, A12,
 
and A13. The dynamic space pointer would be updated to point at
 
the next free space, and the data movement from the array A to
 
each of the respective 'slices' would be initiated.
 

1-87
 



The variables All, A12, and A13 would be assigned a 'shape' with
 
a single dimension of length 100. (A dynamic variable may have
 
up to seven dimensions ascribed to it to represent the 'shape'
 
of the data area in dynamic space being pointed at.) Figure 18
 
gives a representation of the memory allocation of the pointers
 
which are the DYNAMIC variables, and the data area being pointed
 
at by the DYNAMIC variables.
 

Note that the shape of each of the DYNAMIC variables All, A12,
 
and A13 is established implicitly by the variable appearing as
 
the object of an arithmetic assignment statement, whose source
 
is a subarray or subarray result. The shape can be changed
 
implicitly as many times as the variable appears as an object of
 
an assignment statement:
 

DIMENSION A(10,10)
 

DYNAMIC X
 

X=A(*,*)
 

X=A(2:5,2:5)
 

In the first appearance in this example, the variable X becomes
 
a pointer with a shape of one dimension and a length of 10.
 

At the next occurrence X becomes 'reshaped' into a two
dimensional data space with dimensions 10 by 10 elements.
 
Finally, the last subarray reference again reshapes X as a
 
two-dimensional data space of length 4 by 4 elements.
 

1-88
 



DIMENSION A (10,10)
 
DYNAMIC X, Y(3)
 

0 

X=A(*,1) 

Y(2)=A(1,*) 

NEW DYNAMIC 

SPACE AREA 

A(10,1) 4 

A(*,I) 

BEGINNING OF 
DYNAMIC SPACE 

Y(3) POINTER
Y(2)Y POINTERS 

Y(1) 
POINTER 

X POINTER 

DATA ISMOVED FROM 
A TO DYNAMIC SPACE 

ARRAY A 

I { 

SCALAR DATA

CODET } 
-ADDRESS 0 

PHYSICAL MEMORY 

Figure 18. Memory Allocation and Assignment of DYNAMIC Variables
 

1-89
 



on to other DYNAMIC
The implicitly defined shape can be 'passed' 

variables as in:
 

DIMENSION AC10,10)
 
DYNAMIC X,Y,Z
 

X=A(*, 1)
 
Y:X*X
 
Z=Y**2
 

new
In this example Y and Z take on the same shape as X, and 

data space is allocated for each in dynamic space before the
 
calculation is performed.
 

Conformability:
 

so far must obey
Implicitly defined DYNAMIC variables as shown 

the rules for conformability when appearing as the source
 
operands for assignment statements, but obviously when they
 
appear as objects of assignment statements they are always
 
reshaped, and thus automatically obey the conformability rules
 
for matrix operations:
 

DIMENSION A(10,10)
 
DYNAMIC X,Y,Z
 

XzA(*,1)
 
Y=X*A(*,2)
 

The multiplication of the subarray A by the DYNAMIC variable X
 
The
is conformable because all dimensions are congruent. 


statement:
 

Y=X*A(1,*)
 

would also be conformable since the subarray A(1,*) is a
 
one-dimensional vector of length 10 (albeit requiring a gather
 
operation to form the vector) as is the subarray A(*,1).
 
However, the statement
 

Y=X*A(2:5,2:5)=X
 

is non-conformable because the array reference is static and
 
cannot be reshaped, and does not match the shape of X in
 
dimensions or size. This occurrence would also cause a fatal
 
object-time diagnostic.
 

1-90
 



3.2.4.3 EXPLICIT DEFINITION OF DYNAMIC VARIABLES
 

Rationale:
 

There are instances when the reshaping of DYNAMIC variables 
should be more controlled than that which is permitted by 
implicit definitions arising from arithmetic assignment 

statements with DYNAMIC variables as objects. In addition, many 
times it is desirable to neither allocate space in dynamic space 
nor to move data to a working space unnecessarily, despite the 
fact that it is dynamically structured. To provide more 
explicit control over DYNAMIC variable definitions the DEFINE 
statement is provided: 

DIMENSION A(10,10)
 

DYNAMIC X,Y,Z
 

DEFINE (X,A(*,I))
 

X:X**2
 

This sequence causes the variable X to become a pointer to the
 
subarray A(*,1) which is actually in place in the array A,
 
rather than in dynamic space. The DEFINE statement is an
 
executable statement which may appear any place in a FOR-TRAN
 
program where any other executable statement may appear. Upon
 
execution, it explicitly shapes the object dynamic variable X
 
and assigns the address of the subarray within A. Figure 19
 
shows a representation of this definition in physical memory. No
 
data motion takes place as a result of the DEFINE statement.
 

The subsequent arithmetic statement X=X**2 then performs the
 
squaring of the subarray A(*,I) and replaces the original
 
subarray with the result, no dynamic space being allocated. The
 
statement
 

X:A(*,3)
 

would replace the subarray A(*,I) with the subarray .A(*,3).
 

1-91
 



DIMENSION A (10,10) 
DYNAMIC X,Y(3) 

S
 
S
 

DEFINE X. A(*,l))
 
DEFINE (Y(2),A(10,1))
 

BEGINNING OF 
DYNAMIC SPACE AREA 

Y(3) POINTER
 

Y POINTERS Y(2)
 

Y(1)
 
POINTER 

X POINTER 

A(10,1)
 

ARRAY A
 
•A(1.1) 

SCALAR DATA 

CODE-ADDRESS{ 0 

PHYSICAL MEMORY 

Figure 19. Alternative Memory Allocation Using -DEFINE Statement
 

1-92
 



Conformability:
 

Explicitly defined DYNAMIC variables can only be reshaped by
 
.execution of another DEFINE statement, and not by appearing as
 
the object of an assignment statement. Thus such explicitly
 
defined variables must obey the conformability rules on both
 
sides of the equal sign in an assignment statement:
 

DIMENSION A(10,10)
 

DYNAMIC X,Y,Z
 

DEFINE (X,A(*,1))
 

Y=A(*,2)
 

X:A(*,3)
 

Y=A(2:5,2:5)
 

X=A(2:5,2:5)
 

The reshaping of Y is permitted because it is implicity defined;
 
however, the reshaping of X=A(2:5,2:5) is not permitted since
 
its shape has been fixed by one explicit DEFINE. The execution
 
of another DEFINE statement:
 

DEFINE (X,A(2:5,2:5)
 

would change the shape (and size) legally.
 

Forms:
 

The variety of permitted statement forms for DYNAMIC and DEFINE
 
are detailed in the FORTRAN specification (Volume III, page
 
6-3.2A and page 10-3.1A, respectively). Basically the forms
 
are
 

DYNAMIC Vnaml,Vnam2,...,Vnamn
 

where Vnaml...Vnamn represent a list of variable or array names
 
which are to be established as dynamic pointers.
 

DEFINE (DVnam,subarray reference),(DVnam ............
 

DEFINE (DVnam,DVnam),(DVnam.......
 

DEFINE (DVnam,(subarray subscripts)),( ....... 

DEFINE (DVnam,DAnam(subscripts)) 

where DVnam is any DYNAMIC VARIABLE name and DAnam is any 
- DYNAMIC ARRAY name. 

1-93
 



The first DEFINE form has already been illustrated. Note that
 
the objects (left-hand member of each pair) must be a DYNAMIC
 
variable or an element of a DYNAMIC ARRAY.
 

The second example is used to make one DYNAMIC variable
 
synonymous with another. This means synonymous but not
 
identical:
 

DIMENSION A(0,10)
 
DYNAMIC X,Y,Z
 

DEFINE (X,A(*,1))
 

DEFINE (Y,X)
 

DEFINE (X,A(*,4))
 

In this example X is first defined as pointing to the first
 
column of A. Y is then made synonymous to X, which means the
 
pointers for Y are set the same as those for X. However, the
 
last statement redefines X while the definition for Y will still
 
point to A(*,I).
 

The third form of the DEFINE is used to 'fix' a dynamic
 
allocation of data and definition of the DYNAMIC variable's
 
'shape'.
 

DEFINE (DVnam,(subarray subscripts),( ....
 

In this case the DVnam may be the name of a DYNAMIC variable of
 
a DYNAMIC ARRAY element (see next section for DYNAMIC ARRAYS).
 
The subarray reference may include up to seven subscript
 
expressions, any one of which may be a subarray form:
 

DYNAMIC A,B
 

DEFINE (A,(1:10,1:10,1:10))
 

DEFINE (B, I:J,1:100,I:100))
 

The first DEFINE statement causes an allocation of 1000 elements
 
of dynamic space to the variable A, with the shape of 10*10*10
 
elements. No data movement takes place. In this regard, DEFINE
 
performs the same function as an 'implicit' definition but
 
without the data movement. The resulting memory allocation and
 
pointer setup is the same as shown in figure 18, for implicit
 

1-94
 



10 

definition: The major difference here is that the variable A
 
cannot be reshaped by appearing in an assignment statement. The
 
statement
 

A= X(1:5,5:10,10:100)

would therefore result in an object-time fatal diagnostic
 
message.
 

The second DEFINE statement results in a similar allocation of
 
dynamic memory and the shaping of the variable B, but the amount
 
of space allocated and the shape will not be known until the
 
object-time execution of the DEFINE is accomplished and the
 
values of the variables I and J are known.
 

The remaining forms will be discussed with the final construct
 
of these extensions--DYNAMIC ARRAYS.
 

3.2.4.4 DYNAMIC ARRAYS
 

Rationale:
 

As seen from the previous discussion and by a glance at the
 
recoding of BTRI in the implicit code, much scalar code can be
 
readily transformed into vector code while preserving its
 
original appearance. There are cases that cause some amount of
 
distress, however. Take the example:
 

DIMENSION A(100,100),B(100,100),F(5)
 

DO 10 I=1,5
 
DO 10 J=1,100
 
DO 10 L=1,100
 
F(I)=A(J,L)+B(J,L)
 

If the loop is to be vectorized in both J and L, the variable F
 
must be redefined as a series of 5 vectors, each with length
 
10000.. To define F as a DYNAMIC variable, five occurrences of
 
the variable F, one through five must be provided. This creates
 
the concept of an array of DYNAMIC variable pointers called a
 
DYNAMIC ARRAY. This is accomplished by permitting the DYNAMIC
 
statement forms
 

DYNAMIC A,B,F(5)
 

or
 

DIMENSION F(5)
 
DYNAMIC A,B,F
 

1-95
 



This will create an array space for pointers which may be
 
addressed by subscripting the variable name F. An implicit
 
definition of a DYNAMIC array element can thus be done as
 

DIMENSION A(10,10,10),B(10,10,10)
 
DYNAMIC F(5)
 

F(3)=A(*,*,*)
 

The third element in the dynamic array F will be allocated
 
dynamic space and given the same shape as the static array A 
10*10*10 elements. Note that each of the pointer elements in F
 
need not be related, spatially or logically, to any other
 
element. Thus additional statements
 

F(1)B( *1 ,*)
 

F(2)=A(1:5,5:10,5:10)
 

would set up other pointers in F to allocated space in dynamic
 
memory that may not be contiguous--that is the physical memory
 
allocated for FC1) may not be contiguous with the physical
 
memory allocated for F(2), since the allocation is done
 
dynamically as the respective assignment statements are
 
encountered during execution of the program.
 

3.2.4.5 EXPLICIT DEFINITION OF DYNAMIC ARRAY ELEMENTS
 

The forms of DEFINE statement given in the preceding section
 
include the meta-symbol 'DVnam' representing a DYNAMIC variable
 
name. In the preceding examples this was limited to simple
 
DYNAMIC variables. It should be obvious that any DYNAMIC array
 
element can be used in place of such simple DYNAMIC variables:
 

DYNAMIC A,B(1O)
 

DEFINE (B(3),(1:10,1:10,1:10))
 

DEFINE (A,B(3))
 

DEFINE (B(I),(J:K,J:K,1:5))
 

In these examples the DYNAMIC array elements B(n) can be used
 
interchangeably with scalar DYNAMIC variables in the first three
 
DEFINE forms shown.
 

The last (fourth) DEFINE form
 

DEFINE (DVnam,DAnam(subscripts))
 

1-96
 



has a special function which requires that DVnam must be a
 
simple DYNAMIC variable. This is caused by the fact that many
 
times a subarray reference is desired for a dynamically assigned
 
variable:
 

DIMENSION A00,10,10)
 

DYNAMIC X,Y
 

DEFINE (X,A(*,1,1))
 

Y=X(1:5)
 

In this case, access is wanted to a subarray of the dynamically
 
defined variable X (which is itself a subarray of the static
 
array A). If however, access is desired to a subarray of a
 
DYNAMIC array element, the constructs would have to look like
 

Y=Z(3)(1:5)
 

where the third element of the DYNAMIC array Z is used instead
 
of the simple DYNAMIC variable X. This construct is considered
 
messy to read, and makes FORTRAN scanning and error detection
 
quite difficult in the general case. Therefore the methodology
 
for getting at subarrays of DYNAMIC array elements requires
 
'aliasing' the DYNAMIC array element to a simple DYNAMIC
 
variable and then using the variable:
 

DIMENSION A(0,10,10)
 
DYNAMIC X,Y,Z(5),
 

DEFINE- (Z(3),A( ,1,1))
 

DEFINE (X,Z(3))
 

Y:X(1:5)
 

In this case the variable X was made synonymous with the shape
 
and location of the third element of the DYNAMIC array Z. This
 
'aliased' -variable X is then used as the basis for the subarray
 
reference in the assignment statement which moves data to Y.
 

This methodology makes some references somewhat cumbersome at
 
first sight, but the usage is normally limited to several
 
instances in a program and doesn't appear to create a great
 
burden on the programmer.
 

An important sidelight to the use of DYNAMIC arrays was
 
mentioned previously, that being the fact the no single DYNAMIC
 
array element need be related to any other. Using DEFINE
 
statements one can establish particular relationships between an
 
entire DYNAMIC array and the object that its independent
 
elements are describing. For example
 

1-97
 



DIMENSION A(00,100,100)
 
DYNAMIC F(6),B
 

DEFINE (F(1),A(1,*,*))
 
DEFINE (F(2),A(100,*,*))
 
DEFINE (F(3),A(*,1,*))
 
DEFINE (F(4),A(*,100,*))
 
DEFINE (F(5),A(*,*,1))
 
DEFINE -F-(-6 ,A-C*,*,00)
 

B=F(4)*F(5)
 

This example assigns each of the exterior planes of the mesh to
 
a different F pointer. The arithmetic expression then performs
 
operations on the planes as shown. An interesting side effect
 
of this is a very powerful statement:
 

F=F**2
 

wherein all subarrays in F are processed with a single
 
arithmetic statement.
 

3.2.4.6 SUBROUTINE COMMUNICATION OF DYNAMIC VARIABLES
 

The processing of DYNAMIC variables and DYNAMIC array elements
 
proceeds interpretively at execution time, using pointer
 
information in a set of 16 words allocated to each variable or
 
element. Fourteen words contain the shape of each of 7
 
dimensions (in subarray notation, the starting ind'ex, ending
 
index, and increment); the remaining two words contain a count
 
of the number of active dimensions, base address of beginning of
 
subarray, and the maximum space allocated for this variable's
 
data in dynamic space. Thus, when a DYNAMIC variable appears in
 
COMMON or as a parameter, 16 words are set aside for each
 
DYNAMIC element. Obviously, such elements must be defined as
 
DYNAMIC in all routines using them, and in the case of COMMON
 
block transmission of data, any routine having a block COMMON
 
containing a DYNAMIC variable in it must define the variable as
 
DYNAMIC.
 

DYNAMIC variable names may not appear in EQUIVALENCE statements.
 
When such variables appear in INPUT/OUTPUT statements they point
 
at the data to be transmitted, the pointers themselves are never
 
output or input, their life is limited to the dynamic execution
 
environment of the operating program. Debugging tools permit
 
the programmer to examine and modify the shape described by the
 
DYNAMIC variables, however.
 

1-98
 



3.2.5 COMPILER STRATEGY
 

The FMP FORTRAN compiler will consist of all facilities already
 
expected for FORTRAN compilers for large scale computers in the
 
1970s for the validation and evaluation of source language
 
statements, generation and scheduling of object code, and
 
production of diagnostics and debugging aids for the user's
 
programs. In addition, the compiler must be able to accept and
 
evaluate the several FMP language extensions discussed above.
 
The most crucial objectives for the compiler revolve around its
 
ability to optimize the parallel execution of the Map and Vector
 
Unit instructions. Illustrations of the implicit code in this
 
report have assumed that the compiler would be able to generate
 
the appropriate object code-to achieve the maximum overlap-. It
 
has been further stated that the compiler could not be expected
 
to automatically recognize the optimum "slabbing" and create
 
object code to perform the "slabbing" functions without the
 
assistance of the programmer. To that end the language
 
extensions were created to make the hierarchical memory and data
 
structures visible to the programmer and to make the programmer
 
responsible for the management of data mapping.
 

in exchange for this, the compiler is expected to organize and
 
schedule the code and to maximize machine performance. The
 
first part of the recoded STEP routine (appendix D) will now be
 
examined to see what the compiler must do in code generation and
 
to estimate the final code performance. In section 5 the actual
 
simulation of this code will be covered.
 

3.2.5.1 DO LOOP "GET READY"
 

Most modern compilers generating code for multi-register
 
machines are capable of generating "prefetch" (load from memory)
 
instructions which are extracted from the DO loop. These
 
instructions then are scheduled to be issued before entering-the
 
DO loop. Then at the- top o-f the actual executing DO loop
 
another set of fetch operations are created whose intent is to
 
load the data for the next pass through the loop. This
 
technique then reduces the wait time required while scalar data
 
is being transferred from memory to the high speed registers.
 

The counterpart of this method for the FMP is to generate the
 
map instructions for the first pass through the loop, then at
 
the beginning of the actual loop to place a set of map
 
operations for data to be used on the next pass through the
 
loop. For example, lines 930 through -960 in appendix D are map
 
operations which become gather record functions with record
 
lengths of LSL*KMAX elements. JMAX records are gathered for
 
each map operation to form the vectors-that are processed in the
 
balance of the metric computation (in-line XXM). The comoiler
 
will generate these four map operations with the destination
 

1-99
 



data going into Main Memory at the locations designated by
 
descriptors called, respectively, RJ, XKL, YKL, and ZKL. These
 
instructions will be scheduled to be executed ahead of the
 
executable DO loop that begins at statement 830.
 

In addition, another set of map operations will be generated and
 
scheduled after statement 830. These map operations will
 
perform the-data transfers from LEVEL 2 storage for the next
 
pass through the DO loop. The destination areas for the data
 
from these map operations will be designated by a set of
 
auxiliary pointers, invisible to the programmer which could be
 
called RJ', XKL', YKL', and XKL'. At the end of a particular
 
pass through the loop, these pointers are exchanged for those
 
which point to data areas RJ, XKL, YKL, and XKL. In this way,
 
at the expense of a brief exhange of pointer data, the map
 
operations can be overlapped.
 

Note that a total of 14 slabs of data have to be moved from
 
Intermediate Memory to Main Memory, but there is no data
 
interdependence among these various slabs. Thus each map
 
operation would carry a different dependency key and thus each
 
can be issued immediately to the Map Unit, up to the extent of
 
the queueing buffer in that unit. Assume, for example, that the
 
map operation at line 940
 

XKL = X(*,L-1:L+LSL+1,*)
 

is generated with a dependency key of "01". Instructions
 
continue to be issued after this map operation until the first
 
arithmetic instruction in the loop (line 970) is encountered.
 
Since this instruction references array XKL it will also have a
 
dependency key of "01 imbedded in it. This instruction would
 
then be held up until the map operation with that key is
 
complete. The next arithmetic operation would then be released
 
to the Vector Processor and the process continued. In this case
 
the map operation at line 950
 

YKL = Y(*,L-1:L+LSL+1,*)
 

might carry a dependency key of "02". Then the vector operation
 
using YKL (line 950) would be held up until the corresponding
 
map operation is complete. All of these dependencies would
 
exist only during the first pass of the loop, since on
 
subsequent passes the data would already-have been mapped in by
 
the overlapped map instructions to RJ', XKL', YKL' ....etc.
 

With this form of code generation one can see that not only are
 
almost all map operations overlapped, but due to the action of
 
the compiler and the dependency keys, a good deal of the
 
prefetch map operations have some of their execution overlapped,
 
so that loop startup is minimized. For example, consider the
 
previous sequence. Before the first arithmetic operation can
 
begin, the entire slab for XKL must be mapped into Main Memory.
 
This gather record operation will require JMAX*KMAX*(LSL+2)*3/8
 
clock cycles to complete. Once this data has been moved the
 

1-100
 



next map operation can begin for the YKL slab. Meanwhile the
 

subtract and multiply operation
 

XK = (XKL(3:KMAX+2,2:LSL+1,*)-XKL(1:KMAX,2:LSL+1,*))*DY2
 

will be initiated. The time required for this instruction would
 
be
 

JMAX*KMAX*LSL/8 clock cycles.
 

This is approximately 3 times faster than the concurrent map
 
operation, thus the next arithmetic function:
 

YK = (YKL(3:KMAX+2,2:LSL+1,*)-YKL(1:KMAX,2:LSL+1,*))DY2
 

must wait the completion of the corresponding map operation.
 
This wait for the dependency key to become free continues for
 
statement 990 as well. Thus on the second through the last time
 
through the loop, the execution of statements 970 to 990
 
requires
 

3*JMAX*KMAX*LSL/8 cycles
 

but on the first pass (due to the wait for data from LEVEL 2
 

memory) these same statements require
 

3*JMAX*KMAX*(LSL+2)*3/8+JMAX*KMAX*LSL/8 clock cycles.
 

The statements at 1000 through 1020 also reference the already
 
mapped arrays XKL, YKL, and ZKL and thus proceed at maximum
 
rate. Meanwhile the map operation
 

RJ = Q(2:KMAX-1,L:LSL,6,*)
 

would be issued with a dependency key of, say, "04"', and be
 
fully overlapped with the operations at 1000 through 1020. If
 
everything issues without hidden conflicts, the statements at
 
1030 through 1050 should be executed without waiting since the
 
data RJ should be completely mapped into Main Memory by the time
 
the Vector Processor is ready to execute statement 130. If an
 
approximation of three vector instructions for each gather
 
record (map) instruction is used, assuming equal vector lengths,
 
it can then be seen that the map instruction for
 

RR = 1./Q(2:KMAX-1,L:L+LSL,1,*)
 

will have been completed by the time the Vector Processor is
 
ready to proceed with the divide operation. The same is true
 
for the other map operations used to gather data for arithmetic
 
in statements 1150 through 1210. It is possible then to compute
 
the prefetch overhead for the first pass through the J sweep and
 
L sweep loops. This becomes
 

3*JMAX*KMAX*(LSL+2)*3/8-(2*JMAX*KMAX*LSL)/8 = 
(7*LSL+18)*JMAX*KMAX/8 clock cycles, loop overhead. 

1-101
 



The important thing to note here is that this overhead only
 
occurs during the first trip through the first and third loops,
 
and constitutes the only visible cost of performing map
 
operations on the FMP; it results from the compiler scheduling
 
map instructions so that the set of map data required for the
 
next trip is available before being required. (The overhead for
 
loop 2 is discussed in the next paragraph.) Thus in the example,
 
where JMAX = KMAX = LMAX is used, the number of slabs (or-trips
 
through the loops) is 17. The overhead shown is therefore
 
amortized over all of these trips through the loop to complete
 
the sweep.
 

For the K sweep direction, the single-element gather operation
 
dominates the loop overhead to a much greater degree; all of the
 
operations for statements 2090 through 2330 are completely
 
-constrained by their corresponding map operations. In this case
 
the compiler will generate 23 arithmetic operations plus one
 
divide, with the divide requiring the same number of cycles as
 
two arithmetic operations. Thus the arithmetic time would be
 
approximately
 

25*KMAX*LMAX*JSL clock cycles
 

while the Map Unit, in performing the corresponding 9 gather
 
element operations, would take
 

9*KMAX*LMAX*(JSL+2)*6 clock cycles.
 

The overhead for the first pass would then be
 

54*KMAX*LMAX*(JSL+2)-25*KMAX*LMAX*JSL
 
KMAX*LMAX*(29*JSL+108) clock cycles.
 

Total overhead for all three sweep directions then becomes
 

OVERHEAD = KMAX*LMAX*(29*JSL+108) + JMAX*KMAX*(7*LSL+18)/8
 
+ JMAX*LMAX*(7*KSL+18)/8 clock cycles.
 

3.2.5.2 INFERRED TRANSPOSE OF MATRIX
 

Aside from the judicious scheduling of map and vector
 
instructions, the compiler has one additional burden placed upon
 
it. The compiler must be able to evaluate loop 8 (statements
 
1900 through 2020) and generate the implied matrix transpose
 
operations. The design of the Map Unit permits a single map
 
instruction to perform the necessary transpose process. The
 
compiler must be able to discern that construct from loops of
 
the type shown in loop 8. The alternative is to add an
 
extension which calls for the explicit transpose, but is
 
unnecessary in this case, since the loop describes the actions
 
desired.
 

With these simple attributes the compiler should produce code
 
that permits the FMP to achieve its maximum rate.
 

1-102
 



3.3 COMPILER FUNCTIONAL CHARACTERISTICS
 

Volume III contains a preliminary document describing the FMP
FORTRAN language and its usage. In an attempt to match certain

language features to the FMP architecture, the parallel nature
 
of the processing was made visible to the programmer through the
DYNAMIC and DEFINE statements'and subarray references. 
 The

final responsibility for matching the problem statement to .the

FMP hardware rests with the language processor (compiler),

however. To achieve the NASF effectivity goals, the
 
characteristics of the compiler will have to be specified in
detail by NASA. The following are suggested items that should
be 
included for elaboration in any NASF compiler specification,

or used in consideration of any compiler development proposal.
 

3.3.1 SOURCE CODE
 

The FMP compiler must be able to 
accept input, audit, and
produce object code or diagnostics for the complete FMP FORTRAN
 
language as described in Volume III. 
 This language is based on
ANSI FORTRAN 77, with extensions that Control Data feels should
 
appear in standard compiler products, such as "hexadecimal" data
 
types, plus extensions felt necessary for 
the FMP, such as
 
subarray notation.
 

The compiler should provide 
a mode wherein all statements not
conforming exactly to ANSI 77 standards will 
cause a warning
 
message to be printed. In addition, the compiler may also
provide 
a mode of operation wherein other extensions available
 
in compilers operating at Ames (from DEC, IBM,, 
and CDC) might-be

tolerated to 
provide internal programming compatibility at Ames.
 
The extent of these latt~r augmentations is unknown at this time
and they do not appear in the language description currently

called FMP FORTRAN.
 

The 32/64-bit nature of the Control Data FMP is accommodated in
 
two ways: through use of the HALF PRECISION data type and
related FORTRAN supplied functions, and through the use of a

compile-time option which 
can compile an entire program with

full precision (normal mode) being 64-bit or 32-bit. 
 In this
 
latter case (32-bit=full precision) HALF PRECISION is considered

32-bit also (since there is no 
16-bit floating-point format in
 
the FMP).
 

The compiler must provide some 
form of "escape mechanism" to

allow the programmer to invoke 
specific machine-language

instrubtions (except for monitor mode instructions) when the

occasion warrants. Although normal applications programs should
not have to use such a facility, it is certain that 
some general

applications modules will be "fine-tuned" by clever programmers
and will need access to explicit instruction control. There are
 
two means for this:
 

1-103
 



a) Standard subroutine or function CALL statements to
 
machine-language subroutines--this is the conventional
 
means for handling this problem, however, it implies
 
access to a machine-language assembler by many
 
programmers, and can cause havoc in a Large system
 
environment. A second drawback is the execution time
 
cost involved in subroutine CALL sequences. If a
 
programmer desires to invoke but a single peculiar
 
machtne function in his code, the encumbrances of
 
writing two separate modules and taking on the
 
subroutine switching overhead at "object time" may be
 
excessive.
 

b) Imbedded, one-line machine-language statements in the
 
FORTRAN source program, where the instruction uses the
 
variable names and statement labels assigned by the
 
programmer in his FORTRAN code--this approach was used
 
in the STAR FORTRAN language employing the special call
 
notation Q8xxxx where xxxx was a predefined
 
machine-language instruction mnemonic. The parameters

of the CALL were in fact the symbolic entries
 
representing each field in an instruction. The
 
machine-language instruction thus specified was then
 
inserted directly into the FORTRAN object code at the
 
point where it was invoked, without the need for an
 
object-time call and return sequence to a separate

subroutine. Although this has become a powerful tool
 
in STAR-100 programming, there are several drawbacks:
 

* 	Possible misuse of machine resources--a programmer
 
can unwittingly deadlock the FMP if allowed complete
 
control over such instruction fields as the read and
 
write dependency keys. By permitting access to
 
register file oriented instructions, the programmer
 
may accidentally overflow the available registers;
 
Both of these difficulties can have disastrous
 
consequences.
 

* 	Impeding the compiler ability to generate optimum
 
object code--injection of an "alien" instruction
 
into a FORTRAN sequence may make it impossible for
 
the compiler to automatically vectorize a particular
 
code sequence. In other places such in-line
 
invocation may disrupt the entire instruction
 
scheduling process for scalar, map and vector
 
operations.
 

c) A third, and the recommended, alternative is to provide
 
a spec-ial call syntax similar to the Q8xxxx described
 
above, but limit its application to invoking one of a
 
set of predefined "special functions", which the user
 
can specify at will, but which are imbedded in tables
 
in 	the compiler, and totally under the compiler
 
control. An example might be
 

1-104
 



PROGRAM DEMO
 

DIMENSION A(100,100,100)
 

DYNAMIC B
 

B=Q8XPOS(A)
 

which would perform the transpose of the entire mesh A
 
into the dynamic space B. The significant thing is
 
that the method of implementation of the XPOS is left
 
to the compiler, which might choose to use the map
 
instruction, a series of vector operations, or even a
 
scalar loop, depending on what else the compiler was
 
scheduling in the FMP at that time.
 

The FMP compiler structure should permit the introduction of new
 

functions of the Q8 type, by means of simple table entries that
 
can be augmented as the user desires. The compiler would.then
 
attempt the in-line generation of appropriate code sequences
 
from the table "skeletons".
 

A list of desired Q8 functions has not been assembled at this
 
time for the FMP, since it has sufficed, so far, to efficiently
 
utilize the standard constructs and FMP extensions. The
 
capability should be built into the compiler, however, along
 
with a well defined procedure for requesting and specifying the
 
desired Q8, FMP intrinsic function.
 

A most significant aspect of restricting the programmer's access
 

to machine functions in this manner is that all FMP programs
 
could be prototyped on machines other than the FMP, given that
 
scalar sequences are implemented for Q8 calls.
 

3.3.2 OBJECT CODE
 

Specification of a compiler's object code by a customer is
 
necessarily two-dimensional: volume and speed. For
 
small-to-medium computer systems the amount of object code
 
generated for a given application can significantly affect the
 
space remaining for data. Even in these times of large,
 
relatively inexpensive memory this is a continuing concern of
 

many users. In the case of the FMP this is no longer true.
 
Considering the amount of available Main Memory the expected
 
object code is of such moderate proportions that this factor is
 

not a consideration. Instead, on the FMP the concern is for:
 

1) 	maximization of concurrency,
 

2) 	use of memory space for problem data and temporary
 
data.
 

1-105
 



To these issues a compiler specification might address itself
 
with some of the standard verbage:
 

* 	"The compiler will utilize the most advanced techniques
 

for generation and scheduling of object code, including
 
common subexpression analysis, invariant code removal,
 
extended basic block optimization, and global analysis
 
of all program modules submitted-to -a s-ing-e
 
-compilation."
 

* "The compiler will minimize the amount of storage
 
required to hold temporary vectors, and will optimize
 
the utilization of the critical Main Memory resource."
 

" 	"The compiled object code should optimize throughput by
 
maximizing the utilization of the Vector Units;
 
optimization for other units is secondary."
 

* 	 "The compiler should attempt to 'automatically
 
vectorize' all DO loop constructs that do not include
 
IF, GOTO, CALL, and function references, regardless of
 
the presence of 'recursion! or non-unity increment
 
values for the DO statement."
 

* 	"An option will be provided for the compiler to- produce
 
object code which uses entirely scalar sequences in
 
place of either or both the Vector Units and Map
 
Units."
 

The "God and Motherhood" nature of the preceding statements
 
makes clear their purpose, and quite probable their inclusion,
 
in any compiler requirement, proposal, and specification. What
 
additional characteristics should be highlighted for the FMP
 
FORTRAN compiler, however?
 

3.3.3 CONSTRUCTS
 

The compiler must be required to recognize certain source
 
language constructs and from them derive FM? instructions. The
 
simple DO loop construct described above would yield
 

DO 	10 I=1,100
 

10 A(I)=B(I)+C(I)
 

a simple vector addition of the two arrays B and C in Main
 
Memory, with the results going back to memory. By adding a
 
simple statement
 

DO 	10 I=1,100
 

C(I)=3.14159
 

10 A(I)=B(I)+C(I)
 

1-106
 



the compiler should generate two concurrent operations - one map
 
operation transferring the constant to Main Memory array C and
 
one vector add operation. Adding yet another statement
 

DO 10 I=1,100
 

D(I)=E(I)+F(I)
 

C(I)=3.14159 

10 A(I)=B(I) C(I) 

the compiler .should produce again two concurrent instructions 

one map operation to broadcast the constant to the array C and a
 
vector operation to perform the pair of vector adds
 
simultaneously. A sequence such as
 

DO 10 I=1,100
 

D1(I)=E(I)*F(I)
 

C(I)=3.14159 '
 

10 A(I)=B(I)+C(I)*DI(I)
 

would also produce one vector instruction and one map
 
instruction, with the vector instruction producing the result D1
 
which is stored to memory, then using that result internally to
 
form the result A, all in one pass through the data.
 

A more complex sequence must also be vectorized:
 

J=1
 

DO 10 1=1,100
 

IF(A(I).GT.B(I))GO TO 10
 

C(J)=A(I)
 

J=J+1
 

10 CONTINUE
 

This construct and its variants should produce a map instruction
 
which performs a vector compress operation, based on the stated
 
conditions. Taking a key example from lines 1900 through 2020
 
of the implicit code in appendix B:"
 

DO 8 K=1,KMAX
 

RJ(1:LMAX-2,1:JSL,K)=Q(K,2:LMAX-1,6,J:J+JSM)
 

8 CONTINUE
 

1-107
 



This sequence must produce a single map operation for each
 
dynamic variable RJ, XJL, YJL, ZJL which performs the transpose
 
of the arrays. The transpose is accomplished by a gather
 
operation which, for each K, moves LMAX and JSL columns and rows
 
into a new alignment in memory. (See implicit code writeup,
 
Division 2.)
 

An example of the various forms of object code generated by an
 
FMP-oriented compiler are given in appendix D. The object code
 
lines are denoted by a comment card of the form:
 

C# VEC nn opl:op2:op3 VL=nl; WK=kn, RK=km
 

or
 

C# MAP nn op4:mm 	 NR=ml,RS:m2,ST=m3/m4; WK=km,
 
RK=kn
 

or 

C# MAP nn op5:mm 	 CVL=m5, VL=nl; WK=km,RK=kn
 

where:
 

nn abbreviated symbolic name of destination
 
vector
 

opl,op2,op3 mnemonic vector operation codes
 

op4 	 mnemonic code for gather (GTHR) or scatter
 

(SCTR)
 

op5 	 mnemonic code for compress (CMPS)
 

n1 vector length in 	elements
 

km 	 write key
 

kn 	 read key
 

mm memory option MM=Main Memory to Main Memory
 
IM=Intermediate Memory to
 

Main Memory
 
MI=Main Memory to
 

Intermediate Memory
 
BI=Backing Store to
 

Intermediate Memory
 
IB=Intermediate Memory to
 

Backing Store
 

1-108
 



ml total number of records moved
 

m2 record size (for gather and scatter)
 

m3/m4 length of stride in each stride direction
 

m5 control vector length
 

The read and write keys may be omitted; a key of 0 (.no key) is
 

assumed. If any specification field other than read or write
 
key is omitted, a value of 1 is assumed. Only the number of
 

open fields necessary to specify the required function should be
 

used, e.g., MUL:ADD.
 

The comment line does not include all of the parameters needed
 
for an actual machine instruction, such as addresses, but the
 
code shown represents enough data to feed the FMP simulators.
 
Where it was desired to show the operation relationships to
 
source code symbols, a pair of brackets "<", 11>11 is used to 
surround a brief comment about the data used.
 

When a vector operation produces two outputs, one on AWl and the
 

other on AW2, two lines are used as in lines 4370 through 4383
 
of appendix D:
 

U13=B1-(1,3)*L1l
 
U14=B1(1,4)*Lll
 

C
 
C# VEC U13 MUL. -VL=SSL*SSMAX
 
C* $$$ U14 MUL
 

Note that C* indicates a continuation of the previous line, and
 
$$$ indicates a dual vector operation. Only one vector length
 
is used for both operations and must appear on the first line.
 

The code sequences shown in appendix D do not include any of the
 
scalar code, since the concern was primarily with the vector
 

operation rates for simulation purposes. Analysis shows that
 

all- scalar operations can be "buried" under the vector execution
 
umbrella IF THE COMPILER SCHEDULES THE CODE PROPERLY (see
 
section 5).
 

Only one small instance of the- compiler scheduling of vector
 
operations is shown and this is critical to the performance of
 
the implicit code. The execution of each sweep calculation in
 
STEP is bound to the data transfers from Intermediate to Main
 
Memory. The compiler must be able to automatically generate and
 

sdhedule "look-ahead" or "fetch-ahead"- code. For a scalar
 
example that is common
 

1-109
 



DO 10 I=1,100
 

D=A(I)**2+B(I)**2

E(I):D*(A(I)-B(I))
 

10 CONTINUE
 

most modern compilers for multi-register machines will generate
 
a code sequence that looks like:
 

F-ETCH A(1) to register A
 
FETCH B(1) to register B
 
I=1
 

LOOP: 	 FETCH A(I+1) to register A'
 
FETCH B(I+2) to register B'
 
MULT A*A to TI
 
MULT B*B to T2
 
ADD T1+T2 to D
 
SUB A-B to TI
 
MULT D*T1 to E
 
STORE E to E(I)
 
MOVE A' to A
 
MOVE B' to B
 
ADD I=I+1
 
TEST
 
GOTO LOOP IF NOT DONE
 

This object code is necessitated by the time required in many
 
machines to bring data from memory to a register. The
 
"prefetching" operation helps overlap the time to get the next
 
data from memory with the calculations on the current data. At
 
the end of the computations the new data are then transmitted
 
between registers (a very fast operation when compared with
 
memory transfers).
 

In a similar manner vectors can be "premapped" so that
 
arithmetic can be overlapped with the next map operation. This
 
is shown in lines 821 through 829 of appendix D where the first
 
set of vectors is mapped into Main Memory before the loop
 
starting at line 830 is initiated.
 

In the main, the remaining "pseudo object code" shown is left in
 
place with the corresponding FORTRAN source statements, with
 
small exceptions necessitated by the need to combine some
 
operations into a single Vector Unit function. As an example,

the object code for line 1150 is shown after line 1160, at line
 
1162, and is combined with the functions invoked by line 1160
 
and shown at line 1163
 

1150 U=RR*Q2 
1160 V=RR*Q3 
1161 C 
1162 C# VEC U MUL VL=(KMAX-2)*LSL*(JMAX-2) 
1163 C* $$$ V MUL 

1-110
 



In actual practice the compiler must be able to shuffle the
 
generated code around to assure maximum utilization of the
 
Vector Units.
 

The compiler must provide an object code listing on request, and
 
some method must -be provided to key generated code to the source
 
language statements that generate the code. This is essential
 
because more than one source statement may be combined into a
 
single vector operation and then that instruction rescheduled
 
elsewhere in the instruction stream.
 

3.3.4 PERFORMANCE
 

The general statement that a compiler "must produce the most
 
efficieht object code possible" is not adequate to meet the
 
needs of the NASF procurement. Some definitive and quantitative
 
measures must be established and specified as minimum object
 
code performance-goals. The obvious performance goal is to have
 
the compiler and FMP hardware marriage produce an object code
 
execution speed that can complete specified metrics in a certain
 
amount of time. The compiler, however, must be disengaged from
 
the speed of the hardware if it is to be properly specified as a
 
separate, procurable entity. Other measures that suggest
 
themselves are percentage utilization of Vector Unit capacity,
 
percentage used of available concurrency and percentage
 
vectorization. Each of these have some deficiencies. A
 
compiler can generate a totally vectorized code which is
 
terribly inefficient in use of the hardware. A compiler can
 
also generate unneeded vector arithmetic (failing, for example,
 
to eliminate common subexpressions) which keeps the Vector Units
 
100% busy to no benefit of the actual problem solution.
 
Finally, in a similar manner, the compiler can generate three
 
inefficient streams of code, one each for the Map, Scalar and
 
Vector Units which provide 100% concurrency.
 

The best alternative seems to be specifying one or more of the
 
performance metrics (implicit, explicit, spectral weather, and
 
finite difference weather codes) as a measure of the compiler
 
capability. Given a coding of any of these metrics in the FMP
 
FORTRAN dialect specified for the NASF, the object code must
 
execute an entire solution without I/O calls in no greater than
 
120% of the theoretical execution time for the program. This
 
means that a method must be derived for computing the
 
theoretical time allowed.
 

If -the peak rate of the FMP hardware is 1.5 gigaflops, then one
 
can count all arithmetic computations in a metric and determine
 
a best time for execution for a given set of parameters. Where
 
data dependencies exist in the problem solution (as in the
 
method of characteristics) some canonical value and associated
 
parameters could be chosen for the total arithmetic load.
 
Functions such as SQRT, SIN, COS... would each be assigned an
 
equivalent floating-point operation count. For example, if a
 
time is established in this manner for the subroutine BTRI in
 

1-111
 



STEP, for three calls and mesh dimensions of 100x1OOxiOO, this
 
might produce a theoretical execution time of 5.148 minutes.
 

This approach on the part of the NASF customer is no different
 
than the method for setting performance goals for standard
 
product compiler improvements. A particular benchmark becomes
 
crucial to a sale and the FORTRAN developers are launched
 
forthwith to achieve some real timing goal for that benchmark,
 
To be usefu- -meaning-ful -segments of production codes must be
 
used for this measurement. Note that the use of I/0 was
 
excluded, an attempt to decouple the object code performance
 
objectives from the operatng system performance objectives. Thee
 
is some danger in this, since a good deal of execution time is
 
spent in that grey area called FORTRAN object-time I/O routines
 
which are not generated by the compiler nor claimed by the
 
operating system developers.
 

Instead the costs of I/O interface should be measured separately
 
by creating a heavily I/O-oriented benchmark with all desired
 
forms of I/O-formatted, unformatted and direct-and establishing
 
some measure of performance. This measure should include
 
achieving at least 90% of the total I/O hardware bandwidth
 
available, while reducing the execution rate of a fixed number
 
of map and vector operations by no more than 5% (due either to
 
memory interference or object library inefficiencies, or to
 
object time call sequences).
 

3.3.5 OBJECT LIBRARY
 

The object code just discussed is that directly produced by the
 
compiler from input source code. In order for the program to
 
execute however, an array of support software is needed to
 
provide the interface to the operating system, I/O system,
 
exception condition hardware (data flag branch register), and
 
the myriad of intrinsic and external FORTRAN functions such as
 
ALOG, MAX, MIN, and the like. A compiler specification must
 
include these items and should establish some minimum measurable
 
goals for these system components.
 

Generally, object library routines will be manually fine-tuned
 
using either the Q8xxxx FORTRAN extensions, a system programming
 
language such as PASCAL or (ugh!) assembly language. They should
 
therefore make the best use of the machine resources of any
 
object modules executed in the NASF. For the FMP, four
 
considerations should be taken into account in evaluating object
 
library strategies:
 

1) The compiler should be able to optionally incorporate
 
any of the FORTRAN supplied routines (see Volume III,
 
FMP FORTRAN) in-line-, to permit better overlap and
 
optimization of functional unit usage.
 

1-112
 



2) 	When incorporated in subroutine form, a maximum
 
allowable code space should be established for each
 
named routine.
 

3) 	A minimum performance level should be established in
 
terms of machine cycles per input argument.
 

4) 	A set of standard tests for function correctness should
 
be established and verified on existing hardware
 
systems. Thus a set of end-case operands would be set
 
up for routines like ALOG and its vector counterpart.
 

All object library routines should use the data flag branch
 
register for error flagging and the FORTRAN supplied data flag
 
manager routine for reporting errors to the user. When vector
 
functions encounter errors, an automatic system for rescanning
 
the results to find the out-of-bounds results and corresponding
 
input routines should be invoked so that the user is relieved
 
from the burden of analysis.
 

The FORMAT, INPUT, OUTPUT, and DEVICE status routines usually
 
involve a great deal of software "chit-chat" which implies many
 
CALL sequence executions wherein no other useful work can be
 
done. The FMP will utilize Backing Store to perform pseudo I/O
 
for the normal production job. This will be accomplished with
 
the concurrent Map Unit, and implied data moves using LEVEL
 
statements. With the exception of FORMAT processing then, these
 
I/O 	functions should be performed by in-line instruction
 
sequences which can be scheduled among useful -vector arithmetic
 
operations.
 

Formatted Input/Output should be either performed on-line (that
 
is by a function call to the cracking routines in the object
 
code sequence) or off-line (transmission of. data, pointers, and
 
the raw format to the Backing Store where it is blocked up and
 
sent to another processor in the system to be formatted in final
 
form). In either case, formatted Input/Output requires further
 
design analysis.
 

3.3. 6 LINKING AND LOADING
 

All 	programs submitted to the FMP for execution will be
 
delivered in a complete, prelinked and loaded binary form. This
 
block-loaded form is called a "controllee file" and contains, in
 
addition to the complete set of binary modules, tables
 
describing the regions in each level of memory assigned to the
 
program, beginning location of the Main Memory, Intermediate
 
Memory,, and Backing Store dynamic spaces.
 

Integral to the compiling system then, must be a "loader"
 
function which can gather separately compiled modules with
 
selected object library modules from a variety of inventory
 

1-113
 



caches (files), link the data and entry points together,
 
establish local and global working spaces for each module, and
 
generate initializing information for preset data areas.
 

The loader performance is only critical when a large number of
 
"compile-and-execute" jobs are passing through the system
 
(during debugging of new applications, for example). Of much
 
more concern is the existence of extensive diagnostics which the
 
user can readily understand both at load time and execution
 
time; In case of catastrophic failures (where even the best
 
program goes berserk) some degree of audit trail should be
 
salvageable from the contents of the various memories to help
 
the programmer find his error. Each module should therefore
 
contain, in addition to the executable binary code and data
 
constants, a series of tables which are used by the loader to
 
line and map routines into the controllee file, and which may
 
electively be retained in the binary controllee file as an aid
 
to debugging or error recovery.
 

An example of this type of system called the MODULE HEADER
 
TABLE, is shown on page E-3 (appendix E). Each table begins
 
with the ASCII name of the table, in this case "MODULE", that
 
can easily be found on visual scan of an ASCII dump, or by
vector scanning memory. The module length in 64-bit words is
 
found in word 2 of this table. In word 3 appears the ASCII name
 
of the module, usually the PROGRAM, FUNCTION or SUBROUTINE name.
 
A time stamp for when the module was created appears in word 4
 
and the processor name and version number can be found in word
 
5. The header points to a series of additional tables
 
(diagrammed in the remainder of appendix E), which supply loader
 
information and debugging information for object-time debugging.
 
Most of the table functions are self-explanatory in their name
 
(a tutorial on the loader methodology will not be given here),
 
but two tables deserve a little discussion -- Interpretive Data
 
Initialization and Relocation tables.
 

There are two techniques for performing data initialization and
 
initialization of relocation pointers at LOAD time. When
 
dynamic loading is called for (load occurs at time of CALL) as
 
might occur in some system routines, the initialization is done
 
by a sequence of generated objct code which is caled the
 
"executable data initialization or relocation table". For
 
normal static loading of FMP applications programs, the
 
complexity of some initialization is better handled by the
 
loader interpreting table entries one at a time. Thus constants
 
and relocation pointers can be scatter-gunned around memory by
 
the loader, or loaded in nice sequential streams, depending on
 
the needs of the code. Relocation pointers are addresses in the
 
code (relative to the beginning of the code) where non-relative
 
branches have occurred or pointers into the register file where
 
static addresses point to code segments or local data
 
quantities. These must be updated as the module is placed in
 
memory following another module, and all addresses thus
 
relativized.
 

1-114
 



The 	structure given here permits all of the object code to be
 
aglutinized in a lump with only the two-word header "CODE"
 
intervening between modules. The remainder of the tables may be
 
kept in the Backing Store, with the CODE ponter set to point to
 
its particular MODULE header in Backing Store. In the event of
 
error conditions or debugging actions, the system can either
 
locate appropriate tables by referring backward from the linked
 
code, or locate the linked code by searching Backing Store for
 
the MODULE header and then using the memory pointers to locate
 
the needed information. This is particularly suited to the use
 
of the DEBUG symbol table and SYMBOL definition table which are
 
used by the symbolic FORTRAN DEBUG option on the FMP. With this
 
option, execution can be breakpointed (halted on a particular
 
form of reference to a symbol, including execution of labeled
 
FORTRAN source statements), data can be examined or replaced,
 
and formatted dumps with symbolic names produced. This feature
 
is considered essential in a system as large as the NASF and
 
must be integral to the design of the compiler and loading and
 
linking system. Figure E-1 (appendix E) shows a mixed
 
hexadecimal and ASCII dump of a small controllee file to
 
demonstrate how the tables are usually allocated in memory and
 
how data can be located by the programmer or an analyzer
 
program.
 

3.3.7 OPERATIONAL CHARACTERISTICS
 

Another aspect of the compiler must be specified in the NASF
 
procurement. This involves the execution characteristics of the
 
compiler itself, its performance, code space, and compiling
 
features.
 

This leads to one of the most difficult questions that has been
 
addressed by the series of NASF studies, whereabout should lie
 
and labor the compiler?
 

The 	problem with situating the compiler within the NASF is one
 
of strategy and not of technical capability. The following
 
discussion will reexamine some of the issues that have been
 
discussed in previous reports, and in meetings with Ames
 
personnel.
 

1) 	The development of a complex and yet stable compiler,
 
plus supporting object library, is a lengthy and
 
consuming process. If at all possible, an existing
 
compiling system shodld be used on which to base the
 
FMP FORTRAN in order to reduce cost, schedule, and
 
reliability risks.
 

2) 	Until an FMP is operational, potential users and
 
software developers will have to rely on existing
 
computer systems to support programming, compiling, and
 
debugging. The availability of a complete FMP FORTRAN
 
system on these "interim" mainframes is highly
 
desirable for the total NASF success.
 

1-115
 



3) 	Compiling on a front-end processor intead of the FMP
 
might be a more effective use of the FMP, which is of
 
course designed first and foremost for high speed
 
arithmetic processing. Certainly the turnaround of
 
compiler detected errors and code listings would be
 
quicker when processed by the front-end processor than
 
the FMP.
 

4) 	The specific architecture and model of the front-end
 
processors may not be under the control of the FMP
 
developer and may not be identified until late in the
 
development cycle. It can be expected that the number
 
and qualities of the front-end processors may change
 
over the lifetime of the FMP. Certainly NASA may want
 
the option of varying those parameters of the system as
 
interactive workloads and front-end software features
 
change.
 

5) 	"Cross-compilers", which operate on one machine
 
compiling for another machine, have suffered in the
 
past from the need for two machines with which to
 
experiment and develop highly refined optimization
 
tecniques that become ever more important in the
 
maturing years of the target system.
 

At the outset of this projct Control Data recommended that the
 
compiler reside on the front-end processors and produce code for
 
the FMP (also called the back-end processor). In addition, it
 
was suggested that the loading and linking function also reside
 
with the compiler. As time passed it became obvious that the
 
development cycle for such a compiler pointed toward use of an
 
existing Control Data compiler for either STAR or 7600 as a base
 
compiler. The STAR-compiler recommended itself because it was
 
structured to support expanded automatic vectorization as well
 
as vector extensions. One of the reasons for dabbling with the
 
STAR language as the FMP language arose from this rationale.
 
Retention of the STAR scalar instructions, addressing schemes
 
and I/O interface schemes gave weight to the possibility that
 
the STAR compiler could be used in toto, with only minor
 
extensions being necessary. When the FMP FORTRAN (described in
 
Volume III) finally became firm, RADL realized that major
 
changes would have to be made in any compiler to meet the
 
requirements for the FMP. The "almost" free solution of
 
compiling on the FMP for the FMP became no longer free and the
 
"sitting" suggestion had to be reopened for the compiler again.
 

In the opinion of RADL, the optimum solution would be the
 
development of a new compiler, written in a higher-level
 
language such as PASCAL, designed to reside on more than one
 
processor, and capable of cross-compiling. The compiler should
 
produce object code which can be debugged and tested on either
 
the front-end processor or the FMP. Full optimization for the
 
multiple functional units would be a selectable optiorr for the
 
compiler. This would provide the flexibility of having compile
 
capablity on all processors in the system. Another advantage
 

1-116
 



of this would be reducing the need for FMP availability during
 
its early checkout period to assist in the object code
 
generation checkout.
 

This optimum solution has, as stated often, the risks of meeting
 
the system implementation schedule.
 

Compiler performance should also be specified in terms of
 
compile rates, at least those of the CYBER 7600 or CYBER 200
 
family compilers. Statements per minute for an average FORTRAN
 
program and for fully optimized output from the implicit and
 
explicit metrics should be required of any proposed compiler.
 
Compiler space is. not a problem for the FMP but could present
 
difficulties when used on a heavily loaded front-end processor.
 
The compiler should be limited to a fixed residence no greater
 
than that which the current 7600 and other large scale systems
 
FORTRAN compilers require today.
 

The FMP compiler can easily rely on current compiler
 
technologies, with some special emphasis placed on automatic
 
vectorization, sceduling of vectors, and allocation of vector
 
storage. The only factor in the compiler development that needs
 
to be given considerable attention is that of the sheer manhours
 
and elapsed time to provide the exposure and testing of the
 
compiler and object.code prior to the NASF going into full
 
production status.
 

3.4 OPERATING SYSTEM FUNCTIONAL CHARACTERISTICS
 

3.4.1 GENERAL
 

In preceding studies the NASF system concept and structure were
 
described and diagrammed. The network of hardware that has
 
finally been arrived at as an evolution from those studies is
 
shown in figures 20 and 21. Three fundamental ideas have formed
 
the 	basis for the NASF configuration and system software
 
analysis.
 

1) Distribution of function among a number of possibly
 
dissimilar processors -- A philosophy-governing this
 
distribution is summarized in the precepts:
 

a) 	definition of system resource entities;
 

b) 	management of system resources by intelligent
 
(programmable) processors;
 

c) 	proximity of resource and its managers should be
 
as close as possible, physically, electronically,
 
logically;
 

1-117
 



CO~SS#A~tCS ~ 

a 

DC DCC 

1.",14C 
41U 

'C 

_____________ 

DCC DC 

RA ' PW SSC 

A 

CYBC) 

S-i/C 

C 115 

D 0 

F 144/ 

$ 80 toO 

SOD 

AlD/SPSA 

A.P 155-1 

R 475.1 

VIwIA 

76q 

CARD P WCP 

CARD eQ.4CR 

C~AD RCAOCR CWrOlSr 

fl6IA RM/ 

TRWSFR S.fCI/Ol TIROSLSA 

../SOl 

r",fDI44WC/CTPCOMTR 
ri 0S' 0T4a W/TI .- '.NR. arO 

AAONCT? TAPS IRM/rOf 3-RACK (etA) 

.F .80'I/A/RSCRG CVIOP 

TRIO~SC TOAGSUNI 

AS T4'QTASPR 

AOIGRrO Nor DlrereND 

JTA/ .iR AST 

Figure 20. NASF Support Processing System
 



FAMP 

rw ta.4btSW44 
S ~ awir .14 YClrO Jwc1A, .1 1...IRP&*4 

$I "leer Q.5 

30 FMPCiNAS0 Trun Networ 3- withi ODC.
03(Fiur 




d) 	resource management functions should be moved
 
outward from a central computer toward the
 
resource;
 

e) 	"form follows function";
 

f) 	processors with resource management functions have
 
only knowledge (i.e., tables, pointers, etc.) of
 
resources directly attached-;
 

g) 	each processor possesses a unique catalog of
 

functions it can perform, all others are passed on;
 

h) 	message discipline;
 

i) 	common sense and reality must dominate any design.
 

2) 	Flexible interconnection of all components -- Using a
 
new Control Data system called Loosely Coupled Network
 
(LCN), all system components can be connected to each
 
other using high-bandwidth, bit-serial data trunks
 
which can extend for great distances.
 

3) 	A "computational engine" or highly intelligent
 
arithmetic element in the total system -- The FMP
 
should behave as a "slave processor" and not perform
 
any system control operations. Its internal software
 
operating system must be absolutely minimal in order
 
that:
 

a) 	FMP software development be minimized;
 

b) 	other system software have a minimum number of
 
interfaces to cope with in the FMP;
 

c) 	the time needed in the FMP for system interaction
 
processing can be reduced.
 

This last principle implies that the NASF will rely almost
 
entirely on the operating system and system support software
 
available on the front-end processors for management of the
 
system resources. According to the "distributed system
 
philosophy" the resources owned by the FMP are its functional
 
units (Map Unit and Vector Unit) and its storage (Main Memory,
 
Intermediate Memory, and Backing Store).
 

The FMP as a single entity is itself a resource that must be
 
managed by some other processor. The management function has
 
been delegated to the front-end processors or support processing
 
system (hereafter called the SPS). The requirements for an
 
operating system within the FMP are thus reduced to bare
 
necessities. The extent of these necessities can be derived
 
from an examination of how the FMP will be used in the NASF
 
environment.
 

1-120
 



3.4.2 JOB FLOW
 

The following provides a recount of the probable sequence of
 
events that will be involved in the processing of a flow model
 
solution.
 

1) 	The user will, from an interactive terminal or batch
 
input, initiate the execution of a model solution.
 

2) 	The SPS will select the already compiled, linked, and
 
loaded solution program from the file system.
 

3) 	The contiguous binary stream representing the program 
and its locally defined data will be transferred to 
the 819 disks common to the FMP and the-SPS. 

4) 	The initial mesh data which has also been biding its
 
time on a disk or archival file belonging to the SPS,
 
will then be selected and moved to a block of storage
 
on the 819.
 

5) 	External data and parameters other than the mesh 

information will be transferred to another set of 
blocks on the 819s. 

6) 	A "message" (see reference 2) will be transmitted to
 
the FMP from the SPS via the LCN and thence stored in
 
the Intermediate Memory of the FMP. This message will
 
contain the job description and pointers to physical
 
disk addresses for each of the job components, binary
 
program, mesh data, parameters, and location where
 
output data is to be transferred.
 

7) 	The FMP monitor, in its own good time (when in idle
 
loop, or when performing other system tasks), will
 
discover the message in its queue.
 

8) 	The monitor will then schedule the transfer of all
 
input data into either the Backing Store (if present)
 
or the Intermediate Memory.
 

9) 	Each transfer is directed by a message to an attached
 
PDC (Programmable Device Controller, the key LCN
 
interface hardware).
 

10) 	 When the transfer is complete, the PDC responds to the
 
message.
 

11) 	 When the transfer is complete, the monitor marks the
 
job "ready for execution".
 

12) 	 When the FMP becomes free, the monitor scans its list
 
of jobs "ready" and selects the highest priority job
 
to begin execution.
 

1-121
 



13) The new job is rolled in by moving its binary code
 

into 	Main Memory.
 

14) 	 Program execution is begun.
 

15) 	 The FORTRAN program then reads it parameters, which is
 
accomplished by map operations from Intermediate-

Memory.
 

16) 	 Input meshes are also read in this manner, wherein an
 
unformatted FORTRAN READ operation becomes a simple
 
set of block moves of data from Backing Store to
 
either Intermediate or Main Memory.
 

17) 	 Processing is begun.
 

18) 	 Formatted I/O is performed by subroutines in the
 
object program, and data is transferred by means of
 
map operations to buffers that are "psuedo-files".
 
That is, there are no file OPEN, or CLOSE operations,
 
nor I/O activity implied by READ and WRITE
 
operations.
 

19) 	 Upon program termination, PAUSE or interrupt all data
 
in the Backing Store and Intermediate Memory buffers
 
is rolled out to fixed positions (described by the
 
initial job initiation message) to the 819 disks.
 

20) 	 The SPS then associates each of the rolled out areas
 
with actual SPS managed files to which the data is
 
then moved.
 

21) 	 The SPS processes the remaining job commands, either
 
from the terminal or batch job, in order to reduce and
 
display the result data, and to catalog or archive all
 
other data that is to be retained.
 

In this scenario the 819 disks, the Backing Store, and
 
Intermediate Memory all exhibit one common characteristic -
they are managed by physical address and stream lengths, not as
 
files. Thus from a system standpoint, each storage medium is
 
interchangeable with any other (albeit at significant
 
performance differences). This makes it possible for the system
 
to actually operate without two of the three bulk memories. In
 
a minimum configuration for example, with constraints on problem
 
sizes, the PDC connected to the FMP could intercept data storage
 
and retrieval messages meant for the nonexistent 819s and
 
convert them to block addresses and lengths in the Intermediate
 
Memory.
 

This is possible only if the 819s are limited to containing
 
transient data at all times and not permanent files. The
 
advantage of such a scheme is obvious not only for purposes of
 
degraded operation (while maintenance is being performed on the
 
819 or Backing Store, for example) but can be of great
 

1-122
 



value during early system exercises where all the hardware need
 
not be present. A phased installation of the NASF is thus
 
facilitated.
 

3.4.3 INTERACTIVE OR BATCH?
 

The large amount of data usually ascribed to FMP jobs means that
 
a single job roll-in/roll-out could require a significant amount
 
of time. Interactive debugging usually implies many such
 
roll-in/roll-out actions during the execution of a job. Should
 
such activity be permitted in the FMP and supported by operating
 
system functions? Despite the inherent inefficiencies that may
 
arise from such a strategy, the potential impact on a high
 
priority project that may need interactive debugging facilities
 
could be enormous if this capability is not present. The
 
"roll-in/roll-out" facility that must be provided in the FMP
 
operating system to support the staging of data into and out of
 
the FMP, can be used also to perform "checkpoint-restart"
 
recovery dumps of the data base and code, when required by the
 
system or the programmer. In addition, this same facility could
 
serve in special circumstances to "roll-out" an executing job,

when interrupted by the user, so that key problem parameters can
 
be examined to determine if things are "going right" before
 
allowing the job to consume a great deal of CPU time. Although
 
the FMP is best used in a batch-mode only form, there must be
 
some form of "escape-valve" permitted for privileged users
 
(whose privileges are determined by the system-managing SPS) to
 
STOP, PAUSE, and CONTINUE executing jobs. These privileges can
 
have a serious effect on overall FMP efficiency, and therefore
 
must not be granted lightly by the system manager or the
 
operating system. The need for this capability cannot be
 
overstated, based on the experience of the many large STAR-100
 
and 7600 user communities who make such demands of what would
 
otherwise be a basically "batch-job" environment.
 

Another technique related to this question is that of a
 
production job making intermediate result "dumps" which are to
 
be sent to an output device (terminal, plotter; or printer) for
 
evaluation while the prog-ram is still in progress. Although the
 
system load model provided by Ames makes no mention of this
 
requirement, experience with large code indicates that such a
 
capability is highly recommended in the production NASF.
 

3.4.4 EXTERNAL CHARACTERISTICS
 

Given the basic requirements for job flow, what are the
 
necessary external features as seen by. the user from his
 
terminal, and by the programmer in his FORTRAN code?
 

1-123
 



First, an aspect of the external characteristics of the FMP
 
operating system must be discussed -- COMPATIBILITY. Since the
 
majority of human interactions with the NASF will be with and
 
through the SPS and other processors (such as graphics
 
subsystems), the bulk of operating systems commands will be
 
directed at those processors. If a function is to be invoked on
 
the FMP, it should be described by the identical syntax and
 
format as used on the SPS. More importantly, the relationship
 
of such functions to the system should be the same. What does
 
t-his mean!? The -Control Data CYBER operating systems are "file
 
oriented". That is, data files -- raw binary and executable
 
binary data -- are all retained in streams called "files". To
 
invoke a system function or initiate execution of program
 
involves the naming- of the file containing the desired program.
 
That file is opened, brought into memory and execution is
 
commenced. At the conclusion of execution, the space used by
 
that file is overlaid by the next file invoked.
 

Management of program entities is thus through the-same file
 
mechanism as is used for data. A control statement, whether
 
submitted via a job control card, -terminal or an executing
 
program, thus consists of a file name followed by appropriate
 
parameters. If the FMP is to be front-ended by CYBER machines
 
then, this same relationship and command format should be
 
maintained. The user then has only one set -of concepts to
 
assimilate and one set of formats with which to deal. The
 
problem with this is that two effects can destroy what seems to
 
be a nice principle:
 

a) A NASA choice of some other SPS, at the outset or
 
later in the project, which has a completely different
 
philosophy of operating system relationships and
 
commands.
 

b) A change in operating system philosophy for the same
 
equipment, a possibility, quite frankly, demonstrated
 
more than adequately by the two Control Data operating
 
systems for the CYBER family, NOS and NOS/BE.
 
Although both are basically "file oriented", one
 
adhere§ to that philosophy more than the other.
 

Only one solution can prevent the FMP operating system from
 
being bent in the winds of change throughout its lifetime. That
 
solution consists of eliminating completely any ability in the
 
FMP for interpreting commands from the job stream, or to have
 
any knowledge of resources outside itself (no concept of disk
 
storage or SPS hardware permitted to invade the FMP). This is
 
consistent with the distributed system philosophy, but not
 
consistent with current system practices as, for example, in the
 
"Symmetric Link" facility of NOS/BE. In this case, the back-end
 
processor (such as the FMP) must "drag out" its own data base
 
from the SPS through commands such as GETPF (get permanent
 
file).
 

1-124
 



All command language processing is then performed by the SPS.
 
The FMP and its 819s appear to the rest of the system as a block
 
of memory to be loaded with data and programs and told to
 
execute a specified program. Further, the user has access to
 
FMP resources when executing on the FMP and thus the only

external interfaces on the FMP are the FORTRAN language
 
constructs given in the FMP FORTRAN Manual (Volume III). The
 
I/O statements, PAUSE and END, provide implicit linkage with the
 
operating system but no others will be countenanced.
 

3.4.5 INTERNAL CHARACTERISTICS
 

Having dismissed the subject of external characteristics so 
quickly, it would seem that the FMP operating system has 
vanished' completely. There are, unfortunately, sufficient FMP 
management tasks that must be handled by the FMP to absorb the 
energies of a good sized development team-. The FMP hardware 
-contains some design features which are intended at once to
 
constrain the creative expansiveness of such developers while
 
also assisting their efforts in simplification.
 

a) Fixed memory allocations -- One 65,536-word block of
 
Memory (beginning at address 0) and one 65,536-word
 
block of Intermediate Memory (beginning at Intermediate
 
Memory address 0) are set aside for the operating
 
system. Job-mode programs cannot access either of
 
these two areas for program execution or data access.
 
'Monitor mode execution of code is limited to the 65,636
 
words of Main Memory, while the monitor is permitted
 
access to all memories in their entirety.
 

b) Single interrupt -- The FMP can be interrupted having
 
control transferred to the monitor by any one of the
 
external PDC attachments to the I/O ports. While in
 
monitor mode no other interrupts will be permitted.
 

c) In the event that a Backing Store block that is
 
addressed is not present (because of reduced
 
configuration) or the Backing Store is totally absent,
 
an interrupt occurs, causing monitor to deal with the
 
attempted Swap operation. If a.Main Memory to
 
Intermediate Memory map operation references addresses
 
not present in the Intermediate Memory, a similar
 
interrupt will occur. This provides a limited form of
 
"virtual" memory to the FMP operation.
 

d) Monitor can establish upper and lower boundaries for
 
data access to Intermediate Memory and Backing Store by
 
the executing program.
 

1-125
 



e) PDCs have universal access to Intermediate Memory with
 
the following restrictions:
 

* 	 Once FMP execution has begun after a deadstart
 
condition, the PDC cannot access addresses 0 through
 
32,767 in Intermediate Memory. This is to prevent
 
inadvertent destruction of the monitor kernel.
 

* 	In deadstart mode the PDCs can write everywhere in
 
Intermediate Memory.
 

f) All addresses in user programs for Intermediate and
 
Backing Store Memory are relative to address 0 of the
 
user space which begins at address ILBOUNDS
 
(intermediate lower bounds) for Intermediate Memory and
 
BLBOUNDS in the Backing Store. Both bounds are
 
assigned by the operating system when the job is
 
scheduled for execution. User addresses in Main Memory
 
start at address 65,536 and are not relative.
 

g) Any attempt to read or write outside the prescribed
 
bounds will result in an immediate interrupt to the
 
monitor.
 

3.4.6 MANAGEMENT TASKS
 

There are a number of tasks which must be undertaken solely by
 
the FMP itself because it is in the best position, or only
 
position, to make judgments about resource utilization.
 

3.4.6.1 STORAGE
 

a) 	Allocation of one, two, or three job buffers in
 
Intermediate Memory to permit the overlap of one job
 
execution with the swap-out of another -- the
 
allocation scheme must consider job size, priority, and
 
amount of swapping required.
 

b) Allocation (and setting of bounds register) of
 
Intermediate Memory for the job going into execution.
 

c) Presetting of Main Memory and Intermediate Memory to
 
canonical NULLs (for security reasons as well as
 
execution consistency).
 

d) Allocation of Backing Store Memory (and establishing
 
operating bounds for the job in process) if that
 
element is present.
 

e) Processing of illegal storage access requests by the
 
user program, determining the nature of the request and
 
transmitting the error information to the job's error
 
processor.
 

1-126
 



f) Processing "storage not present" interrupts, moving data
 
from alternate storage devices as required by the
 
hardware instruction (map) that caused the interrupt.
 

g) Degrading the software storage maps when directed by the
 
maintenance function to reduce memory so that
 
maintenance actions can be performed on-line.
 

3.4.6.2 PROCESSING
 

a) Entering JOB requests into internal queue in priority
 
order.
 

b) Aborting an executing job or deleting from queue on
 
demand from front-end processors.
 

c) Scheduling and execution of on-line "confidence"
 
diagnostics.
 

d) Initiation of job.
 

e) Processing of job calls for systems services.
 

1) Transmit message to SPS.
 
2) Explicit Input/Output.
 
3) Wait on external message.
 
4) Terminate job normally.
 
5) Abnormal job termination.
 
6) Initiate .checkpoint/restart.
 
7) Request job accounting information (date, time,
 

time on, etc.).
 
8) Increase or decrease storage allocation in any
 

level memory.
 

f) Trigger job roll-out by PDCs.
 

g) Linking FORTRAN "pseudo files" (TAPE1, TAPE2, etc.) with
 
physical memorykspace in. Backing Store, Intermediate
 
Memory, or local RMS (rotating mass storage).
 

h) Executing special system functions requested by the
 
Maintenance Control Unit.
 

i) Transmitting job statistical data to Maintenance Control
 
Unit.
 

j) Transmitting exceptional condition status to Maintenance
 
Control Unit.
 

k) Management, reorganization; and culling of processing
 
queues.
 

1) Deadstart system initialization.
 

1-127
 



The fairly long list given here is not as complicated as it
 
might seem since, in most instances, the FMP monitor consists of
 
a set of privileged subroutines each of which is called either
 
by the job in execution or by a job operating in the SPS. Thus
 
the SPS message "ADD JOB", invokes a single monitor mode
 
subroutine in. the FMP which inserts the incoming job into the
 
execution queue, with appropriate "time stamps" and then returns
 
control to the executing job., "Time slicing" is not permitted
 
for FMP jobs, and roll-in and roll-out are controlled by the SPS
 
program called the FMP manager. The FMP manager has a ota-l
 
responsibility for the optimization of use of the FMP resource.
 
Decisions regarding how much memory at each level to allocate
 
for agiven job are done in the SPS. The allocation message is
 
then sent to the FMP monitor which performs the actual
 
allocation act (by entering data in appropriate tables and
 
setting internal registers when required). So the functions
 
listed above are, in fact, very primitive "slave" operations
 
which behave more like "drivers" of the hardware switches and
 
registers in the FMP.
 

The FMP "Operating System" therefore exists as a job on the
 
front-end processors, which make all decisions about allocation
 
and scheduling. This makes it possible to begin development of
the FMP Operating System on an SPS as soon as the final
 
configuration has been decided upon. The FMP manager would
 
definitely be written in a higher level language (such as
 
PASCAL) and would operate as a normal user job on the SPS. It
 
would deal -with the FMP as if it were a piece of peripheral
 
equipment, whose controllable functions were only slightly more
 
complex than start, stop, transfer data, report errors.
 

3.4.7 PERFORMANCE CRITERIA
 

In the specification of an operating system for the FMP, some
 
measurement points and criteria should be required for degree of
 
functionality, storage utilization efficiency, and processing
 
efficiency. RADL has already forced a limitation on space
 
utilized by the FMP Operating System itself by hardware design
 
"fiat". Some similar criteria-should be established for the FMP
 
manager on the front-end processors. Maximum memory residency
 
on the SPSs should be limited to 32K SPS words, so that
 
sufficient space remains for the other system management
 
functions on those machines. The FMP manager must have its
 
critical kernels resident at all times in the FMP to handle the
 
processing load expected and to meet the response time
 
requirements.
 

1-128
 



If a full queue of completely vectorized jobs in the FMP is
 
assumed, then it can be required that the FMP monitor perform
 
the servicing of such a job stream with no more cost than a 5%
 
burden of additional elapsed (wall clock) time over the
 
theoretical time to complete the same set of fully vectorized
 
codes. This means that the Vector Units would be kept busy 95%
 
of the total machine hours (assuming the compiler has 100%
 
vectorized the codes) in an operating day.
 

Minimum system response times for functions performed outside
 
the FMP can be established for each message type listed above.
 
For example, in the case of "explicit I/O" requests, the time
 
taken away from the job for the monitor processing of the I/O
 
message must be limited to some infinitesmal period like 20
 
microseconds (during which time the Vector Units could have been
 
performing up to 60,000 calculations except for the
 
interruption). Further, the time required to service the
 
request must not be greater than 5% of the theoretical service
 
t'ime. As an example, take a disk read request of 65,000 words
 
from the 819. Given the average latency and transfer times, the
 
opeating system additional time for the transfer cannot exceed
 
5% of the theoretical total of latency and transfer time.
 

In the same way, criteria can be established for response times
 
from the SPS, maintenance units, and other attached processors,
 
for each function listed in the preceding discussion.
 

Finally, the FMP manager must be bounded by minimum performance
 
standards. Assuming an available backlog of jobs flowing into
 
the system, the FM? manager must keep a minimum queue of 3 to 5
 
jobs built in the FMP (which then of course, must guarantee
 
efficient processing of that queue). Response times for
 
servicing of critical messages-, such as interactive display and
 
interrogation of the FMP functions, must be established to keep

the FMP fully busy. If the FMP manager in the SPS cannot
 
respond quickly enough, then it must at last respond to the FMP
 
with a "roll-out". function so that the FMP can begin arithmetic
 
processing as soon as possible.
 

Final specification of these attributes of the FMP Operating
 
System can be done as more experimentation with the system
 
models and Ames load data point out the critical spots in the
 
network that must be controlled during system development. It
 
is expected that work with these models will continue into
 
subsequent phases of this project so that a sufficiently

rigorous specification can be produced to guide the
 
implementation of the FMP Operating System.
 

1-129
 



4.0 FLOW MODEL PROCESSOR SIMULATION AND ANALYSIS
 

4.1 FMP SIMULATOR
 

Before construction of an FMP can begin, Control Data believes
 
that the entire assemblage must be designed and simulated at the
 
fundamental circuit level. This simulation would necessarily
 
involve the execution of diagnostic sequences (to determine
 
functional adequacy) and the execution of key portions of the
 

performance metrics (to determine the execution speed). The
 
design process for Control Data super-computers also includes
 
simulation as a tool from the very inception of the effort
 
through actual machine checkout. Even with the most powerful
 
computers available on which to execute the simulators, the
 
number of logic events simulated consumes more computer time
 

than is reasonably available.
 

It becomes necessary then to establish a hierarchy of simulation
 
systems, each one capable of a certain level of analysis of the
 
design and FMP machine operation. The three levels identified
 
are:
 

a) "Gate level" -- This simulator is used by the hardware
 
designers to check the behavior of the actual circuits
 
and wired interconnections with a very high resolution.
 
In most design cases the resolution of the signal
 
analysis is carried out to 50-picosecond intervals.
 
This level -is used to verify design before parts are
 
ordered for the machine.
 

b) "Block level" -- This simulator represents aggregates of
 
several individual components as "blocks" of logic, for
 
example, an adder block capable of performing a two's
 
complement add operation on input operand pairs of 16,
 
32, or 64 bits, or any increment between 16 and 64
 
bits. These blocks are then interconnected by the
 
designer with the same diagnostic and performance
 
sequences then run through them as for the gate level.
 
The execution speed on current machines for this level
 
can be 10-60 times faster than the gate level, thus
 
larger assemblages of logic can be simulated over
 
longer sequences of input instructions. The processing
 
of a single vector operation on the FMP, however, still
 
consumes extraordinary amounts of time even at this
 
level of simulation.
 

c) "Functional block" -- Many events in the preceding
 
simulation-occur at the picosecond or nanosecond level.
 
When one tries to examine the, behavior of an overall
 
performance metric though, the effects of memory data
 
transfers become important to the final performance
 
estimates of such a machine. In a simple case, the
 
moving of a single slab of data from Intermediate to
 
Main Memory using the Map Unit requires (for the
 

1-130
 



implicit example) that 65,536 words be moved at the
 
rate of eight words every clock cycle for a total of
 
8192 clock cycles. Performing analysis of this
 
activity at the block or gate level is prohibitively

expensive in terms of simulator time, and submerges all
 
of the more refined circuit and block analysis, as far
 
as elapsed time is concerned. A third level model is
 
then desired which allows interaction of all functional
 
units to be modeled at less resolution for longer
 
periods of time.
 

This approach is quite similar to the actual design process.
 
First the architect draws out the overall scheme and fragments
 
it into logically separable entities (functional blocks). Then
 
estimates are made as to the performance and functional
 
requirements of each entity. A computerized model is then
 
developed for each entity, and the lot subjected to some form of
 
programmatic analysis. If the architecture holds up, the design
 
is initiated. Each entity is then broken down into a set of
 
constituent logical blocks and this breakdown modeled to
 
determine if all data and control paths are in place and timed
 
to the nearest clock cycle. Finally, each logic block is broken
 
down to circuit elements and coax and foil interconnect, and the
 
entire assembly is "tuned" to the nearest 50-100 picoseconds.
 
Manufacturing documentation is then produced automatically from
 
all levels of the simulation; the parts design is extracted from
 
the gate level model, put on tape, and shipped to electronics
 
vendors. The machine is then constructed.
 

At each stage of the design, the higher level model is verified
 
against the continually refined, more detailed models. For
 
example, the functional model of a vector unit would have a
 
sequence of vector instructions put through it and timings would
 
be analyzed. As the block level design is completed for a
 
vector unit the identical sequence-is put through the more
 
detailed model and the timings compared to the higher level
 
model. Where necessary, the higher level model is adjusted to
 
reflect the actual design. This is carried out once again as
 
the gate level design and simulation is carried out, with the
 
more gross timings of each higher level model matched against
 
the actual hardware design. In a well structured design
 
environment, all three models use the same interfaces, control
 
cards, and file structures so that a "mixed" simulation might be
 
executed where the memory system and scalar unit can be
 
simulated at the functional level, the vector stream control at
 
the block level, and a single vector unit simulated at the gate
 
level. This interchangeability permits the designers and
 
potential users to evaluate various critical networks and
 
performance questions without having to run the entire ensemble
 
at the gate level.
 

1-131
 



To carry out the FMP design for this study period of the NASF
 
project to a degree that ensured the buildability and
 
performance of the system, all three levels of design had to be
 
explored to some degree. A modest amount of gate level design
 
was undertaken to answer some design questions not addressed by
 
LSI design already in progress at Control Data. A good deal of
 
block level simulation was done for the memory system (since
 
that is the crucial element in the FMP bandwidth) and the vector
 
units (since they -perform the useful work and take the major
 
amount of logic in the FMP). To the extent that detailed design
 
has been carried out, the block model represents the actual
 
behavior of the FMP to the clock cycle level. This model was
 
first developed for Ames in the second study period of this
 
project and reflected the design of the FMP at that time.
 
Throughout the summer of 1978 this model became known as the
 
"Detailed FMP Simulator". As the FMP architecture changed from
 
that described in reference 2, the simulator underwent major
 
changes, some structural and some procedural (input, output, and
 
use). Versions of this simulator have been delivered for -use by
 
Ames, and with this report (Volume IV) the simulator is formally
 
delivered to NASA.
 

The functional level simulator has been called the FMP
 
High-Level Simulator, and is documented in Division 4 of Volume
 
IV of this report. For significantly long code sequences where
 
vectors are long (100 or longer), the high-level simulator is an
 
accurate representation of the current FMP design. Where short
 
vectors or-single element map operations are to be analyzed, the
 
detailed simulator is required since only at that level are
 
specific memory conflicts modeled. The current detailed model
 
has not been completely verified against the latest design
 
changes in the Map .Unit so it is possible for short vector data
 
to be as much as 10% in error from what the actual hardware
 
would yield.
 

4.2 BENCHMARKS FOR THIS STUDY
 

Divisions 2, 3, and 4 of this volume contain discussions of the
 
four codes submitted by Ames to Control Data as metrics around
 
which the FMP was to be designed and analyzed. The
 
characteristics of the implicit code--the number of computations
 
to be performed can be estimated exactly for any set of input
 
parameters-the code appears to be the best candidate for long
 
term production on the FMP--have led it to be the primary focus
 
for all hardware and software design efforts. In previous
 
reports the characteristics of this code have been explored and
 
the computational behavior analyzed to help direct FMP design
 
efforts.
 

The weather codes were of great interest at the outset of this
 
phase since the question had been raised as to the suitability
 
of the FMP to broader applications areas. It was determined
 
that for the two weather codes provided, the original FMP design
 

1-132
 



(as documented in reference 2) would not achieve the 1000
 
megaflop goal for the FMP.
 

Four different approaches were used to pursue the benchmark
 
analysis. This was due, in part, to the experience and
 
specialties of the staff working on the codes, and in part

because of the very nature of the investigation.
 

1. 	The Implicit .code became. the central theme of the FMP
 
design and the language and compiler specifications. As
 
a change was introduced in the hardware or software,
 
the implicit code, or a portion thereof, was used to
 
test the idea. The simulators were first exercised
 
with the implicit code. A decision was made to treat
 
the entire implicit code with respect to language,
 
compiling, and simulation in order to ensure that some
 
design feature was not overlooked.
 

2. 	The explicit code employs solution techniques which'
 
differ in some ways from those of the implicit code.
 
The methodology requires convergence of the solution, a
 
data-dependent feature which controls the number of
 
calculations, unlike the fixed number that are inherent
 
in the implicit code. Apparent recursion relationships
 
impact the amount of vectorization that can be readily
 
attained without severely'-restructuring the code. It
 
was decided to turn over this evaluation to a new group
 
of analysts and have them attack the code without
 
predisposition toward the FMP. They were instructed to
 
vectorize the code as directly as possible from the
 
statements in the original source language, and make
 
the code operable on the STAR-O00. The conversion of
 
the 	STAR-100 cocde could then be done fairly
 
mechanically to the FMP, since the primary functions
 
used would be map and arithmetic operations,. The
 
answers obtained on the STAR-I00 would be checked to
 
make sure the algorithm conversion was "complete" and
 
then simulator input for the FMP detailed and
 
high-level models could be transliterated from the STAR
 
code.
 

With the limited analyst resources available, it was
 
decided to tackle only the LX, LYC, LYI, and CHARAC
 
routines for the purposes of recoding and simulation.
 
The 	LX and LYI subroutines were vectorized in a direct
 
manner, rewriting local DO loops only. All data passed
 
between these subroutines and the remainder of the code
 
was 	left in the original scalar allocation so that the
 
code could be run with and without each of the
 
vectorized codes, on the STAR-100, to obtain correct
 
answers. This technique led to object code for the FMP
 
with small vector lengths, compared to the implicit
 
code, but the exercise did provide a vehicle for
 
testing the performance that could be gaind by making
 
simple first-attempts at vectorization. The
 

1-133
 



TURBDA subroutine and LYC turned out to be vectorizable
 
without much thought or effort but CHARAC proved to be
 
the challenge to vectorization. Initial efforts at
 
converting the code left most operations still in
 
scalar mode with a performance of only 27 megaflops.
 
By calling CHARAC from LYC and LZC to process all data
 
in the I-K plane at one time, CHARAC could be
 
vectorized using-the control vector capabilities of the
 
FMP. -Estimation of performance could not be done using
 
the 	simulators, because the degree of sparsity of the
 
permissive bits in-the control vectors has a direct
 
impact on the gigaflop rate. Making the assumption
 
that for every pass of three there was a reduction by
 
half in the active calls to CHARAC (represented by the
 
control vector), performance of CHARAC was estimated
 
for 	the 100x1OOx1OO mesh case at about 200 megaflops.
 

3. 	The spectral code which originated at MIT was analyzed
 
to determine what special machine characteristics were
 
needed to make it meet the performance goals of the
 
NASF. The FFT and SPCFOR (Legendre transform)
 
routines were chosen from the spectral code for
 
simulation because they constitute the computational
 
heart of the spectral code. These routines were
 
vectorized quite directly and simulated for two problem
 
sizes. The first problem, with relatively low
 
resolution, represented 25 layers of atmosphere, 6 wave
 
numbers and 15 latitudes. A more reasonable form for
 
useful production work, in the opinion of CDC
 
investigators, would consist of 48 layers, 21 wave
 
numbers and 53 latitudes. The two cases were simulated
 
to show the range of performance for this code.
 

4. 	A shortcut method of handling the GISS model was tried
 
i n order to reduce the resource commitments for this
 
secondary phase of the project. The GISS model had
 
been fully vectorized for the STAR-100 and a copy of
 
that model was available to us. If necessary any
 
segment of that code could be transliterated from STAR
 
to the FMP and the results subjected to either detailed
 
or high-level simulation. Instead, Computer Sciences
 
Corporation (CSC) continued to project FMP performance
 
on the codes using the simulator delivered with
 
reference 2. As a result of that study, the FMP was
 
shown to be substantially lower in performance on the
 

1-134
 



GISS model than RADL investigators assumed, based on
 
the performance of the fully vectorized version on the
 
STAR-100. One example unearthed was a routine called
 
LINKHO in the GISS model which ran at rates far less
 
than 100 megaflops, and was allegedly unvectorizable.
 
Shortly after, a corresponding vector portion was
 
extracted from a current STAR-1O0 version and simulated
 
without change on the FMP, vintage 1979. The result
 
rate was shown to be 700 megaflops for that one
 
routine! The LINKHO and AVRX routines were thus chosen
 
for further study, with a representative portion of
 
LINKHO being simulated with the LVL1 simulator for the
 
FMP. AVRX was chosen for manual extrapolation because
 
it represented the physics computations of the GISS
 
code and because its vector characteristics could be
 
estimated by hand.
 

Mention of this difference is not meant to reflect on CSC's
 
effort, but highlights two important difficulties in this
 
evolutionary effort. The FMP has been a moving target as-far as
 
design is concerned since the inception of the project, and thus
 
estimates made in summer, fall and winter of 1978 would vary
 
wildly. The second problem is that "vector programming" or
"vector thinking" is still a young discipline and still
 
functions more as an art than a science. In this case, the
 
author of the original code was able to see and recognize the
 
"parallel" nature of some of his own constructs and thus make
 
certain vector judgments in the GISS recoding, whereas a new
 
analyst, confronted with a code not of his own making and a
 
machine which is a bit alien, would find great difficulty in his
 
first attempts at mapping code.
 

Neither of the weather codes taxed the FMP memory system as did
 
the implicit and explicit codes. In fact they can be completely
 
contained in the Main Memory of the FMP. The major concern in
 
achieving performance on these codes is the degree to which
 
scalar operations have to be employed, where no overlap of
 
scalar and vector can be done, and the lengths of vectors.
 
Simulation results for some segments of the weather codes
 
achieve only 100-300 megaflops because of the presence of short
 
vectors and the effect of vector startup time. The hardware
 
design attributes that contribute to startup time have been
 
discussed previously (in the hardware design section of this
 
report), and relate to memory access time, pipeline lengths, and
 
interconnections. The detailed FMP simulator imposes an average
 
of 6 clock cycles per startup of each arithmetic vector. (Design
 
analysis to date indicates that 6 cycles is a reasonable
 
expectation for average vector startup.)
 

1-135
 



It can be seen that if vector startup time were zero and vectors
 
could be scheduled back-to-back by the compiler, then the actual
 
computation rates would in fact be the same as the theoretical
 
rates. Thus rates of 500, 1000, and 1500 megaflops could be
 
achieved on the weather code. If vectors are processed which
 
are equal in length to the number of levels in the model, then
 
lengths of 16-32 would be expected. Given a 1000 megaflop peak
 
rate for such lengths a table of statup costs would show:-


STARTUP CYCLES MEGAFLOPS (vector lengths of 16) 

0 1000 
1 666 
2 500 
3 400 
4 333 
5 285 
6 250 

In truth, the Control Data FMP can have zero vector startup for
 
many types of vector operations, in particular when there is no
 
"loop back" in the pipelines between functional units, or mode
 
changes for the data paths in the Vector Unit between vector
 
operations. It is possible then for a carefully coded (yet
 
brute force) conversion of the weather codes to achieve close to
 
the 1000 mdgaflop threihold.
 

4.3 FUTURE METRIC STRATEGY
 

One of the significant outcomes of the FMP investigation has
 
been the realization that the tradeoffs between memory
 
hierarchies, processor organization and interconnection, and
 
problem-statement (including data structuring and movement
 
scheduling) .create complex ensembles about which some decisions
 
must be made. In particular, the-FMP structure proposed by
 
Control Data offers three levels of memory, with consequent
 
levels of bandwidth, combined with functional parallelism which
 
provides concurrency of operation based on the separation of
 
functional identity.
 

A brief examination of this multi-faceted architecture in the
 
face of the problems expected to be applied to the NASF
 
indicates the tremendous variety of performance that can be
 
achieved. The small problem, which could be used as a research
 
tool or for debugging a new set of parameters, will of course
 
fit in the .Main Memory and operate at much higher map rates
 
while possessing shorter vectors that have commensurately lower
 

1-136
 



throughput rates (due to the effect of the spectre of vector
 
overhead). On the other hand, certain research codes may exceed
 
the LEVEL 2 memory and need to operate at lower rates than 1
 
gigaflop, in order to achieve the goals of the research project.
 
The NASF must be able to accommodate the entire range of
 
programs in order to be a viable research and development
 
center, as well as a high capacity production facility.
 

The meaning of these observations is clearly that the set of
 
"benchmarks" or "metrics" that are used to evaluate prospective
 
computer systems for the FMP must be variegated in quantitative
 
as well as qualitative spectrum. Thus there should be a.
 
two-dimensional approach to the "Imetricization" of evaluation
 
programs for the FMP.
 

One dimension of this measurement system should be the type of
 
processing. Thus the implicit and explicit aerodynamic codes
 
should be the primary evaluation tools for design, simulation
 
and actual installation of the NASF. The interest and
 
investment in the weather models should then, of course, require
 
the inclusion of characteristic approaches to the weather
 
projection problem. The two such models, spectral and finite
 
difference, are offered by NASA as representative of two "poles
 
of thought" in weather investigations. Two other important
 
models that were not investigated, and to which it can easily be
 
forecast the NASF will be subjected, are the "particle in cell",
 
or in another context "Monte Carlo technique", and the
 
"structural" codes.
 

Considering the massive investment in financial and human
 
resources, as well as the extensions into other disciplines that
 
are planned for this facility, it would seem that a rationalized
 
and systematic method needs to be employed for the analysis and
 
evaluation of the NASF system to be procured. A suggested
 
methodology for this might be:
 

a. Identification of type
 

Implicit Navier-Stokes, time-averaged, algebraic
 
turbulence;
 

Explicit Navier-Stokes, time-averaged, algebraic
 

turbulence;
 

Microscopic, full Navier-Stokes turbulence model;
 

Finite difference weather circulation model,
 
operational forecast;
 

Spectral solution, weather circulation model,
 
operational forecast;
 

One weather model for research purposes (mathematical
 
method is optional);
 

1-137
 



One 	existing structures code, finite difference;
 

One 	particle in cell model.
 

b. 	Identification of size
 

Configurations should be chosen for each type that
 
represent
 

1-- an ex-isting co6h'figuration that can be run on and
 
compared with numerical results and performance of
 
existing systems (such as the CDC CYBER 76);
 

2) 	two typical configurations expected for everyday
 
production work (the variance of any one of the
 
three dimensions in the implicit code, for example,
 
can have a substantial effect on performance);
 

3) 	a maximum production run that is conceivable for
 

the 1984-1989 timeframe;
 

4) 	a realistic research model configuration.
 

(For example: The existing flow models are presently
 
running on the CYBER 76. These should be the baseline mesh
 
sizes for these models. The expected 50x80x80 mesh should
 
represent the production data base sizing, and the
 
10Ox1OOx1OO should represent the MINIMUM THRESHOLD'of
 
performance benchmark. Finally, a research model of at
 
least 500x500x500 should be chosen as a "metric"
 
configuration.)
 

a. 	 Prioritization
 

The designers proposing a NASF system must be given as
 
many degrees of freedom as is possible, given the
 
massive national attention that will haunt this
 
project. Therefore it is imperative that a system of
 
evaluation be established, AND ADHERED TO.. .NO MATTER
 
WHAT THE PRESSURE, which
 

1) 	picks the main emphasis of the NASF (thus the
 
minimum performance should be pegged at one
 
gigaflop for the 3-D implicit code);
 

2) 	establishes an acceptable mix of use of such an
 
implicit code for 1) test cases, 2) production, 3)
 
research models;
 

3) identifies the relative priority of interest in the
 
other codes (explicit Navier-Stpkes, weather,
 
structural, etc..);
 

4) 	provides measurement specification.
 

1-138
 



The implementation of the NASF will proceed through three more
 
distinctsteps:
 

1. Proposal of candidate architectures.
 
2. Design of candidate architectures.
 
3. Construction of final architecture.
 

The set of metrics that are arrived at for evaluation must be
 
subjected to performance analysis at each of these phases to
 
determine the viability and reality of a given design. In the
 
first instance (proposal), all parties offering candidates must
 
be requested to provide estimates of performance broken down by
 
section of probable machine code. In the second instance, the
 
analysis should consist of systematic breakdown and simulation
 
of the same portions of the code that were analyzed in the
 
proposal phase. This simulation should be accomplished at the
 
detailed level of the design to verify that the hardware to be
 
built will, in fact, meet the proposed performance objectives.
 
The 'cost of such simulation is such that a complete simulation
 
of a metric run is impossible. Instead, the candidate design
 
simulations should be allowed to make segmented analysis,
 
without requiring all trips through all loops, w-ith a
 
specification as to how the single-pass results may be
 
extrapolated.
 

The implicit model which has been discussed previously may be
 
used as an example. A detailed design simulation is required,
 
of
 

1) the first trip through each sweep loop,
 
2) a subsequent pass through each sweep loop,
 
3) the last pass through each sweep loop (to cover any
 

end cases); and
 
4) one trip through VISMAT,
 

in order to get the basis for detailed estimates of the
 
left-hand side computation. Given the sets of KMAX, LMAX, and
 
JMAX taken from the sizing task (b.. above), these simulation
 
results can be extrapolated for each sized case. The method of
 
extrapolation should be specified by the consumer (Ames) so that
 
a uniformity of approach is guaranteed from all candidate design
 
offerings.
 

Finally, each metric in each size must be prepared for execution
 
in full on the final operational machine. In addition to the
 
reliability, confidence, and other specified acceptance tests,
 
this set of metrics should become the final acceptance test for
 
performance of the FMP.
 

Note that for some of the metrics (particularly the
 
Navier-Stokes research models), a data flow analysis between
 
memory hierarchies is required for each phase of the design and
 
construction effort, as well as the computational performance of
 
the FMP. This data flow will include not only backing storage
 
modeling, but- I/O transfer and support processing system
 
activity as well.
 

1-139
 



All evaluations of prospective FMP systems should then start
 
with the absolute requirement to achieve the 1 gigaflop level
 
for test cases, production runs, and 100x1OOx1OO maximum
 
configurations. The remaining cases must be coded, simulated
 
and estimated for their individual performances without a
 
mandatory performance level being required. All prospects then
 
are given the optimum level they must obtain for the primary
 
mission stated for the NASF, but also must provide data relevant
 
to other possible uses.
 

After this phase is concluded, the advice of all contractors
 
should be collated to form the quantitative basis for the other
 
aspects of this evaluation.
 

A major dilemma facing Ames reseachers is the decision that must
 
be made in the event that one candidate could be shown to
 
perform substantially greater (or substantially less) than all
other candidates for all codes other than the implicit, 3-D,
 
aerodynamic code. A weighting factor then must be applied to
 
the performance of the NASF which not only includes probable mix
 
results but also NASA-Ames priorities. It is folly to think
 
that such priorities can be identified strictly by money or its
 
equivalent in machine time. There are, for such a national
 
facility, many more considerations which must be identified and
 
prioritized by NASA before a meaningful competitive analysis can
 
be commenced on candidate designs.
 

4.4 BENCHMARK SPECIFICATION
 

In the preceeding section there is mention of the problem of
 
properly specifying the performance benchmarks to be used for
 
procuring the NASF. The problem arises from the scenario which
 
is believed to be the best approach to designing and evaluating
 
the 	FMP.
 

Specification of at least two production codes
 
representative of the anticipated NA-SF workloadi
 

2. 	 Specification of at last one code representing the
 
research environment which will share the facility.
 

3. 	 Specification of at least four additional codes which
 
demonstrate computational behaviors different from
 
those exhibited in the preceding three codes.
 

4. 	 Specification of a user-produced full-function
 
evaluation. (This would demonstrate to NASA that all
 
specified functions are present in the FMP and
 
operating according to the documentation. These would
 
be in addition to the vendor produced functional
 
diagnostics.)
 

5. 	 Creation of the FMP and system, and production of
 
high-level simulators for both..
 

1-140
 



6. 	Execution of 1 through 4 in their entirety on both the
 
system and the FMP simulators.
 

7. 	Derivation of the block level design of the FMP, and
 
production of the block simulator.
 

8. 	Execution of 1 through 4 on the block modelto verify
 
functionality and performance levels.
 

9. 	Detailed design of the FMP and production of the gate
 
level simulation of the FMP from that design.
 

10. 	 Execution of parts of 1 through 4 on the gate level
 
model.
 

11. 	 Negotiate price and schedule.
 

12. 	 Order parts and build.
 

13. 	 Demonstrate 1 through 4 on the actual hardware. Real
 
execution must match the three levels-of simulation
 
performance -within a prescribed allowance: no variance
 
at the gate level permitted as measured by clock
 
cycles, 10% variance from block lev-el model due to
 
unseen conflicts, and 15% variance from high-level

model. These variances are similar to those that
 
could be seen comparing the gate model with the block
 
model and the high-level model.
 

This process would minimize the risks to both Control Data and
 
NASA, and in effect, uses the simulation model as a "meta
 
prototype", obviating the need for the construction and
 
demonstration of an expensive and superfluous hardware
 
prototype. Under no circumstances should NASA anticipate

entering purchase agreements for a system of this magnitude
 
without insisting upon a "fly before buy" demonstration. The
 
demonstration can be valid using the "meta prototype" if the
 
simulation systems can themselves be validated with real
 
results. Each stage of the FMP development --high-level, block
 
and gate-- can be evaluated before the next stage is initiated,
 
thus reducing all partner's risks on entering the'next stage.
 

As previously discussed, however, the perfect scenario is -marred 
by the fact that all levels of simulation absorb more computer 
power than can be economically, or even practicably realized. 
The project is faced with the need to scale, first the actual 
production runs, and then the runs that can be made at each 
level of simulation. A summary of recommendations might be: 

1. 	The base set of benchmarks should be codes now in
 
existence, which are in operation on the 7600. Timings
 
for each benchmark on the 7600 should become a baseline
 
for performance comparisons.
 

1-141
 



2. 	 The base set should be scaled in terms of mesh sizes,
 
time steps, and iteration counts for at least three
 
levels of probable production runs - small (perhaps
 
7600 size), medium, and large. The medium size might
 
represent the normal -workload parameters and the large
 
might represent the extraordinary "research" models.
 

3. 	The base set should be representative of existing and
 
prQjeclted computational requirements- tn functionality
 
as well as complexity.
 

4. 	The entire base set will be run for all sets of
 

parameters as the key acceptance test on the actual FMP
 
hardware.
 

5. 	 Each benchmark will have key segments extracted for
 
simulation by the high-level simulator. These segments
 
can be entire code sequences limited to one pass
 
through a loop or nested loop. A multiplication factor
 
for the number of trips can then be manually factored
 
at a later time. Where code sequences contain branches
 
that cannot be vectorized, or where vector contents and
 
lengths are dependent on the opeating data, several
 
different passes through the sequence exercising the
 
strategic (in terms of performance effects)
 
alternatives should be specified.
 

6. 	 Sequences of code from these prescribed segments will
 
be identified as "validation code". These sequences
 
will be run on the block model to verify the timing
 
assumptions used in the simpler high-level model. These
 
will normaly be limited to mixed strings of
 
instructions up to 25 in length consisting of scalar,
 
vector, and map operations. Vector lengths will be
 
limited to 100 or less.
 

7. 	 Sequences of the code extracted in 6 (above) will be
 
further distilled to provide gate level validation
 
code. This is done primarily by reducing vector
 
lengths and permitting some manual multiplier to be
 
used to extrapolate operation for lengths of 100, when
 
needed.
 

8. 	 These last sequences will be run on a gate level basis
 
to validate the performance at the gate level of
 
individual units. Using mixed simulation with all
 
other units operating either at the block or high-level
 
and the unit under study runs in gate simulation mode.
 

So it is then that not only must the codes be sized, but
 
judicious choices must be made of selected segments to be used
 
for validation of the various simulation levels. This process
 
has already been engaged during this study period as it became
 
evident that the GPSS models required considerable time to run.
 
Code analysis has consi-sted of breaking up the programs into
 
sequences and then manually computing the combined operation
 
timing.
 

1-142
 



5.0 PERFORMANCE ANALYSIS AND EVALUATION
 

This section addresses the methodology employed to evaluate the
 
FMP design when subjected to the four metric codes -
3-dimensional implicit, 3-dimensional explicit, spectral
 
weather, and finite difference weather models. The major

approach for all four codes was to derive performance data from
 
runs of 'pseudo-compiled' code using one of the two simulators
 
developed by Control Data for NASA-Ames. Several factors acted
 
to limit the extent to which this was possible.
 

1. The machine time required to run large code sequences
 
at the detailed (and more precise) level became
 
prohibitive in some cases.
 

2. The number of FMP machine instructions which can be
 
handled by the higher level (less detailed) simulator
 
is limited to 2000 individual instructions. Loop
 
structures are unrolled into linear code by the
 
simulator and thus this limit of 2000 instructions
 
constrained loop parameters in many cases.
 

3. 	The amount of code that could be pseudo-compiled

exceeded the available time and resources allotted to
 
this project, due primarily to the priority assigned by
 
Control Data analysts to the detailed analysis of the
 
three-dimensional implicit code. The effect of this
 
decision was to absorb considerable time and talent in
 
the reconfiguring of the implicit code, recompiling,
 
and resimulating of the governing elements of the
 
implicit code.
 

In many instances then, it became necessary to use extrapolation
 
techniques based on simulator results and reasonable conclusions
 
about the behavior of each unique code sequence. The manner in
 
which the four codes were each addressed is discussed below.
 

5.1 THREE-DIMENSIONAL IMPLICIT CODE
 

The 	routines BTRI, VISMAT, VISRHS, MUTUR, and the FILTRX/AMATRX,
 
FILTRY/AMATRX, FILTRZ/AMATRX segments of the STEP routine were
 
simulated and analyzed for a variety of vector lengths, to
 
determine the sensitivity of floating point performance to the
 
length of arithmetic vector operations. This was of paramount
 
concern because of the well-known effect of 'vector startup'
 
time on 'short vector' performance in machines like the CDC
 
FMP.
 

1-143
 



It was discovered that detailed level simulation of BTRI would
 
have to be limited to processing sequences of code taken from
 
BTRI, summarizing the simulator results, and then manually
 
computing the probable behavior of BTRI in its entirety.
 

The same was true for FILTRX, FILTRY, and FILTRZ when simulation
 
at the lower (more detailed) level was desired. It became
 
obvious that the detailed model of the FMP yielded results
 
within 1% of the high-level model when map operations (and hence
 
unavoidable memory cpnflicts) were minimized. This was true in
 
BTRI, and thus a simulator run was made for the complete BTRI
 
using the high-level model; these figures are used in subsequent
 
tables.
 

The heavy use of map operations to perform the tranpose and
 
gather operations from Intermediate Memory to Main Memory in
 
FILTRX, FILTRY, and FILTRZ required one simulation pass of these
 
routines at the detailed level and comparing the result with a
 
similar pass made at the higher level. For the vector lengths
 
given later, the difference between simulator results in the
 
high-level model and detailed model was ten percent or less. In
 
all cases the detailed model (which simulates memory accesses
 
and memory busy exactly) would run slower (more clock cycles for
 
the same number of floating-point operations) than the
 
higher-level model.
 

The data obtained from the individual sequence runs was
 
summarized and used to compare against other forms of runs for
 
the implicit code to validate the manual extrapolations that had
 
to be made.
 

BTRI is broken into 4 different segments of code to facilitate
 
simulation runs; these segments are identified as BTRIO, BTRI1,
 
BTR12, BTRI3. The segments are then combined into code
 
sequences representing the pseudo-compiled lines which can be
 
found in the listings of simulator input in appendix F. The
 
simulation results for each segment are then combined to form a
 
total operation count and total clock cycle count for those
 
sequences in BTRI. These can be found in the table below where
 
the first line for each segment represents the number of
 
floating-point operations credited to that sequence. The second
 
line for each segment gives the number of clock periods for that
 
sequence. The floating-point result rate is given for each
 
subsequence as an indication of how that particular form of code
 
would perform on the FMP.
 

1-144
 



VECTOR LENGTHS 100 200 400 1600 1600 600 
64-MODE 32-MOOE 

4330-4815 BTRIO 11900 23800 47600 19000 190400 21400 
CLKPO 885 1561 2861 10661 5461 4161 

STRIl 22600 45000 90000 360000 360000 135000 
CLKPD 1361 2401 4401 16401 8401 6401 

TOTALOPS 34400- 68800 137600 550400 550400 206400 
TOTALCLK 2246 3962 7262 27062 13862 10562. 
4330-4815 FPRATE 0957E9 1.086E9 1.184E9 1.271E9 2.481E9 1.221E9 

4820-5476 RTRI2 30000 60000 120000 480000 480000 180000 
CLKPO 2041 3601 6601 24601 12601 9601 

STRIO 11900 23800 47600 190400 190400 71400 
CLKPO 885 1561 2861 10661 5461 4161 

STRI1 22500 45000 90000 360000 360000 135000 
CLKPD 1361 2401 4401 16401 8401 6401 

TOTALOPS 64400 128800 257600 1030400 1030400 386400 
TOTALCLKS 
4820-S476 FPRATE 

4287 
0.938E9 

7563 
1.064E9 

13863 
1.161E9 

51663 
1.247E9 

25463 
2.434E9 

20163 
1.19SE9 

5490-6015 8TR12 30000 60000 120000 480000 480000 180000 
CLXPO 2041 3601 "6601 24601 12601 9601 

STRIO 11900 23800 47600 190400 190400 71400 
CLKPO 885 1561 2861 10661 5461 4161 

TOTALOPS 41900 83800 167600 670400 670400 251400 
TOTALCLKS 2926 5162 9462 35262 18062 2 13762 
5490-6015 FPRATE 0.S4E9 1.015E9 1.107E9 1.188E9 2.320E9 1.142E9 

6020-6100 BTRI3 5000 10000 20000 80000 80000 30000 
CLKPO 341 601 1101 4101 2101 1601 
6020-6100 FPRATE 0,916E9 1.034E9 1.135E9 1.219E9 2.380E9 1.171E9 

Note that lines 4820 through 5476 and lines 6020 through 6100
 
are executed-IMAX times, where "IMAX" is the maximum length of
 
the column vector being solved by the tridiagonal algorithm.
 
Thus IMAX will become either JMAX, KMAX, or LMAX depending on
 
the sweep direction. Summing the values for the two sets of
 
subsequences:
 

44330-4815&5490.6015 16300 152600 305200 1220800 1220800 457800 
CLKPD 5172 9124 16724 62324 31924 24324 

4820-S476&6020-6100 69400 138800 277600 1110400 1110400 416400 
* CLKPD 4628 8164 4964 55764 28564 21764 

To find appropriate values for the execution of the full BTRI,
 
the values of IMAX that are reasonable must be determined. This
 
is attacked by establishing characteristic mesh sizes for
 

1-145 IGA
 



the entire implicit solution. Since the primary interest is in
 
the sensitivity of the FMP to small vector sizes, parameters are
 
chosen as follows:
 

VLENGTH DIMENSIONS SLAB SIZE IMAX STRI VL
 
100 6*606 22 6 12 
200 8*8*8 3 8 25
 
400 10*10 10 4 10 - 40 
1600" 16*16*16 6 16 100 

57624,- 100*100*100 6 100 600
 

The purpose of this relationship chart is to pick the lengths of
 
operations in BTRI depending on the vector lengths used in
 
FILTRX, FILTRY, RHS, etc. Obviously, the mesh dimensions chosen
 
for all but the last case are smaller than would be normally
 
used. However, it is equally obvious that if the FMP can
 
perform well on these small meshes, and even better on larger
 
meshes, then the threshold of one gigaflop can be attained by a
 
broad range of problem models.
 

The number of planes appearing in a 'slab', a function in the
 
program of the variables JSL, KSL, LSL, is based on the memory
 
space available. In the case of the first meshes given, it can
 
be seen that the entire mesh could be held in Main Memory and
 
thus no 'slabbing' would be necessary. In addition all
 
transposes would be performed in Main Memory instead of between
 
Main and Intermediate Memories, with a consequent .increase in
 
Map Unit performance. For the purpose of this report however,
 
all operations are performed as if the mesh variables had to be
 
retained in Intermediate Memory, regardless of the "typical"
 
dimensions chosen for the flow variable arrays. Using the
 
values of IMAX and vector lengths given above-:
 

VLENGTH-IMAX 100-6 200-6 400-10 "1600-16 1600-16 600-100
 
64-MOE 32-MODE
 

.BTRI TOTAL OPS 492100 1263000 3081200 18907200 18987200 42097800
 
BTRI TOTAL CLKS 32940 74436 166364 954548 488948 2200724
 
BTRI GFLOPS 0.935 1.064 1.158 1.243 2.421 1.196
 

Thirty-two-bit simulation was limited to the set pf runs at
 
vector lengths of 1600. This seems to represent a reasonable
 
length for some problem solutions, and was chosen as a midpoint
 
in the studies of FMP performance done for this report.
 

1-146
 



To provide data for analysis of the behavior of the
 
three-dimensional implicit code, simulation was performed on the
 
following:
 

FILTRX/AMATRX
 
BTRI
 
FILTRY/AMATRX
 
BTRI
 
FILTRZ/AMATRX
 
BTRI
 
RHS
 

Subtotal for implicit without viscosity
 
VISMAT
 
VISRHS
 

Subtotal for implicit with viscosity,
 
laminar flow
 

MUTUR
 
Total for implicit
 

The pseudo-compilation of FILTRX, FILTRY, RHS, VISMAT, VISRHS,
 
and MUTUR were translated into simulator input (see appendix F)
 
and run for the vector lengths mentioned previously. As can be
 
seen from the pseudo-compilation there are a set of map
 
operations that must be accomplished at the beginning of each
 
sweep loop. The results of these map operations are interlocked
 
to subsequent arithmetic operations by use of the read and Write
 
keys. The remaining map operations are performed concurrently
 
with arithmetic operations during the remaining passes through
 
the loop. Since each FILTRX/AMATRX sweep is simulated only down
 
to the BTRI call-statement, the times given by the simulator
 
assume that all map and vector operations must be completed
 
before entry into BTRI. Since this is not the actual case the
 
timings given are considered worst case, since'in fact the last
 
few vector and map operations can proceed concurrently with the
 
initial functions appearing in BTRI.
 

The timings for FILTRX and FILTRZ are essentially the same,
 
since they are governed by the "gather-record" operations.
 
FILTRY requires "single element gather" operations however, and
 
must be simulated separately.
 

All simulation of the implicit code assumes that the code and
 
the flow variables have been staged to Intermediate Memory from
 
either disk or backing storage, whilst a previous code is
 
running on the FMP. Thus no explicit I/O is calculated into the
 
analysis since all data transfers to the "outside world" are
 
assumed to be overlapped with other program executions.
 

Thus, simulation results for a single run of BTRI for all
 
desired vector lengths (described previously) must be multiplied
 
by three. Likewise the FILTR-X/AMATRX simulation results can be
 
multiplied by two (to represent FILTRY/AMATRX as well); the
 
remaining runs are then factored in on a one-for-one basis. The
 
following matrix summarizes the results from the set of runs for
 
the implicit'code that can be found in appendix F. The
 

1-1'7
 



multiplication factor used to form the subtotal for the
 
left-hand side appears in the left-hand column of the chart. The
 
values given for each code segment represent the single-run
 
counts for that code.
 

The data that appears in the chart for FILTRX and FILTRY are
 
taken directly from the simulation output and represent two
 
iterations through the slab processing loop, in order to
 
amortize the. startup costs--of -the initiai map operations. Since
 
the chart represents only one pass through each sweep for one
 
single slab, the multiplication factor must be reduced by
 
one-half for each FILTRX, FILTRY, and FILTRZ. Since the data
 
for FILTRX and FILTRZ are the same, the factor for that line is
 
0.5*2 (FILTRX + FILTRZ) = 1, while the factor for FILTRY is
 
-0.5*1 = 0.5.
 

FACTOR VLENGTHS 100 200 400 1600 - 1600 51624 
64-MOOE 32-NODE 

3 STRI OPS 492700- 1263000 3081200 18897200 18897200 42097800 
3 8TRI CLK 32940 74436 166364 954548 488948 -2200724 
FPRATE TRI 0O.935E9 1.060E9 1.158EQ 1.243E9 2.427E9 1.196E9 

'1 FILTRX 24200 48400 96800 396300 396300 13945006 
1 CLKPD - 3102 5128 9426 34536 - -17656 1268201 
FPRATE F!LTRX 0.487E0 0.590E9 0.641C9 0.701E9 1.370E9 0.715E9 

.5 FILTRY 24200 48400 96800 396300 396300 13945006 

.5 CLKPO 10697 20021 39331 .162271 81371 4532289 
FPRATE FILTRY 0.141E9 0.151E9 0.41539 0.149E9 0.291E9 0.193E9 

1 RHS OPS 21300 42600 85200 340800 34b800 12273911 
1 RHS CLK 1724 3051 5626 21076 12276 742385 
FPRATE RHS O.772E9 0.872E9 0.946E9 1.011E9 1.735E9 1.033E9 

SUBTOTAL OPS 1535700 3904200 9474000 5762850 5762850 1.595E8 
SUBTOTAL CLKS 108994 241497 533809 3000391 1.537461 10144296 
FPRATE W/O VISC 0.881E9 1.010E9 1.109E9 -1.200E9 2.343E9 0.983E9 

VISMAT-VISRNS 58800 117606 235200 940839 940839 33882908 
CLKPD 4218 7442 13642 51028 25700 1787586 
FPRATE W/VISC. 0.871E9 0.987E9 1.078E9 1.152E9, 2.288E9 1.IB5E 

SUBTOTAL OPS 1594500 4021800 9709200 58567689 58567689 1.934E8 
SUBTOTAL eLKS 113212 248939 547451 3101359 1588091 10933510 
FPRATE W/VISC' 0.88059 1.o01059 -1.10859 1.180E9 2.304E9 1.106E9 

MUTUR OPS 26050 52100 1.2645E5 4.99325 4.993E5 1501100 
MUTUR CLKS 7000 8140 12370 43464 -2.25E4 1.529E6 
FPRATE MUTUR . 0.2559 0.4OE9 0.639E9 O.TI8E9 1.384E9 0.75559 

GRAND TOTAL OPS 1620550 4073900 9813400 58984489 58984489 2.08 8 
GRANO TOTAL CLKS' 120212 257079 560476 3094819 1586841 13374882 
TOTAL FPRATE 0.843E9 0.99059 1-.094E9 1.19159 2.323E9 0.974E9 

1-148
 



As the chart shows, the minimal one-gigaflop rate is achieved at
 
vector lengths of 400. The anomalous behavior of the long
 
vector case is due to two effects. First, if one examines the
 
FPRATES for FILTRX and FILTRY, the rate seems to drop off at the
 
maximum vector length. This is due to the simplification used
 
to run the codes. It turns-out that the final map operation
 
(line 800 in the FILTRX and FILTRY simulation input) dominates
 
the Map Unit behavior. As was mentioned previously, the
 
disengagement of the BTRI CALL from the FILTRX/AMATRX sequence
 
for simulation purposes imposes an additional penalty at the end
 
of the simulated sequence while the simulator is 'idling' down.
 
This can be seen by executing the sequence with repeat factors
 
of 1, 2, and 3, where the 'idling' will be amortized over the
 
total execution.
 

The second effect is seen in BTRI. The vector lengths used in
 
BTRI are actually only 600, since the iteration within BTRI is
 
recursive in the sweep direction. Thus while all-of the other
 
data reflects increasing vector lengths from 100,,200, 400,
 
1600, and 60000, BTRI lengths-are actually 100, 200, 400, 1600,
 
and 600. This was an unfortunate choice of parameters, but was
 
established early in the study to ease analytical evaluation of
 
the implicit algorithm. The effect of the tapering of the
 
"performance curve" which could be plotted from the above
 
results is then due to two unnecessary and eliminatible
 
elements. The first can be resolved by resimulating the entire
 
mass with other parameters; the second can be resolved by moving
 
the gather operation (at line 800) earlier in the code (a task
 
for the compiler), and including the first sequence from BTRI as
 
part of FILTRX, FILTRY, and FILTRZ. The FPRATE shown for vector
 
lengths of 57624 is not as high as the original one-gigaflop
 
objective. This was mostly due to the effect of the slow
 
Intermediate Memory to Main Memory transpose operations required
 
by the data just described, which led to a new series of runs
 
with a slightly revised version of-STEP.
 

In this version the Q,. X, Y, and Z meshes are fully transposed
 
into a form suitable for direct processing by FILTRY. This
 
transposition is performed from Intermediate to Intermediate
 
Memory during the BTRI computations in the FILTRX pass, and
 
requires hand-coding of the gather operations immediately
 
preceding the CALL to BTRI in FILTRX. Once this transpose is
 
complete, FILTRX, FILTRY, and FILTRZ all execute in the same
 
manner, and thus their rates will be identical.
 

To prove this was possible it was necessary to merge the
 
simulatio n input files for BTRI and FILTRX, so that the code can
 
be run-as it would be executed on the FMP (with the shutdown
 
times imposed by the simulation system-being overlapped by
 
following code).
 

.149
 



Unfortunately this scheme generates too many simulator input
 
cards for reasonable values of IMAX (in BTRI). Therefore, a set
 
of runs were made with the revised FILTRX/AMATRX/ TRANSPOSE/BTRI
 
aglutinized, and the following results were obtained:
 

VLENOTH-STRIVL 400-40 1600-96 60000-600 1600-96 (328IT) 

IHAX.1 
IMAXeI 

-FLOPS 
CLKPO 

1.064E5 
1.08E4 

3.337ES 
2.83E4 

8.130E6 
7.29E5 

3.335(5
1.578E4 

IMAXu2 
IMAX.2 

FLOPS 
CLKPO 

1.349E5 
"1.36E4 

4.001E5 
3.29E4 

8,543E6 
7.SIES 

4,000(5 
1.877E4 

IMAX.5 FLOPS 2.177E5 6.001E5 9.80SE6 6.001E5 
IMAXN5 CLKPD 2.17E4 4,68E4 8.16ES 2.775E4 

IMAX.7 FLOPS 2.737E5 7.329ES 10.636E6 7.329E5 
IMAX*7 CLKPO 2.72E4- 5.60 4 8.60ES 3.373E4 

Extrapolated data was then determined for IMAX values of 10, 16,
 
and 100 using the following extrapolation equations:
 

FLOPS(IMAX=7) - FLOPS(IMAX=1) 
DELFLOPS --------- ---------

6 

DELRATE = The asymptotic FPRATE as a function of IMAX 
for the additional FLOPS (determined graphically
 
to 3 significant digits).
 

XFLOPS(IMAX > 7) DELFLOPS*(IMAX - 7) 

XFLOPS(IMAX) 
XCLKPDS(IMAX > 7) = --------------

16E-OO9DELRATE 

FLOPS(IMAX 7) + XFLOPS 
FPRATE(IMAX > 7) =-----------------------------------

16E-09*(CLKPDS(IMAX = 7) + XCLKPDS) 

IMAX*lo FLOPS 3.592S5
 
IMAX.10 CLKPO 3.SS04
 
IMAXvIO FPRATE 0.631 GFLOP
 

IMAXW16 FCOPS 1.331E6 1.331E6
 
IMAX.16 CLKPO 9.?SE4 6.064(4


0.853 1388E9
IMAXe16 FPRATE 6FL4OP 


IMAX.1 00 FLOPS 52.236E6
IMAX=10 LPOP s~~
 
IMAXuloC CLKPO 3.03E6
 
XMAX.1Oo VPAAT( 1.08 GFLOPS
 

where the pair of vector lengths shown represent the typical
 
lengths in FILTRX, AMATRX, RHS, VISMAT, VISRHS, MUTUR, and
 
appearing in BTRI, respectively. The purpose for using this
 
range was to find the 'knee' of the curve of performance versus
 

ISpAGEORIGItHAL QUALm 

1-150 .f4OP 



mesh sizes. The range of IMAX was dictated by the maximum
 
number of input statements manageable by the simulator. Thus,
 
the values had to be extrapolated for the entire code block for
 
IMAX values of 10, 16, and 100 which represent the mesh sizes
 
given in-the previous table. It was determined from the runs
 
that for any value of IMAX, the K direction transpose is
 
completely covered by the BTRI calculations. This is due to the
 
fact that the map operations in BTRI are Main Memory to Main
 
Memory, while the transpose operation requires only the
 
Intermediate Map Unit.
 

The extrapolation was tested against the previously-run implicit
 
data, which required hand-aggregated values for vector lengths
 
of 57624, and was found to be within 1% of that data. Taking the
 
values of FLOPS AND CLKP for RHS, VISMAT-VISRHS, and MUTUR from
 
the previous table for vector lengths of 400, 1600, and 60000
 
results in
 

YLENGTHS 400O-1O 1600-16 60000-100 1600-16 
3 2-MODE 

FILTRX FLOPS 3.592E5 1.33LE6 5.223E6 1.331E6 
FILTRX CLKPD 3.558E4: 9.75S4 3.03E6 6.064E4 

3.FILTRX FLOPS 1.07(E6 3.993E6 1.5678 3.99E6 
3'FILTRX CLKPO 1.067E5 2.925(5 9.108E6 1.82(5 

RHS FLOPS 85200 340800 1.22TE7 3.41E5 
RHS CLKPD. 5626 21076 742385 1.23E4 

STEP'W/O VISC 
STEP CLKPO 

1.163E6 
1.123ES 

4.334E6 
3.136E5 

1.69E8 
9.850E6 

4.33E6 
1.94E5 

STEP FPRATE 0.647E9 0.864E9 1.072E9 1.395(9 

VISMAT-VISRHS 235200 940839 33882908 9.41ES 
CLKQD 13642 51028 1787586 2.57E4 

MUTUR FLOPS 1.265E5 4.,993E5 -1,847E 7 4,99E5 
MUTUR CLKPO 1.237E4 4,346E4 1.529E6 2.25E4 

TOTAL FLOPS 1.525E6 5.774E6 2.214E8 5.771E6 
TOTAL CLKPO 
FINAL RATE 

1.383E5 
0.689E9 

4.081(S 
0.884E9 

1.317E? 
1.051E9 

2.43E5 
1.487E9 

The counts shown above are for one pass through each sweep
 
direction (or one full slab processed). Extending'these numbers
 
for all slabs and 256 time steps gives the following:
 

TOTAL RUN FLOPS 1.17E9 4,43E9 9.07EIl 4.43E9
 
TOTAL RUN CLKPO 6.64E6 3.13E8 5.39E10 1.87E8
 

The final revision of the simulation input which yields the FLOP
 
rate shown here is felt to be practicable in terms of both
 
programmability and compilability. It takes into account the
 

1-151
 



gather operations needed for collecting the data for each slab
 
and includes three extra gather operations to represent the
 
initial gather functions which must be accomplished before the
 

first pass of the loop can be processed. If this sequence were
 
to be extended to the proper number of passes, then the loop
 
count would be 16, for 16 slabs needed in the 10Ox1OOx10 mesh
 

case. In one experiment with the simulator the three initial
 
map operations were removed and the FILT-R-X, FILTRY, and FILTRZ
 
timing-s were reevaluated. The difference in execution time of
 
the entire ensemble due to the additional map operations turns
 
out to be less then 4%, which is less than the probable accuracy
 
of the total estimates.
 

From the several attempts at recoding and simulating the
 
implicit code, it appears that all transpose and gather
 
operations could be overlapped completely with careful
 
'hand-coding' or 'extremely sophisticated compiling'. In this
 
instance the execution rate could become as high as the 1.12
 
gigaflops achieved by the unadorned BTRI routine by itself.
 

An important concern in any of these code simulations is the
 
degree to which the system is balanced. That is, are there any
 
major components idle or nearly idle while others are at maximum
 
utilization? Examination of the simulation results will disclose
 
two quantities of interest beyond the FPRATE and CLKPD--VECBZ
 
and MAPBZ which reflect the percentage utilization (degree unit
 
is busy) of the Vector and Map Units, respectively. In the
 
results for the implicit code it can be seen that the Map Unit
 
is occupied for at least half the time, and the Vector Unit is
 
over 90 percent busy. As long as the Map Unit is never busier
 
then the Vector Unit, and the Vector Unit is busy between 93 and
 
98 percent of the time, one can be confident that consumers are
 
getting their money's worth.
 

Another observation of interest is that the curves of
 
performance versus vector length (or mesh size) yield some data
 
that points to an asymptotic behavior of the GIGAFLOP curve.
 
Unfortunately project time hasn't permitted investigation of the
 
location of the exact knee of the performance curve. It would
 
seem that a simple graphing of the points for lengths of 400
 
(dimension 1Ox10x10), 1600 (dimension 16x16x16), and 60000
 
(dimension 1O0x10Ox10O) will show that at vector lengths of 6400
 
(dimension 24x24x24) and greater, the FLOP rate of the proposed
 
FMP will hover around 1.000 gigaflop. The implication is
 
obvious that for the range of reasonable mesh sizes -- 30x30x30
 
through 1O0x10Ox10 -- the performance curve is relatively flat
 
and close to one gigaflop (plus or minus 10%). This range is
 
achieved even when all arrays are kept in Intermediate Memory
 
throughout the computation!
 

As mesh sizes grow too large to be held entirely in Intermediate
 
Meniory they can be held in the Backing Store and swapped into
 
Intermediate Memory, then transposed by the Intermediate Map
 
Unit. Although this has not been simulated, the excess
 
capability available in the current map operations points to
 

1-152
 



the likelihood that meshes on the order of 200x2OOx2OO up to
 
2400x24Ox24O could be processed at close to the one-gigaflop
 
rate. It should be obvtous, however, that the total problem
 
solution time for the largest case will be greater by far than
 
the acceptable threshold of 10-15 minutes CPU time for the
 
nominal 10Ox10Ox10O problem.
 

The 	reality of the above conclusi.ons rests on
 

1) the degree to which the simulation systems 
representing the CDC FMP are true and valid 
engineering models of the actual hardware design; 

2) the sufficiency of the object code produced for 
simulation; 

3) the Validity of the extrapolations made based on 
simulation results. 

the 

It is expected that analysts at NASA and CDC will continue to
 
exercise these simulators for their own research to determine
 
the quality of the aforementioned issues, and perhaps to locate
 
more accurately the knee of the performance curve.
 

5.2 THREE-DIMENSIONAL EXPLICIT CODE
 

As stated previously, the explicit code was considered in a
 
different light than the implicit code. In particular, the
 
vectorizations attempted were limited-to those available on the
 
STAR-IO computer. This permitted measuring the ability of
 
programmer, cpmpiler, and machine architecture while assuring
 
that the metric conversions yielded the same answers as the
 
original code. The characteristics of the explicit code of
 
interest to this study have been
 

1) 	the implicit sections (LZI, LYI) which in mathematical
 
form are similar to the implicit portions of the
 
implicit code, but are constrained to smaller vector
 
lengths;
 

2) 	the explicit solver schemes (LX, LY, and LZ) which
 
limit the potential vector lengths because of J and L
 
recursion;
 

3) 	the method of characteristics (CHARAC) which exhibits
 
conditional processing of data, based on the data,
 

As in the case of the implicit code, the routines of interest
 
were vectorized, then actually compiled (not pseudo-compiled as
 
in the implicit code) using the STAR-l00 compiler. The STAR
 
object code was then transliterated directly into FMP object
 
code and the results were simulated. The simulation involved
 
fragmenting the sequences into smaller portions for processing
 

1-153
 



by the detailed level simulator (LVL2), then aggregating them
 
into whole strings for simulation at the higher (LVLI) level.
 
The first attempt at this led to FPRATES which were 100-300
 
megaflops for the 30x30x30 case. This resulted from the
 
transliteration yielding very few dyadic and triadic operations
 
in the pipelines. The simulation input was then subjected to a
 
"sophisticated compiler" consisting of an experienced FMP
 
programmer. The resulting input wa s resubmitted to the
 
high-level simulator and the following results were obtained.
 
(See appendix F for the simulator runs and FMP FORTRAN source
 
code.)
 

The routines VLX and VLYI were run through the high-level
 
simulator (LVL1) for a variety of vector lengths to demonstrate
 
the performance range for those sequences. Runs for vector
 
lengths above 100 were difficult to do for VLYI because of the
 
overflow of the simulator instruction buffer. From this raw
 
data a table of total performance is developed later.
 

VLENGTH 30 100 600 1000 

VLX FLOPS 8833 -29677 119670 
CLKPO 1129 2398 7672 28822 
FPRATE 0.489E9 0.773E9 0.974E9 1.040E9 

VLY! FLOPS 1.31E6 3.04E6 4.57E7 1.17E8 
CLKPO 1.09ES 2.57ES 3.26E6 8.82E6 
FPRATE 0.750E9 "0.738E9 0.824E9 0.826E9 

The VLX rates given for vector lengths of 30 and 100 correspond
 
to the mesh sizes 30x30x30 and 100x100x100, respectively. The
 
FLOP and clock period counts for the corresponding VLYI
 
simulation runs reflect the processing of planes of data in the
 
J by K planes only. The repeat counters at lines 840, 1680, and
 
1900 of the VLX simulation input had to be scaled by one-fifth
 
to make the simulation fit within the GPSS code limitation. The
 

effect of this scaling is to reduce the effective FPRATE by
 
0.01% from what should be the actual rate. In order to provide
 

correct values of FLOPS and CLKPD for the 100x100x1OO case, the
 

quantities must be increased as follows: lines 840 through 950
 
yield a total of 182000 FLOPS for the VLENGTH=100 case in the
 

simulation results. This number should be five times greater,
 
due to the scaling used, or 910000 FLOPS. The total clock ,
 

periods required for a 5X extension of these loops is 1.42E5 for
 

a revised ,FLOP rate of 0.73E9.
 

1Al 5-4 



The raw data above was further extended by the factors 30 and
 
100 respectively to reflect the number of operations needed for
 
all three dimensions for that particular mesh. TURBDA, LYC, and
 
CHARAC were estimated by hand. First, CHARAC could not be
 
estimated with the simulator since the number of operations
 
credited by the simulator is 100% rather than the number of
 
one-bits in the control vector. Second, TURBDA and LYC are
 
obvious vectorizable entities whose performance can be estimated
 
easily and directly from the code.
 

MESH SIZES 

TURSOA
 

FLOPS 

CLKPD 

FPRATE 


LYC
 
FLOPS 

CLKPD 

FPRATE 


LY!
 
FLOPS 

CLKPO 

FPRATE 


LX
 
FLOPS 

CLKPO 

FPRATE 


EXPLICIT COOE SUMMARIES 
30X3OX30 lOOXiOOXi0 -

4.87ES 1.81E7 
4.05E4 1.46E6 
0o.75E9 - 0.775E9 

9.98E5 3.07E7
 
1.A0ES -2.54E6
 
0.44E9 0.7SE9
 

3.93E7 3.13E8
 
3.27E6 1.93E7.'
 
0.50E9 1.015E9
 

7.98E6 2.97ES
 
1.01E6". 2.4OE7
 
&.489E9 - 0.773F9. 

1-155
 



Extrapolation of full explicit performance is fraught with
 
problems due to the lack of accounting for overlap of operations
 
from the end of one routine into the beginning of another
 
routine, or on the contrary, the conflicts that delay the start
 
of a routine due to a previous routine. Time and resources
 
didn't permit a complete evaluation via simulation. Instead, the
 
simplification used for extrapolation was to assume that LY, LX,
 
and LZ all execute about the same number -of cycles for the same
 
number of operations on a symmetrical mesh. The same
 
simplification was used for LYC, LZC and for LYI, LZI. Grand
 
total then consists of a linear combination of LX, TURBDA, LYC,
 
and LYI routines as follows:
 

6*LX
 
2*TURBDA
 
4*LYC
 
4*LYI
 

GRAND TOTALS 
FLOPS 2.IE8 3.19E9 
CLKPD 1'.97E7 2.34E8 
FPRATE .0.664E9 0O8SE9 
TOTAL RUN FLOPS 5.3SE10 8.17E11 
TOTAL RUN CLKPO 5.06E9 S.99E10 

5.3 SPECTRAL WEATHER MODEL
 

The FFT routine and Legendre (SPCFOR) routines were simulated
 
with the following mesh parameters
 

FFT length 32 0;518 GFLOP
 
FFT length 100 0.858 GFLOP
 
FFT length 200 0.973 GFLOP
 
FFT length 2000 1.145 GFLOPS
 

FFT 32-bit 100 1.326 GFLOPS
 
FFT 32-bit 500 2.027 GFLOPS
 
FFT 32-bit 2000 2.246 GFLOPS
 

Legendre transform -- 25 layers, 6 waves, 15 gaussian latitudes
 

0.837 GFLOP
 

Spectral model overall estimate in its-present configuration
 

0.879 GFLOP
 

1-156
 



The spectral code was extrapolated by assuming:
 

The- FFT and SPCFDR/FORSPC routines constitute the bulk
 
of the processing;
 

The remaining code sequences are vectorizable to the same
 
degree as the FFT and SPCFOR r.outines;
 

FORSPC data can be estimated from the simulated data for
 
SPCFOR.
 

A formula from reference 3 was then used to estimate the total
 
number of FLOPS. Two problem sizes were used to establish the
 
performance range. The first -- 25 layers, 6 waves, and 15
 
gaussian latitudes -- was the scaling in the original spectral

metric provided by Ames. The second size is one determined by
 
CDC and the code originators to be reasonable for actual
 
production runs of this type research model--48 layers, 21
 
waves, and 55 gaussian latitudes. The following table
 
summarizes the data and extrapolation.
 

PROBLEM SIZE 

25.6.15 48.21,55 

TOTAL FLOPS 3.22E6" 8.65E7 

FFT 
FPRATE O.97OE9 1.11E9 
%,OF TOTAL, FLOPS 0.67 0.41 
FLOPS 2.16E6 3.55E 
CLXPDS 1.39ES 2.OOE6 

SPCFOR . 
FPRATE 0.61OE9 1.14E9' 
% OF TOTAL FLOPS 0.14 0.34 
FLOPS 4.S1ES 2.94E7 

-CLKPDS 4.62E4 1.612E6 

FORSPC 
FPRATE(ESTIMATE) 0.5 - 0.9 
% OF TOTAL FLOPS, 0.06 0.17 
FLOPS 1.93E5 1.47E7 
CLKPOS - 2.42E4 1.0E6 

TIME WEIGHTED.SUM OF FFT. SPCFOR, ANO FORSPC 
% OF TOTAL FLOPS 0.86 0.92 
FLOPS 2.71E6 ?.96E7 
CLKPDS 2.09E5 4s61E6 
FPRATE o.827E9 1.O8E9 

1-157
 



5.4 FINITE DIFFERENCE WEATHER MODEL
 

Only one routine from the GISS code was simulated. LINKHO had
 
become the major concern of CDC analysts when original
 
projections showed performance below 50 megaflops for that
 
routine. The size of the GISS code had prohibited a complete
 
analysis to the recoding, compiling, and simulation level. As a
 
result, LINKHO and AVRX were studied to see if there were sQme
 
fundamental. problems that existed in the code which reflected
 
serious problems in the FMP architecture. The LINKHO subroutine
 
was analyzed and the first computational section was chosen for
 
simulation (due to the sheer volume of code in LINKHO) and a
 
single page, felt representative of the majority of the routine,
 
was subjected to the simulator. The simulation input data can
 
be found in appendix F.
 

The AVRX routine was estimated by hand, with the inclusion of
 
the effect of vector startup times. The extrapolation used is
 
based on the code as presented in figures 7 and 8 of Division 4,
 
the analysis of the weather codes. There are 4*23*5*2+6*4*2=968
 
floating point operations reflected in figure 7. There are
 
(23*5*2+6*2)*2=484 floating point operations reflected in figure
 
8. Assuming the compiler is capable of scheduling simultaneous
 
scalar execution with the Vector Unit for some computations,
 
(13+6)*2*2=76 machine cycles would be required to complete the
 
sequence in figure 7, for a rate of 0.8 gigaflop. The sequence
 
in figure 8 would require (3+6)*2*2*2=72 machine cycles, for a
 
rate of only 0.42 gigaflop due to the inherently short vector
 
lengths. Together, a total of 1452 floating point operations,
 
requiring 148 machine cycles, yields a rate of 0.62 gigaflop.
 
Note that these timings are for 64-bit mode, while 32-bit mode
 
is sufficient for the mathematics in the AVRX code.
 

The rate given is for a relatively course grid; using the
 
resolution present in the original-Ames-supplied metric results
 
in a grid of 46*72. This denser grid should require
 
24*43*5*2+624*2=10608 floating point operations based on the
 
sequence in figure 7 and (43*5*2+6*2)*2=884 operations in the
 
sequence in figure 8. The length of vectors in this fine grid
 
model in figure 7 is 1104 elements, and that in figure 8 is 43
 
elements.
 

With the longer vector lengths it is expected that the Scalar
 
Unit will sustain parallel execution with the Vector Units. This
 
last example would require (138+6)*2*2=576 machine cycles for
 
the sequence in figure 7 and (6+6)*2*2*2=96 cycles for the
 
sequence in figure 8. Thus, if the greater resolution given in
 
the original model is permitted, the FMP could achieve
 

(10608+884)/(576+96)=1.07 gigaflops
 

for this portion of the GISS code.
 

1-158
 

http:10608+884)/(576+96)=1.07


5.5 REFLECTIONS ON THE PERFORMANCE ANALYSIS
 

The process of analyzing the performance of a candidate computer
 
system for this report has become more involved than originally
 
anticipated. This can be attributed to two factors:
 

1. 	The simulator system could not process a total program;
 
programs had to be broken into pieces, and each piece
 
run independently. Some runs had to be made with the
 
overlapping code between pieces to determine if the
 
independent runs are valid. (The effect of splitting
 
code is to create 'end-case' values for some cases, as
 
the simulator counts all cycles needed to complete the
 
last operations. In a non-split case this last
 
operation may be overlapped with operations from a
 
subsequent piece of code. The question then becomes
 
how to compute the aggregate total -of clock cycles in
 
these 'end-case' situations.) In any event the
 
composite timings must be computed by hand, with the
 
attendant risk of manual error. The simulator should
 
be modified to accept a much larger sequence of
 
instructions, both by eliminating the expansion of
 
input cards that now takes place when an R card is
 
encountered and by enlarging the instruction buffer
 
itself. Using the CYBER 175 revealed that the computer
 
time required for the high-level (LVL1) simulator to
 
process large programs is quite within reason (1 to 2
 
minutes for the entire implicit code perhaps). In
 
addition, the FPRATE, FLOPS, and CLKPD values must be
 
output in some- machine-readable form so that further
 
extension or computation can be performed with a
 
FORTRAN or BASIC program to produce final outputs for
 
analaysis.
 

2. 	Until the full data for a given code had been
 
aggregated and analyzed, weak points- in the hardware
 
complex, or the coding or compiling scheme, could not
 
be evaluated properly. The-result of this was that
 
after laborious simulation, aggregation, and
 
projection, an area of the software/hardware was found
 
to be eligible for more 'tuning'. Once the code was
 
modified the same process was repeated again, and
 
again, and again. In addition to the LVL1 runs,
 
segments had to be submitted to the LVL2 simulator to
 
make sure that the memory conflicts and scalar
 
interactions of the detailed simulator produced
 
consistent performance figures at both levels of
 
simulation. Computer time did not prove to be the
 
limiting factor in this process; instead the resources
 
able to perform the analysis and system design
 
modification became the scarce commodity on this
 
program.
 

If time had permitted, the range of problem sizes should have
 
been expanded to encompass the key areas of the performance
 
curve (the area of the knee) so that the optimal problem sizing
 
could be determined. It was felt that establishing the range
 

1-159
 



was a more important objective than proving the performance for
 
a given problem statement. (Hence no attempt was made to make
 
complete runs for the 100x200x50 grid sizes.) The symmetrical
 
grids of 30x30x30 and 1OOx10Ox100 were used as end-points
 
because they represented two -worst-ease situations -- one with
 
extremely short vector lengths in all dimensions, the other with
 
maximum data storage and mapping operations in all directions.
 
In the CDC FMP, if all problems could be restricted to forms
 
like 100x200x0, the flow mesh would be stored and processed
 
differently, with worst-case map operations being performed
 
along the short (50 element) axis only.
 

For future consideration, any data dependent features of metrics
 
should be identified and some method of parameterization of the
 
simulation and performance analysis developed. For example, in
 
the CHARAC routine extrapolation, a simple-minded scheme for
 
determining how many operations to CREDIT to the simulation was
 
introduced.
 

Certainly a better set of criteria could be developed for later
 
simulation runs. Similar parameters could be provided for
 
routines such as MUTUR in the implicit code.
 

Some ambiguity exists in the manner in which FLOPS are counted.
 

Some analysis will credit
 

A=-1
 

A=ABS(B)
 

as one floating point operation each; this has not been done in
 
this report. Other vendors claim that
 

B=1/C
 

is one floating point operation while
 

B=A/.C 

is counted as two operations. More complicated to analyze is
 
the presence of a hardware function such as SQRT. How many
 
floating point operations should be credited to this operation?
 
Some analysts claim one, others claim 5, and some even claim 13.
 
In the codes simulated for this report, the SQRT approximation
 
took 11 vector operations (where the divide is counted as one
 
operation). It should thus be claimed that SQRT be counted as
 
11 operations if a hardware SQRT were to be implemented. A
 
standard set of criteria should be developed for this aspect of
 
performance analysis for any future studies.
 

If a variety of simulators is to be used to evaluate a variety
 
of candidate architectures, it would be desirable for NASA-Ames
 
to develop a simple 'validation' routine which could be used to
 
provide a measure of total FLOPS, FPRATE, and CLKPD (clock
 
periods) for a variety of functions whose totals could be
 
computed reliably and .canonically. This would provide a form
 

1-160
 



of 'performance diagnostic' to verify certain characteristics of
 
the simulation and extrapolation system being used. I.t is only
 
after confidence can be established in the modeling system that
 
the results of analyses such as these can be viewed
 
realistically.
 

5.6 BOTTOM LINE
 

A few general comments should be made about the results just
 
presented.
 

1. 	The implicit and explicit codes run in about the same
 
amount of time. For the 64-bit version, the implicit
 
code would require 14.4 minutes for 256 time steps
 
while the explicit version requires 15.9 minutes for
 
256 time steps.
 

2. 	The explicit code runs substantially less than the
 
one-gigaflop rate in the form simulated for this study.
 
It was discovered that if a hardware square root were
 
employed, the explicit code FPRATE could be improved to
 
0.93 gigaflop, as long as 11 FLOPS could be credited to
 
that operation. If the explicit code were to be
 
restructured to process slabs similar to those in the
 
implicit code, yielding minimal vector lengths
 
(excluding CHARAC) of 600, the overall rate for the
 
explicit code can be elevated to 1.004 gigaflops (even
 
without the hardware square root). This is due to the
 
fact that the LX, LY, LZ, and TRIDIA vector lengths of
 
100 are below the critical point in the FMP performance
 
curve, while lengths of 600 are at the 'knee' of that
 
curve.
 

3. 	A wide range of problem sizes can be accommodated by
 
the FMP with performance-rates at or near the
 
one-gigaflop threshold, for the implicit code.
 

4. 	 The minimal rate for any of the 'small problems',
 
regardless of whether the 'aero' codes or weather codes.
 
are being dealt with, is greater than 600 megaflops.
 
This is for mesh sizes of less than those expected to
 
be employed on the actual FMP for production work.
 

5. 	The user of'32-bit forms for the codes can-yield
 
substantial benefits, not only a factor of almost 2 in
 
performance, but in the ability to store larger
 
problems in the available memory.
 

1-161
 



6. 	With some effort, even essentially 'non-vector' code
 
forms such as MUTUR, CHARAC, and LINKHO can be
 
structured-to provide reasonably effective 'parallel'

operations. The 'physics' solutions in this arena have
 
not been attacked as yet, however.
 

7. 	The effective use of the hardware system involves a
 
process of 'rethinking', 'restructuring', and code
 
'tuning' to achieve nptimal resut-s. The burden of
 
athieving maximum performance with the current
 
generation of technology must be shared by the software
 
and hardware developers alike.
 

8. 	A reliable, approachable, valid, and credible
 
computerized simulation system is essential to the
 
successful evaluation, as well as implementation, of
 
candidate architecture for the NASF.
 

1-162
 



6.0 SYSTEM DESIGN
 

One of the few unchanging proposals by Control Data for the NASF
 
is the overall system design. It is based on an interconnection
 
scheme called the Loosely Coupled Network (LCN) which was
 
described in detail in reference 2. A more recent discussion of
 
the LCN-and the hardware and software support using the
 
Programmable'Device Controller (PDC) may be found in Division 4, 
Volume II of this report. At the outset it-was realized that 
the NASF would realistically involve an amalgam of dissimilar
 
computing equipment, including equipment alien to Control Data
 
Corporation. The fundamental underpinning of the LCN is its
 
ability to interconnect a wide variety of equipments spread over
 
a vast geography. It is this property that makes the LCN
 
immediately attractive for the NASF. Figures 20 and 21, shown
 
in a previous section, illustrate the overall system

organization,with the FMP represented as a single functional
 
entity. The front-end processors, or Support Processing System

-(SPS), are attached to the network trunk and thus share a number
 
of the global resources (such as the 819 disks) with the FMP. A
 
certain number of peripherals are attached directly to each SPS
 
as a locally managed resource. The LCN makes use of one or more
 
serial data trunks which, using existing products, can transfer
data at peak rates-of 50 megabits per second.
 

The serial trunk can accommodate up to 32 attachments so that
 
all entities on the trunk become members of a "party line" and
 
can thus communicate with complete flexibility, with the
 
possibility that trunk contention may reduce effective
 
bandwidth. To solve this problem the LCN has a unique-contention

resolution system which is discussed in Appendix A, Division 4,
 
Volume II. Aside from the archival storage and graphics

subsystems which are attached, the key system r-esource is the
 
phalanx of high performance disks which are attached to the
 
trunk and serve as the medium of staging jobs to/from the FMP
 
from/to the SPS.
 

Specifications for the systems components in this design can be
 
found in Volume II. The choice of SPS is highly dependent upon

the amount of activity that is anticipated from interactive
 
operation and upon the decision as to where the functions -of
 
mesh generation and compiling should be performed. For this
 
report both functions are assumed to be done on the SPS. The
 
sizing of theSPS at this point seems to require machines of the
 
CYBER 175 class. Using standard software components the
 
configuration of two such machines sharing an ECS memory for
 
coordination and residence of' system wide tables is called for.
 
Perhaps later generations of hardware may-be configured
 
differently but, for purposes of costing and sizing the
 
installation, it is expected that this-level of SPS is
 
necessary.
 

1-163
 



As there is much redundancy planned for the FMP, so too is the
 
system designed around redundant trunks, processors, and disks
 
so that it can survive one or more failures without losing
 
function, or in most cases, without significant degradations in
 
performance. The trunk capacity has deliberately been designed
 
for excess performance. The major reason is the expectation
 
that future peripheral and SPS technology will provide hardware
 
capable of taxing the system.
 

Job flow has been discussed previously, however, the
 
relationship of the redund-ant components was not considered. It
 
is imperative that all components in such a complex system
 
continually undergo strenuous exercise to make sure they are
 
still viable. One important way to accomplish this is to rotate
 
each redundant component into operational use on a regular
 
basis, or better still, to have redundant components share the
 
workload on a continuous basis. This latter system is employed
 
in the Control Data NASF design. There are no "stand-by"
 
components; instead, all elements of the system work on the
 
problem at hand, with the option to shut down or be shut down
 
and have the load automatically assumed by a partner. Thus all
 
trunks will carry data over the execution of a job. When one
 
trunk encounters a failure it goes off-line; without changing
 
status tables, data transfers continue using the remaining
 
trunks. The system can withstand the loss of an entire trunk
 
and still maintain its throughput. In the case of an SPS going
 
out of action, some loss in throughput may be sensed, but with
 
proper sizing the loss of ability will be nearer 10% than the
 
apparent 50%.
 

The proposed configuration is certainly open to many alternative
 
strategies, with the provision that everything must adapt to,
 
and be harmonious with the LCN. Several smaller processors may
 
be indicated, rather than a pair of SPS processors. It is
 
important to view the blocks in the-diagram more as functions
 
than as actual hardware components. For example, the FMP is
 
provided with a CYBER 18 or similar class computer whose
 
existence is dedicated to serving as the Maintenance Control
 
Unit for the FMP. If the ultimate NASF consisted only of an FMP
 
provided from Conrol Data, with all other equipment being alien,
 
then the CYBER 18 would be considered integral to the FMP
 
design. However, the fact has been stressed that all
 
maintenance functions are communicated to the FMP via standard
 
LCN messages. Thus software that can be interfaced to such
 
messages can reside anywhere in the system. In fact, even with
 
a CYBER 18 stand-alone MCU present, certain functions such as
 
deadstart and recovery must also be provided on the SPS as a
 
backup.
 

In a similar manner, the function of FMP manager can reside on
 
the SPS or be distributed among a number of processors. As an
 
example, the FMP manager function, or critical portions thereof,
 
like the job start and stop and memory allocator, might be
 
provided in backup software form on the CYBER 18 MCU. Then in
 
the event of a catastrophic failure of the SPS or perhaps when
 

1-164
 



the SPS is undergoing some special off-line tests, jobs could
 
still be pushed through the FMP.
 

6.1 SYSTEM TRAFFIC FLOW
 

To determine the efficacy of the system design in concert with
 

the FMP, a simulation system was created to assist in the
 

analysis of job flow through the entire ensemble. Again, as for
 

the FMP, it was found to be advantageous to create two levels of
 

simulation one highly detailed in areas of design concern, the
 
other intended to demonstrate the overall performance of the
 

system. The simulators have been used to verify the sizing of
 

the system components as well as the probable flow of control
 
message and data traffic throughout the system due to-workloads
 

projected Ames study personnel.
 

Divisions 1 and 2 of Volume IV contain descriptions of these
 

simulators and reference information in the form of a "user's
 

manual". As with the FMP, the more detailed model was used to
 

validate certain assumptions used in the higher level model.
 
Among the design conclusions drawn from this model were early
 

decisions regarding the size of data buffers needed at each PDC
 

node in the system (1536 words or three disk sectors), and the
 

effective transfer.rates of the major peripherals, with details
 

such as latency, message turnaround and trunk contention taken
 

into account. Effective transfer rates for the 819 class disk
 

to the SPS were found to be 7.67 megabits per second, for the
 
graphics subsystem about 1.94 megabits per second, at worst, and
 

the effective streaming rate to the FMP was found to be 17.4
 

megabits per second per disk controller.
 

These numbers were used to construct the higher level model
 
which was then subjected to the workload analysis provided by
 
NASA-Ames (NASF Usage Model, Version 79.001). A discussion of
 

the results of this simulation run will be found in Division 11,
 

of this report. The bottom line of this analysis is that while
 

the network trunk is underutilized, the SPS and the FMP are
 
involved in a tight race to see which one will be the bottleneck
 

in the system. This is a good sign because it indicates that
 
the key resources are in balance in the system. A second, and
 

obvious observation from the simulation results is that a full
 

20 hours of actual FMP work cannot be done on the FMP during a
 

continuous 20 hour interval due to the variety of activities
 
needed to start such a session into operation and to wind it
 
down.
 

Another obvious observation is that the tradeoffs between
 

turnaround and throughput are clearly evident in the workload
 

simulations. As long as a queue can be maintained at the FMP,
 
the FMP can be kept busy and throughput maximized. The very
 

existence of such a queue preclud6s the FMP being able to
 
produce fast turnaround in any given random case. In fact, with
 

all the SPS and trunk activity requirements in this system, the 

overhead imposed on turnaround amounts to about 50% of the job
 

1-165



execution or more. Thus a 20-minute, large scale production run
 
may require 10-15 minutes of additional processing, measured
 
from startup in the system to emergence of the results at a user
 
output device.
 

As noted in the writeup, the turnaround conclusions were reached
 
without employing any form of priority aigortthm, although the
 
simulator is capable of handling priorities. It is expected
 
that as the behavior of the system becomes understood, RADL and
 
Ames will employ some of the other options and different
 
workload schemes to test the system in more realistic and
 
comprehensive ways.
 

6.2 SYSTEM SOFTWARE
 

The resource commitments involved in even moderate software
 
development projects preclude the intrusion of elegance or a NIH
 
(Not Invented Here) attitude in the NASF system. This is
 
particularly true in the area of system software, which includes
 
all software elements not residing on the FMP except the FMP
 
compiler, loader, and FMP manager (which will reside on the
 
SPS).
 

A hardheaded approach must be pursued in the specification and
 
development of the system software because of the magnitude of
 
such efforts and the far reaching impacts on the NA-SF of
 
software maintenance, compatibility, training, and effectivity.
 
First, the identification and specification of any system's
 
software function that is not already in existence and proven in
 
at least one operational environment must be avoided like "the
 
plague". Given the scope of FMP oriented systems and
 
applications software that must be-developed in the short period
 
of this development, the project can ill-afford to experiment
 
with "just one more good idea". Therefore it is strongly urged
 
that:
 

1) 	functional requirements for the system software include
 
no more, nor less, than those functions already
 
demonstrated and available in standard computer
 
software offerings;
 

2) 	the system software not be "based" on an existing
 
system, but instead be limited to that system and its
 
standard derivatives as provided by the system's
 
manufacturer;
 

3) 	in particular, the CDC NOS (Network Operating System)
 
which manages and controls a wide variety of large
 
scale and super computers (the CYBER 170 and CYBER 200
 
families) provides a good model to be used to specify
 
functional and performance criteria for the NASF.
 

1-166
 



The choice of NOS comes about because of the considerable number
 
of machine-years that have been engaged in its development and
 
maturity as a large scale operating system. The high-throughput
 
in interactive mode makes it an excellent choice for SPS
 
functions which must manage and direct the myriad of terminals
 
which will ultimately be attached to the NASF. The NOS system
 
will provide a standard software "package" which will .include
 
PDC and LCN support software for interconnection to a
 
multiplicity of attached processors.
 

-

If the-NASF is severely limited to using an extant system, then
 
many applications can be transferred directly from CYBER family
 
systems to the NASF for execution. Users thus need to become
 
familiar with only one set of functions and command language
 
constructs. Debugging of NASF software (with the exception of
actual FMP debugging) can take place in any system supporting
 
NOS. The FMP manager then becomes just another job to be
 
scheduled for execution under the NOS system, and no special
 
interfaces need be written for the FMP and thus imbedded in the
 
basic operating system. Instead the software provides a
 
standard communications methodology for the FMP manager and the
 
FMP.
 

The specification of systems software functionality can then be
 
drawn from the current Control Data NOS documentation with the
 
following additions that are under development for release well
 
in advance of the NASF availability:
 

1. 	Loosely Coupled Network system, permitting connection
 
of a multiplicity of devices and processors.
 

2. 	Common data base manager which controls a common pool
 
of shared mass storage devices on the network trunk.
 

3. 	A graphics support system similar in function to the
 
standard SCOPE offering called GODAS.
 

4. 	An archival storage management system based on the
 
Control Data MSS (tape library) concept.
 

Because of its conceptual position in the NASF structure, the
 
heart of the system will be the SPS. Therefore, if more than
 
one vendor is to be identified to supply hardware for the
 
system, it is urged that the SPS vendor be held responsible for
 
integration of all alien hardware, and adapting the alien
 
hardware "drivers" (or local operating systems) into the
 
system's software structure provided by the SPS.
 

6.3 SYSTEM AVAILABILITY
 

Division 6 of this report provides an update of the analysis of
 
Reliability, Availability, and Mantainability factors that are
 
expected to influence the operational use of the FMP. Some of
 
this discussion has had further elaboration in the hardware
 

1-167
 



design portion of this division of the report.- There .are three
 
probabilities that are of interest to the consumer of such a
 
large system.
 

1. 	The probability of a single failure occurring anywhere
 
in the system during operational use time.
 

2. 	The probability of a failure occurring which causes an
 
interruption in system service.
 

3. 	The probability that an undetected error will occur
 
which will affect result data in a significant way.
 

As will be seen from the supplementary discussions on this
 
subject, the first item is directly related to the total parts
 
and interconnection count of the-hardware. Since system failure
 
can occur in software, some factor must be generated for that
 
aspect which can be combined with the hardware factors. If a
 
standard operating system such as NOS is used for extrapolation
 
of the software error rate, it can be seen that from 100-200
 
hours of production time elapse between software errors,
 
compared with the 9-20 hours for the hardware. Thus the
 
hardware failure rate dominates in this arena.
 

The 	second probability is related directly to the first
 
probability but includes the effects of redundant hardware
 
components and other error controls such as SECDED. From the
 
RAM study it can be seen that without SECDED the FMP is totally
 
infeasible, for the MTBF is far too short to ensure a high
 
system availability. Software and firmware error recovery and
 
restart are essential also to prevent an unacceptable period of
 
machine interruption. A system interruption is one that takes
 
all the resources out of action for any job submitted. It is
 
permissible then to abort a particular job because of the loss
 
of a single disk, or an unrecoverable error in data trunks, and
 
immediately start another job without calling the event a
 
"system interruption".
 

This second probability is also highly dependent on the
 
maintenance strategies employed, also discussed in the hardware
 
design section of this report.
 

The third probability is the most difficult to measure, and is
 
dependent on how much checking can be done in the total system.
 
In the FMP, SECDED and the variably redundant Vector Units are
 
attempts at providing checking in crucial areas. It cannot be
 
expected that the pair of SPS machines could be checking each
 
other, since they will both be kept quite busy managing the
 
system. It is, however, worthy of consideration to postulate a
 
more powerful pair of SPS processors which would each be able to
 
perform redundant checking of the partner machine on a variable
 
load basis (much as in the FMP Vector Unit). This has not been
 
pursued further because of the implication of insideous change
 
in the kernels of the otherwise standard software.
 

1-168
 



7.0 FACILITIES STUDY
 

In previous reports (refs. 1, 2) the various aspects of the NASF
 
design and construction were addressed in some detail. For this
 
report an update of the schedule and cost information are
 
provided. The scheduling methodology is PERT based and contains
 
certain data relating to lead times of proprietary Control Data
 
technologies. For this reason the PERT schedule and cost update
 
information will be supplied under separate cover (as Volume V)
 
for limited distribution as an adjunct to the body of this
 
report.
 

The basic principles of the schedule still hold true from the
 
previous studies; however, some adjustments to times have been
 
made as continued investigation mandated.
 

a) A 30-month detailed design and simulation effort is
 
needed before final commitments can be made on costs
 
and reliability.
 

b) Approximately 19 months after design completion, the
 
NASF should be available for limited production work.
 
Four months later the entire NASF should be in
 
full-time production.
 

a) Phased installation of NASF components is recommended
 
and projected. A first installment of one SPS, a set
 
of 819 disks, at least one archival storage, one LCN
 
trunk, and one graphics support system should be
 
installed at Ames for software development during the
 
FMP design phase.
 

d) The FMP installation would also be phased, with one-half
 
the Intermediate Memory and no Backing Store being in
 
the first increment. The-Backing Store would be added
 
in two increments with the final increment of the
 
Intermediate Memory being scheduled as needed. This
 
permits spreading out costs and resources over several
 
years while still having production capacity on-line as
 
early as possible.
 

e) Software development is predicated on the strategies
 
outlined previously, that is, the only developments
 
being the compiler, loader, and FMP manager, all of
 
which can be developed on the SPS. This effort must
 
start at the same time as the FMP design.
 

The implication of these latter points is that the parallel
 
procurement strategy being contemplated by NASA, which proceeds
 
to the point where detailed FMP designs are pursued and a single
 
one chosen for construction, must consider the lead time for
 
software development; this must begin concurrently with the
 
design phase. This means that not only machine design must be
 
evaluated and conducted during the parallel phase, but that
 
software development will be going on also. Who pays for this
 
effort with the attendant risks that the resulting effort will
 

1-169
 



be discarded is a subject that needs to be fully explored before
 
any further procurement action is undertaken.
 

7.1 RISK ANALYSIS
 

As evidenced by the fairly conservative design approaches taken
 
on the FMP during this phase and the restriction of software
 
develoipment for the NASF, Control Data has labored to reduce the
 
risks of this project to a level acceptable to rational customer
 
and manufacturer management. The only technological risk
 
presently permitted has been in the Backing Store area where a
 
component is not yet available, but for which two backup schemes
 
are viable -- use of a less aggressive memory part that is now
 
coming into production, with a consequent reduction in memory
 
capacity or reliability; delay of delivery of the Backing Store
 
until a mature part is available, since the Backing Store can be
 
absent in the initial configuration without severe penalties to
 
performance.
 

Production of the CYBER 200 family using the memory and logic

technologies planned for the FMP has now given real data points
 
for production costs and lead times for the central processor.
 
Assuming that the Control Data schedule and cost objectives
 
become the project goals, then it can be stated unequivocally
 
that the risks would be below those for a new machine product
 
line development. This is primarily due to the fact that 90% of
 
the technical effort will be based on existing systems, software
 
and manufacturing techniques. The compiler, loader, and FMP
 
manager development are the primary software risks, and the
 
costs and schedules for these can be conservatively rated at par

with risks undertaken on any Control Data project.
 

Note that this risk assessment is substantially more "upbeat"
 
than past analyses which have reflected some degree of overly
 
conservative "gloom and doom". The major reason is that the
 
number one emphasis of this project phase has been to create an
 
FMP and NASF that can be built with great confidence of meeting
 
the cost, performance, and schedule objectives.
 

7.2 LOGISTICS SUPPORT
 

The operation of a large complex of equipment that necessarily

characterizes the NASF engages many disciplines and involves
 
many cost factors that can easily be missed. Assistance was
 
obtained for this report from the CYBERNET DATA CENTER
 
specialists who have experience with large systems. In
 
particular, advice was sought from the- STAR data center managers
 
who provide "computational engine" services on STAR via a set of
 
CYBER 170 front-ends, much like the FMP will be made available
 
to the NASF user. The resulting paper (Division 9) describes
 
the major considerations and probable resources required for
 
long term operation of an NASF-scale system.
 

1-170
 



The figures given in this report and in the report on
 
maintenance strategy should be considered conservative in light
 
of the fact that the availability and mantainability of the NASF
 
is expected to be much greater than existing systems. Factors
 
included for systems upkeep, therefore, may well be reduced in
 
the final analysis to 50% or less of the projected figures; It
 
would be well to expect that at the outset, and for the first 24
 
months of NASF operation, the consevative approach to systems
 
operation and support should be adhered to until enough
 
experience is accumulated to guide cost reductions which are
 
sure to lurk in the projections offered here.
 

7.3 PHYSICAL REQUIREMENTS
 

As part of the initial study (ref. 1) Control Data was asked to
 
determine, to as great a level of detail as possible, the
 
physical requirements for the actual installation site. The
 
result of that effort was the prototype planning of an actual
 
site containing the hardware projected for the NASF as
 
considered in this study. Most of the equipments that absorbed
 
the bulk of that installation have remained unchanged in
 
quantity and configuration since that initial effort. The FMP
 
has undergone the greatest change due to a reorganization of the
 
memory systems, reduction of pipeline hardware and, quite
 
signficantly, due to a change in the packaging system for the
 
FMP Main Memory and logic. Figures 3.1-2 and 3.1-3 of the
 
functional specification (Division 1, Volume II) show the
 
revised floor plan of the resulting FMP.
 

The overall power and cooling requirements are quite similar to
 
those reported previously (ref. 1), and the floor plan for the
 
proposed installation has been left unmodified, since the
 
revised NASF will fit into essentially the same area originally
 
reserved for the NASF. The FMP power requirements differ
 
somewhat from that proposed in the early study but the aggregate
 
power for the installation is affected very little. Division 10
 
provides some detail and a summary of space, power, and cooling
 
requirements for-the proposed NASF.
 

1-171
 



APPENDIX A
 

CLOCK RATE AS A MEASURE OF COMPUTER
 
PERFORMANCE
 

The rapid tick-tick-tick of a wrist watch is certainly different
 
from the slow TOCK --- TOCK of a grandfather clock. That is, the
 
two different timepieces have different clock rates, yet when
 
properly tuned to their respective rates, they both have the.
 
same performance --- keeping accurate time, one revolution of
 
the minute hand per hour. The performance of a timepiece cannot
 
be judged, however, on the basis of its rate alone. It is
 
necessary to have some other information such as what is inside
 
the timepiece (to know what is accomplished per tick or per
 
TOCK), or what its output is (is its performance - timekeeping 
accurate). Without this additional information, a rapid rate
 
cannot be judged good or bad since it may mean simply that the
 
timepiece is not properly adjusted and therefore is not keeping
 
accurate time.
 

In order to compare one computer with another, an oft-used
 
measure is to compare the clock rates of the computers. The
 
assumption is that if one computer has a clock rate, say twice
 
as fast as another, then it will produce twice the result rate
 
as the comparison machine. In fact, however, the performance of
 
a computer should be measured in the number of basic functions
 
accomplished in some unit time. To derive this by only counting

clock periods/unit time assumes that basic functions/clock
 
period is constant. It does not take much thought to show that
 
this is not constant, but rather a function of machine
 
architecture, inherent power of the chosen logic family and the
 
specific logic design rules used.
 

The following explanations and examples point out some
 
differences in machines not reflected in clock rates.
 

1. Difference in Architecture
 

a) Size of machine: number of gates. No one expects an 8080
 
microprocessor'to match the power of, say, a middle
 
level 370 machine even if they have comparable clock
 
rates (in fact they do). (The number of gates in a
 
machine is often very difficult to quantify as will be
 
discussed later.)
 

b) Concurrency: How much of the machine is in use, on
 
average, during a small unit time. For example, a
 
machine with a 10-ns clock but only 30% of the machine
 
in use at any one time, is very likely slower in overall
 
throughput than a machine with a 20-ns clock but with
 
70% of its gates in use at a time.
 

1-A-I
 



2. Differences in Logic Family
 

It may seem obvious that the clock rate of a computer should
 
be'set by the number of gates that must be traversed to
 
accomplish some basic function. This is not true and one of
 
the reasons is the difficulty in determining what to call a
 
gate. For example most variations of ECL allow both the
 
true and complement results to be generated by most gate
 
elements at no cost in size or speed. This contrasts with
 
other logic families, e.g., TTL, that require another gate
 
function to produce the logical complement of a function.
 
This extra gate appears generally in series to some signal
 
and thus slows down the machine. Even if the gate can be
 
put in a parallel structure to reduce the total delay, the
 
machine may still be slower because the larger number of
 
gates may increase the physical size of the machine.-


Another feature of most ECL families is the ability to tie
 
the outputs of gates together. This accomplishes an 'AND'
 
or 'OR' function at virtually no cost in logic delay and no
 
gate cost because the connection is just wire.
 

The point here is that even with equal clock rate's, a
 
computer may have higher performance because it is able to
 
do more in a clock cycle than another computer using similar
 
architectures and numbers of gates because it is able to get
 
more done per unit time no matter what the unit time -- just 
because of differences in the logical power of differing 
logic families. Many other attributes, unmentioned, also 
will affect the logical power available to a designer -

fan-in and fan-out limits, packaging, etc., etc. 

3. Design Ground Rules
 

In, the design of high speed computers, a conflict exists in
 
the interplay for fastest speed versus fastest throughput.
 
Fastest speed means the minimum time for completion-of a
 
function, a multiply for example. The fastest throughput
 
means the most results for a function, per unit time. These.
 
two requirements are not the same! To satisfy the first
 
design requirement a designer wants the clock cycle to be
 
relatively long. This is to reduce the overhead caused by
 
addition of gates that do not contribute to computation but
 
are required for shorter clock periods. The throughput of a
 
set of logic can be increased by reducing the number of
 
levels of logic allowed between clocked latches. For
 
example, assume that to perform a particular function, such
 
as an addition, 9 levels of logic are required. A designer
 
can choose a clock period of 16 ns, say, and can perform the
 
addition in one clock cycle. Another designer, using the
 
same logic, may choose to limit the number of logic levels
 

1-A-2
 



between clocked ranks to 7 in order to have a faster clock
 
(say 13 ns). The adder design then requires a clocked latch
 
rank somewhere within the adder. This results in two
 
things:
 

a) Addition now takes two cycles: 26 ns.
 

b) The number of gates in the second design is greater,
 
resulting in greater logic cost and design time.
 

Of course the second adder design has higher throughput,
 
i.e., it can accept a new input every 13 ns instead of every
 
16 ns as in the first design.
 

The set of design ground rules chosen depends on many
 
things; among them are: cost, size, power, speed
 
requirements, etc.
 

As can be seen from the above, the raw comparison of clock rates
 
is a vast oversimplification of the question 'how fast is it?' A
 
whole array of other questions must be asked at the same time.
 

1-A-3
 



AYVhfNIlA 0 

IMPLICIT LEFT-HAND-SIDE SUBROUTINES
 

SUBROUTINE STEP 000100
 
COMMON/BASE/NMAX*,JMAXKMAX.LMAXJM lMLM.tOTGAMMAGAMI.SMUFSMACH 000110
 
1 ,OX1,OYI.OZND,NO2.FV(5)FO(S).MOALP,0OMEGA.HDX.HDYHDZ 000120
 

- 2 *RMCNGRPIITR.ZNVISCLANIN.HPINTI.INT2,INT3.LSLJSL. 000130 
COIMON/EO/NBItN02,RFRONTRHAX.XRAMAXORAOOXC 00140 
CO$ION/READ/IREADIWRITNGRI 000150 
COHNON/VTSIREPRRMUE,RK 000160 
CONMONiVARS/0Q24.30,6,301 000170 
CONMON/VARO/5424.30,5,30) 000180 
COMMONYVARI/XI24,30,30),Y(24,30,30},Z(24,30.30) 000190 
COMMON /VAR3/P(120130),XX(4)lYY(4),ZZj4I 000200 
CONMONiCOUNT/NC.NC1 000210 
COMMON/ITRIO/A(5S),(5,S).C(S.S),0(5.5),F 000220 
LEVEL 2 QS.X.Y.Z 000230 
DYNAMIC A.BC,0,S.SDXX(4)tYY(t4)ZZ4).KL ,YKL 000240 
DYNAMIC F.F1(S)p2.SI(S) 000250 
DYNAMIC ZKL 000260 
DYNAMIC XJL ,YJL ,ZJL *XKJ-,YKJ ,ZKJ 000270
 
DYNAMIC QT1,QTEQTJ.QTAGTS.TV 00028R
 
DYNAMIC RJRR,U,V,*UUUT,C,C2,C3,4,CSC6,CT 000290
 
DYNAMIC RMJ,RFXK.Y~tZK.XLYL.ZL.XJYJ.Z 000300
 
DYNAMIC oPLUSC5.S) OMIN(S.51,QES(8,2),XYZ(3,2) 000310
 
DYNAMIC 01*02,03.04Q05 000320
 
DYNAMIC XIY1,Z1 000330
 
INTEGER QINPOSQOUTPOSXYZPOSFDESCS),0SDESC(S) 000340
 

C 000350
 
CALL BC 000360
 
CALL RHS 000370
 
CALL SMOOTH 000380
 

C 000390
 
C COMPUTE L2 RESIDUAL 000400
 
C 000410
 
C THE CONDITIONAL BRANCH CODE 000420
 
CI

. 

F(NC.EQ.1I) GO TO 5 000430 

C .. IF(NC.(NC/10)10)S,5.6 - 000440 
C 5 CONTINUE O00450 
CAN BE REPLACED By 000460
 

00047O
 
IF(MOO(NC.IO).NE.O)GO TO 6 000480
 

000490
 
RESID - 0.0 000s00
 
KNH . KM 000530
 

LMM . Lm 000540 
00 10 N * I'S 000550 
00 10 L - 1.LMH 000560 

00 10 K - 1,KMH 000570 
00 10J22,JM 000580 

10 RESIO . RESIOS(K.LN,J*2 000590 
RESIO - RESIO/((JM.I}.(KMH-I)(.MH-1)) 000600 
RESID . SQRT(RESID/CDT*.00005) 000610 

C 000620 
C CAN BE VECTORIZED AUTOMATICALLY-HOWEVER THE THROUGHPUT OF THIS LOCAL 000630 
C LOOP WILL BE LIMITED TO THE BANOWIOTH OF THE INTERMEDIATE STORAGE 000640 

WRITECS.1001 NCQESID 00050 
100 FORMATiIHO,3HN- ,153X,13HL2 RESIDUALs .F16,8) 000660 

6 CONTINUE 000670
 
C 000680
 
C 000690
 

RH . SMU 000700 
CS . 1..2.RM 000710 
GAM2 . 2.GAMMA 000720 

C THE NESTED 00 LOOPI 000730 
C... 00 20 L * 2,LM 000740 

1-B-I
 

http:RESIOS(K.LN
http:F(NC.EQ.1I
http:QT1,QTEQTJ.QTAGTS.TV
http:A.BC,0,S.SDXX(4)tYY(t4)ZZ4).KL
http:COMMONYVARI/XI24,30,30),Y(24,30,30},Z(24,30.30


C.. Do 20 K . 2.K4 	 000750
 
C CAN BE VECTORIZED IN SEGMENTS AS FOLLOWS: 000760
 
C 000770
 
C 000780
 
C--*FILTRX 000790
 
C 000800
 

JAW2 000810
 
J8BJMAX.1 000820
 
O0 1000 L*2,L3AX.LSL 000830
 

C LSL IS THE NUMBER'OF SLICES(COLUMNS) IN L PER PROCESSING PASS 000840
 
LSN.LSL-1 000841
 

C 000850
 
DO 5 N"1.5 000860
 
DEFINE (FI(N)tF(23KNAX.1,LIL*LSMtN.21NAX-1)) 000870
 

5 	 DEFINE (S1(N),S(2KMAX-1,LILLSN,2IJAX-) 000880
 
Q10 (C*LlLLSN.L.2IJNAX.1) 000890
 
Q2-Q(-ILLSl.2g21I4AX-1). 000900
 
03sQ(,L.LSN,3,2;JAX-) 000910
 
Q4-*U(.LLLSN,4,21JAXl ) 000920
 
OS-Q -,LIL*LSM..2;JNAX.1) 000921
 
RJSQ(21KHAX-ILIL.LSM,6,*) 000930
 
XXLX(.,L1 :L.LSN.1,21JNAX-1) 000940
 
YKLUY(,vL-1LILSM61 21JNAXfl) 000950
 
ZKL-Z('.L-1IL-LSM-l.2JNAX-1 000960
 
XK.(XKL(3KMAX2:LSL*l1.*)XKL(1KMAX-2,21LSLI.* )-DY2 000970
 
YK.(YKL(3IKMAX,2:LSLI.).YKL(IK4AX-2,2:LSL1,*))OY2 000980
 
ZKt(ZKL(3;KMAX.2$LSL*I,*).ZKL(IIkMAX-22LSL1I,-))*0Y2 00090
 
XL.(XKL(.,3SLSL,*)-XKL(*,ILSL-2,*))*OZ2 001000 
YL-(YKL(t33LSL,)-YKL(tI.LSL-2,-*)*OZ2 001010 
ZLW(ZKL(',SILSLt3)ZKL(OIILSL.2,'3)*DZ2 001020 
XX(1).(YK-ZL-ZK*YL)8 J(* t21JMAX1) 001030 
XX(2l.(ZK-XL-XKZL)3J(*.t.2JMAX-1I 001040 
XX(3)tXKYL-YK'XL)JRJ(,-.2tJAX-1) 001050
 
XX(43).-OEGAt(ZKLCZ:KMAX-I.ILSL,2J4AX-I)XX(2) 001060
 
1 .YKL(C2KMAX-.1.1LSL2:JNAX-13*XX(3) 001061
 
0(1*23 2AX(1)*H0X 001070
 
0(1.3) .XX(2)*HOX 001080
 
0(1.43 *XX(3)OHOX 001090
 
0(1,13 =XXf4)*HDX 001100
 

C 001110
 
C.****ANATX 001120
 
C 001130
 

RR1/01 001140
 
U.RR*02 001150
 
V.RR-03 001160
 
W.RR.04 001170
 
UU - UJ0(1,2)*v*O(1.3)*W'O(1,43 001180
 
UT * Uef24V . 2 001190
 
Cl * GAMZ-UT-.5 001200
 
C2.PRRGAMMA*05 001210
 
C3sC2-Cl 001220
 
C4 (11)IUU 001230
 
CSNGAMIU 001240
 
C6-GANIWV 001250
 
CT.GAMI*W 001260
 
DEFINE ((I,S),(IJSAA-2.1ILSLo2,IJAX-)) 001270
 
0(1.5)0 	 0012Z0
 
0(2.1) a 0(1,2)-CIU-UU 	 001290 
0(2,2) . C40(1,2)-GAN2*U 	 001300
 
0(2,33 . -D(12I-Ct-0(1,33U 	 001310
 
0(2.4) -(1,21-C7-0(1,4)U 	 001320
 
0(2.53 . 0(1.2)*GA$T 	 001330
 
0(3,1) . Ddl,3)-CI"VUU 	 001340 

1 -B-2 



C 

C 

C 


22 


23 

C 


C 

C 

C 

C 


24 
C 

C 


0(3,2) = 

0(3.3) * 
0(3.4) 

0(395) = 
0(4.1) = 
0(4,2) a 
0(4,3) = 
0(4 4) 
D(4,5) * 
0(5,11 
0D5,2} 
0(5.3) a 
0(5,4) * 

D(1,2)'V-0I1.3)eCS 
C.0(1,31'GAM2*v 

0-(1.3)'C70O(1,4)V 

0(,3)SAMI 

DCIl,)-Ci)W.UU 

O(1.2)*W011,4;.C5 
D(1,3)W..O(.4).C6 

C4-O(1,4j)GAM2.W
) G
 
0(1.4 ' AMI 

('C2.2.-C)UU 

D(I,2)'C3-C5'UU 

D(1,3)*C3C6UU 

D(1,4)*C3C7-UU 


0(5.5] a D(1,1)*OAMMAOUU 


E...END
OF AMATRX 


RXJWRM/RJ('.v*.tJMAX-1I 

RR.RJ'RJ-*,-.1IJMAX-2) 

fF-RMJR(e.C.3JAX) 
D0 23 N.1.5 

00 22 M.1.5 

DEFINE (B(NM)oIIKMAXa2.lILSM 1JMAX.2) 

DEFINE (DlO(NM)) 

A(N.N) '01 (,*1I4)MAX.2)


3 1J

CCNMI .01( , MAX)

B(N,4I*0 

A(N.N . A(N.N)-RR 

8(N.NJ . CS 

C(NN) - C(NN)-RF 

Fl(N]SIN) 


ECNO OF FILTRX 


S MUST BE ZERO ON B.C, 


CALL 2TRIQPI2, 

O 24 N.J.S 

SI(N).FI(N) 

CONTINUE 


1000 CONTINUE 

C

C.....FILTRY 

C 

'KA 22 
KB KMAX-1 
JSH 43SL-1 
00 2000 J.4MAXJSL 

00 6 N-1,5 

DEFINE (F1(N),F(:3LAX.I.JTJ.JS(4,N,2KMAX.1)) 


6 OEFINE (SI(N).F(21LMAX-.JJJSMN.2)(AX-1l) 

C 


RJ . RJT(2ILHAX-,JJ.JS.2kM4X) 
XJ. . XJT 
YJL - YJLT 
ZJ) . ZJLT 
01 - O1T 

G2 - QT 

03 - 03T 

Q4 . QT 


001390
 
001360
 
001370
 
001380
 
001390
 
001400
 
001410
 
0614R0
 
'001430
 
001440
 
0014S0
 
001,60
 
001470
 
00140
 
001490
 
001500
 
001510
 
001520
 
001530
 
001540
 
001550
 
001560
 
001570
 
OISA0
 

001590
 
001600
 
001610
 
001620
 
001630
 
001640
 
001650
 
001660
 
001670
 
001680
 
001690
 
001700
 
001710
 
001120
 
001730
 
001740
 
D01750
 
001760
 
001770
 
001780
 
001790
 
001800
 
001810
 
001820
 
001830
 
001840
 
001850
 
o0160 
001870 
001880 
001890 
001910
 
001920
 
001930
 
001940
 
001950
 
001960
 
001970
 
001980
 

1-B-3 

http:O(1.2)*W011,4;.C5
http:DCIl,)-Ci)W.UU


05 - QST 001990
 
C 002000
 
C 002010
 

00 9 N-1.5 002030
 
D0 9 KtI,KMAX 002040
 
DEFINE (F2,FL(N)) 002050
 

9 F2(.-*IKIS(K.21LMAX1.N.4JIJ.SMR 002060
 
C THIS ACCOMPLISHES THE MOVE OF S TO THE F ARPAY 002070
 
C 002080
 

XJs(XJL(2LMAX-1,3JSL.2,2IKMAX-I)-XJL(2:LMfA-Il1JSL2KMAX.1)) 002090
 
0


1 OX2 002091
 
YJz(YJL(21LMAX-1,3ZJSL42,2tKMAX-I)|XJL(21LHAX-IIJSL21KAX.1)) 002100
 
1 OX2 002101
 
ZJ.(ZJL(2fLMAXe1,3IJSL-2,21KHAX-I)-XJL21LMAA-1,ItJSL2KMAX-1), 002110
 
1 OY2 002111
 
XLUCXJL(3;LMAA.21JSL1,21KS)-XJL(ItLMAX-221SLl,2t2Kc))*022 002120
 
YL.(YJL(31LMAX.2JSL12,tK)-YJL(1:LHAX-2,2JSL1,2tKB)3 OZ2 002130
 

002134
 
ZLS(ZJL(3LMAX21JSL1,2K)-ZJL(IILAX-2,2JSL1.2tKS)0OZ2 002140
 
YY(I)=(ZJYL-YJZL)RJ(,*.2IKAX-1) 002150
 
YY(2)n(XJtZL-XL'ZJ)'RJ(-*,*2tKMAX-) 002160
 
YY(3)s(YJ*XLXJYL)-RJ(,,,2tKMAX-1) 002170
 
YY(4).°OMEGA-(ZJL(2LMAX-1.21JSM,21KAX1I)*YY(2) 002180
 
1 YJL(2SLMAX-IZ:JSM.21KMAX-I)*YYt3)) 002190 
0(1.2) sYY(1)-HOY 002200 
0(1.3) YY(2)-HOY 002210 
0(1.4) YY(3)-HOY 002220 
O(1.1) =YY(4)eHOY 002230 

C 002240 
C*.....AMATRX 002250 

PR.I/O1 002260 
UJRROQ2 002270 
V.RR*Q3 002280 
W.RR.O4 002290 
UU * U.D(,2*V0(.3}.Iet(1.4) 002300 
UT a U-e2.V--2.W*62 002310 
Cl . GANIUT*.5 002320 
C2*RR*GANNA*05 002330 
C33C2-C1 002340 
C4.OO(1,1)UU 002350 
CS-GAMIZU 002360 
C6'GAMI*V 002370 
C7*GANI-W 002380 
DEFINE (0(15),(IItMAX-2,I.JSL1IKAX-2)) 002390 
0(1.5) . 0. 002400
 
0(2.1) . O(1,2)*Cl-U*UU 002410
 
0(2,2) . C4*0(1,2)GAM2tU 002420
 
D(2.31 -D0(1.2)*C6*0(13)'U 002430
 
012,4) . -0(1.22*C7.0(1,4l'U 002440
 
0(2,5) . O(t.2)flAMI 002450
 
Of3.l) . O(131*C1V'UU 002460
 
0(3,2) . O(1,2)*V-O(,3)C5 002470
 
D(3.3) . C4-0(1.3)OAM2*V 002480
 
D(3.4) . *1.3)-C7*0(1.,)YV 002490
 
0(3.5) c,0(1,3)fGAMI 002500
 
0(4.1) a 0194)*CWUU 002510
 
0(4.2) - O(1.Z)lw-D(1,14)CS 002520
 
0(4,3) . O(I.3)-W-OD(I.4)C6 002530 
0(494) a C4&0(1.4)GAM2W 002540 
0(4.5) * 0(I 4*8GAM6 002550 
0(5,2) . f-C2*2.Cl)'UU 002560 
0(5,2) . 0(1,2)*C3-CSUU 002570 
0(5.3 a (I,3)*C3C6UU 002580 

1 -B-4 



D(*.4) . IA.4)*C3-CTUU 002590
 
D(5S.) . O(l.l).OAHMA.UU 002600


C 
 002610
 
C *....ENO
OF 	AMATRX 
 002620
 
C 
 002630
 
C RJ IS RETAINED FROM THE DIFFEREJCING CALCULATION 002640
 

RMJuRH'RJ(eB.2tlKAX-1) 
 002650
 
RR.RMJvRj(w'*t,?KMAX2) 
 002660
 
RF.RMJ*RJ(*,-,3$KNAX) 
 002670
 
00 34 N.I.S 
 002680
 
00 33 M.I.5 
 002690
 
DEFINE (DI.O(N,$)) 	 002700 
DEFINE{8(NMI.(IILMAX-21:JMAX-2,IKHAX.2)) 
 002710
 

C 002720
 
C NOTE THAT 8 HAS CHANGEn SHAPE AS E ARE DEALING WITH 002730
 
C THE TRANSPOSED MESH FOR THIS SWEEP 
 002740
 

A(NM).DI (e.tIIKMAX.2 002750 
B(NI)nO 002760 

33 C(N.H)IO(-,4,3KAX) 0027TO
 
A(N.N) . A(N.N)-RR 002780
 
B(NeN) . Cs 
 002790
 
C(N.N) . C(N.N)-RF 002800
 

34 CONTINUE 002810 
C F HAS BEEN PREHOVED AT TOP OF LOOP 
 002820
 
C 
 002830
 
C .*...ENO OF FILTRY 
 002840
 
C 
 002850
 

CALL BTRI(2,KN) 002860
 
0 31 Nfl,5 002870
 
DEFINE (S2.SI(N)0.(F2.F1(NI) 002880
 
DO 31 K. ,KB
2 002890
 
SfK.2rLMAX-N.Jdo*JSM . F2(2ILMAX-IjIJSL-2,K) 002900
 

31 CONTINUE 
 002910
 
C 
 002930
 
C 
 002940
C 
 002950
 

00290
 
2000 CONTINUE 
 002970
 
C.'-FILTRZ 


DEFINE CRU.)IKMAX,11JSL,IILMAX)) 002980
 
DEFINE (QI(IlKMAXI:JSLIILNAX)) 002981.
 
DEFINE (Q2,(IKHAXIJSLIL4AX)) 002982f
 
DEFINE Q3.(I:KHAX(IfJSLIfLNAU) 002983
 
DEFINE (Q4.C1:KNA,.IJSLILMAX]) 002984 
DEFINE (05,(I:KHAXIIJSLIILHAX)) 002995
 
DEFINE (XKJ,(1IKMAXIJSL2,lL4AX)I 002996
 
DEFINE (YKL,(IIKMAA,1JSL.2IIL4AX) 0029A7
 
DEFINE (YKLtIIKHAA4,IIJSL.2,uI4X)) 002988
 
LA *2 002990
 
LB .LMAXw1 
 003900
 
JS4 . JSL-1 
 00300!
 
DO 3000 JS2DJMAXUSL 003010-


C 003020
 
00 61 N-l.5 003030
 

61 	DEFINE (FI(N).(F(21)KAX-1. IJ.JSMN,2tLHAX-1) 003040
 
00 81 L.1.LAX 
 003060
 
RJ(1 ;KAX.2,1I JSLL)Qt2:KWAX1 ,L,6,JIJ.JSN) 003070
 
XKJ(1IKMA.IIJSL*.$L4=X(IIMAXLPJ.1J*tSL) 
 003080
 
YKJ(IIKMAX.IIJSL-t2L)=Y(1IKMAXLJ-ITJ.JSL) 
 003090
 

ZKJ(1:KMAX.IJSL.2,L).Z(IIKAXL.J-IUJ*USL) 003100
 
I(IIKMAX.IIJSLL)UQ(21KNAA-I.LLIJJ.US) 003110
 

Q21IKjAXl JSLL2Q(2KMAX-I,,2,jIJJSN) 003120
 
03(:IKAXI JSL.L)-Q(2tKAX-1.L,3JIJJSM) 003130
 
044(1 HAX,1tJSLt)SQ(2KItC4AA1,L,4,JJ.JS4) 
 003140
 

1-B-5
 

http:I(IIKMAX.IIJSLL)UQ(21KNAA-I.LLIJJ.US
http:A(NM).DI
http:O(l.l).OAHMA.UU


OS(IKNAXIIJSL.L)20(2SKMAX-I.L.S.JIJJS) 

C 
C 

81 CONTINUE 


00 91 NLS 

00 91 L.,LAX 

DEFINE (FiFI(N)) 


91 F2(0t*,L~uS(2tKMAXI1,LNJSJJS) 

XKS(XKJ( 31KMAX,21JSL1.12:L)-XKJ(IUAX-2,2tJSLItLB) )OY2 

yt((yKJ(3;KMAX,2:IJb-t ILS)-YK.J(IIKMAX.2.2IJSL1 .21LS))*OY2 

ZK*(ZKJ(3tKMAX,2tJS*i-I.2tL8ZK(1tKMAX.2214SL-1,2ILB))OY2 

XdZ(XKJ(ZIKMAXAI,3*JSL*2,21LS)XKJ(2UK(AX-IIIJSL,2.LB) )'0X2 

yJ.(yKJ(85KAX.,3$JSL 2,2181.YKJ(2IKMAX-11hJSL,21L8]) OX2 

ZJ.(ZKJ(21KAX1.3JSLt2,23LG).ZKJ(21KAX1.I:JSL,24L8) )0X2 

ZZ(1)1(YjrZK.ZJ-YK)ARJ 

Z2(3).(XK-ZJ.XJZK)fRJ 

ZZ(3)t(XJAYK-YJeXK)-AJ 

ZZ(4).-ONEGA(ZKJ21KmAX. .2:JSM,23L8).ZZ42)
. Z (


CYKJ(21KAX.1.2IJSM ,tL8)*Z 3)) 


011,2) sZZ(1)-HDZ 

0(1,3) eZZ(2)-HDZ 

0(1,41 aZZ(3)-HOZ

0(1,2) *ZZ(4)HOZ 


C 

CA4e.IAMATRX 


RR*1./QI 

U.RR4O2 

V.RReO3 

flRR*Q4 

UU - UD(I,23)V-O(1.32*-O(1.4) 

UT A-UU.2.V**2.W*.2 

Cl . GAMI*UT*.5 

C2.RRtQSGAMMA 
C33C2-CI 

C40(11).UU 

CSSGANIEU -

C6*GAMIV 

C7SGAIW 

0EFINE(0f,53.]tICMAX.2.I2JSLtL2MAX-)) 

D(1.5) - 0. 

0(2,1) . O(I,2)-C-UtUU 

0(2,R) . C4.O(1.2)GAM2-U 

0(2,31 * .0(1.2)C6*0(Ct3)U 

D(2.4l . .l0I23*C7(1t,)*U 

0(2 5) . 0(1,2)0GA$! 

0(3.1) . 0(1,3)-Cl-VUU 

0(3.2) . 0(1.2)eV0(1.3).C5 

0(393) w C4*U(1*3)SAM24V 

0(3.4) . *0C1,3)tC70(1,,)fl 

0(3,5) . D(I.3)GAM! 

0(4,1) . 0(1,4)tI1W-UU 

0(4,2) . 0(1.2JW0(.4)tC5 

0(4,3) . 0(1,3)1-W041,4)*C6 

0(494) . C4*0(1,4)eGAM2EW 

0(4.5) . 0(1,4)*GAMI 

0(5,1) a (.C2.2.-Cl)-UU

0(5,31 . 0(13)C3-C6eUU 

D(S.4) . O(14)C3-C7-UU 
0(55) . 0(1,l)-GAMMA-UU 


C 
CO-0-eEND OF AMATRX 

C 


003150
 
003160
 
003170
 
003180
 
003190
 
003200
 
003210
 
003220
 
003230
 
003240
 
003250
 
003260
 
003270
 
003280
 
003290
 
003300
 
003310
 
003320
 
003330
 
003340
 
003350
 
003360
 
003370
 
003380
 
003390
 
003400
 
003410
 
003420
 
003430
 
003440
 
003450
 
003460
 
003470
 
003480
 
003490
 
003500
 
003510
 
003520
 
003530
 
003540
 
003550
 
003560
 
003570
 
003580
 
003590
 
003600
 
003610
 
003620
 
003630
 
003640
 
003650
 
003660
 
003670
 
003680
 
003690
 
003700
 
003710
 
003130
 
003 ,40, 
0 7
:0jb7 id2 
003770
 
0037802
 

1 -B-6
 

http:0(1.2)eV0(1.3).C5
http:C40(11).UU
http:XdZ(XKJ(ZIKMAXAI,3*JSL*2,21LS)XKJ(2UK(AX-IIIJSL,2.LB


RJ I5 RETAINED FROM DIFFERENCING OPERATION 003790 
RM s RH/RJ(-,4,21LMAA.1) 003800 
RF a RMJtRJ(*,-,3'oLMAX" 003805 
AR - RMJ*RJ(.,*,IILMAXoa) 
DO 43 N.1,5 
00 428.1,5 

003810 
003820 
003830 

DEFINE(DIOO(NM)l 
DEFINEeE(NN),(IfMAX2.114EL.IIL.MAX-a)) 
A(NM)..01(.*. I LMAXE2) 
O NM).O 

003840 
003850 
003860 
003870 

42 C(NM)SDOlt-,,3LMAX) 003880 
AiNN) . A(N,N).RR
8(NN) . CS 003890 

003900 

43 
C(NN) . C(N.N).RF
CONTINUE 003910 

003920 
C 003930 
C... 
C 

ENO OF FILTRZ 003940 
003960 

IF(INVISC.EQ.1 
CALL BTRI(2,LM)
QIuQI.F(1) 

CALL VISMAT(JK) 003960 
003970 
003980 

020Q2.F(2) 
033Q3.F(3) 
04S04.F(4) 

003990003900 
004010 

QSQS.F{5) 
00 44 L.2,LMAX-1 

004020 
004030 

Q(21KMAX-l.L.1.J40*JSN).a1(XIKMAX.2,12JSL2.L) 004010 
a(21KMAX-ILZJIJ4JSM)024 1 KMAX-2.1LJSL-2,L) 
a(21KMAX-ItL,3.JIJ.JSM)8Q3 (iKMAX.2,11JSL-2,L) 

004050 
004060 

44 
Q(21KMAX-I.L.4.4:uJSM).04(1IMAX.2,IIJSL.2.L 
Q(23KMAX1.LSJIJ-.SM)oS(1nKMAXa,1JSL.2,L) 

004070 
004080 

3000 CONTINUE 
 004090
 
RETURN 
 004100
 
END 
 004110

SUBROUTINE BTRI(ILAIUA) 
 004120
 
COMMON/BTRID/A(5,5)8(5,s5).C(SS),D(S,


51,F( 5; 004130
 
DYNAMIC H(S.5),ABC.OF 
 004140
004150
 

004160
 
DYNAMIC LllEL21L22.L31,L32IL33tL;iL42,L43tL44 

DYNAMIC LSI.L52,L53.LS4,L55 

DYNAMIC Ul1,U21,U22.U31.U32.U33.U41,U4aU43.U, 
 004170
 

004190

DYNAMIC U51U52US3US4,u55 

DYNAMIC D1.0D3,D4.O5 
 004190
 
DYNAMIC U12,U13.U14.UISU23.U24,U25.U34,U

35,U45 004200
 
DYNAMIC Al(5.5).81(5,5),C1C5.5),SI S) 004210

REAL LllL21,L22,L31.L32,L33.L41.L42.L43.L44.LSIL52,L53,L54,LS5 
 004220
 
ILSILA 
 004230
 
IU-IUA 
 004240

IS*IL.I 
 004250
 
IsEIU-1 
 004260
 
DO i NalS 004270 
DEFINE (F1CN),FON)(*.j)) 
 00'280
 
DO I M-l5 
 004290
 
DEFINE 081N N N) (*t )) 
 004300
 
DEFINE (C(NMj.C(N,M)(...1)) 
 004310
 
INSERT LUOEC 
 004320

Ll11./8 (1,1) 
 0n4330
 
L21812,l) 
 :004340

U12t81(1,2)L11 
 004350
 
L22.1 ./(810223 -L21U13) 
 004360
 
U13b81(1,3)-L1 
 004370
 
U14 . d11 .4)a*Ll 
 004380
U15*01(l.5)-L11 
 oo,3q0

L31-81(3.1) 
 004400
 

1-B-7
 

http:D1.0D3,D4.O5
http:H(S.5),ABC.OF


L32Rl 13,2-)L31U1J2 004410 
U23-(81(2.31-L21-U131'L22 
L33.*1./181(3,3)}UI3L31-U23L32) 
U24.(91 (2.4).L2-U4)-L22 

004420 
004410 
004440 

U2S(81 (25)-L21IUlS)%L22 004450 
L4l.814,1) 004460 
LA2.AI 4.2)-L41UIZ 004470 
L4381[4.3)L41-U13-42-U23 0044A0 
U34s(81(3,4)-L31-UI4-L3*U24)*L33 001490 
L44.l./(B1{4,4)-Ul4L41U2A*L42'U34L43) 004500 
U35.(8l(3.5)-L3l'U1S-L32.U25)eL33 004510 
LSlC4 s.I) 004520 
L52381 (B,2}.L51Ul2 
L53.BI(5.3)-LSlUI3-LS2*U23 

004510 
004540 

L54.81(5 4)LS*U14.L52U24-L53-U34 004550 
U45MsB(i4.8)'LI*UIS.L42U2S5L43U35)L44 004seo 

C 
LSS-I./(815,5)-L5I'U1S-L52'U25-L53-U35L54U45) 
COMPUTE LITTLE R S 

004570 
004580 

DIsLI1PFI(1) 004590 
02-L22-(F(2)-L21OI)
D3-I33(FFl3).L31-0lDL32'02) 

004600 
004610 

04ML44*(FI(4)-L41401-L42.02L4303) 004620 

C 
05DLSS*(FI(5)-L51*Ol-L52*O--2LS303-LS404 
COMPUTE 810 R 5 

004630 
004640 

Fl(5)05 004650 
FlI(4).O*-U45*05 004660 
F](3).D3-U34-Fl(4)-U35e0S 004670 

C 

Fl(2)a02-U23FI(3) U24*FI(41 U2505 
FlIl)SOl"UI2-Fl(2)-U3-FI3).UI4tFL((4)U15-05
COMPUTE C PRIME FOH FIRST ROW 

004640 
004690 
004700 

00 12 M1.1, 004710 
DILII'CI(I4) 
02L22'(Cl(2,)-LS

1 01 
)

O3SL33-(CI(3M])L31OIL32O02) 

004720 
0oo730 
004740 

D4SLA4(Cl(4M)L411I-L4202-43 O3I 004750 
05=LSSr(Cl(S.M).LS101-L52*02-L5303-LS.04)
R1(5.H).05 

004760 
00.770 

a1(4.M).04.U4505
81(3,M)  03-U34BI(4,).U3505 

004780 
004790 

81(2,M) . 02-U238L(3,M)-U24.Bl(4.R).U2So05 004800 
12 81(1,) - 0lUl2BEI(2$)-U3481(3Nl-U,.sl(4.M)U5.05 004810 
C COMPUTE B PRIME*BIGR 004B20 

00 13 I.tSIE 004830 
00 2 N-i5 004840 
DEFINE (P(N)t.(N)(,eI)), FE(N} F(N)(*.I.l)) 
DO 2 M.lt5 

004350 
004860 

DEFINE (Al(N414 A(N,)(*.1))
OFINE (5(NN),8(N1)(.*9if).(B2(N.Mh8(NM)(e.*t-1)l 

004870 
004880 

2 OEFINE (Cl(N.M),C(NM)(,0,I)l
O0 14 N.I. 

004890 
004900 

14 F1(N)SFI(N)AI{NI)-F(l).A(N,2)F22)-AIfIN,3)72(3) 004410 
*A1(N.4)F2(4)AI(N5)F(S1 004920 

C COMPUTE 8 PRIME 004930 
00 II Nl.S 004940 
DO 11 M.1,5 004950 
It23.1)-Al N44) B2(4.MPA14.5) 82(5W4) 004970 

C INSERT LUOEC AGAIN 004980 
Ll SI./H(tl 004990 
L21SM(2.l3 005000 
U12.M(l2)*tLll 005010 
L22-1.i(H(2.2)'L2IU12) 005020 
Ul3H(l.3)*Lll 005030" 

1-B-8
 



U14uH(1.4) L11 005040 
U15SN(IS) L11 005050 
L31SH(3,1) 005060 
L32-H(3.2)-L31'U12 005070 
U23.(H(2,3)L211J13) L22 005080 
L333l./(N(3.3)-U13-L31.U23L32) 005090 
U24(H(2,4)-L21U14'3t.22 005100 
U25a(N(2.5)-L2-U1I5) LZ2 005110 
L41ei4(4,) 005120 
L42uH$t(4,-L41-U12 005130 
L43.H(t43)-L4IlU13-L42*U23 005140 
U34.(H13.4)-L31*UI4-L32.UZ4)*L33 005150 
L44fl/(H(4,4)-U14OL41-U24L42-U3.L43) 005160 
U35-(M(3.5)'L31-U15-L32-U25) L33 005170 
LSLH*(5.1) 0051R0 
LSZtH(S,2)-LSIU1l 005190 
LS3N (5.3)-LS1U13"L52*U23 005200 
L54SHNS.4)-L51*U14-LS2U24LS3U34 005210 
U45(X(4,53.L410U15"L42*U25L434U35)*L44 005220 
LSS.I.d(H(S*.).LSIOUIS-L52U2S-L53U35L5.$45) 	 005230 

C 	 COMPUTE LITTLE RIS 005240
 
01SL11eFIC) 005250
 
02L22CF1 ()L2101) 005260 
03-L331(F(3)-L31*OI-L32402) 005270 
04xL40(FI(4)-L41*U-8202-L43*03) 005280 
05*LSS'(Fl(S)-L51-D1-L52.02-LS303-L5D4) 	 0052q0 

C 	 COMPUTE BIG RIS 005300 
F1(5)305 005310 
FI4).G4.U4SDS 005320 
Fl(3)s3"U34-F*94)-U35*O5 005330 
FI(2) D2U23 F((34jUFI(4l.U25-05 005340 
FIP()--U12EFl(2)-U13FI(3)-U14*F1(A)-U15*O5 005350 

C COMPUTE C PRIMES 005360 
00 15 M.1.5 005370 
O1=L11*CIl(.N) 005380 
02-L22-(C1(2,1)-L21eI0U 005390 
03.L3r(C C3,M)-L310O1-L32O) 005400 
OL4r(CI(4.M)-LI*D-L4202-L43t03) 005410 
05SLSS(Cl1St.)-LSI01-LS202-L53O3-L54.04l 005420 
81(S5).M05 005430 
81 (4.M).0.oU45*O5 005440 
81(3.,) -'03-U3S*9I(4,M)-U35.05 005450 
81(2,M) . 02-U23'81(3.H)-UJ2481(4,M)-U25S05 005460 

15 31(1,M) - D1-U12.-B1C2,).UI3-81(3.M)U-U1481(4.Ml-U15OS 005470 
13 	 CONTINUE 


I=lU 


00 3 N-1.5 

DEFINE (FI(N).F(N)(-*-,IU))*(F2(N) INI(IOtU-1)) 

00 3 8.1s5 

DEFINE (AI(N,M),A(Nf.M)-(,IUI)


3 DEFINE (81(N.M),8(NM)(*,*.IUU), (824M.M),(N.M 

C COMPUTE 8 PRIME86IG R FOR LAST ROW 


00 17 N.1,5 

17 F1(N)aF1(N)-Ai(N,1Jfl(1)-A1(N,2)*FlIZ,-A1(N,3)* 

1 F2(3).A(N.4)-F2(41-A1(NS).F215) 
C COMPUTE B PRIME 


00 18 N.j,5 

00 18 ".I's 


0054A0
 
0054"o 
005500
 
005510
 
005520 
005530
 

,.l)) 	 005540
 
005550
 
005560
 
005570
 
0055R0
 
0055P0
 
005600
 
005610
 

18 M(NMI.R(N)-AIN,).82(1,M).AI(N,2).82(2MI-A1(N31* 005620 

*82(3,NI-AI(N,4)82(4MI-I(N.S)62(5M) 005630 
C INSERT LUDEC AGAIN 005640 

L~llI./H(1.1l 005650 
L213H(2.1) 	 005660
 

1-B-9
 

http:L~llI./H(1.1l
http:03-U3S*9I(4,M)-U35.05
http:U24(H(2,4)-L21U14'3t.22


U12%$II,2)-LIt 005670 

LZ2.1./(Hf2,2)-L21UI2) 
U13NM(1.3)*L1 
U14.H(1.4)0Lll 

0o5680 
005690 
005700 

U1SH(1,5)-L1 
L31=H(3,1) 
L32-.(3,2)-.L31UI2 
U234(H2.3)L21IUI3) Li2 
L33ul./(N33)-UI3-L31-U23-L32)
U24.(H ,(2t L21UUIj L22 
U2Ss(H(2,5)-L21*U15)'Li2 

005710 
005720 
005730 
005740 
005750 
005760 
005770 

L413H(4,9 ) 
L42.N(4.2)-L41*UI2 

005780 
005790 

L43.H(4.3)-L4lU13-L421U23 
U34.s((3.41)L31-UI4-L32-U241-L33 

00s800 
005810 

C 

L44../H(4.4).UI4-L41U24L42-U34-L43) 
U35.(H(3.5)-L31UISL32*UaSIL33 
LSIHSI) 
L5Za'5,2)-LS1IlU2 
L53-M(5,3)-L51*-U13-LS U23 
L54.K5,.4-LSIUI4oL52U24-L53-U34 
U45sIH(5)L41-UISOL42EU25-L43'U35)4L, 
L55I./(H(5,5)-L51IU1.LSU29SL53-U35-L 
COMPUTE LITTLE RIS 

U5) 

00s820 
005830 
005840 
005850 
005860 
005870 
00S80 
005890 
005900 

OWLIIFI(1) 
02-L22-(F1(2)-L21'O1) 
03'L33 (FI(3)-t31-O1.L32*D2)
04L44 (FI(4).L41CU1-L42*Z0-L4303)
DSLSSFl(5)4L51*I01L5202-L53'03-LS404) 

005000 
005920 
005930 
005940 
005950 

C COMPUTE IG RIS 005960 
Ft(5).05 
Ft(4)u04U4505 
F1(3)503-UO*FI(,U35'05 

005970 
005980 
005990 

FI(2)u02-U23*FI(3)-U24f l(4).U2505 
FI(1)01-U1P2FI(2)-U13F'(31oUI4Fl(4)-U5D05 
I*IU 

006000 
006010 
006020 

20 I-1 006030 
00 4 N-1,5" 006040 

6 
DEFINE (FUN)t0(N) (*o,)) 
CONTINUE 

.(P(N) ,9Ni'..t 3 006050 
006060 

00 19 N.1,5 006070 
19 Ft(N).F1(N)$2(1l*81(N,1)oFE(2)fllN,2)F23'81(N31

-F2(*)e0t(N.4) F2(S)8(N.) 
006080 
006090 

IF (1.GT.IL)GOT020 
RETURN 

006100 
006110 

END 006120 

1 -B-1 0 



APPENDIX C
 

IMPLICIT RIGHT-HAND-SIDE SUBROUTINES
 

000100
SUBROUTINE RHS 

COMMON/8ASE/NMAXtJMAXKMAXtLMAX.J$,KMtLMDTiGAMMAGAM,SMUtFSMACHt00110
 
I OX1,DYIOZ1.MD.ND2.FV(S)-FD(S),ND.ALP.3D.ONEGA.HDX.HDY.HOZ, 000120
 
2 RMCNBRPIITR,INVISCLAMINNPINT1,INT2.INT3 
 000130
 

000140
 
CDMMON/REAO/IREAO.IwRITNGRI 000150
 
CONMONIVIS/REPRRMUERK 000160
 
COMMON/VARS/Q(243,30,O,30) 000170
 
COMMONIVARO/S(243.30.5.30) 


COMMONtgEO/NS81NsE,RFRONTtRMAXXRZNAXORADOXC 


000180
 
COMNONIVAR1/X(24330.30),Y(243.3030),2t243.30.30) 000190
 
COMMON/VAR3/P(120,30)XX(60.4),YY(60,4)tZZ(60*4) 000200
 
DYNAMIC ABCDISSDIXX(4),YYf4)tZZ4)XKLYKLaZL 000210
 
DYNAMIC FPFlF2 
 000220
 
DYNAMIC X,)L.YJL.ZJLXKJYKJ#ZKJ 000230
 
DYNAMIC RIJ,RFXKYKZKXL.YLtZLXJ.YJ.ZJ 000240
 
LEVEL E.Q.SX.Y.Z 000250
 
DYNAMIC 01.02.03,Q.,S06.07.QS 000260
 
DYNAMIC XI.Y1,Z1 000270
 
CONMON/FLSH/DX2.OYZOZ2 0002RO
 
COMON/IDX/LMMKMMtMM 
 000290
 
COMMON/BTRIO/A(55J.8(555)OC(SjSD(5,5)hF(S) 000300'
 
RO . HoZ 000310
 
00 1000 J.2,4MAX-IJSL 000320
 
RJSQ(,.,6.JI.J.JSL) 000330
 
XULeX *..,U-1:J..JS*i) 000340 
YJL-Y( ,J.1:-JJSL-1) 000350
 
Z.JL*Z (,*.1-tU*JSL*1) 000360
 
Q1.Q(t.,14dJSL) 000370 
g~uQ(*.{e,24td.JbSL) 000380 
Q3SQ(*,-,3.J..JSL) 000390
 
Q4.0(*.*,4.JZdJJSL) 
 000400
 
O0 C*,..5.JJ.USL) 
 000410
 
XKS(XJLC3KMAX*2.t,21ISLtI)-XJL(.IIKAX.I., 2JSL-1))-DY2 000420
 
YKa(yJL(3IKNAX.2*. 2,hSL.I)YJL(-IIKMAX..*.,2JSL*I))*OY2 000430
 

ZKI(ZJLI3SKMAX42,-t12JSL*1)-ZJL(.LIKNAX-I,*,2IJSLI))*OY2 O000
 
000440
 

X4*(XL. *,31JSL.2).KLO,, IIJSL))0OX2 


EL*2)-YL(f.I:JSL)UDOX2 000460
YJ(YJL( ,*,,33 

000470
 

ZZ(1).(YJZK-ZJYK gJ 000480
 
ZZ(2)t(XK-ZJ-XJZK) RJ 


ZJ*(ZJL(.,,31SL.2)-ZJL(*,-.JSL))eDX2 


000490
 
000500
 

ZZ(4l.-OMEGA(ZKJ{l-,,2tJSL*I)-ZZ(2)-YKJ(-.-,2IJSL*1)-ZZ(3)) 000510
 
C 


ZZ(3).(X4-YK.YJXKIRJ 


000520
 
C.*.FLUVE 000530
 
C 
 000540
 

RR . 1/01 
 000550
 

U - 02-RR 
 000560
 
V - Q3-RR 
 000570
 
W - Q4RR 
 0005R0 
OS . 2ZL(4)Z2()-UZZC2)'V'ZZ(3)W 000590 

PP 1 GAN!0E5,QlflU.UVVW)4)) 000600 
F1(1) 01QS 000610
 
F1(2) - Q2QSZZ(1)-PP 000620
 

F1(33 - 030QS.ZZ(2)-PP 
 000630 

F1(4) - Q4QS0ZZ(3*PP 000640
 

FLS) - (05PP)*OS-ZZ(4I*PP 
 000650
 
000660
C 

000670
 

C 000680
 
00 20 N.1,5 000690
 
DEFINE tF2,FI(N)). (S2.S1(N) 000700
 

S2(2LMAX.,*)s(F2(-3ILNAX2,).F2(-,ILNAX,) )*AO 000710
 

20 CONTINUE 


.....ENO OF FLUXVE
C .


000720
 

-0!I.C 

<Z-}

http:01.02.03,Q.,S06.07.QS
http:RIJ,RFXKYKZKXL.YLtZLXJ.YJ.ZJ
http:COMNONIVAR1/X(24330.30),Y(243.3030),2t243.30.30
http:COMMONIVARO/S(243.30.5.30


C 000740
 
C 000750
 

R0 . -HOY 000760
 
XJ(XJL(t,34 SL2)-XJL(*1,11JSJ )3eOX2 000770
 
YJ-(YJL,*,-3;3JSL.2)-YJL(C*,,IJSL) DX2 000780
 
ZJ.(ZJL(O,-,3JSL2).ZJL-l il'JSL))OX2 000790
 
XLS(XJL(.,21LMAX-l,21SLI)-XJL.,IIL4AX-1.21JSL1))*0Z2 000800
 
YL.(YJL(,21LMAX.1I12JSL.I)YJL(*,.ILAX-1.ZIJSL-l) 1*Z2 000810
 
2L3(ZJLc(-,I2LAX1.2:JSL1)-ZL(*,-IILMAX-I,2kJSLl)) DZ2 000820
 
YY(1)r(ZJ*YL-YJ-ZL) RJ 000830
 
YY(2).(XJ0ZL-XL*ZJ) RJ 000840
 
YY(3)a(YJfXC-XJYL) RJ 000850
 
YY(4)..OHEGA*(ZJL(.,21JS'1)YYt2)YJL(*,,21JSL1)YY3)) 000860
 

C 000870 
C.......FLUXVE 000880 
C 000890 

QS - YY(4)*YY(1)2UYY(2)*V-YY(3)'W 000900 
PP s GAM!*(OS..5001*(UOUV*VVW*OW)) 000910 
Fi(l) - QS-Qs 000920 
F1(2 - Q 2QSYYtI)PP 000930 
Fi(3) - Q3*OS.YY(2')PP 000940 
FI(4) - Q4QStYY(3)-PP 000950 
Fi(s) - (QSPP3QS-YY(4)tPP 000960 

C 000970 
C *.....END 000980Of FLUXVE 

C 000990
 

00 21 N-I's 001000
 
DEFINE (F2,F(N)I. 1512,SI(N)i 001010
 
S3(2tKMAX1.t,-)(F23tKMAA2-,t,3)F2(IIKMAX,*,))RO 001020
 
5282-523 001030
 

21 CONTINUE 001040
 
C 001050
 
C 001060
 

RO . -HOX 001070
 
XK(XJL(IKMAX.1.*q21.SLI)fXJL(.1IKMAX.I,,2USL1)) DY2 001080
 
YKs(YJL(21MAX*I,-,2tJSL.I)YJL(1-1sKMAX-I,*234SL1)) OY2 001090
 
ZK.(ZJL(2IKMAXII.EhJSL.I)-ZJ(.I-KAX-I,,21JSL1)*0Y2 001100
 
XL.(XJL(-,21LNAX.1.2JSL.I)-XA (-.,.ILMAX-.1,SLnI))0OZ2 001110
 
YLS(YJL(*,22LUAX1.2:JSLl)cYJL(,.3LMAX-12tJSL1))'OZ2 001120
t

ZLa(ZJL4 ,2LAX.121JSL,1)-ZJL(-.-LILMAX-1421JSL1) 0Z2 001110
 
XX(I.(YKfZL-ZK-YL)RJ 001140
 
XX(2).(ZK*XL-XKZL)RJ 001150
 
XX(33S(XK-YLYK-XL)-RJ 001160
 
XX(42.-ONEOA*(ZKL(*,,21JSL)tXX(2)-YKLCL,,21JSL)XX(3)2 001170
 

C 001180
 
CQ..... LUXVE 001190
 
C 001200
 

QS - XX(4)*XX(I)U*XX(2)*V*XX(3)t 001210
 
PP . GAHI*(Q5-.SOQt(IJU.V*V-W.Wl) 001220
 
Fill) - Q10Q5 001230
 
F1(21 - 02*QSXX(1l)PP 001240
 
F1(3) - G3'QS.XX(2)tPP 001250 
FI() 045*0SXX(3)*PP 001260 
FlS) . (QSOPP)tsSmvX(4)&PP 001270 

C 001280 
C ... *END Or FLUXVE 001290 
C 001300 

00 22 N.1.5 001310 
DEFINE (F2.FI'(N)), S2,S1(N)1 001320 
S3(e*,21JSL1) - (F2(*,t,3(JSL#2)-F2(*.*,hJSL)) R D0 001330 
S2.$2+53 001340 

22 CONTINUE 001350 
IF(INVISC.!Q.1) CALL VISRHS 001360 

1-C-2 

http:GAHI*(Q5-.SOQt(IJU.V*V-W.Wl


D0 1000 N-1,5 001370 
DEFINE (S4.S(N)) 001380 
34121KMAX-1,ZILMAX-I.4IJ.JSLSS2NI 001390 

1000 	CONTINUE 001400
 
RETURN 001410
 
ENO 001420
 
SUBROUTINE VISMAT(JA.KA) 001430
 
COM ON/9ASE/NMAX.,fMAXKMAXLMAX,.MJKML$.OTGAMA.GAMIS)UFSACH,001440
 
SDXI*.OYIDZ1.NONO2,FVS) .f(S),HOALP.G,OMEGA.HoXHxY,MOZ. 0014O0
 
2 RMCNBAPIIrRINVISCLANIN.NPINTIZNT2,INT3 001460
 
COMNON/GEO/NBINB2,RFRONTRMAXXR.XMAXDRAD.OXC 001470
 
COMMON/REAO/IREADIWRITNGRI 001480
 
COMNON/VIS/REPRRNUE.RK 	 001490
 
COMMON/VARS/Q(243,30,630 001500
 
COMMON/VARO/S(243.30,5.30) 001510
 
COMMON/VARI/X(243,30,30).Y(243,30.30).2(243,30.30) 001520
 
COMNON/VAR3/P020,30).XX(,h.YY(4)hZZ(4) 001530
 
LEVEL 2.C.S.XY.Z 001540
 
COMMON/BTRID/A(5,S),8(S,5).C(,ShO(SSh F(5) 001550
 
CONMON/COUNT/NCNCI 001560
 
COMMON TURMU(243.30,30 001630
 
OIMENSION 0U(5,5) 001640
 
DYNAMIC 0,OU.SO.SIS2.S3,SAS5.S6.CO.CI.C20C3,Cl.CS.C6 001641
 
DYNAMIC A.8,CRRRJ.OIOU1 001642
 
DYNAMIC XXYY.ZZt HJQSRR, UVM 001643
 
COMNON/MUR/ L. RJ.Q5,RR. U,V.w 001644
 
JS.A 001650 
K.KA 001660 
GKPR a GAMMA/PR 001670 
PRTR 	. PR/0.9 0 O1690
 

t

ORE . *NO/(RE 0Z1-*21 001690 
R3 . 1./3. 001700 
TURN * TURMU(KL.J) 001710 
VNU . RMUE.TUR 001720 
GKAP * RIUE$PRTROTURM 001730 
SO . (ZZ(1)t*2ZZ(2)**2.ZZ(3)**2)tRJ 001740 
SI . (SO *#3*Z2(1)ee2-Rj)fVN 0017S0 
S2 . (So *P3-ZZ(2).t2tRJ).VNU 001760 
S3 . (50 *R3tZZt3)fl2*RJ)'VNU 001770 
S4 9 R3ZZ(1)*ZZ(2)*RJ*VNU 001780 
S5 . R3*ZZ(I)SZZ(3)OR4OVNU 001790 
S6 * R35ZZ(2)*ZZ(3)]RJ.VNU 0(1800 
30 . SO *GKPR-GKAP 001810 
E - O5-RR 001820 
CO - (301*t.,2SLMAA).SO(t,',IILNAX.10) 001840 
Cl - (SlC.-,21LMAXISI(t,.ILMAX-I)I 001850 
C2 . (52(-,e,21LHAX)S2(e,',ILAX-I)I 001860
 
C3 a (53(*t,2ILMAA).S3( *IsLNAX-1)) 001870
 
C4 . (S4(-, i2tLMAA)S4(*.e1IILMAX-1)) 0(1880
 
CS a (SS(',*,2LHAA)SS(...IiLAX-1)) 001890
 
C6 . (6(*,,21LMAX).S6(*.,IILNAX-102 001900
 
DEFINE(O(2,lS3i,(KMAX-2,1IJSL,ILMAX-1I, 001910
 
OEFINE(DU(2.5],(IIKMX.2,IIJSLIILMAX-11) 001920
 
OEFINE(O(3.5).(IIKNAK-2,IJSLIILMHAX-1) 001930
 
OFINE(DU(35).(1KMAX-2,1tJSLIILMAX-1)) 001940
 
DEFINE(0(4.5).(1KMAX-2,I:SL.ILMAX-1)) 001950
 
DEFINEO0U(4,S3,tIIKMAX2,1 JSLILMAX-1)) 001960
 
0(2.1) . *(CI*U*,*,1;LMAX-1-UC4*V(,*,l:LMAA-) )CS- 001970
 
1 W0S*ItLMAX-1f)RR94*,IILMAX-1) 001980
 

CS  

OU(2,1). .(ClU(*te,21LAMAX) C4V(*.-.2tLMAX).	 001990
 
1 W(*t*-2LMAX))NRR(,{-tIILAX-1) 002000 
D(.Z2) * CIARR('.1I:LAX-I) 002010 
OU(22) * CI*RR(.*,2LMAX) Co02020 

I-C-3
 

http:53(*t,2ILMAA).S3
http:301*t.,2SLMAA).SO(t,',IILNAX.10
http:0,OU.SO.SIS2.S3,SAS5.S6.CO.CI.C20C3,Cl.CS.C6
http:COMMON/VARI/X(243,30,30).Y(243,30.30).2(243,30.30
http:COMMON/VARO/S(243.30,5.30
http:COMNON/VIS/REPRRNUE.RK
http:VISMAT(JA.KA


0(2.3) . C4RR(*,lLMAX-1) 002030 
OU(2.3) . C4*RRf(*,.2tLMAX) 002040 
0(2.4) CS*RQ(,1tvLMAX-1) On20so 
0U(2,4) * CS*RR(*,,*2tLAX) 002060 
O(2,s) * 0.0 002070 
0U(2.5) . 0.0 002080 
0(3.1) = -(CZV(,,11L4A-).C4U(*,,1OLMAXII.C6 002090 
I W4(*,.IILAX-1))-RR(f..ILAX-1) 002100 
DU(3,1)s -(C2.V(t,,21LNAX)-C4-U(Jt,.21LMAX)aC6. 002110 
1 W(t.,21LNAX))CHR(., IILNAX.I) 0021p0 
0(3.2) . C4*RR(t-,-lLMAX.1) 002130 
0U(3.2) = C4*RR(C.-,21LHAX) 002140 
0(3*3) . C2.RR(.,',I:LuAX1) 002150 
0U(3.3) . C2'RR(.,,2LMAX) 002160 
0(3.4) C6ORR(-."UtlLMAX-) 002170 
OU(3.4) . C6SRR(',21LM4X) 002180 
8(3.5) . 0.0 002190 
0U(3.S2 - 0.0 002200 
0(4.1) . -(C3*W(*.-*,1LMAX1).CS-U(-.SLLNAX=1).C6. 002210 
1 V(*o.*IILAX1))RR(*t,01$LAX1) 002220 
OU(4.1) a-(C3'W(. .,2LMAX)CSU(,*,2LMAX) C6 002230 
1 V(t,-.2ILNAX))4RRft,.,11LAX1) 002240 
0(4 2) a CS*RR(eSILMAX-1) 002290 
OU(4.2) . CStRR(..21tLAX) 002260 
0(4,3) . C6-RR(*,.lILMAX1) 0A2270 
OU(4*.3) C6*RR(-.,.2LMAX) 002280 
0(4 4) . C3*RR(t.*,IILLAX-I 002290 
OU(4,4) . C3'RR(-,

4
,21LAX) 002300 

0(4.5) . 0.0 002310 
DU(4.5) * 0.0 002320 
0(5,l) . -((C1.C0)*U(.,.1ILMAX.1)fl2.(C2.C0)*V(o,1:LNAX°1).o? 002330 
1 *(C3.CO)*W(*,t.1ULMAX-1)4*22,C&OU(t*..IILAXI* 0023.0 
2 V(O-,l.LNAX-I)-2.CSU(,*,1SLLMAX-)OW(,t-,1LAX13 * 002350 
3 2.tCAV(r, 1;LMAA~1ew (*.1L4AX1)* 002360 
4 COE(E*,.ttL)4AX-1))tRR(.,IILHAX-1) 002370 
DU0S.1) - -((C1'CO)'U **2*(C2-C0)-V -2(C3-CO)-W --2- 002380 
1 2.C4'U 'V *2,CS'U *w "2.*CV -W *CO.E )*RR('-,2LAX) 002390 
0(5.2) = ((C1-C0)*U(#.*,ILN±X-fl4C4.fl....lLMAX~t).C5* 002400 
1 W(.,-.1L4AX-1)).PR(,LAX-1) 002410 
0U(5,23* ((Ci-CO)U*(,*,21LfAX)C4*V(',-,2tLMAX).CS. 002420 
I W(*...2ILMAX))*RR(t-.jIILMAX.j) 002430 
0(593) a ((C2.CO)V(*9,*,tftIAX-1).C4*U(.t*,1LMAX-1).C6 002440 
1 W(*,*.IILNAXI)) RR(.a,.1ILMAX-I) 0024S0 
OU(5.3)s ((C2.CO)IV(S...21LMAX).C4*U(C**.2:LMEX).C6. 002440 
1 W,(*,.,2LMAX)2.RR(*,..1ILMAX1) 002470 
0(5.41 . ((C3.CO)*W(*,.,ILMAX.1).CS*U(-,.,ILAX.1).C6. 002480 
1 V(t.tIILMAX-1))-RR(-,4IILNAX1) 002490 
OU(5,4) . ((C3C0)W *CS*U *C6V '1R('..,2,LNAX) 002500 
0(5,5) - CO'RR(,-'.ILMAX1) 002510 
OU(5.S) * CORR(*M.*.2LAX) 002S20 
O0 31 N . 2,5 002S&0 
00 31 m - 1,5 002550 
OEFINE(O,O(NMl) (DU1,OU(N,4)) 002560 
A(N.M]SA(N.M)*OR~E*Q (t*t2(L$AX.1) 002570 
B(NM).(N.M)-DRE.(DI(.,.,3ILMAX).0UI(o,4,e)LAX1) 002500 
C(NM,*C(N.M)*0RE*OU1(e*,*3LNA*) 002590 

31 CONTINUE 002600
 
RETURN ;%002610
 
ENO :4, , 20 
SUBROUTINE V!SRMS 1/1'"02630 
COHMON/BASE/NHAXJMAX.KMAX LMAXMKMLM, OTGAMMIA.A$ISM4U.FSIjAC9,'O 2640 
1 0XIDYI.0ZINDN02,FV(S).FO 8.4DALP.G0tONEGAHOX0 4,HOZ. - 002650
 
2 RNMCNBR.PIITR.INVISCLAHIN.NP.INTIINT2 INT3 1 002660
 

1-C-4
 

http:0XIDYI.0ZINDN02,FV(S).FO
http:C3.CO)*W(*,.,ILMAX.1).CS*U(-,.,ILAX.1).C6
http:W,(*,.,2LMAX)2.RR
http:C2.CO)IV(S...21LMAX).C4*U(C**.2:LMEX).C6
http:C2.CO)V(*9,*,tftIAX-1).C4*U(.t*,1LMAX-1).C6
http:Ci-CO)U*(,*,21LfAX)C4*V(',-,2tLMAX).CS
http:C3*W(*.-*,1LMAX1).CS-U(-.SLLNAX=1).C6
http:CZV(,,11L4A-).C4U(*,,1OLMAXII.C6


COMlON/GEON81 .N52,RFRONTRMAXXRXMAX.ORAOOXC 002670
 
CO4ON/REAO/IREADIWRITNGR! 002680
 
COMONVS/RE.PRRMUE.RK 002690
 
COMON/VARS/9(243,30,6,30) 002700
 
COMON/VARO/S(24.30.6.30, 002710
 
COMON/VARI/Xl(24J.30,30),Y(243,30,30),ZL3433030) 002720
 
COMMONJVAR3/P(120.30),XX(4).YY(4) ZZ(43 002730
 
LEVEL a.Q.S.XXY4Z 002740
 
COMMON/8TR!O/A(S.S)8IS,5)C(S5,)3,05.5),F(S) 002750
 
COMMON/COUNT/NC.NCI 002760
 
DYNAMIC so.S1,S2,S3,S4SSS6,1TT2,T3T.TST6,T7 002770
 
DYNAMIC RJ.ZZUV.W.E,TB.T9,TOT11*,T2,TI3,1T4. 1ST6 002771
 
DYNAMIC oU.0OvtoWEr,;2,p3.F..FsR R3 002772
t tR4,R5.S2. 

COMMON TURNU(720.30) 002830 
!F(LAMIN.EO.I) CALL MUTUR 002840 
GKPR V OA4MA PR 002as8 
.PRTR .PR/0.9 00260 
OE . xO,(REboZln ) 002E70 
TURN s TURMU(KtLJ) 002080 
VNU . RHUE-TURH 002690 
GKAP . RUEPRTR*TURM 002900 
00 2000 LSILMAX 002901
 
UI(1IKNAX-2,llJSLeL)3U(*,L ) 002902
 
V II:KMAA-2.j 5USL.L)-V(- 002903
) 

WI(I:KAA-2,IJSL.L)-(e.L.) 002904
 

2000 CONTINUE 002905 
00 1000,N.S13 002906 
OEFINE(Zt.ZZ1(N))h(ZZZZZ(N)) 002907 
ZI(15KMAX-2,1,SLL)ZZZ4tL.I 00290A 
SO . (ZZ(1)**2ZZ1(2142-.ZZ1(3)t*2304JI 002910 
Si . (SO *ZZ1(I)..2,3.tPJ)*VNU 002920 
52 * (SO *ZZI(2)**/3.tRJ)-VNU 002930 
S3 . (SO *ZZI(3)t-R/3.*Rj)VNU 002940 
S4 * (Z2I(1)ZZI(2)/3.*RJI)VNU 002950 
5 . (ZZI(1)ZZ(3)/3.*RJI)VNU 002960 

56 * (2Z1(2)*ZZI(3)/3.*RJ1])VNU 002970 
SO a S0 -OKPRGKAP 002980 
E . Q5RR91-S-(U *-2.V..-*w *2) 002990 
TI . S1O.2)-SI(..-,1) 00310 
T2 . 0..2)'S2('.1) 003020 
T3 . S3('-,.2)tS3(s',l) 003030 
7 s S.( e*S4(..13 003040 
75 •S5( .. 23.SS(.,1) 003050 
T6 . S6('.-.2).S6(* 1) 003060 
T7 . U1(,,2)*SIlt,2).UI(,,1)S1.',13 003070 

T8 - VI(..2 )*52.2.9(.)*S2(*..lP 003090 
19 -I(,,)S('2.w **1'3~.1 003110 
710. U1(O,',2)*S4(.~,2l.U1(*,.1)S4( .. ) 003130
 
T11 U1i*,,2)lSSl,2).Ul(,,I1S5( ,.l) 003150
 
112= V1(*.,t2)'s4(e.*,.)VI(C, l)S(,Ot.1) 003170
 

T13. V1(.,*,2)*S6(*,23,V1(*,*.1,4S6('..,1) 003190
 
714. 1*,)S(,),~(,,)5*.1 003210
 
T15* w10..,Z)*56(.*,2).WCet,.)56(.,13 003230

116'S0( .. 2)'S0(.'.1) 003250
 

0U . (U1(,,23-U1(,,1)1 003260
 
OV * (V1(,,2)-V1 *tl) 003270
 
DW =W(,)Wl,.) 00320
 
0E0 = (e(*.'2)-E(.'.)1 003290
 
RE - 71*DU.T4OV.T5-DW 003300
 
R3 z 74OUT2OV.TtDW 003310
 
R4 - T5*OU*T6*OV*T30OV 003320
 

AS . (r7.T12.T14)OU.(T8.T10.rIS).0v'(T9TllT3)'Ow*T16DEI 003330
 
00 1000.L*2,LMAX-I .003331
 

1-C-5
 

http:S6('.-.2).S6
http:TURNU(720.30
http:tR4,R5.S2
http:COMON/VARO/S(24.30.6.30
http:COMONVS/RE.PRRMUE.RK


Ti 8 S.(*.,L*134S1(t.*,L2 003340 
T2 a 521*.*L.1).S2(t*t.L2 003350 
T3 * S3(',-,L-I)'S3(-.-,L) 003360 
T4 * S4(,,,L-l)S4(-vL) 003370 
TS . SS(*.-,L.1) .St,(.L) 003380 
T6 . S6(*,,L.1,*S6(,-,LJ 003390 
T7 * U 003400 
T8 - V1(.,0L*I)S2(,L*i)Vl(,,L)*S2(.,LJ 003410 
T9 wl(c,,L.1)*S3(*,.,c.1),v4(O,.,L)*53(* L) 003620 
TIOU Ul1(l,*,L.)S4(.,*,L.1),U1(,tL2@54(*.,L) 003430 

TIF• VI.'*,L4IV*S.V , 00340
 
T13. TV003460
 
T14. 003470
711. U(,,L.I)SSC,,L*181,,)5o,,)003440 

T16. St*.-OL.1).S0(,L) 003490
 
T12-~ O*TeV 6O 003450

CU - U .L 1* )003500
 
V - ( ,-13L003510
 

OW - CfS W (,-L) 003520 
DT15- ;ItI;HX5I~StT A ] 0035A0

CE! * (5 LE5L003530
 
F2 - T1mUT4OV.T5%W 003540
 
F3 - T4*OU&TZ*V*T64 003550
 
F4 - TS*OU.T6.DV.T13W -003560
 

FS . (CTV.T.2.T1Et0UJflS.TXOTlS)OV4T9.TIITl3lrW.116.OE! 003570
 
DEFINE cU1(1;(IKAX.2.1IJ5L,1ItNAX=Z)) 003580 
Dci) . 0. 003590 
F(1 .)$n 2 003600 
F(3) * F3.R3 003610 
FMO . P4R4 003620 
F(S) . PSIRS 003630 
R2 . F2 003640 
R3 . F3 003650 
P4 . F4 003660 
RS . FS 003670 
D0 40 N . 1,5 003680 

40 S2IN)sS2(NJ.P(N)*ORE 003690 
1000 CONTINUE 003691 

RETURN 003110 
ENO 003120 

1 -C-6
 

http:CTV.T.2.T1Et0UJflS.TXOTlS)OV4T9.TIITl3lrW.116.OE
mailto:Ul1(l,*,L.)S4(.,*,L.1),U1(,tL2@54(*.,L
http:521*.*L.1).S2(t*t.L2


APPENDIX D
 

IMPLICIT PSEUDO COMPILATION
 

SUBROUTINE STEP 000100 
COMMON/BASE/NMAXJMAXKAXILAXJMKM.L$,OT.SAMNA.GAMISMU.FSACH 000110 

H

I 	 OXIDYI.DZ1.NO.N02.FVCS) ,FD(5),fDALPGDOMEGA DX.DYMOZ 000120 
2 *RMCNBR.PtIgTR,INVISCLAMIN.NPINTI,INT2,INT3,LSLJSL 000130
 
COMMON/GEO/NBI.NB2,RFRONT,RMAXXR,XMAX.ORADOXC 000140
 
COMMON/REAO/IREAO, WRITtNGRI 000150
 
COMMON/VS5REPRNMUEtRK 000160
 
COMHON/VARS/Q(24,30,6.301 000170
 
COMON/VARO/S(24.3015.30) 000180
 
COMMON/VAR1/X(24,30.30),Y(2430.30),Z(2,30.30) 000190
 
COMMON /VAR3/Ptl22,30).XX(4).YY(4)vZZC4) 000200
 
COMMON/COUNT/NCNCI 000210
 
COMMON/BTRrD/A(5.S)I8(5S,),C(5.S),D(S.S),F 000220
 
LEVEL 2 2,S.XYZ 000230
 
DYNAMIC A.R.C.DS.SD.XX(4).YY(,).ZZ(I3.XKL .YKL 000240
 
OYNAMIC F.P1(S)r2,SI(5) 00025O
 
DYNAMIC ZKL 000260
 
DYNAMIC XJL YL ,ZJL ,XKJ tYKJ .ZKJ 000270
 
DYNAMIC OT1.OT2QT3,QT4,QT5,TV 000280
 
DYNAMIC RJ.RRUVWUUUTCIC2.C3,C4,C5.C6.C7 000290
 
DYNAMIC RMJ,RFXKYK.ZK.XLYLZLXJYJ.Zj 000300
 
DYNAMIC OPLUS(5,5JDMIN(551,gOES(8,2)XYZ(3,B) 000310
 
DYNAMIC OI.2.03,04,Q5 000320
 
DYNAMIC Xl.Yl,ZX 000330
 
INTEGER GINPOS.QOUTPOSXYZPOS.FDESC(5),SOESC(S) 000340
 

C 000350
 
CALL BC 000360
 
CALL RHS 000370
 
CALL SMOOTH 000380
 

000390
 
C COMPUTE LB RESIDUAL 	 000400
 
C 	 000410
 
C 	 THE CONDITIONAL BRANCH CODE 000420
 
C.FI(NC.EO.I) GO TO 5 	 000430
 
CI IFjNC-(NC/0)lO)S5,6 	 000440
 
C ... S CONTINUE 	 000450
 
CAN BE REPLACED By 000.60 

000470 
IF(MOD(NC,10).NE.O)0O TO 6 000480 

000490 
RESIO - 0.0 000500 
KHH . KM 000530 
LHH . LM 000540 
DO 10 N = 15 000550 
00 10 L . 1,LMH 000560 
00 10 K - 1,K$H 000570 
O0 10 J.2.Jm 000580 

10 	 REBID - RESID-S(K.L.N,J).*2 000590
 
RESIn - RESID/((JM-I)(KMHI).(LMHYNI) 000600
 
RESTO S 000610
5QRTiRESIDI/OT..00005) 


C 
 000620
 
C CAN BE VECTORIZED AUTOMATICALLYHOWEVER THE THROUGHPUT OF THIS LOCAL 000630
 
C LOOP WILL Be LIMITED !0 THE BANOWIDTH OF THE INTERMEDIATE STORAGE 000640
 

WRITE(6,100) NCRESTO 000650
 
100 FORMAT(IHO.3HN. ,153X.I3HL2 RESIDUAL- P16.8) 000660
 

6 CONTINUE 000670
 

C 
 000680
 
C 
 000690 

AMN SMU 000700 
Ca t I..2.RM 000710 
GAM2 . Z.-GAMMA 000720 

C THE NESTED 00 LOOPI 000730 
C.... 00 20 L - 2,L4 	 000740
 

1 -D-1
 

http:FI(NC.EO
http:RMJ,RFXKYK.ZK.XLYLZLXJYJ.Zj
http:RJ.RRUVWUUUTCIC2.C3,C4,C5.C6.C7
http:COMMON/VAR1/X(24,30.30),Y(2430.30),Z(2,30.30
http:COMON/VARO/S(24.3015.30


Cf.. 00 20 K a 2.KM 000750 
C CAN BE VECTORIZED IN SEGMENTS AS FOLLOWS. 000760 
C 000770 
C 

X 000780 
C.. FILTR 000790 
C 000800 

JA.2 000810 
JS-JMAX-j 000820 

C MAP RJ GTHRZM NRwJ$AX*LSLRSsKMAX-2,STaKMAXfKMAXtLMAX; WK-1 000821
 
CO MAP XKL GTHRI!M NRSJNAX2,RSaKMAXA(LSL.2),STXKHAXLMAXI WKt2 000822
 
CO MAP YKL GTHRIIM NR.JNAX.2,RSSKMAX*(LSL.2),STSKNAXLMAXI WK.3 000823
 
CP MAP ZKL GTHR:IM NR-JMAX.2,RSSKMAA*(LSL2ST.KAX*LMAXI WKa4 000824 
Cs MAP a1 GTHR:IM NR.JMAXLStLRSSKMAX.2,STKAXI 4AX.LMAX; WK.S 000825
 
CO MAP 02 GTHRI!M NR.UMAX.LSL.RSKNAX.?,ST.KMAXIXMAXLMAXI WKS6 000826
 
CO MAP 03 GTHRIIM NRRJMAX*LSLIRSAKHAX.2.STXMAXIXMAXtLMAXI WK.? 000827
 
CX NAP 04 GTHRIIM NHtJMAX*LSLRSaKMAXA2,ST.KMAXIKMAX-LMAX; WK8 000828

CO MAP 05 GHRi7 N NRJMAXOLSLRSaKMAX-2,ST.KMAXIKMAXLMAXI WK=9 000829
 

00 1000 Lu2,L4AXLSL 000830

C LSL IS THE NUMBER OF S4ICES(COLUMNS) IN L PER PROCESSING PASS 000840
 

LSM-SL3-1 000841
 
C 000850
 

O0 S N.15 000860
 
DEFINE (FI(NJ.F(2tKMAX-IL.LSM.N,21JMAX-I)) 000670
 

S DEFINE iSI(N3,S(23KNAX.1.LIL-LSM.N.2SJMAX.1)I 000880
 
0130(C.LZL-LSNj1,2JMAX-) 000890
 
022Q(0(LL*LSM,221,41AX-I) 000900 
G3Q(s-Lf-LSM3.2JMAX.I) 000910
 
Q043(-.LILLSM.4,2.JMAX.13 000920
 
QSQ(*,LIL*LSM5.2tJHAX-I) 000921
 

CA MAP 01" GTHRII NR.JMAX.LSL.RS.KMAX2ST.IMAXIKMAX.LMAX 000922
 
C HAP 02' G78I.1 NR.JMAXALSLRSKMAXZ2,ST.KMAXIKMAXLMAX 000923
 
CW MAP 03' GTHRJIH NRSJMAX*LSLRS-KMAX.2,STKMAXIXNMAX.LNAX 000924
 
CP MAP Q0. GTHRIM NRPJMAXLSL.RSKMAX-2,STKXMAXIMAX.LMAX 000925
 
CO MAP OS- G78R1M NR.4MAX.LSLRS.KMAX-2,STsKMAXIKMAX.LMAX 000926
 
C 
 000927
 

RJSQOI)KMAX-l.LIt.-LSM,6,) 000930
 
C 000931
 
CA MAP 84' THR8I8 NBRJ$AXRS.K$AXLSLST.KMAXLMAX 
 000932
 
C 
 000933
 

XKL.X('.LI|LSH1,21.JMAX-I) 000940
 
C 000941
 
CA MAP XKL' GTHRIN NR.JMAX.2RSKNAAt(LSL,2),ST.KNAX.LMAX 000942
 
C 000943
 

YKLY(*L-1IfLLSM.I1,J22NX-1) 000950 
C 000951 
CU MAP YKL 0THRI N NRSJAX2,RS.KNAX.(LSL.2)ST.KMAX*LMAX 000952 
C 000953 

ZKLZ(-,LIILLSM-.I SIJMAX°I) 000960
 
C 000961

CA MAP ZKL' GTHRI M NR.JMAX.2RS.KMAXA(LSL-2),STSXMAX.LMAX 000962 
C 000963
 

XX.(XXLI3#KMAX,2$LSL-.I)-XKL(IIKAX-,ZtLSL,*t),*DY8 000970
 
C 000971
 
Cc VEC xx SU6IMUL " VLSKMAXSLSL'IJMAX.2J WK.11.RK.2 000972
 
CO MAP XX CMPSIMN CVLSKMAX*LSL*CJMAX-2)iRL(KMAX-2)LSLCJMAX2)I 000973

C WK-21.RK.11 000974
 
C 000975
 

YKS(YXtU3IKAAX.21SL1I,.)YKLIIKHAX.2.a2LSLI.,)).OY2 000980
 
C 
 000981
 
CA VEC YK SUBIMUL VL.KMAX*LSL*IJMAX-2)I WKS12.RK-3 000982
 
CA MAP 7K CMPSIMM CVLSKNAXtLSL(JMAX-8.2RL.(KAX-2 LSL(J$AX.2) 000983
 
C. WK.22,RK.12 000984
 
C 000985
 

P. " 44 

1.-D-2
 

http:WK.22,RK.12
http:WK-21.RK.11
http:VLSKMAXSLSL'IJMAX.2J
http:Q043(-.LILLSM.4,2.JMAX.13


ZK(ZKL(3IK$AX,21LSL.l...ZKL(1KMAX-2,2 LSL1,* ).OY2 000990
 
C 000991
 
CA VEC ZK SUBIMUL VL.XMAXLSL(.JMAX.2)1 WKs13.RK.4 000992
 
CA MAP ZK CPS:MM CVL.KHAX'LSL.(JMAX-2),RLS(KAX.2).LSL*(JMAX-2); 000993
 
C' WK.23,RKf13 000994
 
c 000995
 

XL*(XKLC*,31LSL,-)-XKLC*t,:LSL-2,-')*OZ2 001000
 
C 001001
 
CA VEC XL SU51MUL VLsKMAX-LSLO(JMAX-2) I WK(14 001002"
 
CA MAP XL CMPSIMM CVLSKMAXtLSL.(JMAX-2RRL(KMAX-2)*LSLOJMAX-2); 001003
 
CA RKr14sWKs24 001004
 
C 001005
 

YLULYKL(*,3LSL,*)-YKL(*,IILSL-2,-))*0!2 001010
 
C 001011
 
CA VEC YL SUSIMUL VLAKMAXULSL(JMAX-2) I WK15 001012
 
CA MAP YL CMPSIMM CVLtKHAXLSL(JMAX-a),RLt(KMAX.2IULSL.(JMAX-2) 001013
 
C. RKS15.WKt25 00101'
 
C 001015
 

ZL2(ZKL(*,3:LSLeI-ZKLCI*,1LSL-2))*OZ2 001020
 
C 001021
 
CA VEC ZL SUSiMUL VLUKMAXtLSL(JMAX-2)0 WK-16 001022
 
CA MAP ZL CHPSIMM CVLUKMAX'LSL(4MAX.2) ,RLu(KfAXE) LSL( 4MAX-2)I 001023
 
CA RK.16,WKs26 001024
 
C 001025
 

XXII).(YKZL-ZKYL) RJ c.*-.2JMAX-1) 001030
 
C 001031
 
CA VEC Ti MULIMULISUB VL.(XMAX-2)-LSL'(JMAX-2)3 RK.26 001032
 
C 001033
 

XX(2) (ZKtXL-XK*ZL)RJ(,*s,21JMAX-1) 001040 
C 001041 
CA VEC T2 MULIMULISUB VL.(KMAX.2)'LSL*(JMAX-21 001042 
CA VEC Xx1 MUL VL.(CMAX-.2)LSL(JMAX-2) cRJT, 001043 
C. SSS XX2 AUL 'R.JT2, 001044
 
C 001045
 

XX(3).(XK*YL-'YKXL)-RJ(*..21JMAX-1) 001050
 
C 001051
 
CA VEC Ti MULIMULISUg VL-(KMAX-2)*LSL(JM&X-2) 001052
 
C 001055
 

XX(4) .OEGAZ(ZKL(ZIKMAX-1. LSLZlJMAX-1) XX(O2 001060 
1 -YKL(20KMAXIIILSL,2IJMAX.1)fXX(3)) 001061 

C 001062 
CA VEC T2 MULIMULISUG VL-(KMAX-213LSL*(JMAX-2) 001063 

CA VEC XX3 MUL VL.(KMAX-2)LSL(JMAX-2) 001064 
C. 55$ XX4 MUL <OMT2' 001065
 
C 001066
 

0(1.2) *XX(1*mOX 001070
 
0(1O.3) *XX2)HOX 00100O
 

C 001081
 
CA VEC 012 MUL VL=(KMAX-2)%LSL(JMAX-2) 001082
 

C' SS 013 MUL 001083
 
C 
 001084
 

0(1,4) .XX(3)-MOX 001090
 
0(1.1) sAX(4)-MDX 001100
 

C 001101
 
CA VEC 014 MUL VL=(KMAX2)*LSL*(JMAX-2) 001102
 
CA s$ Oil MUL 001103
 
C 001110
 
C'...**.AATRX OL120
 

C 001130
 
RR-I/Ql 001140
 

001141
 
CA VEC RR OtV VL.(KMAX-2)%LSL*(JMAX2)I RK.5 001142
 
C 001141
 

C 


1 -D-3 



U.RRq2 001150
 
VSRRQ3 001160 

C 001161 
Co VEC U MUUI RK7 VL. (KMAN-2)O LSL..(J$4X.2) 001162 

C- $33 V NUL 001163
 
C 001164
 

W.RR04 001170
 
UU . U*D(I.2J.V-0(I3).WD(I,4) 001180
 

C 06 1181
 

Co VEC TI MULIMULIAOO VLtfMAX-2)tSL(JHAX-2) CU*012*V-013> 001182
 
Cy VEC UU MULIHULIAOD VLSIM4Ax-22LSL*(JM&X-23 cT.woiRp.0,fl 00111A
 
C. RKs8 001184
 

001185
 
UT . U*.2.V* 2.W'*2 001190
 

C .
 

C 001181
 

eo VIC T1 MULIMULtAOD VLS(KMAX-2)-LSL-(JM&XA2) <U-U*V-V 001192
 
C. VEC UT MULIADO VL(KMAX2)'LSLV(JMAX-2) CTI.WUW 001143
 
c 00119'
 

Cl . GAMI-UT'.5 001200
 

C 
 001201
 
con Ve C 1 MUL-MUL VL-(KMAA-.2LSL*(JMAX-2 001202
 
C 001203
 

C2SRR.OAMMAM65 001210
 

c 001211
 
cx VEC C2 MULIMUL VL-jKMAX-2)-L:SL-WJHX-2) 001212-

C 001213 
C3-C2-CI 001220 
C40 (1.1) UU 001230 

C 001231 
Cy VEC C3 SUB VLS(KMAA-2)-LSL-(WMAX42) 001232 
C- 3$S C4 " ADD 001233 
C 001234 

CSaGAMI.U 001240 
C6SGAHI-V 001250 

C 001251 
en oVC S MUL VtatKMA2)LSL(J"AA-2) 001252 
C' S5s C6 MUL 061253 
C 001254 

CTSGAHI'W 001260 
DEFINE (ODI,5J,(1IKMAX2.1I, SL.2.1l4MAX-2)) 001270 
D(1,S).0 001280 

C 001281 
C* VEC C7 MUL VLS(KMAX2)*LSL*(JMkXA2) 001282 
C' SSS 015 ADO(O) 0012R8 
C 001294 

0(2.1) . DI12)*C1-U*UU 001290 
C 001291 
CP VEC 021 MULIMULISU8 VL.(KMAX-2)'LSL-tJMAX-2) 001292 
C 001293 

D(2.2) * C,.0(1,216rA42*U 001300 
C 001301 
Co VIC 022 MULIMULIAOD VLS(KMAX-2)*LSL-(MdAX-) 001302 
c 001303 

0(2.3) . -O1,2)C6*O(1,3)*U 001310 

C 001311 
CO VEC D23 MULIMULIAOD VL(KMAX.2)LSL(JAX2) 001312 
C 001313 

0(2.41 . -0(t1,2)C?*0(1,,)lU 001320 
C 001321 
CO VEC 024 MULSMULIAGO VL.(KNAX-2)LSL-(JMAX-2) 001322 
C -001323 

0(2,51 * 0(1,2)SQA$I 001330 
D(3.1) - 0(1,33)C-VUU 001340 

1 -D-4 

http:ODI,5J,(1IKMAX2.1I


c 
CO VEC 031 

c 


0(3,Z) 

c 

CO VEC 032 

C 


0(3,3) 

C 

Co VEC 033 

C 
 D13.4)
C 


Cm VEC 034 


C 

0035)


C 


CO VEC 025 

C- 3$ 035 

C 


0(4.1) 

C 

Co VEC 041 

C 


0(4,21 

C 

C" VEC 042 

C 


MULZIUUISUB VLS(KAX-2)3LSLO{JIAA-R) 


= 001.2)*V013)*CS 

MULIMULZSUS VL-(KMAX.2)-LSL0JMAX-2) 

a CA.0(013)GAM2V 

MULIMUJAO VL.(KMAX-2)-LSL*(JMAX-2) 

O (j,3j-C7-O{j.4)'V 

MULI4ULIAOO VL.(KMAX-2)1LSL(JMAX2) 


* D(L,3)GAM? 

MUL Vt.(KHAX-)LSL-(JMAX-2) 

MUL 


• OI.4)3'Clt*UU 


$ULIIULZSUB VL.(KNAX.2)-LSL-CJMAX-2 


* 0t1,2)tW-Ol(4)*C5 
)


MULINULISB VL(KMAX-22)LSLACJNAA-2
 

0(4,3) . Or1,3)*W-0(1,3.-C6 

C 

CP VEC 043 

C 


014,4) 

c 

CY VEt 044 

C 


014,5) 

C 

CP VEC 045 

c 


0(5.1) 

C 


Cm VEC 051 

C 


0(5,2) 

C 

CX VEC 052 


C 


MULIMULISUB VL-(KAX.2)LSL(JMAX-2) 


. C40001,4)OGAHPW 


MULIMULIAGO VLO-KNAX-2)LSL-(JMAX-2) 


v 0(1,4)3GAMI 


MUL VL-(KMAX.21LSL-*(JMAX-2 


* ('C2 rC1) UU 

MULIAODIMUL VL.(KMX-81-LSLf(JMAAZ2) 


. 0(1,2)C3-CS*UU 


MULIMULISUB VL-(KMAX-2)eLSL(JMAX-21 


0(5.3) . U(1,3)C3.C6eUU 

C 

Cm VEC 053 MUL:MULISUB VLS(KMAX2)*LSL-(IJMX-2) 

C 


C 0(5,41 . 001,4)*C3C7UU 


Cu V t 054 MULINULISL VL•c(cM X-8)*LSL (JMA*-2) 


C 
 e
 
0 ( 5,5) a 0(1 1) 4A MA 

C 


Cx VEt D5 MULIADO 

C 

C 
 R
 
C* ENO OF AMAT X 

C 


U U 


VL*(KMAXw.)LSL-(JMX2) 


001341
 
001342
 
001343
 
001350
 
001351
 
001352
 
001353
 
001360
 
001361
 
001362
 
001363

001370
001371
 

001372
 

001373
 
001380
 
001381
 

001382
 
001383
 
00138'
 
001390
 
001391
 
001392
 
001393
 
001,00
 
001401
 
001402
 
001403
 
001410
 
001411
 
001412
 
001413
 
001420
 
001'?I
 
00142
 
001423
 
001430
 
001431
 
001432
 
001433
 
001440
 
001441
 
00144P
 
001443
 
001450
 
001451
 
001452
 
001453
 
001460
 
001461
 
001462
 
001463
 
001470
 
00 1471
 
001472
 

001473
 
01


0014001481
 

001482
 
0014A3
 
001490
 
001500
 

.001510
 

1-D-5 



RM.JRN/RJ{,,tetZJMAA') 001520 
001521 

Co VEC RNJ OIV VL-(KMAX-2)*LSL*-JWMX-3 0..232 
C 001523 

RPSRNJRJ(*,*,IJMAX-2) 001530 
RF.RMJ*RJ(.,.,3:JMAX) 001540 

C 001541 
CO VEC RR MUL VL.(KMAX-2)*LSL(JWMAX12 001542 
Ce $S ARF NUL 001543 
C 001544
 

00 23 N.1,S 001550
 
00 22 McIS 001560
 
DEFINE (B(NM)d1IlKCAX-2.1tLSMtIUMAX-2) 001sio
 
DEFINE (010tON,4)M 601500
 
A(NM)i.DI(*.*,IIJMAX.2 001590
 

C(NNIMoI(.,-,3:JMAX) 001600
 
C 

CP VEC ANN mOp 
C' $55 CNN MOP 
C 
22 9(Nmj-O 
C 

CO MAP ONH SCTtIMM 

C 


A(NN) = A(NN).RR 

BIN.N) a Cs 


C 

CS MAP BNM STCRIMM 

C 


C(N.N) a C(NN)flP 
C 
Co VEC ANN SUB 
C- 533 CNN sUe 
C 

23 F1{N).S(N) 

C 


001601
 
VL.(XMAX.2)LSL*(JMAX-2) 001602
 

001603
 
00160C4
 
001610
 
001611
 

NR*,RSt.(KMAX-2leLSLt(JMAX-2) 001612
 
001613
 
001620
 
001630
 
001631
 

NR.1.RS.(KMAX-2)ILSLOJMAX.2) 001632
 
001633
 
001640
 

.0016*1
 
VLsCKMAX-2)-LSL{JMAAX-2) 	 001642
 

001643
 
001644
 
001650
 
001651
 

CO MAP F1N GTHRI1M NR-JAX.Z.RS.(KMAX-2I.LSLST.KAXLMAX 001652 
C 

C 

C .... ENO OF FILTRX 

C 

C S MUST BE ZERO ON B.C. 

C 
Cn MAP RJT OTHRII 
CO MAP X2LT THRtI: 
CO MAP Y4LT TMRII! 
CM MAP tJLT OT7RtI 
CM MAP 01T MTHR3:! 
CO MAP 02T OTMRIZI 
CX MAP 03T GTHRIII 
CS MAP 04T GTHRI!I 
CP MAP QST OTHRiZ 
C 

CALL OTR!(2,IJM) 

00 24 N15 

SI(N)uFI{N) 


C 


001663
 
001640
 
001670
 
001680
 
001640
 
001700
 

NRuKMAXQJSt.(LMAX.1I ,STKMAXIlI W*1 001701 
NRWKMAX*JSL-LMAX.ST.KMAXIII WK.2 001702 
NR.CMAX*JSL.LMAX.ST.KMAXIU WiKC3 001703 
NR.KMAXJSL*LMAXST.KAXtlt WKSA 001704 
NRuKIAX*USL*(LMAX-2i.STKlAXI1t WKcS 051705
 
NRSKMAXCjSL*(LMAX-). STNAXllI VK.6 001706
 
NRSKMAX*.JSL(LMAX2)3,STKMAXIl 4K.7 001707
 
NRSKNAXJSLd(LMAX-2?)STKMAXI1I 0k8 001708
 
NR.KNAX*JSL-tLMAX-2),STKAXIlt WK-9 001709
 

001710
 
001720
 
001730
 
001740
 
001741


Cs MAP SIN SCTRIt1 NR.JMAX.aRS.(KMAX-2JILSLST.KMAX.LNAX 001742 
C 001743 
24 CONTINUE 001730
 
C 001760
 
C O01TTO
 
1O00CONTINUE 	 001780
 

ORIGINAL PAGE IS 
OF POOR QUALITY 

1 -D-6
 

http:NRuKMAXQJSt.(LMAX.1I
http:A(NN).RR


C 
 001790
 
C**-*-FILTRY 
 001800
 
C 001810
 

KA A 2 
 001820
 
KB A KMAX-I 001830 

CA NAP R.J GTHRRIN KSSKNAX*JSL.(LMAX2; WKi.1 001831 
0 NAP XJL GTHRIIM RSSKMAX*3SL.LMAXI WKg8 001832 
CM NAP YJL TMRIN RS.KMAX*JSL.LMAX; WK.3 001833
 
CA NAP ZJL GTHRIIH RSUKMAX*JSL*LNAXS WK.4 001834
 
CM NAP Q1 GTHR;IH NS.KNAX*JSL.iLAX-2I WK. 001835

CM MAP 02 GTHRII RSKNAX*JSL*LAA2)I WKs6 001836
 
CM NAP 03 GTHR1UM NSUKMAX*JSL*(LMAX-21 1 WKm 001837
 
CM NAP Q4 8TRRIIH RSaKNAX*JSL*{LMAX-23I WK.8 001838
 
CM NAP 05 GTHRtIH NSUKNAX*JSL{L-MAX-2}1 WK*9 001839
 

JSN - JSL-I 001840
 
00 2000 J-2,JAXJSI. 001880
 
00 6 N-1,5 001860
 
OEFINE (I1(N).F(21LAX-I,.JIJ.JS,N,2KMAX-1)) 001870
 

6 DEFINE IS1(N)tF(2LAX-.JIJdSM.N.21HAX.1)) 001880
 
c ooiao
 

RJ - RJTI2tLNAX-IJI4JS,21KMAX) 001910
 
C 
 001911
 
CA NAP Pit GTHRtI RS.KNAX-JSL.(LNAX-2) 001912
 
CA MAP XJL' GTNRtZI RSSKNAXSJSLtLMAX 001913
 
CA NAP YtL' GTHRTIN RS.KMAX,JL*LMAX 001914
 
CA NAP ZJL' GTHRSIM RSUKMAX*JSL*LMAX 001915
 
C 
 001916
 

XAL * XJT 
 001920
 
YJL . YULT 001930
 
ZJL - ZJLT 
 001940
 
01 A QIT 001950 

C 
 001951

CA MAP Q1' GTNRI1M KS.KNAX*JSL*LNAX 001952
 
C 
 001953
 

02 A QT 001960
 
C 
 001961
 
CA NAP 02' GTRIrM RSSKMAX.JSL.LNAX 001962
 
C 
 001963
 

Q3 . 03T 001970
 
C 
 001971
 
C# NAP Q3' GTHRCIN XS*KMAX-JSL.LNAX 001972
 
C 
 001973
 

04 a 047 001980
 
C 
 001961
 
CO- NAP 04- GTHRtII XSKHAX*JSL*LMAX 001982
 
C 
 0019A3
 

05 . C5? 
 001990
 
C 
 001991
 
CA MAP QS5 GTHRtIN RSSKMAX.JSLtLMAX 001992
 
C 
 001993
 
C 
 002000
 
C 
 002010
 

00 9 N-1.5 
 002030
 
00 9 K-1.JCAX 
 002040
 
DEFINE (F2.F[{N) 002050
 

9 F2(*,,K)mS(K,2ILMAX-1,N.dtJ.JS) 002060
 
C THIS ACCOMPLISHES THE MOVE OF S TO THE F ARRAY 002070
 
C 
 002080
 
C 
 002084
 

XJs(XJL(2tLMAX1,3dSL-2.21KMAXI)XJL(aLMAn-I.I:JSL,2KNX-t)) 002090
 
1 OX2 
 002091
 

CP- VEC X SUBIMUL VL-LMAX*(JSL-2)(MNA-.2) 002092
 
CA MAP Ad CMPSIMM CVLSLNAX(JSL2a) (KAX-2),VLS(LMAX.2)*SL-(KMAX2)002093
 

1-D-7
 

http:F2(*,,K)mS(K,2ILMAX-1,N.dtJ.JS


c 00209A 
YJs(YJL(2lLMAX.1.3JSL*22KMAX1)-XJL(2t.nAX-E.1:JSL2KMAXt)) 002100 
I *OX2 002101 

C# VEC YJ SUBIMUL VL.LMAX.(JSL.2)(KMAX-2 002102
 

C# MAP YJ CMPSIDM CVLtLMAXUJSL.2Z)(KMAX-21 VLSLMAK.2)JSL(KMAXA2)002103
 
C 002104
 

ZJa(ZJL(21L$AX1.3I9JSL2,2KMAX-l)-XJL(2LMAAI.IIJSL,2|(MAX-1) 002110
 

1 *oY2 002111
 

Co VEC 24 SUBIMUL VL.LNAXU(JSLZ2)-(lMAX-2) 002112
 
Cm MAP Z C4PSIMM CVL.LMAX*(4SL*2)*XMMAX-2),VL.(LMAX-2)JSL-(KMAX-2)002113
 

C 
 002114
 

XLu(XJL(3:LMAX.2:JSL41,21KB).XLI:LMAX.2t2:JSL-1,2S8))DZ2 
 002120
 

CS VEC XL SUBIMUL VL.tMAX(JSL.2)*fKM4X.2) 002122
 
CA MAP XL, CPSIMM CVLLMAX(JSL.2)(KMAX-2.VLS(LMAX-21JSLtKMAX-2)002123
 

C 002124
 
YL.(Y4L(31LM4XZ2SJSL-t,2KBJ-YJL(l(ILAX-22JSL,2tKB))0O22 002130
 

Ca VEC YL SUBMUL VLLMAXA(JSL2)K$(AX 2) 002132
 

CO MAP YL CMPS;MM CVL.LMAX*(JSL,2)(KMAX-2).VLS(LMAX.2)JSL0fKHAX.2)002133
 
002134
 

ZL*(ZJL(3ILMAX2JSL1.21Bi-ZJL(ItLMAX,21JSL1l2K)) OZ2 002140
 
Co VEC Z SUSIMUL VL-LMAX(JSL2)-(KMAX-2 002112'
 
CP MAP Z CMPSIM CVL.LMAX-(JSL.2)U(KMAX-2)R.VL-(AX.2).JSL*(KMAX.2)002143 

C 002144 
YYI1)*(Z'YLYJ-ZL)JRj(-,e2KMAA-1) 002150 
Yy(2).(XJfZLXL-ZJJRJ(-,92tKMAX-1) 002160 
yY(3).(YJXLXJYL)'4(I*..2IKAX-1) 002170 

yy(4)..OMEGAU(ZJLIZLMAX-1.21JSM,2;KMAX1J)-YY(2) 002180 
1 YJL(2*LMAX.1.2JS4.2KMAX.I)YY(3)) 002190 
0(1.2) SyY(1).HOY 002200 
0(1.3) .YY(2)-HOY 002210 
0(1.4) YY13)*HOY 002220 
0(1.1) wYY(4)-NOY 002230 

C 
 002240
 

C*.....AMATRX 002250
 
RR*1/01 002260
 

U.RR*02 002?70 
VsRR-03 002280 
VSRR*04 002290 
UU a U*ODI12)*VO(1,3)*W* 14) 002300 
UT * U-*2*Vl2*Wf2 002310 
Cl . GAMIOUT.5 002320 
CZWRR-GAM'A-QS 002330 
C3-C2-CI 002340 

C4AO(1.t1)UU 002350 
CSuGAMIOU 002360 
C6SGAMI*V 002370 
C7.GAMIeW 002380 
OEFINE (0(1,5).(IILMAX-2,ILJSLIIKMAX-2)) 002390 
01,5) . 0. 002400 
0(2.1) . 0il.2)C1-U*UU 002410 
0(2.21 . C4.0(l,21*GAM2*U 002420 

042,3) - *D0l12)CtO(l,3)*U 002430
 
0(2,4) . -D(1,2)'C70C(,4j)U 002440 

0(2,5) . 0(1,2)*GAMT 002450 
0(3.1) s 0(1,3)1C1-VUU 002460 
0(3.2) . D(1,2)*V-0(I13)-CS 002470 
0(3.3) . C4.0(1,3)fGAM2SV 002480 
0(3,4) . -0(2,3)*C7O091,4)-V 002690 

0(3.S5) u 0(1,3)*GAMl 002500 

0(4.1) - 0(14)Cl-WUU 002510 
0(4,2) 0(1,2)*l.0(1,4)oC5 002520 
0(43) * D(1,3)t-O(l.4)4C6 002530 

014,4) * C4*O(1,4) OAM2-W 002540 

1-D-8 



D0(4.5) D(.4)GAM! 002550 
0(5,12 s (-C2.2.'C1)'UU 002560 
0(5.2) . 0(1,2)1C3"CSUU 002570 
0(5,3) 
0(5.41 

. O(1.3)'C3-C60UU 
z O(ho4)*C3-C7UU 

002580 
002590 

C 
0(5,51 - O(1.1)'GA41A.UU 002600 

002610 
Ce....ENO OF AMATRX 002620
 
C 002630
 
C RU IS RETAINED FROM THE DIFFERENCING CALCULATION 002640
 

R9J.RMeRjt*.*,21XAX.1) 002650
 
RRIRMJ-RJ(tt,,IIK4AX-2 002660
 
RF.RMJ-RJ(-,-,31KAX) 002670
 
00 34 N.1.5 002680
 
O0 33 M.l,5 002690
 
DEFINE (O,O(N.M)) 002700
 
OEFINE(BN.HM,(I:LMAX-2,1:JMAX2,1IKMAX2)2 002710
 

C 
 002720
 
C NOTE THAT 8 HAS CHANGED SHAPE AS WE ARE DEALING WITH 002730
 
C THE TRANSPOSED MESH FOR THIS SWEEP 002740
 

A(NkM)-D1(ee,-IIKMAX-21 002750
 
f(N.M).O 002760
 

33 C(N.M)t01(*,-*31KMAX) 002770
 
A(N.N) . A(NN)-RR 002780
 
B(N.N) . CS 002790
 
C(NN) ,CN.N)-RF 002800
 

34 CONTINUE 
 002810
 
C F HAS BEEN PREHOVED AT TOP OF LOOP 002820
 
C 
 002830
 
C.t*.ENO O FILTRY 002840
 
C 
 002850
 

CALL 8TR1t2,KM) 002860
 
00 31 NtjtS 002870
 
DEFINE c52.SI(N)),(F2,Fl(N)) 002880
 
00 31 C.2 ,xB 002890
 
S(K,2LMAX-IN.JIJ.JSH) . F2(21LHAX.I.1tJSL.2,K) 002900
 

31 CONTINUE 002910
 
C 
 002930
 
C 
 002940
 
C 
 002950
 
2000 CONTINUE 002960
 
C*'....FILTRZ 002970
 

OEFINE (RJU(IKHAXllJSLIlLMAX)) 002980
 
DEFINE (Ql(:KMAX1I.JSL,lLHAX)) 002981
 
DEFINE (Q2.(IlKMAX.IjJSLtI)LAX 002982
 
DEFINE (Q3.(1lQAX1ll.4SL.10LMAA)) 002983
 
DEFINE (Q4,(IXMAX.IIJSLIILMAX)) 002984
 
DEFINE 05Q.(IIKHAX.1tJSLIILNAX)) 002985
 
DEFINE (X2J,(IlKKMAAI0JSL.2,ILMAX)) 002986
 
DEFINE (YKL,(IIKHAAIJSL*.2.1LHAXI) 002987
 
DEFINE (YKL.(IKNAAIZJSL.2,IILMAX)) 002988
 
LA .2 002990
 
LB *LNAX- 003000
 
JSH - JSL-I 003001
 
00 3000 J.2, MAXJSL 003010
 

C 
 003020
 
O0 61 N.I.5 003030
 

61 DEFINE (FI(N3.(F(2KNAXIJIJ.JSN.N,2tLA-1 003040
 

DO 81 La1,LAX 003060
 
RJ(IIKMAX-2,9I JSL.L)sQ(2tKMAX-IL JJ*S ) 0030yo
XKJCIIKMAX,IIJSL.2.L).X(IIKMAX,L,J-IIJJSL) 003080
 

YKJ(IlKAX,IIJSL.2L)=Y(IIKMAXL.J-1oU.JSL) 003090
 
ZKJ(IOKNAA.IIJSL.2.LI.Z(IIKHAX.LJ-IIJ.JSL) 003100
 

.04
 
1-D-9
 



01 (QIKAX,1IJSLL)=Q(2IKAX-IL,IWIJJSH) 

Q2(ItKHAX,1IJSLL)-0(2IKAX-It..2,,IJUS4) 

03(ItKMAX.1IJSLL)0(2tKMAX-1,..3.tJ-JS) 

Qt(1IKMAXIIJSLL)*Q(2tKMAX-.1L,4.4JCIJSM)

QS(IIKMAX.IlJSLL)t0(21KMAX.1,LSJIJJSM) 


C 

C 

$1 	 CONTINUE 


00 91 N1S5 

00 91 LaI.LNAX 

DEFINE (F2,FI(N)) 


91 F2(-.-L)-SZtKHAXI.LN.4JJ.4JS) 

XK.(XKJC3IKHAX.2§JSL.I.2LB)-XKJ,KAx-22,.JSL1.2LB)OY2 

YK.(YKJ(3IKMAX.21JSL.1,21LB)-YKJ(IKMAX.2.2tJSL1,21LB)) OY2 

ZKu(ZKJ(31KMAX,21JSL.1.2tLB)-ZKJ(IIKMAX-22tJSL1,2:LI) OY2 

XJs(XK4(21X AX.1,31JSL.2.21L81-XKJ(2,KMAX.I,1IJSLa:LBI)*OX2 

Y4J(YKJ(2tK*AX-1,31JSL.2.21LBI-YKJ(2tKfAX-I.1IJSL,21LB))0DX2 

Z (ZKJ(2tKMA-1.34SLZ.,2ILB)-ZKJ(Z.KMAK-1IJS.2,LB))DX2 

ZZ(I1=(YJ*ZK-ZJ*YKIJRJ 

ZZ(2.(XKZJ.XJ-ZK) RJ 

ZZ(31.(XJ'YK-Y.-XK)-RJ

ZZC4).-OMEGA*(ZKJ(2IKMAX.1.21JSH,2LBIOZ(2) 


-YKJ( IKMAXI.,29JSM.21LB)ZZ(3)) 


0(1.2) .ZZ(1).HOZ 

0(1,3) .ZZ(2)-MDZ 

0(1.) ZZ(3)-HOZ 

011.1) uZZ(41-MOZ 


C 

C....4
$ATRX 


RR0I./Q1 

U-RR-02 

V*RRt03 

W.RR.Q4 

UL) . U-O1.2)bV*0(1.3).W*0(1.4) 

UT a U**2*V*t2#WO*2 

Cl . OAMI-UT-.5 

C2.RROSGAMIA 

C3SC2-C1 

C4SO(Is1)4UU 

CS*GANIU 

CS.GAN 1V 

C7sGAMItW 

OEFINE(0(1,5),UIIKAX-2,ITJSLIILNAX2) 

011.5) . 0. 

D(2.11 - O(*.2)0CI1U*UU

0(2.21 . CI*0(12)0GA42*U 

0(2.3 * -0(1.21'C6*0(1,3)*U 

0(.A) •.D(,2)C7*0(1,4)*U 

0(2.5) . 0(1.2)tGANT 

0(3.11 . O(1.3)C-VUU 

0(3,2) . 0(1,2)VU,1,31C5 

0(3.310. C4.0(O,30rAM2v 

D(3.4) -0(1,3-C7*0(1- V 

D(3.5) . D(1,3)'GAM! 

0D4.1) S 0(.l,*C1wUU 

D(4.2) * b(1.20*VO(1,41CS 

D(4,3) 0(1,3)f-0tI1.4)tC6 

D(4.) C4'0(1,4l)GAM2*W 

04.5) * 0(1.4)OGAMI

0*5,1) (-C2.2.'C1)UU 

D(5.3) s 0(1,3)*C3-C6*UU 

0(5.4) 0(1.4)C3C7UU 


003110
 

003120
 
003130
 
003140
 
003150
 
003160
 
003170
 
003180
 
003190
 
003200
 
003210
 
003220
 
003230
 
003240
 
003250
 
003260
 
003270
 
003280
 
003290
 
003300
 
003310
 
003320
 
003330
 
003340
 
003350
 
003360
 
003370
 
003380
 
003390
 
003400
 
003410
 
003420
 
003430
 
003440
 
003450
 
003460
 
003470
 
003480
 
003490
 
003500
 
003510
 
003520
 
003530
 
003540
 
003550
 
003560
 
003570
 
003580
 
003590
 
003600
 
003610
 
003620
 
003630
 
003640
 
003650
 
003660
 
003670
 
003680
 
003690
 
003700
 
003710
 
003730
 
003740
 

1-D-1 0
 



015,5) . U(l.l)*GAMMA*UU 

C 

C....
t 

END OF ANATRX 

C 

o 	 R- IS RETAINED FROM OIFFERENCINO OPERATION 


RMJ * RM/RJ(l-.2:LHAX) 

RF R
PJNRJ(,.,3:LNAX) 

RR .-RMJRJ*,*,lll.MAX-2) 

00 43 N.I.S 

O0 42 X.1. 

DEFINEIOI.O(N.M) 

DEFINE(BIN.$),(IIKMAX.2,1IJSLIILMAX.)) 

AINM).-011,-,1I$LMAX2) 

B(N.M)CO 


42 	 C(NN-D)*-D*t,3LNAX 

A(N.N) . A(NN).RR 

8(NN) . C8 

C(N.N) ,.C(N.N)-RF 


43 CONTINUE 

o 

C*....END OF FILTRZ 

C 


IF(INVISC.EQ.1) CALL VISNAT(J.K) 

CALL BTRII2,LM) 

OLSQI.Ft1) 

02-02.F(2)

Q3*U3*F(3) 

Q4*Q4*F(4) 

0StQS.F(S) 

00 44 Ls2*LNAX-j

"Q(2IKMAX.1L LI,.J,JSM)1l (1.KMAX-2.IIJSL-2.L) 

0(2IKMAXltL,2t ,J*JSMIQ2C(1KMAX2,IIJSL 2L) 

Q(21KMAX.I.L.3.tJJ-USMI.03(IIK4AX.aItJSL-2,LJ 

Q(C2KMAX-I.L.4J4SM)U.4I1SKMAX-2,IISL.2,L


44 Q(2KMAX.1,L5,JIJ.4SM).0S01:3KX-2,11JSL.2L) 

3000 CONTINUE 


RETURN 

END 

SUBROUTINE BTRI(ILAIUA) 

COMMON/BTRID/A(5,9)1t(5d5)tC(55).0(5,5).F(5I

DYNAMIC H(S,5) AB.C, .F 

DYNAMIC LIIL21.LE2.L31.L32.L33oL41,L42,L43vL44 

OYNAMIC .L5IL52.L53'L54,L5S 

DYNAMIC U11.U21,U22.U31.U32,U33.UiU4 U43.U44 

DYNAMIC USI.U52,US3,U54,U55 

DYNAMIC 0102.03.04.05 

DYNAMIC U129U13,U14.U15U23U2",U2SU3U3S.045 

DYNAMIC AIOSt5) .1(S,5).0l(5.51 F1(53 

REAL LIIL21LZ2oL31.L32,L33,L 1 L4EL43,L44,L5.LS2,L53,L54,L5 

IL-ILA 

1'JsUA 

ISZIL.I 

IEIU-I 

DO 1 Ntj'5 

DEFINE (F(N) F(N)((et )) 

00 1 H-1,5 

DEFINE 


1 DEFINE (Cl(N.MIoC(NM)(*tli) 

C INSERT LUDEC 


L1IUI./B 11.1) 

C 

C* VEC Li1 OIV VLSSSLSMAX 

C 


003750
 
003760
 
003770
 
003780
 
003790
 
003800
 
003805
 
003810
 
003S20
 
003830
 
003640
 
003850
 
003860
 
003870
 
003880
 
003890
 
003900
 
003910
 
003920
 
003930
 
003940
 
003950
 
003960
 
003970
 
003980
 
003990
 
004000
 
004010
 
004020
 
004030'
 
004040
 
004050
 
004060
 
004070
 
l00R0O
 
004090
 
004100
 
004110
 
004120
 
004130
 
004140
 
004150
 
004160
 
004170
 
004180
 
00"4190
 
004200
 
004210
 
004220
 
004230
 
004240
 
004250
 
004260
 
004270
 
004280
 
0o290
 
08(.)0NM31,.)
04300
 
004310
 
004320
 
004330
 
004331
 
004332
 
004333
 

1-D-1 1
 

http:0102.03.04.05
http:Q(2KMAX.1,L5,JIJ.4SM).0S01:3KX-2,11JSL.2L
http:Q(2IKMAX.1L
http:A(NN).RR


C SSLsNUR4ER OF PLANES IN SLAB 

C SMAXX. EITHER LMAX.KHAX OR .J4AX DEPENDING ON SWEEP DIRECTION 


L21-81t2-1) 

C 

Ce MAP L.21 GTHRIWM NRs.IRS.SSL*SMAXI WKIC 

C 


U12-21(I,2)*LI1

L22E1./(81(2,2).LZI*U12) 


C 
CA VEC U12 MUL VLASSLeSSMAXS RKI-
C' $33 TI MULtSUS 
Cn VEC L22 DIV VL.SSLSSMAX 
C 


U13.81(1.3)'Lll 

U14 - 8lt.)4Lll 


C 
C VEC U13 WUL VLSSSL'SSMAX 
o


C sss U1. UL 

C 


U1S-BI(1,5)-L11 

C 

CA VEC UIs 4UL VL.SSL'SSNAX 

C- 33$ L31 MUL-(1) 

c 


L31-91(3.1) 

C 


L32 81(3,)-L31-U12 

C 

Cn VEC L32 MULISUB VL.SSL'SSMAX 

C 


U23a(8I(2.3)-L21U3)-L22 

o 

CA VEC U23 MULISUBIMUL VLsSSL-SSMAX 

C 


L3S3a./(81(3.3)-UI3'L31-023-L32) 
C 
C VEc T1 MUL;MULIADD VLSSSL-SSMAX 
CA VEC T1 SUB VL.SSLSSMAX 
CA VEC U24 OiV VL.SSE1SSNAX 

C 


U24s(BI(2.4)-L21'U14)'L2E 
C 

CA VEC U24 MULISUBINUL VL.SSL'SSMAX 

C 


UQ25(B1(2,S) L21'U15)*L22 

C 

C VEC U25 IULISUINUML VL*SSL5ESMAX 

C 


L41t81(4, 1) 

C 
CA MAP L41 GTHRIMN NRSI.RL.SSL'SSMAX WKsI 
C 

L4ZBI (4.2)-L41'U12 

L43s81(4.3)-L41U13-L42eU23 


c 

CA VEC L42 NULISUB VLASSL*SSMAXI RK-1 

C' 353 TI MUL -

CA VEC L43 NULISUBISUB VLWSSLSSMAX 

c 


U34-.81(3.413L.31'U14. 32.U24).L33 

C 
CA VE Ti MULIMULIADO VLsSSL-SSN 

CA VEC U34 SUBINUL VL.SSL.SSMAX 


004334
 
006335
 
0043&0
 
004341
 
004342
 
004343
 
004350
 
004360
 

004361
 
004362
 
004363
 
004364
 
004365
 
004370
 
004380
 
004381
 
004382 
004383
 
004384
 
006390
 
004391
 
004392
 
004393
 
004394
 
004400
 
004401
 
00410
 
004411
 
004412
 
00&413
 
004420
 
004421
 
004422
 
006423
 
004430
 
004431
 
004432
 
004433
 
004434
 
004435
 
004440
 
004441
 
004442
 
004443
 
004450
 
004451
 
004452
 
004453
 
004460
 
004461
 
004462
 
004463
 
004470
 
0nt4o
 
004481
 
004482
 
004483
 
006484
 
004485
 
004490
 
004491
 
004442
 
004493
 

1-D-1 2
 



C 

L44.I./(B1(4.4)-UI41.41-UZ4.L42-U34.L431


C 


CR VEC Ti MUL:IULIADO VL.SSLSSMAX 

CS VEC Ti MULISUBISUB VL.SSIASSMAX 

CO VEC L44 DIV VLnSStLSSHAX 

C 


U35*{Bl03,5).L31*UIS-L.32.U25).L33 

C 

CO VEC Ti MULIMULIAOO VL.SSLtSSNAX 

CO VEC U35 SUBIMUL VL.SSL-SSMAX 

C 


1.51.81(5,1) 
C 

CO MAP LSI GTHRIMM NRI1,RS.SSL.SSMAX; WKSI 

C 


L52318(5.)-LSI1U12

153.8I15,3)-LS1AUI3-L52.U23 


C 

C, VIC 1.52 MULISUS VL.SSL*SSMAX 

C SS TI MUL 

C- VEC L53 ?ULISUSISUB VL.SS1.SSMAXI RK.1 

C 


L54Bl05.)-tLSlUl*-LS-U24'L53U34 

C 

C* VEC TI MULUMULIADD VL.SSLSSMAX 

CO VEt L54 ULSSUBISUB VL.SSL-SSMAX 

C 


U45-S81(4.5)-L41-UI5-L42.U25-L43U35).L44 

C 
Cp VEC TI ?UL:IULIAOO VL.SSL'SSMAX CL42*U25-L43eU3S 

CP VEC TI MULIADDISUB VLsSSLeSSMAX <CL4U1S6B45-TI 

C 


L.55=.I(B (S5)LSIU15-LS'U2S-L53U35-L545U45) 

C 

Co VEC U41 MUL VLlSSL-SSMAX 

C- 5S TI MULISUE VL.SSL*SSMAX c855.L54-U45> 
C#, VEC T2 MULIMULIADO VLsSSLeSSAX CLS1UI5SL52tU25> 
CP VEC TI IULISUBISUS VLUSSLOSSMAX <TI.L53-U35.T2> 
CO VEC L55 DIV VL.SSASSMAX 
,c
C COMPUTE LITTLE R S 

DLIIFI (
1) 

OD2L22(FI (2)-L21'01) 
C 
C, VEC 01 )UL VL.SSL-SSMAX 

C, VEC TI IUL;SUB VL.SSL-SSMAX CFIL2ID1> 

C 

D3L33£(FI(3)-13LO1-L32-O2) 

C 
Cs VEC 02 )UL VL.SSL-SSMAK cT1'L22 
C- SS Ti MULzSUB VL.SSL*SSAX <FI-L32-021 
C* VEC 03 IULISUBIMU VLsSSL-SS4AX <L33ISTI-L31I01> 
C 

048L440IFI(4)L'l*O1.L42O2"L4303 
C 
CP VEC TI MULINULIADO VL.SSL-SS4AX <L4242-L43*03, 
C, VEC TI $ULISUBSUB VL.SSL'SSAX <F14-TI-L41*DI> 
C 
C 

05sr55rFl(S) -L51Ol-L522O-5303.L54.O,, 
C 
Co VEC D4 MIJL VL.SSLSSAX <L44 Tl 

004494
 
004500.

004501
 

004502
 
004503
 
004504
 
004505
 
004510
 
004511
 
004512
 
004S13
 
004514
 
004520
 
004521
 
004522
 
004S23
 
004530

004540
 

004541
 
004542
 
004543
 
004544
 
004545
 
004550
 
004551
 
004512
 
004553
 
004554
 
004560
 
004561 
00562
 
004563
 
004564
 
004570
 
004571
 
004572 
004573
 
004574 
004575
 
004576 
004577
 
004580 
004590 
004600
 
£04601
 
004602 
004603
 
004604 
004610
 
004611 
00461a 
004613
 
004614 
004615
 
004620
 
004621 
004622 
004623 
004624 
004626
 
004630 
004631
 
004632
 

1-D-1 3
 

http:TI.L53-U35.T2


CO 33S T1 MULZSUB <F15-LS4-04> 004633 
Ci VEC T2 MULIMULIADO VL.SSL-SSMAX CLSI.O-Ls2D02> 004634 
Ck VEC TI MULISUBISUB VL.SSL-SSMAX cT1-T2-L53.03> 004635 
C 004636 
C COMPUTE 8IG R S 004640 

C
CO 

FI(5).05 

VEC 05 MUL VL.SSL-SSMAX 

004650 
004651 
0046SZ 

c- 0S$ PIS MUL-(I) 0046S3 

FI(4).04-U4S-05 004660 

Fl3)3O3-U34tFI(4)-U3505 004670 
C 004671 
CP VEC F14 MULISUS VL.SSL.SS4AX 004672 
C- $SS TI NUL CU34VF141 004673 
CP VEC F13 MULISUBSUB VLSSSLQSSMAA <03-U35-05-71, 004674 
CD VEC L55 DIV VLSSSLSSMAA 004676 

FP(2)OP2-UP3'F1(3)'U24.F1(4)oU2S-05 004680 
C 004681 
C VEC Ti MULINUL:AOD VLSSSLSSSMAX <U24-FI4*U25-05, 004602 
CX VEC F12 MULJSUBISUB Vt.SSLOSSMAX '02-U23-F13-Tll 004683 
C 004684 

FI(1).DI.Ut2Fl(2)-UI3tFI(3)-Ui4-Ft(4l-UIS05 004690 
C 004691 
Co VEC Ti MULI4ULIAOO VL.SSL-SSMAX 004692 
Co VEC 72 MULIMULSAQO VL.SSL-SSMAX 004693 
Ci VEC T2 SUBISUB VL.SSL-SSMAX 004694 
C 004695 
C COMPUTE C PRIME FOR FIRST ROW 004700 

00 12 Msi'. 004710 
01-LilCI(IsM)
02L22 (CI(2,M)-L21OI) 

004720 
004730 

C 004731 
Co VEt 01 MUL VL*SSLOSSMAX 004732 
C- 3$3 T MULISUB 004733 
C 004734 

03uL33(Clt31)- L31!O1-L32-D22 004740 
C 004741 
Co VEC 02 IUL VL.SSL-SSXAX 004742 
C- S$S T1 MULJSUB 004743 
C* VEC 03 ULISUBIMUL VLSSSL-SSAX 004744 
C 004745 

04*L44{CI(|4M)-L4-L01-L202L4303) 004750 
DSSLSS'(Cl(S.M)-LSI'01-LS202-L5303-L5404) 004760 

C 004761 
CP VEC 7i NULIMULIAOD VLSSSLOSSMAX 4L42*O2-L43-03, 004762 
CP VEC TI MULISUBISUVB VL-SSL-SSAX CC14n.TIL4.4 01> 004763 
Cp VEc 04 MUL VL.SSIASSMAX <I.44*T1) 004764 
C- s3 T1 NULISUB 4CISM-L54006> 004765 
CM VEC TI MULIMULIACO VLSSSL.SSXAX <LS2.O2*LS3*03 004766 
CS VEC TI MULIAOD:AOD VL.SSL-SSMAX CLSI.01.T1.T2> 004767 
C 004768 

C 
BI(S.M).05 004770 

004771 
Co VEC 05 4UL VL.SSL-SS4AX cLSStT1 004772 
C' 3S Sam IUL 004773 
C 004774 

8114.)-D04U45*05 
B13,X) a 03-U34'AI(4.M)-U35005 

004790 
004790 

C 004791 
ON VEC 81414 IULtSUB VL.SSt'SSMAA 004792 
CO 33$ TI MUL cU34*'B4M' 004793 
CP VEC 813H MULISUSISUB VLwSSL'SSMAX <03-T1.U3S05> 004794 

1.-D-1 4
 



C 	 004793
 

t2.1M) . D2-U23-RI(3.M).U24*81(4.M)-U2505 004800 

C 004801 
Co Vec Ti ULIMULIAOD VL.SSL-SSIAX 004802
 
Cm VEt A2N MULISUSISUB VL.SSLSSAX 004803
 
C 004804
 
12 81(1,M) . D1-U12*SlI24-U13*9B1C(3)-Ul4. 1(4,M4.U15*05 004810
 

C 	 004811 
Cw VEt Ti MULIMULIAOD VLMSSL*SSMAX 004812 
CS VEC T MULIMULIADO VLUSSL-SSMAX 004813 
Cm VEC 811 SU8ISUB VLSSLSSAX 004814 

C 004815 
C COMPUTE B PRINEtIGR 	 004820
 

00 13 I.iSIE 004810 
00 2 Ns1s5 004840 
DEFINE (FilMN).FN)('.*.I)) 1F2(N}.FNI)oet,,I-II 004855 
00 2 4sl, 004860 

DEFINE (AI(N,M) tA(NH3 c(I*.I) 004870 
DEFINE (8LM,3,(N+fl2*.*I)).(2(N.M0,8{N.M0(.t-1}0 004880 

2 DEFINE (CION,04 ,CCN.M) Ct..,If 004890
 

GO 14 N.1,5 004900
 
14 FI(N).FIN0Ai(Ni,1iF2(1)-AI(N.2)FP(2)-A1(N.3)-F2(3) 004910
 

*AIN.4).F2j4)AI(N.5)4F2tSJ 004920
 

C 004921
 

Cx VEC Ti NUL:MUL:AO0 VL.SSL.SSMAX 004922
 
Co VEC 12 $UL:MUL:AOO VLSSL.SS4AX 004923
 
Co VEC TI ULIMULtAOO VLsSSL*SSMAX 004924
 

Co VEC FIN sUb VLsSSLMSSMAX 004925
 
C 
 004926
 

C COMPUTE 8 PRIME 004930
 
00 11 NaIvE 004940
 
00 11 .14a1 00490
 

11 HIN,M)l8i(NM)-AI(N1).*82(i.M)-Ai(N.2)-Bg22M)-AI(N.3)* 004960
 
* 	 004970
82(3043-41 (fl.4)'82(4,4)-oN.)50a{5,U 

C 

C* VEC T1 MUL:IULIADD 

Co VEC T2 MULIMULIADD 

Co VEC TI MULIADDIADO 

Co VEC HNM SUB 

C 

C INSERT LUOEC AGAIN 


L11*1./)4(1*1 

C 

Cm VEt L11 DIV 

C 


LZSIH(2,1) 

C 

Co MAP L21 GTHRIMM 

C 


UL2=M(1,2l L11 

C 

Co VEC U12 KUL 

C- $55 TI MULOSUS 

C, VEC L22 DIV 

C 


UI13H(I.3)-LII 

U14aH(I.41. Lll 


C 
CO VEC U13 MUL 
C' $5 UI NUL 
C 

UISsN(1.51Lll 

004971
 

VL.SSL.SSMAX 004972
 
VLaSSL'SSMAX 004973
 
VL,;SSL.SSHAX 004974
 
VL.SSL-SSMAX 004975
 

004976
 
004980
 
004990
 
004991
 

VL.SSL-SSMAX 004992
 
004993
 
005000
 
005001
 

NR81,RS.SSL*SSMAX 005002
 
005003
 
005010
 
005011
 

VLaSSLESSNAX 005012
 
VL.SSL-SSMAX 005013
 
VLSSLSSMAX 005014
 

00501S
 
L121t (82.20-L~rIZ,005020 

005030
 
005040
 
005041
 

VL.SSL*SSMAX 	 005042
 
00SO43
 
0050*.
 
005050
 

1-D-1 5 

http:U14aH(I.41


L31*(3.1) 005060
 
C 005061
 
CR MAP L31 GTHRIMM NRP1,RSmSSLUSSMAX 005062
 
C 
 005063
 

L32tH(3,2)-L31*U12 
 005070
 
U23s(823)-L21-UI3)%L22 005080
 

C 
 005081
 
CO VEC L32 MULISUB VL.SSLUSSHAX 005082
 
C- S5S T1 MUL <U23*L32> 0050A3
 
Cx VEC U33 MULISU5UL VL.SSLSS4AX 
 005084
 

005085
C 

L33-l./(X(3.3).U3%L31.U23-L32) 005090
 

C 
 005091
 

Cx VEC T1 MULISUBISUS VL.SSL-SSMAX 005092
 
CO VEC L33 DIV VL.SSLSSMAX 005093
 
C 
 005094
 

U24s(M(2.4)-L21-U4) L22 005100
 
C 
 005101
 
C' VEC U24 MUL;SUS*MUL VL.SSL-SSM4X 005102
 

C 
 005103
 
U2SSH(2.5)1.21'U15)-L22 005110
 

C 005111
 

Co Ve Uls MUL VLSSSLOSSHAX <H8S1Lll 005112 
C- 33$ T9 MULISUB 005113 
C 00511, 

005120
L41SH(4.1) 

C 005121
 
CP MAP L41 GTHRIMN NR*I.RS=SSL*SSMAX 005122
 
C 
 05123
 

L42SM(4,2J-L41-lU2 005130
 
C 005131 
CO VEC L42 MULISUS VL.SSLUSSMAX 005132 
C- 33$ Ti MUL CL42?U23, 005133 
c 005134 

L43.MH(4,3).L41-U13-L42-U23 
 005140
 
C 005141
 
C' VEC L43 ULSSUSISUB VL.SSL.SSMAX R4M3-TI-L41#U13) 005142
 
C 
 005143
 

U34.tH(3,4).L31UI4-.L325U2*)'L33 005150
 
C 005151
 

Cx VEC T1 ULIIULIADO VL.SSL-SSMAX eL31.U14L32.U24. 005152
 
CS VEC U34 SUSINUL VLSSSL.SSMAX C(H34-T1)'L33' 005153
 
C- 35$ TI UL 4U34 L43 005154
 
C 005155
 

L445 ./(HM.4)UI-4 1-U2L42-U34L43) 005160 
C 005161 
Co VEC T2 MULIMULIADD VL.SSL'SSMAX CUI*L41*U24*L42, 005162 
CU VEC Ti SUBISUS VL.SSLOSSMAX N4,-TI-T2, 005163 
CR VEC L44 OV VL.SSL'SS$AX 00516, 
C 005165 

U35t(H(3,5)-L31U15-L32tU25) L33 005170
 
.CU VEt U2S MUL VLSSSL.SSMAX CT79L221 005171
 
C- 33$ Ti MULISUS VLsSSL*SSMAX 4H35L32%U25> 005172
 
"S VEC U35 $ULISUBIMUL VLsSSL*SSMAX 4(Tl-L31-tUI5)L3> 005173
 
C 005174
 

LSI.(5.1) 005130
 
C 005181 
CO MAP LSI GTHRIMM NR.1.RSSSSL*SSMAX 005182 
C 005153 

k523H(52)-L51U12 005190
 
L53HM(5.3)-L511-UI3SZU2O 005200
 

C 005201
 
CU VEC L52 IULISUS VL.SSL.SS$AX 005202
 

1-D-1 6
 



C- 333 TI MUL 005203 
CA VEC L53 MU0.SUBISUB VL*SSL.SS$AX 005204 
C 005205 

LSAUH(5S4)L51U1A*LS2U249L53*U34 005210
 
C 005211
 
CA VEC Tl MULIMULSAOO VL.SSL-SS4AX 005212
 
CA VEC L54 MULISUBISUB VL.SSL.SSNAX 005213
 
C 
 005214
 

U452(H(4,5)-L.4IU15-L42*U2S-L43*U35-L44 005220
 
C 005221
 
CA VEC Ti MULIMULSAOO VLuSSLtSSMAX 005222
 
C' VEC T1 MULISUBtSUB VL.SSLSSAX 005223
 
C 005224
 

L55-I./(H(5S,5)L515UIS-L52U25L53U35-L54U*S) 005230
 
C 005231 
CA VEC U45 MUL VLsSSL*SSMAX 005232 
C- 3Sf TI )ULISUB 4355-L54-U45, 005233 
C* 
C 

VEC T2 
VEC L5S 

MULIIUL|AOO 
DIV 

VL.SSL-SSAX 
VLNSSL*SSMAX 

005234 
005235 

co VEc LS DIV VL.SSL*SSMAX 005236 
C 005237 
C COMPUTE LITTLE RIS 005240 

C 
01tLIIFI(1) 005250 

005251 
CA VEC 01 
C-, 333 Ti 

MUL 
MULISUB 

VL.SSL*SSHAX 
VL.SSLUSSMAX 9F12-L21-Dll 

005252 
005253 

C 005254 

C¢ 
C-

D2-L22r(FI(2).L214}13
VEC 02 KUL 
S5S TI PULISUB 

VL.SSL.SSMAX <L22tT1) 
<F13-L32D2, 

005260 
005251 
005262 

C, 005263 
03-L33*(Fl(3J-L3101-L32O2) 005270
 

C 005271
 
CA VEC 03 MULISUBIMUL VL.SSL.SSMAX <L33e(T1-L3101), 005272
 
C 005273
 

D4-L44-(FI(4)3L4100I-L4202-L.3*03) 005230
 
D5SL5S*(F1(5h)LSIODI.L52.02-L53.03-L54.04) 005290
 

C 005291
 
CA, VEC TI ULSMULIAOD VL.SSL-SSMAX CL42*02*L43*03> 005292
t
Cu VEC Ti HULISUBISUB VLSSSL*SSMAX <F1-L4I 01-Tl- 05293
 
CU VEt 04 MUL VLSSSL*SSMAX CL44'TI> 005294
 
C. $s Tj NUL:SUS VLSSLSSMAX <FIS-LSA*041 005295
 
C# VEC T2 MULIMULIADO VL.SSLSSSMAX CL520D2L53t03> 005296
 
CA VEC TI MULISUBISUE VL=SSL SSMAX (TI-L51017T2> 005297
 
C 005298
 
C COMPUTE BIG RIS 005300
 

Fl(S)aD5 005310
 
F1(4)s04-U45*05 005320
 

C 005321
 
Cu VEC 05 MUL VL.SSL.SSMAX <LSST 1> 0A5322

C 55S FIB MUL <L55.DS 005323 
CU VEC F14 MULISUS VL.SSLUSSMAX 005324 
C- 535 T3 MUL <F14'U34> 005325 
C 005326 

F113).03.U34*F1(4)U3505 005330
 
FP(2)D02.U23-F(3)-U24*FI(4)-U25e05 005340


C 005341
 
CA VEC F13 MULISUBISUB VL.SSLSSMAX <03-T3-U35D5> 005342
 
C. VEC TI MULIMULIAOO VL.SSL.SSMAX 00S314
 
CA VEC F12 MULISUBISUB VL-SSLSSMAX 005345
 
C "005346
 

FI(Il01-U12F(2h)UI3FI(3)-UI4FI(4)-UIS05 005350
 
C 005351
 

D-1 7
 

http:D5SL5S*(F1(5h)LSIODI.L52.02-L53.03-L54.04


C# "VEC Ti IULZMUL:AOO VL-SSL*SSMAX 
Co VEC T2 NULIMULZAOD VL.SSL*SS$AX 
c- S53 Ti MULISUB <C1Z*'L21001> 
c 
C 	 COMPUTE C PRIMES 


DO 15 4.1.5 

OILlCl(lM)


t 0
O2-LZ2 fC(2,M)-L21 01) 

C 

Co VEC 01 MUL VL.SSL.SS4AX 

C- SS Ti MULiSUE C12-L21P01> 

C 


03-L33-tClt3.M)-L31O1L3222)

C 

CO VEC 02 MUL VLSSSLSSAX <L225T1)

C- $33 TI MULISUB 4C123ML32*02O 

CA VEC 03 MULISUBIMUL VL.SSL*SSMAX 4L33-(T1-L3I1OI>

C 


D4-L44-(Cl(4W4).4101-L4202°L43203) 

C 

CS VEC TI MULINUL*AOD VLWSSL-SSMAX 

C 


0S'L55 (CI(5?)3-L51'01-Lq2.02.L53.03.L503 

C 

Co VEC TI MULISUBISUS VL.SSLt'SSMAX 

C VEC 04 MUL VL.SSLOSSMAZ 

CO S$ Ti MULiSUE <C15-L54O04> 

C# VEC T2 MULIMU.ISUB VL.SSLOSSMAX 

CO VEC Ti MULISUB:SUE VLWSSLeSSMAX 

c 


81(S.1.05 

81(4,1)3D4U45*05 


C 

CO VEC 05 MUL VL.SSL-SSMAX 
CO 335 814 MULISUB VLSSSL*SSMAX 
CO MAP 05 GTHRIMM NRS1,RSSSLSSMAX 
c 

81(3.M) . 03-U34t61(4,M).U350S-
B1(2,1) . 02.U23*Bi(3.1).U24081(4,M).U25D5

C 

CR VEC Ti MULIMULIADD VL.SSL*SSMAX 
C VEC 813 SUB VL.SSL'SSMAX 
C- 35S Ti MULISUB 
CP VEC Ti MULIMULIAOO VLSSSL-SSAX 
15 81(1,.) a 01.U12e81(2.M3.U13t8(3,M3.U14.Bi(4,M)-Ut5.05
CA VEC 812 SUB VLSSL.SSMAX 

C- SS$ TI MUL;SUB 

C# VEC T MULIMUUIAOO VL.SSL*SSMAX 

C VEC 61l MULISUB;SUB VLSSSLSS4AX 

C 

13 CONTINUE 


Iu  

Ia

00 3 N-1,5 

DEFINE (F1(NJ.F(N)(SIU)),(FZ(N),r(N)(.,eIUil) 

00 3 M41.5 

DEFINE (AI(N.M),A(N,M)(*,*.IU)) 


3 DEFINE (61(N.1),8NS)(.lU)l, (82(NM),8(NM7(j,*,IU-1))

C COMPUTE B PRIMKEBIG R FOR LAST ROW 

00 17 N.1.5 
17 F1(N).FI(N)-AI(NI)*F21).AI(Nt)F2(2),.AI(N3) 

1 F2(3).A1(N.4)'F214).AIL(NS.Frzrs 
c 
Co VEC Ti MULIMULIAOO VL.SSL-SSMAX 

005352
 
OOS33
 
005354
 
005356
 
005360
 
005370
 
005380
 
005390
 
005391
 
005392
 
005394
 
005395
 
005400
 
005401
 
005402
 
005403
 
005404
 
005405
 
005410
 
005411
 
005412
 

- 005413 
005420 
005421 
005422 
005423
 
005424
 
005425
 
005426
 
005427
 
005430
 
005440
 
005441
 
005442
 
005443
 
005444
 
005445
 
005450
 
005460
 
005461
 
005462
 
005463
 
005464
 
005465
 
005470
 
005TI
 
005472
 
005473
 
00S474
 
005476
 
005480
 
005490
 
005500
 
005510
 
005520
 
005530
 
005540
 
005550
 
005560
 
005570
 
005580 
005581 
00582
 

1-D-1 8 

http:AI(N.M),A(N,M)(*,*.IU
http:01.U12e81(2.M3.U13t8(3,M3.U14.Bi(4,M)-Ut5.05
http:81(S.1.05


1 

co VEC T2 MULIMULIAOO VL.SSLtSSMAX 

CA VEC TI SUHtSUB:SU8 VLSSSL*SSMAX 

ON VEC Fl SUB VL.SSL-SSMAX 

C 

C COMPUTE 8 PRIME 


00 48 N.1,5 

00 18 H.t5 
 O ° ) 

LB N(N.MIS8 lNM.AI(N.l1 52C1,M).AI(U2162(2,M) AI (Ne3 

C 


C VEC 71 IULaIULIAOO VL.SSL-SSMAX 

Co VeC 72 MULIMULIADD VLSSLSSMAX 


C# VEC Ti MULISUBISUE VL.SSLeSSNAX 


C VEC NNM SUB VLSSSLSSMAX 


C 

C INSERT LUCEC AGAIN 


L1lSL,/H(1,1) 

L21SH(2,1J 

c 

CA MAP L21 GTH4RNM NP.1,RS.SSL-SSMAX 

CA VECLII 0IV VL.SSL-SSMAX 


O 

U12*H(C1,2Lll 

L22*I./(H(2,21-L21U12) 


C 

CA VC U12 KUL VL.SSL*SSMAX 

CA 555 ti MULISUS 


CM VEC L22 
 DIV VL-SSLSSSMAX 


C 

U13iH{I,3)11 

UIuHtl0*I-L11 


C 


CA VEC U13 MUL VLsSSL.SSMAX 


CO 555 U14 MUL VL.SSLSSgAX

C 


UISsH(1,51-L11 

L31AH(3.II 

L32SH(3,2)L31*UI2
3
 
U23t(H(2,3).21-U1 ) L22 


CA HAP L31 OTHRINM NRI.,RSSSLSHAX 


CA VEC U23 MULISUSIMUL VL.SSL.SSNAX 

OR VEC L32 
 HUISUS VLSSSL-SSMAX 


C- 555 Ti MUL 
 4U23*L32> 


c 

L33'1./H(3.3l.UIrL3I*U23*L32 


C 

Co VEC Ti NULtSUBISUB VLSSL-*SSMAX 


CA VEC L33 DIV VLuSSL*SSMAX 

C 


U2*(X{2,4w0L21-UIA)L22

C 


CA VEC U24 $ULISUBNUL VLsSSLuSSMAX 


C 

U2SS(H(53.2LIU15b)L22 


C 

CA VEC US MUL VL.SSLMSSMAX 


CA SSS T9 MULISUB 


C 

L*41H(4,1l 


C 

CA MAP L4I GTHRSMM NR.1.RSSSLSS4AX 


C 

L4RsH(4,2).L41*U12 


005583
 
005585
 
005585
 
00556
 
005590
 
005600
 
005610
 
095620
 

005630
005631
 

005632
 
005633
 

005634
 
005635
 
005636
 
005640
 
005650
 
005660
 
005661
 
005662
 
005663
 
005664
 
005670
 
005680
 
005681
 
005682
 
005683
 
0056a4
 
905685
 
005690
 
005700
 
005701
 
005703
 
005704

005705
 

005710
 
005720
 
005730
 
005740
 
005741
 
0057&
 
005745
 
005746
 
005747
 
005750
 
005751
 
005752
 
005753

005754
 

005760
 
005761
 
005762
 
005763
 
005770
 
005771
 
005772
 
905773
 
005774
 
005780
 
005781
 
005782
 
0057e3
 
005700
 

1 -D-1 9
 

http:L31AH(3.II
http:lNM.AI(N.l1


C 
 005791 
to - VEC L42 4ULISUS VL.SSLSSMAX 005792 
C- $53 Ti MUL 4L42U23> 005793 
C 005794
 

t43S(43)-L41*U13-L42*U23 005800
 
C 005801
 
to VEC L43 ULISUBSUB VL.SSL'SSMAX 005802
 
C 005803
 

U34tH(3.4)-L31*U14-L32*U24)*L33 005810
 
C 005811 
CS VEC TI MUL:MULIAOD VL.SSL*SSMAX 005812 
to 
C-

VEC U34 
553 71 

SUIMUL 
UL 

VL.SSLSS4AX 
<U34-L43' 

005813 
005814 

C 005815 
L44.I./(H(4,4)UI4L41-U24'L.42.U34'L43) 005820
 

C 005821
 
Co VEC T2 MULIMULIAD VL.SSLSSAX 005822
 
to VEC Ti MULISUSISUB VL.SSL.SSMAX 005823
 
Ct VEC L44 DIV VL.SSLtSSMAX 005824
 

U35CHN(3,5)-131-U185L32'U25) '133 005830
 
C 005831
 
C VEC U25 NUL VLsSSL.SSAX <T9'L22' 005832
 
C- 5$S Ti IULsSUS cL32*U25' 005833
 
C VEC U3S MULISUBIMUL VL.SSLSSMAX 005834
 
C 005835
 

L.51.(3,) 005840 
a 
 005041
 
to MAP LS GTRIM MRsl.IRSuSSL'SSMAX 00842
 
C 005843
 

L52.H(S2)151-U12 005850 
L53.1(5,33 LSI*U135LS2U23 005860 
LS4-SNt.4)-LS51U14L52-U24tLS3-U3A 005870 

C 005871 
C VEC L52 MULtSUS VL.SSLSSMAX 005872
 
C- S3 TI MUL 005673
 
Co VEC L53 MULISUBISU8 VLSSL-SSMAX 005874
 
Co VEC Ti IULIMULIAOO V.SS1'SSMAX 005873
 
C VEC L54 MULISUBISUS VL.SSL*SSMAX 005876
 
C 005877 

U45.(H(4,5)-L4*U15"L42U25-L43U35).44 0058680 
C 005081 
Co VEC Ti UJIMULZAOD V1.SSLSSMAX 005882 
CU VEC 1 MULISUBISUB VL.SSL'SSAX 005883 
C 005884 

L5sI/CN(HSS)-LSIUISLSS'UZs"-LS3U3515,.U45 005890 
C 005891

C VEC U45 Mul. VL.SSL-SSMAX 005892 
to 5$ TI MULISUB 005393 
to VEC T2 IUL.MULIAOD VL.SSL-SSAX 005594 
Co' VEC Ti MULISUBISUB VLsSSL*SSMAX 005895 
CO VEC .55 DIV VL.SSL'SSAX 005896 
C 005897
C COMPUTE LITTLE'RI 005900 

0*LIi'FI (1) 005910 
C  005911 
CU VEC 01 MUL VL.SSL*SSMAX 005912 
C $55 TI MULISUB <F13-L31'D01 005913 
C 005914
 

02L22*t1F(lM-L21'01) 005920
 
C 005921
 
Co VEC 02 MUL VLsSSL*SSMAX 00S922
t

C $5 TI MUL|SU8 005923
C 
 005924
 

1-D-20 

http:U45.(H(4,5)-L4*U15"L42U25-L43U35).44


03-L33*4F1C31 L31*1-L3202) 	 005930 
C 005931 
C& VEC D3 MULISUBIMUL VL.SSL.SSXAX 005932 
C 005933 

04L44 (Fl{4).L410Ol.L4202-L430031 	 00540 
0OLS5F(5)-L51-O1-L5202-L5003oL5804) 	 005980 

C-
Ca VEC TI I ULINUL.IAO 
CS VEC Ti MULISUEISUB 
Cm VEC 04 MUL 
C. S88 T1 MUL SUE 
Co VEC T2 MULIMULIADO 
COi VEC TI MULISUBISUB 
C 
C COMPUTE 810 RS 


Fl(S)0O5 

Fl(4)u0O.U45-05 


C 
CR VEC 05 MUL 

C. 585 Fl MULISUS 

Cm MAP F13 GTHRIPM 


C 


005951
 
VL.SSLSSM4AX 005952
 
VLaSSL.SSNAX 005953
 
VL.SSL*SSMAX 00595*
 

005955
 
VL.SSL-SSAX 005956
 
VL.SSL-SSMAX 	 005957
 

005950
 
005960
 
005970
 
003990
 
005981
 

VL.SSLSSMAX 005982
 
005983
 

NRItRSSSLSSAX 	 005984
 
005985
 

F1(30 O3.U34*F91)-U3505 005990
 
F1(23-02.U23*Fl(31U245Fl(4).U2505 006000
 

C 006001
 
CA VEC Ti MULIMULIADD VL-SSL.SSNAX 006002
 
Cm VEC F13 SUB VL.SSL.SSMAX 006003
 
C- SS Ti MULISUB 006004
 
C* VEC T2 MULIMULIADO VL.SSL-SSMAX 006005
 
C 006006
 

FI(i).I1.U12Fl2)-U30F1(3)-UI4FI(4)1U15*05 006010
 
C 006011
 
C# VEC F12 sUe VL.SSL*SSMAX a06012
 
C- 55 Ti. MULISUB 006013
 
CA VEC T2 MULIMULJAUD VL.SSLtSSMAX 006014
 
Cs VEC FII MULISURISUB VLsSSL-SSAX 006015 
C 006016 

Is1U' 006020 
20 1.1-I 006030 

00 4 N1,S 006040 
DEFINE (p1(N),FCN3 0.*I1)o(F?(N).F(N0t*.1*fl 006050 

4 CONTINUE 006060 
00 19 N.jtS 006070 

19 FI(Nl.FI(Nl-F2(I)IS1(N1)-F(2)B1l(N2).F2(3)381(N3) 006080 
-F2(4)1(N.)-F2(5 006090Bi(N5) 


C 

CM VEC Ti IULIHUL:AD0 

CP VEC T2 MUL:MUL;AOO 

CS VEC Ti MULISUBSUS 

CP VEC FIN SUB 


IF (I.GT.IL)GOTD20 

R5TURN 

END 


006091
 
VLUSSL-SSAX 006092
 
VL.SSL*SSMAX 006093
 
VLSSSLASSMAX 	 006094
 
VL.SSL-SSMAX 	 006095
 

006100
 
006110
 
006120
 

1-D-2 1 



Appendix E 

LOADER CONVENTIONS 

This section contains formats for loader tables, some of which can provide information that could be useful for 

debugging. The following are the loader tables that the system uses during error processing: 

Module Header Table 

Code Block Table 

External/Entry Table 

Debug Symbol Table 

Symbol Definition Table 

Pseudo Address Vector Table 

Error processing information is provided for every object module loaded to produce a controllee file, including 
object modules of user-specified files and required object modules for system library files. Figure E-1 is a dump 
of a typical controllee file, illustrating the error processing information area at the end of the dumped file. A 
pointer to the error processing information is placed in register #D. The register contains the total word length 
"oferror information in its upper 16 bits and the starting address in its lower 48 bits. 

GENERAL TABLE STRUCTURE 

The loader works with files that are composed of one or more object modules. Each object module consists 
of a number of standard tables; each table begins with a standard two-word header: 

1 Table NameIASCII 
164
 

2 Length Address 
161 48 

Word 1 Name of the table in ASCII 

Word 2 Length Length of the table in full words . 

Address Bit difference between first word of the respective table and word I of 
module header table; i.e.: 

Back pointer (bits) + address of first word of respective table (bits) = 

address of word 1 of header table (bits) 

1 -E-1 



January 11 1qO1 Il0G099 
10000000 0000 Bond 4000 0080 DODD 0000 OCO 0 0000 a00 0.0CDlDODO0 0000 DODO 0000 0000 icon 

1C002PO0 000000 0000 ODOHAS OO0000 003e 0000 C09a000000000 GOS0000 00000 1000 

10009000 001, Dole 0000 
--. ZERO ... 

JOE0360C DODD 0090 60OZ 

0000 

0001 

coca c00cc 

0000 0002 

000 0000 

2002 OD02 

Scan 0 too 0030 

090 000C 0900DD 

Dua0 

0000 

O0O0 00nO 0000 

CooO 0000 0000 

30o o 

0000 

1 ;0 Dole0 
10006600 
10008700 

0000 
0c00 
0006 

Deco Coco once 
900000 co Coo 

DODD 4004 0000 

00, 0 Deco 000Go 
a000 0b 0 OOgo an 
000cc G0 0 0000 

0slo a ISOa 
0 co 0 
coona00 

00cc 
0 

ccCcr 

00 oa 0000 care DODD 0000 
0o0cDoe0000 0006 0050 400, 90000 
4QO1 DODO0000o 0000 403o10380 a 

1001G000 1.041 494E ZE20 ?02. 9 AC LM U-4 0 -P P 00 ?PIE roP SO 
r

7 eiR 01 011 B 0000 4000 E640 MAIN. a a a 

1DC10!00 10t 0£11 3F23 Bono 
10010200 3E21 0040 7F2A @023 
1001030C ?BOO 2F2F 3E30 0014 
100 10400 /BOO 201- 3833 0034 
1001050900ODE DOFE 34 0HA0 

10'500" 71020 2O?O 20320 We? 

ir028100 coon 0300 Coco a048 

11702e200 0000 0000 0003 00BC,0 
iC0283G0 5220 405? P.945 4Fq2 
10028400 i520 0445 5C43 494C 

7 ? 4 0023 70F26 23 
3E28 0001 YF26 O00 
7F20 I0PF BC31 040 
7F20 3234 3E35 0001 
6?o 3,130 X03. 0002 

2 0?0"2020 20CZ* 2029 
a s000 c ac a0Done000 

Coco 000 0OcO 00oc 
4C41 5420 4552 524F 
4154 4544 2900 0000 

7 F?6 00 1 I"?7 AWRY1 IrP 004A 7 r03 )Zl 
q-?l FFFF G20? 0014 H20 0013 7r00 2 C23 
0 100 001'AIIF0 0031 3F32 Beat 7E20 1213 
?FIE 0035 ?-OG 703718737 OOFE 0900 a000 
tle 341A IF11 00F 3FNP 0001 90004 103A 

20-0 2020 2020 2020 28?9 2000 O000O 1000 
OC; COEcoca Dole Done DODD coca DODO lonI 

0 COa 0000 o000 0001 S141 5P41 4D45 5445 
1220 464F 554E 442E 00P,05554 494r, ,5 
5SE 41.42 4C45 2004 VZO 414 4050 945 

6 11 1 % I L & > 
*0 a 0 "t( 4 ( 0 

./>a -0/ IS -1> -23 
.4153 4 -24>5 6 5 -7 7 

-a -0tf>" Atfl> 1 

.11.ll 

PARPMETE 
R OR FORMAT E RRO FOUND. UTTLIT 
V TERMINATED. UNABLE TO OOHPLE 

10,%0 45'05 49 C0 55.?, 545? -2 4147 4144q 402F 0000 coon 0000 0000'9000 Ti UTILITY. TRY AGAIN. 

K) 

i 
1=31 0?100 0 OO 09000 0000 coca 

E,2 e'0 0 2020 2028 464S 4C45 

IrD91 00 4 2 a2?C 4E33 4552 
IC0280C0 4E47 2114 3?0 494F 
190PA00 4,341 544 4420 544F 
IC02AE00 4920 4F 554 44 O 
IC028000 ?020 20?0 2020 2020 
19028000 5445 524) 4q4 4154 
160SWO0 20?0 41 F 554C 4420 
I000UFO 4523 f445 C 43 496E 
IGC290C0 2020 P020 ?.RD 20?0 
1CC2-100 5459 2044 4FV 452F 

5,1 0 ;;43 4S46 5920 
31?C 4449 49C45 !??C 

5?4C 4q40 4c54 2900 
4 El./ R4 52 ZC 81.1 
2000 30 3030 .10.0 
404F 1420 4745 S04 
2010 2020 2C2U 2020 
4544 2ED0 0000 ODDS 
4F4F 9420 ;74 21140 
4154 4544 2E00 OOCO 
2043 4F40 5041 5215 
cocaO 0cc too0 00eco 

SC41 52"L (45 5445 
4CIE 4C S 4 ?-C 4110 
555, 45-2 Z0S3 5045 
4EZ0 464.q 4C4S 204C 
le00 G00 0000 0040 
qC45 I4Eh5 Q44 000 
2CG 2020 P020 ?320 
4E4 4C45 4E41 40',S 
415C 5045 44?0 4 4 
WC2 20H0 2020 2020 
44?0 4551 5541 4C4C 
Deco coon coon DODO 

5251 'BOO Done 0000 
411,4 SPN1 ? 7041 
4349 4649 4544 104C 
4F~r 2EI0 1,452 154E 
5448 4953 2046 04 C 
20 0?0 0020 2020 
43F 4050 4152 4520 
7,20 2020 2020 if020 
2E?0 43F 4018 4152 
2020 2041 4E44 aco0 
592E 2055 5449 W949 
noonGOO 0000 1000 

SPECIFY P 9AHETERS
IFT-LEI.FLE2,L L116,A=ADRI 11=A 

DR2,N=ERRLI4IT),USER SPECIFIED L 
NO IS LONGER THAN FILE LNG. TRUN 
CATESD TO 90000000 @T|IS FIL 
E COULD NOT OE OPINESD - ' 

COMPARE 
TERMINATED. FILENAME 

COULD NOT BE PAPPED-T1N° CCMPAR 
E TEPOINATFO. AND 

COMPARED EQUALLY. UTrI 
TY DONE. 

ERROR PROCESSING INFORMATION AREA 

LCG498C0 
10041900 
19004FAD 
1004C000 
ie04aC00 
1C0080000 
L004EEDO 

2040 4F44 554C 4.520 
1016 2020 204C 404r, 
0301. (!000 4003 SCSO 
4041 494E 2E20 2920 
0014 coca Does 0000 
0065 0000 4001, 0000 
0000 0000 0002 3800 

0009 We0 Deco coon 
OIAC CO000 0 CO 1940 
455A 640 4¢c4E552 
23Z0 20 PO 202C P020 
0010 Deco 0602 3890 
Gone FFFF FFFf FFFF 
0000 1FIC DODO 1FIC 

4C41 494 
= 

PEZO Z020 
SCSI coa000 O0 0000 
0009 FFF- rFV 040 
P44C 4149 4,FZE 2020 
2 e2e0 5041 5620 2020 
DISC Coco 4001 DODO 
000C 1F10 O00C tFIC 

5940 4448 4Dq3 020 
0002 0000 4003 iA46 
Odeal000000 0C3 
c0toal 0000 C8O 
0004 OO~u 4000 1000 
0000 0000 4001 1000 
O00C VIXC 0000 1FIC 

MODULE MAIN. 
LLL 0 @ 

a EMT ENTP 
MAIN. ISMAIN. 

8 PAV 
@ a 

6 

YHOHHS 
a 

a 

a 
a 

a 

Figure E-1. Dump of a Controllee File 



MODULE HEADER TABLE 

The module h6ader table contains general information concerning the object module and .provides a linkage to 
all the other tables in -the module; 

Word 

1 A MODULE& 
64 

2 Length 0 
16[ 48 

3 Module Name 
64 

4 Date + Time Created 
64 

5 T Length Processor 
16 48 

6 C Length 
16 

Data Base Length 
48 

7 Type Pointer 
16 48 

Word 3 	 Name of module in ASCII, expressed as 8 characters, left justified and blank filled 

Word 4-	 Date and time module was created, in packed decimal with a positive sign. Date and time 
format is: year, year, month, month, day, -day, hour, hour, minute, minute, second, second, 
millisecond, millisecond, millisecond 

Word 5 	 Word length of tables, excluding code, followed by ASCII name of processor that created 
module 

Word 6 	 Word length of code, followed by bit length of data base area. The maximum size of the 
data base is one large page. 

Word 7 Each word contains a table type and an address.pointer to a table of that type. The pointer 
& on contains a bit address relative to the first word address of the header, By convention, the 

first table described is the code, and the second is -the external/entry table- If HEX type is 
0004, the pointer contains the bit address of the next module header table. Each table type 
is described in detail in this section. 

1-E-3
 



Type Module Name Description . 

0001 CODE Code Block Table 

0002 EXT ENTR External/Entry Table 

0003 REL CODE Code Relocation Table 

0005 XFER SYM Transfer Symbol Table 

0006 SYMB TAB Debug Symbol Table 

0101 INT DATA Interpretive Data Initialization Table 

0201 INT RELO interpretive Relocation Initialization Table 

0301 PAV Pseudo Address Vector Table 

Only types 1, 2, 6, and 301 appear in the error processing information area of an object module. 

CODE BLOCK TABLE 

The code block table contains the executable code in the following format: 

Word 

I &ACODE&6 
64 

2 Length Back Pointer 
16 48 

3 Code 

The code block table has a pointer in the error processing information area. In this capacity the table 
has the following format: 

1 -E-4
 



Word 

1 Program Name
64 

2 Length Pointer 
161 48 

3 Code r4 

Word I Program name in ASCII.
 

Word 2 A pointer to the beginning of the error processing information area for that program.
 

Word 3, The executable code.
 
& on
 

CODE RELOCATION TABLE 

This table describes relocation in the code itself. 

Word 

1 	 RELa CODE 
64 

2 Length 	 Back Pointer16 	 48 

3 nbi n 
16 48 

4 Current Base 
64 

5 

11, 12-13. ... In 

Word 3 	 ribi is number of bits per index in the bit string starting in word 5 
ni is number of indexes in the string 

Word 4 	 Current base: current bit address to which this module'is relocated 

Word 5 	 Bit string of indexes,.each nbi bits long. Each index references a half word of code to be 
relocated relative to the base address of the code 

When this table is processed, the bit base address of the code is added to the 48-bit fields pointed to by the 
indexes" in.the bit string. 

1 -E-5 



EXTERNAL/ENTRY TABLE 

The extemal/ ntry table contains definitions for all'entry points, external symbols, and common blocks. 

Word 

EXTAENTR 

2 Length 16 Back Pointer 4 

3 m n 

4 Er48 

4 
Entry Name 1 

Entry Name 2 

64 

Entry Name m 

64 

External Name 2 64 

64 

External Name (nm)6 

Entry DescriptorI 
64 
64 

Entry Descriptor 2 

64 

Entry Descriptor 26 

64 
Externa Descriptor 1 

Eternal Descriptor 2 -64 

External Descriptor (1m) 
64 

1-E-6
 



Word 3 m is number of entry point names in table 
n is number of names in table 

Word 4 through 3+m List of entry point names 

Word 4+mthrough 3+n List of external names 

Word 4+n through 3+m+n List of entry point descriptors 

Word 4+m+n through 3+n+n List of external descriptors 

Each descriptor is of the following form: 

16 Value 481 

Type Field Symbol Type Value Field 

1 Entry point in code Relative bit address in the code 

2 Entry point in data Relative bit address in the data section 

3 Constant entry point 48-bit constant 

14 External procedure 0 

15 External datum 0 

16 Common block Bit length of the common block 

ENTRY POINTS 

An entry ,point is a named value defined in the procedure; it is to be referenced as an external by an external 
procedure. It may be an address in the code block, an address in the data base, or a constant value. 

COMMON BLOCKS 

A common block is a named alterable space referenced by one or more procedures. A common block can be 
initialized with relocatable data. Blank common is a common block with name of eight blanks. 

EXTERNAL PROCEDURE 

An external procedure reference is used in a call. Having a symbol doubly defined as a common block and 
external procedure is specifically allowed. All names are eight characters, left justified and blank filled. 

1-E-7
 



EXTERNAL DATA
 

An external datum is an external that is referenced by a method other than a procedure call.
 

INTERPRETIVE DATA INITIALIZATION TABLE
 

When the loader processes information in. this table, areas of static space, are initialized.
 

Word 

1 	 INTcDATA 
64 

2 Length 	 'ack Pointer 

3 	 Data Item Descriptor
Data Item 

64 

Data 	 Item Descriptor 
Data Item 64 

Data 	 Item Descriptor 
Data Item 64 

Word 3 Data item descnptor and item pairs, formatted as follows:
 
& on
 

ordl 1J ord2 16 Type .1 Mode Chain JA I
 

ordl Pseudo address vector ordinal of static space to be initialized 

ord2 Pseudo address vector ordinal relative to which relocation is to be done (relocation base) 

Type- Type of data item that follows 

1-E-8
 



Mode 	 00 Values to destination
 
01 Values plus relocation base to destination
 
02 Destination plus relocation base to destination
 

When mode = 00, the values in the item are stored directly into the destination fields, and 
ord2 is ignored. When mode = 01, the relocation base is added to the values before they are 
stored in the destination fields. Halfword values are not defined for this case. When mode = 02, 
the relocation base is added to the destination fields. The value fields are absent in the various 
items in this case. 

Chain 	 Relative full-word count to next data item descriptor in table 

Data items may be stored in one of the following formats, depending on the type: 

Data Items 

Item Format I 

Length 161 Relative Address 48. 

Value 

Item Format 2 

64 

Length 16 Relative Address 48 

Value 

tBit 
String 

Item Format 3 
64 

Length 16/Relative 	 Address 

48 

Value" 

64 

nbi l1-	 n 48 

Bit String 
64
 

1 -E-9 



The data item format corresponding to each type is as follows: 

Type Description 

I Full-Word Broadcast 

2 Half-Word Broadcast 

3 Full-Word Vector Transmit 

4 Half-Word Vector Transmit 

5 Full-Word Sparse Vector 

6 Half-Word Sparse Vector 

7 Full-Word Index List 

- 8 Half-Word Index List 

9 Byte String 

A. Bit String 

D Nested List 

Data Item Format 

1 

1 

1 

I 

2 

2 

3 

3 

I 

I 

Any 

1-E-1 0
 



For each data item type, the appropriate format is applied as follows: 

ULL WORD BROADCAST
 

Data Item Type I 

Item Format 1 

Length Full word vector length 

Value A full word to be stored in consecutive 
in the section of static space 

full words starting at the relative address 

HALF WORD BROADCAST 

Data Item Type 2 

Item Format I 

Length Half-word vector length 

Value A left justified half-word to be stored in consecutive half-word locations starting 
at the relative bit address 

FULL WORD VECTOR TRANSMIT 

Data Item Type 3 

Item Format 1 

Length Full-word vector length 

Value Full-word vector to be transmitted to the relative address in control section 

HALF WORD VECTOR TRANSMIT 

Data Item Type 4 

Item Format I 

Length Half-word vector length 

Value Half-word vector to be transmitted to the relative address in control section 

1-E-1 1 



FULL WORD SPARSE VECTOR
 

Data Item Type 5 

Item Format 2 

Length Number of values in item 

Value Full-word values 

Length2 Length of control vector 

Bit String Control vector having a length specified by length2 

HALF WORD SPARSE VECTOR 

Data Item Type 6 

Item Format 2 

Length Number of values in item 

Value Left justified half word vector 

Length2 Length of control vector 

Bit String Left justified control vector 

FULL WORD INDEX LIST 

Data Item Type 7 

Item Format 3 

Length Number of values in item 

Value Full word values 

nbi Number of bits per index 

ni Number of indexes 

Bit String A bit string of ni indexes; each index is nbi'bits long-and contains a full-word 
"count 

1-E-1 2 



HALF WORD INDEX LIST
 

Data Item Type 

Item Format 

Length 

Value 

nbi 

ni 

Bit String 

BYTE STRING 

Data Item Type 

Item Format 

Length 

Value 

BIT STRING 

Data Item Type 

Item Format 

Length 

Value 

8 

3 

Number of values in item 

A left justified half-word vector 

Number of bits per index 

Number of indexes 

A bit string of indexes; each index is nbi Jbits long and contains a half-word count 

9 

1
 

Number of bytes in value field 

A left justified byte string 

A 

I 

Number of bits in value field 

A left justified bit string 

1-E-1 3
 



NESTED LIST 

Ordil Ord2 Typel1 Mode ,Chain116 16 8 8 16 

Lbngthl Rba16 48 

Ni2 Niter 
16 48 

Nil Type2 Chain216 16 8 24 

Length2' unused16 48 

Value 
64 

Ni3 Chain316 48 

Ordl Pseudo address vector ordinal relative to the data area to be initialized 

Ord2 Pseudo address vector ordinal relative to which relocation is to be done (relocation base) 

Typel D-nested list 

Mode 00 Value to destination 
01 Value plus relocation base to destination 
02 Destination plus relocation base to destination 

Lengthl Number of nested item types that follow 

Rba Relative bit address 

Nil Nested data item 

Ni2 Nested iteration start item 

Ni3 Nested iteration end item 

Niter Number of times data item/items associated with this iteration start item are to be 
repeated 

Type2 Any initialization type. If more than one data item in an iteration, types may not 
be mixed 

1 -E-1 4 



Chainl Relative full word count to next data item in nested list
 

Chain2 Length of data item in number of words
 

Ghamin3- 0 No 'nested item types folloiv
 
1 More nested item types follow 

Length2 Half word vector length 

Value A left justified half word to be stored in consecutive half word locations starting at 
the relative bit address Rba 

INTERPRETIVE RELOCATION INITIALIZATION TABLE 

Word 

1 INTAIRELO 

64 

2 Length Back Pointer 
48 

3 Relocation Item I 
64 

Relocation Item 2 

64 

Relocation Item n 
64T 

Word 3 Relocation items; item formats are similar to data initialization table formats but do not 
& on contain values 

1-E-1 5
 



TRANSFER SYMBOL TABLE 

Word 

I XFERASYM
 

64 

2 Length 16 	 Back Ponter 48
 

3 	 Transfer Symbol 
64 

Word 3 	 The symbol name of the entry point to which control is to be transferred at the 
start of execution. The name is left justified with blank fill. 

DEBUG SYMBOL TABLE 

The debug symbol table, which contains the ASCII representation of symbols that appear in a program, allows 
a symbol to be referenced by name rather than by address. This table appears in the error processing, infor
mation area if the compiler/assembler used is capable of generating the table and the appropriate option is 
selected and used during compilation/assembly. 

Word 

1 SYMBATAB 
64 

2 Length Back Pointer 
16 48 

3 Number of Symbols 0 
16 48 

4 	 Symbol I 
64 

Symbol 2 
64 

Syboln 
64 

Word 2 	 Length of table including the symbol- definition table. Back Pointer is the bit difference between 
word I of this table- and word I of the module header table. 

Word 3 	 Number of symbols in this table. 

1 -E-1 6 



Word 4 Symbols, which can be any of the following: 
& on 

Variable or array names in ASCII; must be left-justified with blank fill. 

Statement line numbers in ASCII; must be hexadecimal values, right-justified with 
ASCII zero fill. 

Statement labels in ASCII. Labels that are symbolic names are stored left
justified with blank fill; labels that are statement numbers are stored right
justified with ASCII zero fill. 

SYMBOL DEFINITION TABLE 

The symbol definition table is an extension to the debug symbol table. It provides further definition to the 
debug symbols including the type of symbol, address, and mode. 

Word 

I SYMBADEF 
64 

2 Length 0 
16 48 

3 Type 16 ______________________48t Location4 Symbol 1 

Definition 
4 Mode 

16 
0 

32j 
Ordinal 

16 

Type Location Dfnton 
1pi 48 Symbol 2 

Mode 0 Ordinal 

/Definition 

Typo Location ~g1 Smo16321 16 

-OrdinalMode 0 16jDfnto 

Word 3 Symbol type: 

0 = Unknown 

I = Half-word register variable name 

2 = Full-word register variable name 

3 = Variable or array name 

1-E-17
 



4 = Line number 

5 = Label 

Location field for symbol type: 

I = Half-word' address within register file; since half-word values may be stored in 
full-word registers, location can range up to hexadecimal 1FF 

2 = Full-word register number 

3 = Bit address relative to the start of the data base 

4 = Bit address relative to the start of the code base 

5 = Bit address relative to the start of the code base 

Word 4 	 Mode. Symbol mode, consisting of three parts: precision, description, and data type. In the case 
of a descriptor, P and Dtype describe the contents of the reference vector. 

I P1 Dew 3 	 Dtpe 121 

P Precision base indicator: 

0 = Precision base is 32-bit, or irrelevant 

1 = Precision base is 64-bit
 

Desc Descriptor indicator:
 

0 = Not a descriptor
 

I = Vector descriptor
 

2 = Vector descriptor array 

4 = Sparse vector descriptor 

5 = Sparse vector descriptor array 

Dtype Type 	of the referenced vector:
 

0 = Unknown
 

I = Logical
 

2 = Integer
 

3 = Real 

4 = Complex 

S = Double precision 

6 = Character 

7 = Bit 

Ordinal: The pseudo address vector table of the data base or common block 

1 -E-1 8 



PSEUDO ADDRESS VECTOR TABLE 
(Ordinal Description) 

The table-has the following format: 

Word 

O 	 AAPAVAAA 
64 

1 LengthBack Painter 
16 48 

2 	 Code Address 
64 

3 Dat Base Address 
64 

45 	 External Address 3 

64 
8/7 External Address 2 

64 

2n+1/2n+2 	 External Address n 
64 

For common: 

o 	 Address 
16 48 

o 	 Bit Length 
4816 

For external symbol, referencing entry point in code: 

o 	 Address in code1Entry
16 	 48 

Data Base Length Data BOwe 
16 48 

1-E-1 9
 



For external symbol, referencing entry point in data: 

O 
16 

Data Base Length 16 

Entry in Data Base 

Data Base 

48 

48 

For external symbol, referencing constant entry point: 

0 16 

Data Base Length J 
Constant Entry Value 

Data Ease 

48 

1 -E-20
 



APPENDIX F
 

SIMULATOR INPUTS AND RESULTS
 

H 32768,16,3,16 


H 0.1..1100,600 

H 0,2,5.1,100,800 

M 0.3.5,1,100.800 

H 0,4.5.1,100.800 

H ot,5,.198,600 

H 06159l98600 

H 0.7,5.1.98600 

H 0,85,1,100,600 

H o.Ogtl98.600 

H 0.0.5.1.98,600 

H 090,5,19100,800 

H 0,0,5,10100,800 

M 0,0,5,1,16.128 

V 2,0,2,1.60000.12,3.1 

V 3,0.2,1,60000.,12,31 

V 490#2,1,60000,1231 

V 0,0,21,60000,12,13, 

V 0.0.2,160000.12,3,1 

V 0#092,1,60000.12.3.1 

V 0t03 1t6000.9,4,1 

V 0,0,3,1,60000,90,.1 

V 0#0.3916000094,1 

V 0,0,2,1.60000.9,4.2 

V 0,0,31,60000.9,4,1 

V 0t02l,600009,4,2 

V 0.0#.2l60000,9,2,2 

V 0t0,2t.60000t9,2.2 

V 59091,1,60000.18,2,2 

V 00ol,6000020.3.1 

V 0#0,2.1,60000.9,3.2 

V 0.0,3,l,60000,9,4.1 

V 0013,1960000.15*4#2 

V 0.0,3,1.60000.9,4,i 

V 00#2,'1,60000.99391 

V 0,o,2.1.enooo,1S.3,1 

V 0.Ot2,1.60000#15.394 

V -0.0,2at8000O 9,.42 

V 0.02tl,60000.9,3.2 

V 090,1,1,60000,9,2.1 

H 0,O02, 1#60000 

V 0.0.3,1,60000,9t4, 

-V #0031.60000915*4.1 

V 0#00,13,600000,491 

V 00t,3,1,60000,9,4,1 

V 0.0s3,1.60000.9,4I1 

V 0e0.3,1.60000,9.4.1 

V 0.0.3*160000.15I.41 

V 0.0v3,160000.9.4.1 

V 0,0t2.1.60000.9,4,2 

V 0,0,3,1.60000,9,4,1 

V 0.0,3.1,60000.9.4.1 

V 010391.60000,9,4.1 

V 0#0391.60000.15,491 

V 0.0,11,.60000.9,2.1 

V 0.0,3,1,60000,15.4,1 

V 0,OO3.160000,Q,491 

V 090#3.1t6"000099 41 

V 0O0391#600009441 

V 0t0,2,1,60000.9,3.1 

V 0,0,1,,60000.20.2,1 

V 0,0#091.60000#1893,1 

V 0Qt0,l60000..3.2 


821 

822 

823 

824 

922 

923 

924 

925 


926 

932 

94Z 

952 


962 

972 

982 

992 

1002 

lol2 

1022 

1032 

1042 

1052 

1053 

1063 


1065 

1082 

2102 

1142 

1142 

1162 

1182 

1183 

1192 

1193 

1202 

1212 

1232 

1252 

1282 

1283 

1292 

1302 

1312 

1322 

1342 

1352 

1362 

1372 

1382 

1392 

1402 

1412 

1422 

1432 

1442 

1452 

1462 

1472 

1482 

1522 

1522 

1542 


FrITRX-AHATRX-RTRI ROUTINE" 
 000100
 
MAP RJ: GATHER RECORD 000110
 

MAP XKL: GATHER RECORD 000120
 
MAP YXLI GATHER RECORD 000130
 
HAP ZKLI GATHER RECORD 000140
 
MAP QI: GATHER RECORD 000160
 
HAP 02.2 GATHER RECORD 000170'
 
MAP Q301 GATHER RECORD 000180
 
MAP 4'I GATHER RECORD 000190
 

MAP Q5'1 GATHER RECORD 000200
 
MAP Rd'1 GATHER RECORD 000210
 
MAP XLK'I GATHER RECORD 000220
 
MAP YKL': GATHER RECORD 000230
 

MAP ZKL!: GATHER RECORD 000240
 
XK 000250
 
yK 000250
 
ZK 000270
 
XL 000290
 
YL 000290
 
ZL 000300
 
Ti 000310
 
T2 000320
 
Ti 000330
 
XX(1) AND XX(2) 000340
 
72 000350
 

XX(3) AND XX(4) 000360
 
0(1.2) AND D(193) 000370
 
0(1.1) AND 0(1.4) 000380
 
RR.j/Q1 000390
 
DIV 2ND PASS 000400
 
U AND V 000410
 
U*012 I V*D13 TI 000420
 
TI * RR.QR*OI4 000430
 
71 000440
 
UT 000450
 
CI 000460
 
C2 000470
 
C3 AND C4 000480
 
CS AND C6 000490
 
C7 000500
 
0(l.) 000510
 
0(2.1) 000520
 
10(2t2) 000530
 
0(2#3) 000540
 
0(2,4) 000550
 
0(3.1) 000560
 
0(3.2) 000570
 
0(3.3) 000580 
D(3,4) - 000590 
D(2.S) AND 0(3.5) 000600 
0(491) 000610 
0(4,2) 000620 
0(493) 000630 
D(4,4) 000640 
0(4,5) 000650 
0(59) 000660 
D(592) 000670 
0(5,3) 000680 
0(S,4) 000690 
END AMATRX 000700 
RNJuRH/RJ 000710 
DIV 2ND PASS 000720 
RRAND RF 000730 

1-F-1
 

http:0.0.3*160000.15I.41


M 090.5,1.98,588 

R 5 

R 5 

V 0.o0.1 600009,22 

M 090#2,10100000 

C 

M 000.2,11,.60000 

V 0#09t,2,6000009492 

C 

F 32768.16,3.16 

V 0.0.1.1.600.18.2,2 

V OtOOtlt600.18.2,1 

M Ololtl1600 

V 1#0,3*1,600.9,4,2 

V 0,0.1,19600918.2,2 

V 0.0,011600,18.2,1 

V 090w2.1,6009.3.2 

V 0,091,1.60099,3,1 

V 010,1,1.600,9,2.1 

V 0,0.3,1,600,12,4,1 

V 0.0,3,1,600,941' 

V 0w01.1,600.9.2,1 

V 0.091,1,600,18,2,2 

V 010,0,1,600,18,2.1 

V 0,0.3,1,600,9,4,1 

V 090,3,1,600,9.4,1 

M 0,2,1919-1.600 

V 2P0.3,1,600,1294,2 

V OtOt3,1.600.15,4t 

V 0,0.3,1,600,9,4.1 
V 0.0.211600,12,391 

V 0,O03t1600.94I 

V 090,3*1,600,9,4*1 

V 0#091,1.600,18.2,2 

V-O0,0.1,600*182,1 

V 090,3,1,600,994,1 

V 010,2,1,600,12,2,1 

M 092.1,1,1".600 

V 2P0,3,1,600,12.4,2 

V 0,0.31,600,1294,2 

V 0,0,3,1.600,9.412 

V 00o,3,1,600,9,4,2 

V 0,0,3,I,600,12,4,1 

V 0,093,1,600,12*4.1 

V 0.0.3#1.600,12t4.2 

V 0.0,3#1,600,1294,1 

V 090,3.I600,12*4,1 

V 0.09111,600,18*2,2 

V 0,0,0.1,600,18.2,1 

V 090,3,1,600,9,4.2 

V OO3,1,600,q,'2 

V 0.0.39v600,12.4.1 

V 0,0,3,1,600,12.4,1 

V 0.0,3,1,600.12,4.1 

V 090,3,1.600,9v4,2 

V 0.0,3,1,600,12,4,2 

V O9 3,1,600,129492 

V 0.O0e0I,600,9.3.2 

V 0,0,3,1,600,1294,2 

V 0.0.3#1.600.12,491 

V 0.0.3*1,600,12,4,1 

V 0.0v3,1,600,12.4.1 

V 09093,.1600.12.4,1 


1652 MAP FI(N)IGATHER 

1550 DO 23 

1560 DO 22 

1602 A(NtM) AND B(NM) 

1612 MAP B(NM)t SCATTER 

END DO 22 

1632 MAP 8(N,M)2 SCATTER 

1642 A(N#) AND CCN.M) 

END DO 23 


STRI ROUTINE LINES 4330 TO 6100 

4330 Llll/B(ltll 


DIVIDE 2ND PASS 

4340 MAP1 L21.8i(291)

4350 & 4360 U12w81(i,2)*Lll T.81-LZeUl2 

4360 L22.1./TI 


DIVIDE 2NO PASS 

4380 U13, U14 

4390 U15. L31 

4410 L32 

4420 U23 

4430 TEMPI 

4430 TEMPZ 

4430 DIVIDE 1ST PASS 

4430 L33 

4440 U24 

4450 UZS 

4460 L41 

4470 L42, TI 

4480 L43 

4490 T1'L41-U13-L324U24 


U34s(B1(3,4).T1,)4L33 

4500 T1.U14*L4l*U240L42 

4500 Tl.l8(4,4)-Tl-(U34*L43) 

4500 L44.1..T1 


DIVIDE 2ND PASS 

4512 Ti 

4513 U35 

4622 LSI 

4542 52 AND T1.LS1'U13 

4544 L53 

4552 TI 

4553 L54 

4562 TIsL42*U25-L43*U35 

4563 TI 

4572 U45 AND TI 

4574 T2 

4575 Ti 

4576 L51tl./T1 

DIVIDE 2ND PASS 

4602 & 4603 01 AND Ti 

4612 02 AND T1 

4614 03 

4622 TI 

4623 TI 

4632 D4 

4634 72 

4635 Tl 

4652 05 AND F1S 

4672 F14 AND TI 

4674 F13 

4682 Ti 

4683 F12 

4692 TI 


000740
 
0007so
 
000760
 
000770
 
000780
 
000790
 
000800
 
000810
 
000820
 
000840
 
000850
 
000860
 
000870
 
000880
 
000890
 
000900
 
000910'
 
000920
 
000930
 
000940
 
000950
 
000960
 
000970
 
000980
 
000990
 
001000
 
001010
 
001020
 
001030
 
001040
 
001050
 
001060
 
001070
 
001080
 
001090
 
001100
 
001110
 
001120
 
001130
 
001140
 
001150
 
001160
 
001170
 
001180
 
001190
 
001200
 
001210
 
001220
 
001230
 
001240
 
001250
 
001260
 
001270
 
001280
 
001290
 
001300
 
001310
 
001320
 
001330
 
001340
 
001350
 
001360
 
001370
 

1-F-2
 

http:32768.16,3.16


V Ot03ti6012#4vl 

V 0,0.3.1,600.12,4.1 

R 5 

V 6003It600O12.4.2 

V 0,0,3,1,600,12,4,2 

V 0#093,1#600,12#491 

V O003919600915s4#1 

V 0,0,301,600,159491 

V 0,0,3,1,600,12,4,2 

V 0,0,3,19600.154,1 

V 0,0,31,600,15.4.1 

V OOltl6009,3.2 

V 0,0,3.1,600,12,4.2 

V 0t031t600,15.4,l 

V OOt3t1t600,15.4.1 

V 0,0,3,1,600,154.l 

V 0,0,3,1,600,15,4,i 

V 0,09391P600,150491 

V 0.0,2t1.600.12*3*1 

c 

R 1 

R 5 

V 0,OP3,1,600,15.4sl, 

V 0,0,3,l600,154,1 

V OtO391,600,1541.1 

V ,Oi1,1,600.9#2,1 

C 

R 25 

V 0,0,3,lt6OIS.4.1 

V 0o,391,60091594,1 

V 09093,19600,154.1 

V 0,0,1,1,600,9,291 

c 

V 090,1,600,18,212 

-V 0,0,91,600t18"2,1 

H 0.1,1.1,1,600 

V 190391,600,9,t42 

V 0011.600,18O2t2 

V 0909091v60091892,1 

V 0,0,2,1,600,9,3,2 

V 0.091#,1600,9.3.1 

V 0,0.l l,600,9.2.1 

V 0,0,3,1#600,12,4,1 

V 0,0,3,1,600.9,4.1 

V 0,0,1,1,600.9.291 

V 0#0.1.1.600.18.2.2 

V 0t0,0,1,'600,18.2.1 

V 0,0,1600,9,4,1 

V 0,0,3,1,600,9,4,l 

M 092d,1t1.600 

V 2v0.3,1,600t12,4,2 

V 0t0,3vI,600,1S4,1 

V 0#03,l,600,9,4,1 

V 0,0,2,1i600,12,3,1 

V 0,09-3,1,600,99,41 
V 0993t1600.9.4.1 

V OtOttl600.18,2,2 

V 0,001 600.18.2l 

V 09031,600.9,4t 

V 0.092,1.600.12.2.1 

H 0,2,1,111,600 

V 2,0'3*t1600,12942 

V 090#3,19600,12,4#2 


4693 T2 

4694 Fl 


4732 DI 

4742 D2 AND Ti 

4744 03 

4762 TV* 

4762 Ti 

4764 04 AND Ti 

4766 T2 

4767 Ti 

4772 DS AND 01S 

4792 84M AND Ti 

4794 83M 

4802 Ti 

4803 B2M 

4812 TI 

4813 72 

4814 Sim 

END DO 12 

DO IMAX TIMES 

00 14 LOOP 

4922 TI 

4923 TZ 

4924 TI 

4925 Fl 

END 00 LOOP 14 

00 LOOP 11 

4972 TI 

4973 T2 

4974 TI 

4975 HNM 

END DO LOOP 11 


4330 Llll/B(1l) 

DIVIDE 2NO PASS 


4340 MAP? L21a1(2,1) 

4350 & 4360 U12a81(12)*L11I! 71=81-L21OU12 

4360 L22l./TI 


DIVIDE 2NO PASS 

4380 U13, U14 

4390 U15, L31 

4410 L32 

4420 UZ3 

4430 TEMPI 

4430 TEMP2 

4430 DIVIDE 1ST PASS 

4430 L33 

4440 U24 

4450 U25 

4460 L41 

4470 L42# Ti 

4480 L43 

4490 Tl=L41*U13*L32*U24 


*
 
U34u(81(3.4)-TI) L33 


4500 TIuJ14*L41.U24*L42 

4500 T81CB(4,4)-Tle(U34*L43) 

4500 144l./Ti 


DIVIDE 2NO PASS 

4512 Ti 

4513 U35 

4522 L51 

4542 152 AND T1=L51OU13 

4544 L53 


-001380
 
001390
 
001400'
 
001410
 
001420
 
001430
 
001440
 
001450
 
001460
 
001470
 
001480
 
001490
 
001500
 
001510
 
001520
 
001530
 
001540
 
001550
 
001560
 
001570
 
00IS80
 
001590
 
001600
 
001610
 
001620
 
001630
 
001640
 
001650
 
001660
 
001670
 
001680
 
001690
 
001700
 
001710
 
001720
 
001730
 
001740
 
001750
 
001760
 
001770
 
001780
 
001790
 
001800
 
001810
 
001820
 
001830
 
001040
 
001850
 
001860
 
001870
 
001880
 
001890
 
001900
 
001910
 
001920
 
001930
 
001940
 
001950
 
001960
 
001970
 
001980
 
001990
 
002000
 

1 -F-3
 

http:600.18.2l


V O,0,3,i,6009.4,2 

V 0.0*31,600,9492 

V 090#3.e1600,12.4,1 

V O.0e3#1.6001294ol 

V OOt3t,600.12,4,2 

V O00,3,1960012.4,1 

V OO,31.600.124,1 

V 010,1.1,60018.2,2 

V 000.0.1,600.18.2,i 

V 090,3,1,600.9,4,2 

V 0,0,3,1,600.9.492 

V 090939,1600,12A4,1 

V OtO3,1.600,12.4,1 

V 0#.93.1,600,1294,1 

V 090,3,t,600,9,4,2 

V 09093,19600.12P492 

V 0,0,391,600.12,4,2 

V 00,0,1,60099#3.2 

V 090,3i1600,12 42 

'V 0.0,39196001Z4,1 

V O0,3,1,600,12,i 

V 0#093.1,600,12.4.i 

V 0909391,600,12*4,1 

V 0.0.3,1,600,12.4,1 

V OO3.1,600.12.4,1 

R 5 

V 00,3.1600,12,4,2 

V 0,.,3,1,600,iZ.4,2 

V 0.0,3.19600,12t4.1 

V 0903,1.600,15#4,1 

V 0003,1#600,1594#1 

V 090.3,1,600,12,492 

V OO3,19600,15,4,1 

V 003,1,600,iS,4.1 

V 090,1 1,600.9,3,2 

V 0.03v.1.600,12.492 

V 0,0,3#1.600.15.4,1 

V 0.093#1,600,15,4#1 


V 0#0,3,1,600.15.4,1 

V 0#0.3,t600,15,4,1 

V 0oO,3,1.600,15.4,1 

V' Q#092919600,12,3,1 

C 

C END IMAX LOOP 

R 5 

V 090w3,1,600415,4,1 

V 0O031600,15,4,1 

V 0,0,3,600,lS.491 

V 0,0,1,1i600,9,2,1 

C 

R 25 

V 0903, ,600,IS.4,1 

V 0,0,3.1,60015*4,1 

V 0,0,3.1,600,1S,4,1 

V O.Oi1,600.9.2s1 

C 

V O00.*1,i600 ,18 2t2 

V 00 O,1,600,18.21 

M 0,It lt
i,600 

V 1,0,3,.600,9,A.2 

V 0#01,10600,I84202 

V 0tO0#,,600.I8,2v " 

V 0O,2.1*600.9.3.2 

V-0,Otl91,600 t3,l 

V 090,1,1,6009#291 

V 0#*3,1,600,12,4,1 

V 0.0391i,6009ow, 

V, O O 1,600,9t2il 

V 0091.9L600#18#2t2 

V 0#09091v600918#29j 

V 090*3919600,9.491 

V 0*0.39,1600,9,4,i

M Ot2tl11,600

V 2,0939*600.12,4,2 


4552 TI.

5
4553 L 4 


4562- T-1L2U25-L43*U35 

4563 TI 

4572 U45 AND Ti 

4574 72 

4s7S Ti 

4576 L51.1./T1 

DIVIDE 2ND PASS 


4602 & 4603 01 AND Ti 

4612 02 AND TI 

4614 03 

4622 TI 

4623 TI 

4632 04 

4634 Ta 

4635 Ti 

4652 05 AND F15 

4672 F14 AND Ti 

4674 F13 

4682 Ti 

4683 F12 

4692 Ti 

4693 T2 

4694 F1 


4732 Di 

4742 02 AND Ti 

4744 03 

4762 TI 

4762 TI 

4764 04 AND Ti 

4766 T2 

4767 TI 

4772 D5 AND 015 

4792 84M AND Ti 

4794 8 3M 

4802 TI 

4803 g2M 

4812 TI 

4813 T2 

4814 SIM 

END DO 12 


00 14 LOOP 

4922"T1 

4923 T2 

4924 TI 

4925 F1 

END DO LOOP 14 

00 LOOP 11 


4972 Ti 

4973 T2 

4974 TI 

4975 NNM 

END DO LOOP 11 


4330 Ll1.l/B1.l) 

DIVIDE 2NO PASS 


4340 MAPg L215(2,1)' 

4350 & 4360 "Ul2t8i(1,2)*Llll TI81-L21iU12 

4360 L22I./T1 


DIVIDE 2ND PASS 

4380 U13, U14 

4390 Ul59 L31 

4410 L32 " 

4420 U23 

4430 TEMPI 

4430 TEMPa 

4430 DIVIDE 1ST PASS 

4430 L33 

4440 U24 

4450 U25 

4460 L41 
4470 -L42, Ti 


002010
 
002020
 
002030
 
002040
 
002050
 
002060
 
00-2070
 
.002080
 
002090
 
002100
 
002110
 
002120
 
002130
 
002140
 
002150
 
002160
 
002170
 
002180
 
0021)0
 
002200
 
002210
 
002220
 
002230
 
002240
 
002250
 
002260
 
002270
 
002280
 
002290
 
002300
 
002310
 
002320
 
002330
 
002340
 
002350
 
002360
 
002370.
 
002380
 
002390
 
002400
 
002410
 
002420
 
002430
 
002440
 
002450
 
002460
 
002470
 
002480
 
002490
 
002500
 
002510
 
002520
 
002530
 
002540
 
002550
002560
 
002570
 
002580
 
002590
 
002600
 
002610
 
002620.
 
002630
 
002640
 
002650
 
002660
 
002670
 
002680
 
002690
 
002700
 
002710
 
002720
 
002730
 
002140
 

1 -F-4
 

http:O,1,600,18.21


V 090*391,600,15.491 

V 0903,1,600,99491 

V 0,0*2,1.600.12.391 

V 0,0,3tl600,9,4,1 

V 09093,1,600,994,1 

V 09091,1,600,18.2t2 

V 0,0,0.10600,18.2.1 

V 0%0,3,1,60099411 

V 0,at2t1600,12.2,l 

M 0:2,111,1600 

V 2 ,03,11600,12.4,2 

V O0.3,1,600912942 

V 0903,1.600,9,4,2 

V OtOt3,lt600,99,42 

V 0,0,3,19600,1294,1 

V OO3tl600,12o4l 

V O003,1#600,12o4,2 

V ,O0,3tl600,12.4v1 

V 0,0,3,1600,124ll 

V OO191,600,18,212 

V 0,0,0,1,600,18.2,1 

V 0,0,3,19600,9#42 

V 0,0,1v600,90142 

V 0#03v,600,12.49, 

V OO31,600,12,4,1 

V OO3,19.600,12.4t1 

V 0#0#3,1,600,994#2 

V 0,0,391600,1294,2 

V 090,3,1,600912,4#2 

V 09090,1P600,9.392 

V 0,0,3,lt600,12,4,2 

V OtO,3,1600,12491 

V Ots31600,12O4.l 

V 0,0,391,600,12,4,1 

V O,0,3t1600,12,4wl 

V 0903,1,600,12,4*1 

V 090,311,600,12,4,1 

R 1 

R 5 

V 09,#3,1,600,I5,4,1 

V 09093,1,600,15.491 

V 0*0,3,1,600,1594,1 

V 0,0,191,600,9,2s1 

C 

C END 

E 


* 


NUMBER . ,..,..... 

4480 L43 002750 
4491 TIL41'U13*L32'U24 002760 

U348(81(3,)-T1)OL33 002770 
4500 TlUl*L41*U24*L42 002780 
4500 TIuB1(4.4)-Tl-(U34*L43) 002790 
4500 L44xl/T1 : 002800 

DIVIDE 2NO PASS 002810 
4512 Ti 102820 
4513 U35 - 002830 
-S22-L51 002840 
4542 L52 AND T1SLSI*U13 002850 
4544 L5 3 002860 
4552 TI 002870 
4553 L94 002880 
4562 TjsL42U25-L43.U35 002890 
4563 TI 002900 
4572 U45 AND TI 002910 
4574 T2 002920 
4575 Ti 002930 
4576 L51al./TX 002940 
DIVIDE 2ND PASS 002950 
4602 & 4603 01 AND T1 002960 
4612 D2 AND TI 002970 
4614 03 002980 
4622 Ti 002990 
4623 TI 003000 
4632 D4 003010 
4634 T2 003020 
4635 TY 003030 
4652 D5 AND F15 003040 
4672 F14 AND TI 003050 
4674 F13 003060 
4682 TI 003070 
4683 F12 003080 
4692 Ti 003090 
4693 T2 003100 
4694 Fl1 003110 

00 IMAX TIMES 003120 
00 14 LOOP 003130 

4922 Ti 003140 
4923 T2 003150 
4924 TI 003160 
4925 Ft 003170 
ENO DO LOOP 14 003180 

IMAX LOOP 003190 
003200 

FLOATING POINT SAVEVALUES 

CONTENTS NUMBER ....... ,..... CONTENTS 

VECFP 6,9739465968500E-001 VECSZ 8.6175078107600E-001
 
CLKPD 728981
 

NUMBER ............. CONTENTS NUMBER ............. CONTENTS!
 
MAPFP 1.1522933080280E.004 MAPRZ " 7.6 949735576900E-001
 

1-F-5
 

http:0#03v,600,12.49


H 32768.16,3,16 

F 

N Op90.5.,160000 

H O,75.tl1,60000 

H 08,5,1s.60000 

H 0.9.5,1,1.60000 

H 005P,1,1,60000 

H O OStl4.60000 

M-0.0,5Otl,,60000

M-00IS1.,1.60000 

H O 90.5,1,.60000 

V 7pl211,6000012,3,i 

V 892,291,60000,12.341 

V 9,3.2,1,60000,12t3,1 

V 0,4#2tlt60000,12t3,l 

V 095#2,1,60000,12,3.1 

V Ot6.2,l,60000912.3,1 

V O.203.lt6OO00015941 

V Ot213tl1,60000,15,4,1 

V'0,22,2.1,6000099,3,2 

V 023,3.l60000.15,4,1 

V 22,2493#1.60000.15,491 

V 0.0.2.l60000.9.3.2 

V 0.0tlo,1 60000,18,2,2 

V 00090,1,60000,18,2,1 

V'00,2,l60000,9,4,2 

V 09093,1,60000,124,t2 

V 0.0.2sl,60000,15,4,1 

V 0,0,3,1,60000,12.492 

V 0,'3.t60000,15,4,l 

V 00,3,1,60000,15,4,1 

V 0,O03.1i60000,15,4,l 

V 0,093,1,60000,15t4,1 

V 0,0,3,1,60000.15.4,1 

V OO3*1,60000,15,4,1 

V 0.0.1,1,60000,912.1 

V,090.39,6000015,4,1 

R 5 

V 09b.2,1,6000012,3tl 

C 

V-7tl'2,1,60000.12,3,1 

V 8,2t2tl,.60000.12.3,1 

V 9.3.2.1",60000,12.3l 

V 0,42P1,60000,12,3,1 

V 0*5,2*1,60000,12.3,1 

V 0.6#2,1,60000,12.3tl 

V 00,20,3,1,60000.15,4,1 

V 0,21,391.60000,15,4,1 

V,022,2t,,60000.9,3,2 

V 0923.3,1960000,15,4*1 

V 22,24,3,1,60000,15,41 

V O,02,1,60000,,3,2 

V OOtll60000.18,2,2 

V 0#09091s60000,1892,1 

V 0,0.2,1,60000.4,2 

V 00.3*i,60000.12,4,2 

V 00,2tl,60000.15,4,1 

V 090.391,60000,12.4,2 

V 0.013,1,60000,15,4,1 

V 0,0,3,1,60000,154,l 

V 0.0.3.,160000,15*4.1 

V 09,3tl,60000,15,4,1 

V OO3,1#60000,15,4,1 


000100
 
THIS IS RIGHT HAND SIDE 000110
 

330 RJ 000120
 
340 XKJ 000130
 
350 YKJ 000140
 
360 ZKJ 000150
 
370 01 000160
 
380 02 000170
 
390 03 000180
 
400 04 000190
 
410 05 000200
 
420 XK 000210
 
430 YK 000220
 
440 ZK 000230
 
450 XL 000240
 
460 YL 000250
 
470 ZL 000?60
 
480 XX(1) 000270
 
490 TEMP2 000280 
490 XX(l) , XX(2) 000290 
500 TEMPI 000300 
510 TEMP2 000310 
510 XX(3). XX(4) 000320 
SSO RR*I./Q 000330 
550 64 SIT DIVIDE 000340 
560 AND'ST0 U AND V 000350 
590 W 000360 
590 T 000370 
590 FINISH QSFORM FI(1) AND TI 000380 
600 U*024V**2 000390 
600 w**2*TlO*Q 000400 
600 P.GAMI*(05-.5*T1) 000410 
620 F1(2) 000420 
630 F1(3) 000430 
640 FI() 000440 
650 (QSPP) 000450 
650 FI(5) 000460 

00 20 LOOP 000470 
710 52 000480 

000485 
420 XK 000490 
430 YK 000500 
440 ZK 000510 
450 XL 000520 
460 YL 000530 
470 ZL 000540 
480 XX(1) 000550 
490 TEMP2 000560 
490 XX(1) * XX(2) 000570 
500 TEMPi 000580 
510 TEMP2 000590 
510 XX(3), XX(4) 000600 
550 RRsi./Q 000610 
SSO 64 BIT DIVIDE 000620 
560 AND 570 U AND V 000630 
590 V 00040 
590 T n00650 
590 FINISH QS.FORH F(1) AND Ti 000660 
600 U**2*VQ02 000670 
600 W*02*T1*Q1 - 000680 
600 PnrAMI*(5.5*T1) 000690 
620 F1(2) 000700 
630 F13) 000710 

1-F-6
 

http:9.3.2.1",60000,12.3l


V 0'0931,160000015.4,1 640 Fi(4) 000720 
V 0091,1,60OO.92,1 650 (QSPP) 000730 
V O0,3,1,6000015,41 
R 5 

650 FI15) 
00 2O LOOP 

000740 
000750 

V 0#09291,60000,12#3,1 710 S2 000760 
C 000765 
V 791,21,60000$2-3-1 420 XK 000770 
V 802.2,1,60000.12,31 430 YK 000780 
V 993s2#1.60000912,31l 440 ZK 000790 
V Ot492,1,60000,12,3,1 450 XL 000800 
V 09592#1,60000912391 460 YL 000810 
V 09612,1,60000s12t3,l 470 ZL 000820 
V 0O0920#3.1,60000,1594.1 480 XX(L) 000830 
V 021.3.1.60000015,4,l 490 TEMP2 000840 
V 0,22,2.160000.9392 490 XXCI) t XX(2) OORSO 
V O.233.1,60000.lS,4.1 Soo TEMPI' 000860 
V 2224,3,1,60000915,49l 510 TEMP2 000870 
V 00,2,1,60000,93,2 510 XX(3). XX(4) 000880 
V 00111,6000018,2,2 550 RR=I./Q 000890 
V OO,1O,*60000,18,2.1 
V 0,0,2,1,60000.9.4,2 

550 64 SIT DIVIDE 
S60 AND S70 U ANO V 

000900 
000910 

V OO,3,1,60000912,492 590 w 000920 
V 0#002,1160000915,4,1 590 T 000930 
V OO,3,1,6000012,42 590 FINISH QSFORM F1(I) AND Ti 000940 
V 090.391960000,1594,1 600 U**2*V**2 000950 
V 0.0,3,1,60000,15,4,l 
V 0 01391.60000,15,4,1 
V 0,0,3,1,60000r15,4.1 

600 W.*2+Iol 
600 PsGAMTI(O5-.5T1) 
620 Fr(2 

000960 
.00970 
000980 

V OtOt3,1600001S4,1 
V O0093#1#60000915#4,1 

630 Fl(3) 
640 F1(4) 

000990 
001000 

V 09O91,960000.92,1 650 (Q5*PP) 001010 
V 0.0,3,1,6000015.4,1 
R 5 

650 FIcS)
00 20 LOOP 

001020 
001030 

V 0012,l,60000.12,3.1 710 82 001040 
C 001045 
E 001050 

* FLOATING POINT SAVEVALUES 

NUMBER ....... -.. CONTENTS NUMBER ............. CONTENTS 
VECFP 1.03n437-718820E*O00 VECBZ 9.0235653319400E-001 
CLKPo 772976 

NUMBER .......... CONTENTS NUMBER .,........... CONTENTS. 
M1APFP 72770688160800EO07 MAPBZ 2.6197447737840E-OC 

1-F-7
 



H 32768,16.3,16 
 000001

F 
 000040
 
F 
 000041

F 
 000042
 
F SIMULATION INPUT FOR VISMAT SUBROUTINE 
 000043
 
F 

F 

4 00,1.1,1960000 
M O,0,11,11,60000 
M 090,191,1,60000 
4 0s0.91.,1.60000 

" 0#0919l,1.60000 

4 0t0119191,60000 


F 

F 

V 0903,1,60000,9,2s2 

V 090.2.1,bo0000o9,,2 

V 0*092,1,60000,9,492 

V Oti21,60000,12,391 

V 090,391,60000912t492 

V 090,2,1e60000.Q3.2 

V 0.0291,60000,9.3,2 

V 0.0,3,1,60000,9,4,2 

V 09092#1,600009,932 

V 0'01,60000.9,2,1 

V 0.0.2.1,60000,9,4,2 

V 090*291,600009q,4,2 

V 0'0,2,o160000.9,4,2 

F 


"2070 

2080 

2190 

2200 

2310 

2320 


I740 

1740 

1750 

1740 

1750 

1790 

1760 

1770 

1790 

1820 

1840 

1860 

1880 


000044 

D(2,5).OO 
DU(2,5)=O.O 

000045
000050 
000051 

0(3.5)-0.0
OUC3,5).0.0 

000052 
000053 

0(4.5)-0.0 000054 
DU(4,S).Oo0 000055 

000100 
000120 

TO(ZZIZ21).cZZ2*ZZ2); T32(ZZ2*ZZ2) 000130 
T2.ZZ1*ZZ1I T4sZZ3*ZZ3 000140 
Tl.(R3*VNU)*RJI 
50z(TO.T4)*RJ 

1780 TS.ZZIZZ2 000150 
000160 

S1.(S0*(T1T2); 1810 SO=SO*CGKPR*GKAP) 
T6SZZ1*ZZ31 1800 T7-ZZ2*ZZ3 

000170 
no0so 

T13.T1'T3; 1780 S4aT1*T5 
S30(SO(Tl*T74)l 1760 S2uSO-T13 

000190 
000200 

S5s*T T6; 1800 S6*T1*T7 000210 
EQS*RR 000220 
COsSO(a,*,IILAX-1)SO(,,21LMAX); 1850 Clu 000230 
C23S2(,*,:LMAX-1})S2(*,*2;LMAX); 1870 C3. 000240 
C4.S4(**II*LAX-1).S4(*,*t2:LMAX); 1890 CS- 000250 

000260 
F OEFINE STATEMENTS GO HERE 
 000270
 
F 

V 0,03.1,60000,4,1 

V 0'0.2.l,60000,9,4,2 

V 0.092,160000.q,4,2 

V 0.0,3,1,60000,S,4,1 

V 09031,6000015,491 

V 09e#2,1,60000,9,3.2 

V 0.1,2v160000,9,3,2 

H 1,0,11,1960000 

1 0#0,1*1,1960000 

V 0,292,1,60000.9,3,2 

M 2091o1,,60000 

M 0.0#1,11,.60000 

V 0,0t3,1,60000,Q4,: 

V 0.03vl,160000,15,4,1 

V 0,0.3,1960000,994,1 

V 0'0,3,1,60000,1594,1 

V 002,1,60000,9,392 

V 003%2,1#60000,9,3,2 

M 3w0.,1t,1,6ooOC

M 00.l,lt,60000 

V 090,3,1,60000.,4,1 

V 0,0.3,1,60000,154,1 

V 0.0.3,1,60000,9,4,1 

V 090391,60000,15#4,1 

V 0,0.2,1.60000,9,3,2 

F 

F 

F 

V 002,1,60000,12,3t2 

V 0.0,2,1,60000,12,392 

V 0'0,2,1,60000,12,3,2 

V 040,2,1,60000,9.3.2 


000280
 
1970 T1a((C1U(*.*,ILMAX-)).(C4*V(,*,:LMAX-1))) 000290


^
1970 T3.T1.C5*W(*,*,1ILAX.1); 207 0(2.5). 0.0 000300 
1980 D(2,I)m-T3*RR(*,*,,LMAX.1): 1900 C6- 000210
 
1990 T1.((C1*U(O*,,ILI4AX.1)).(C4*V(*,*,1ILHAXI)1) 000320

2000 OU(2,1)tRR(.T.(-C5S*W(*,*2;LMAX))) 
 00030
 
2010 D(2.2).CI*RR(,,IILMAX-1); 2020 OU(2,21.CI*RR(,000340

2030 D(2,3)=CA*RR; 2040 OU(2.3)UC4*RR(,,2ILMAX) 000350

2130 0(3,2)=0(4,3) 
 000360
 
2140 DU(3.2)sDU(2,3) 
 000370
 
2050 D(2,4)nCS*RR(h,1LMAX.1); 2060 0U(2,4s=CSlR 000380
 
2250 0(421=0(2,4) 000381

2260 DU(4,2)=0U(2,4) 
 000382
 
2090 T1.(C2*V(*t*,1ILMAX-1)I)*(C4*U(0,0,1:LMAX.), 
 000410
 
2100 D(3,1)sRR*(T..Cbow(*.*,IILMAX-1))) 000420
 
2110 T1.(C2*V(*,0,2ILMAX)),(C4*U(,,*,2ILMAX)) 
 000430
 
2120 OU(3,1)=RRO(-Tl(C6*w(o,*i;2LHAX))) 
 000440
 
2150 D(3,3)xC2*RR(*,*,:L?4AX-l) 2160 OU(3,3).C2*RR 000450
 
2170 D(3,4)=CbQRR; 2180 DU(3,4)C6*RR(*,*,21LMAX) 000460
 
2270 D(4,3)=D(a,4) 000461
2280 DU43)DOU(3,4) 000462
 
2210 Tl.(C3*w(*,*,lLMAX-1)).(CSW(*,ILMAX-1)1 
 000490
 
2220 D(4,).RR*(.Ta.(-C6*Vco*,1,LMAX.1)) 000500
 
2230 Tl.(C3*W(*.*.2:LMAX))(CSW(e**,ILMAX..1j) 
 000510
 
2240 DU(4,1).RR(-T1.(-C6*V(., 2aLMAX))) 000520 
2290 D(4,4)=C3IRR 2300 OU(4.41)C3*RR(.2LMAX) 000430 

000540
 
000550
 
000560
 

2330 T1.(CI-C2); T2uT1*U(*,*,IILMAX.1) 000570 
2340 T3.(CZ-CO)I T4mT3V(*,*9TLAX-1) 000580 
2340 T5.(C3-CO); T6=TS*W(*,*,IILAX1) 000390 
2350 T7*C4*V; T8.2*U(*,*,1:LNAX.1) 000f00 

1-F-8
 



V-0.0,2,1,60000994,1 

V 0,Ov21,60000,994,2 

V 0.0391,6000099,4.1 

V 0,02,1,6000099,42 

V 090.3,1,60000,994,1 

V 003-1,60000S-15-39I 

V 0,031160000.15.4,1 

F

Ff 


V O0,02,1.600009,2,2 

V 0,0,2,1,60000,9,292 

V 0,0,2,1,60000,9.2,2 

V 06092,1,60000,9.3,2 

V Ot0,2,1960000,9,4,2 

V 0,0,3,1,60000,9,4*1 

V 0.0,291,60000#9,4.2 

V 0,O,3,l,6OOOO9,4tl 

V 0#0,2,1,60000,12#4,1 

V O003.lt60000.15.3,1 

F 

F 

V 0*03t1,60000,15,4v1 

V 0.0.391.60000.15,4,1 

V 0.0,3,1,60000,9,4.1 

V 00,2,1960000.12.3,1 

V 0,0391,60000.9, ,1 

V 090,291,60000,12,3,4 

V 00,3,1,60000,9.41 

V 0,0,21,60000,12,3.1 

V 0,0,3,1,60000,9,4,1 

V OvO29160000,1293,1 

V 0,0,2t1,60000,9,3,2 

F 

F 

F 00 LOOP N.2,5 
F 
F 
R -
R 5 

F 


2330 T9.T2*(-J(*,*,1ILHAX-1))*T4*(.V(ot,*IILMAX-1)) 000610
 
2350 TIO-2*U; TllCS*W(*.,1ILMAX1) 000620
 
2350 T12.(T7*(-TlO))*(T8*(.T1l)) 000630
 
2360 T13aC6*Vl*.*,1:LMAX-)l T14.2*W 000640
 
2360-70 T15u(T130t-T14.)j* (CO*Eit*,I-LMAX-)-) 000650
 
2340 T1-6sT9*(T6*W(*,*,IILMAX-1))*T]2 000660
 
2370 05,1l)u((T16*Tll).T1S)*RR(v*,ILMAX-1) 000670
 

000680
 
000690
 

2380 T16ST1*U(*,*,2:LMAX) T153T16*U(*0*2ILHAX) 000700
 
2380 T1j4T2*V(*,*,2:LMAX)t T13T14*V(*,*,21LMAX) 000710
 
2380 T3-TS*W(*,*,2,LMAX); TST3*# 000720
 
2390 T.1O.C4QV(*,*,2iLMAX)U T82*U(t*,2SLHAX) 000730
 
2390 T9.2*U(*,*,2ILMAX)H T12wC5W(,*,2tLMAX) 000740
 
2390 T17x(T10*(-T9))*(TS*(-T12)) 000750
 
2390 Tl8C6*V(*,*,2sLMAX)i T1932*4(*.* 21LMAX) 000760
 
2390 TZOU(T18*T-TL9))*(COE(*,*t2lLMAX)) 000770
 
2390 T1qST20*T17.T1S 000780
 
2290 DU(591)sC(T1*TS)*TI9)*RR(09*,21LMAX) 000790
 

000800
 
000810
 

2410 0(5.2)a(T2*T7*Tll)*RR( , ILMAXeI) 000820
 
2430 DU(5,2)x(TS.T1O*T1Z2) RR(*,*t, LMAX) 000830
 
2440 T7.(C4*U(,.I1LMAX.))C6*W(*,*.LLMAX'I)) 000840
 
2450 D(5,3)u(T4*T7)*RR(*,*,1ILAX1) 000850
 
2460 TT.(C4U(*t*,2ILMAX)).(C6*W(*9,,21LMAX)) 000860
 
2470 DU(S3)s(T1*T7)QRR(*s*,2ILMAX) 000870
 
2480 T7.(CS*U(*,.,:lLMAX-1))fO(C6*V 000880
 
2490 0(5,4)w(T6*T7)*RRC(**,1:LMAX-1) 000890
 
2500 T7.(CS6U(0*,*21LMAX)-)(C6*V) 000900
 
2510 DU(S,4)s(T5*T7)*RR( *,2ILMAXI 000910
 
O(5,5)sCO*RR(,,lILMAX-1)I 2520 DU(St5)sC0*RR(v92tLMA000920
 

000930
 
000940
 

MsI,5 	 000950
 
000960
 
000970
 
000980
 
000990
 
001000
 

F DEFINE STATEMENTS GO HERE 	 001010
 
F 

V 0,0,2,1,60000,9,31 

V 0.0.19,60000.12,4.1 

V 0.0,2,1,60000,9,3*1 

c 

C 

E 


NUMBER 

VECFP 

CLKPO 


NUMBER 

MAPFP 


001020
 
2570 A(NM)aA(NM).DRE*D01(9,*2ILHAX) 001030
 
2580 B(NM)UsCN.M)-ORE*(O1(.,3tLMAX)*OU1(,,21LMAX) 001040
 
2590 C*NM).CNtM)*OREOUI(C**,3ILAX) 	 001050
 

* FLOATING POINT SAVEVALUES 

......... CONTENTS 

1.1846927223380SE000 


930621
 

............. CONTENTS 

8,0591341655600E-007 


NUMBER 

VECBZ 


NUMRER 

MAPBZ 


001060
 
001070
 
001080
 

............. CONTENTS
 
9.9933263653100E-001
 

......... CONTENTS: 
9.6709609986800E-002 

1-F-9
 

http:00,3,1,60000,9.41


H 32766,16.3,16 

V 0#0,391600009,291 

V OtO,31,160000*92,1 

M 00.l1,1160000 

V 0.091 ,60000920.,#2 

V 090.0,1.60000,18,3.1 

V 0.01,16O0OO0991 

H 010.,1't,1,60000 

M000.191.1,60000-

M O 191,1,60000 

R 4, 

V 0.0,1,1,60000,20,2,2 

V 0,0#0,1.60000,18,3,1 

V 090.2pl60000.12.3ol 

C 

V 0$,1.,6000G20.2,2 

V 0.0.0.1.60000l8t3.l 

R 16 

M 0.0t2.1,6v100 

V 090.11,600,9,2.2 

V 090,2,1,600,12,391 

C 

V 0 0,3,1,60000,9,4,1 

V 09093*1960000,9,4,1 

V 000,2.1,60000,994#2 

N 0.0.2t1,6,100 

M 0-0,2,1,6,100 

H 090.2o16,100 

V O00391,600009904#1 

V 0.0,3,1,60000,9,4.1 

V 0.0,2t,600009.4j,1 

V 090,13,1600009,4#1 

V 0,0,3.1,600009,4,1 

V 0.0,2.1,60000,9,4.1
F 


F 

F 

V 0.0,3 1,60000.9.4l 

V OOt-3,1,60000.9,4.1 

V O,O,3,1,60000,9,4,l 

V 0,0.3.1,60000,9.4.1 

V 090,39L#600009.4#1 

V 0 ,3t,6OO0,49.4,1 

F 

F 

F 

V 0.0,3,1,60000i9.4,1 

V 0.0,3*1,60000.9.4.1 

V 0tO,3,l.60000e94,l 

V 0,.3.l60000.9,4.1 

V OtO,31.60000,9,4,1 

V 090,39160000,9,4,1 

V 0.0,3,1,600'00.15,4t1 

V 0,0,3,1,60000,15,4,1 

V 0,0,3.1,60000.15.4v1 

F 

F 

F 

V 090,3.1,600009,44l 

V 0903,1,60000.9S4.1 

V OtO3,l,60000.94,.1 

V 0,0.3.1,60000,4,4,1 

V 0,0,1#60000,9.4.1 


V OO,3,1,60000,94ol 

H 0.0,2.1.6,100 

H 090921,6,100-

M 0.0,1.1.1.60000 

M 0,0,1,1,1,60000 


MUTUR ROUTINE 	 000100
 
1170 TZZSZZI*ZZX.ZZ2*ZZ2 000110
 
1110 SCISsABS(TZZ*ZZ3*ZZ3) 000120
 

1110 SNOR(*,,)*..OO 000130
 
1190 501S8/SQl 000140
 
DIVIDE SECOND PASS 000150
 
Y(1).A*SQI 000160
 

S(.,tt).0 0 000161
 
S2(*tet*)*0. 000162
 
S3(*,*.*)sO.O 000163
 
MAXIMUM OF 4 ITERATIONS 000170
 

XY(I) 000180
 
DIVIDE SECOND PASS 00010
 
Y(C*I).O.S(Y(I).(X/Y(I))) 	 000200
 

000210
 
SCALZl./SQRT(SCIS) 	 000220
 
DIVIDE SECOND PASS 	 000230
 

L.2,LMAX-1 	 000240
 
MSNOR(*.t)*SNOR(*,L,*) 000250
 

1210 NSNOR(*,.).SNOR(*.L.*).MSNOR(,*) SCAL 000260
 
1220 SNORA(tL, -O.S*(NSNOR(*,)*MSNOR(*#
,*000270
 

000280
 
440 T1A.Q4(*,2lLMAXI *)RLIQ4(*,*t )*RL 000290
 
450 T1BSQ3(,92ILMAX.1.*I )RI.Q3C*,*,*)*RL 000300
 
440/450 T1C/D0ZZ2/3(r,2ILMAX*Ito) ZZ2/3(*tO, 000310
 

1140 MAAI(*,*)ZZI(,1t) 000320
 
'1140 MAA2(0,*)tZZ2(*.I O ) 000330
 
1140 MAA3C*,*)tZZ3(*.10,) 000340
 

440 TlE.(T1C'TIAI-(T1D*T1S) 000360
 
470 T2A.G2*RL1-Q2bRL 000370
 
440 71*O.5*TIE 1 480 TZC.ZZI(*,O,-)*ZZI(*,2 000380
 
470 T2EU(TIO*T2A)'(T2COT1A) 000390
 
500 73E=(T2CBT1)-(T1C*T2A) 000400
 
470/500 T2u0.S*T2E; T3a0.5*T3F 000410
 

000420
 

REDEFINE RL & RL1 	 000430
 
000440
 

590 TA1Q4C.*,3JSL*2)*RL1.04(*,*,*).RI 0004-0
 
600 7A2.Q3(C,*,32JSL*2)*RL1-Q3(*.*,*)*RL 000460
 
590 TAWXX(2)*TAI1XX(3)*TA2 000470
 
610 T81Q2C4,4.3ZJSL*2)*RLI.021*,*.**RL 000480
 
610 T8.XX(3)*T8IXX(1)*TA 000490
 
630 T7CXX(I)*TA2-XX(2)*TB1 000500
 

000510
 
REDEFINE RL & RLI 000520
 

000530
 
660 TDIQ4(3IKMAX*2, )*RLI.04(**,*)*RL 000540
 

)'

670 
660 
680 

T02t03(33KNAX,2,,*I ORLI03(*,*,*
TDSYY(2)*TO1YY(3)*TO

2 

TEIaQ2(31KHAX2,*,*)*RL1-02( 
- * , * S 

*RL 

L 

000550 
000560 
000570 

680 TEaYY(3)4TEIYY(1)*TD1 000580 
700 TF=YY(1}9TO2-YY(?)-TE1 000590 
720 S1.S1*0.25*(TA.TD) 000600 
730 52SS2.0.25*(TR*TE) 000610 
740 53S3.0.25*(T7*TF) 000620 

000630 
REDEFINE RL1 & RL 000640 

000650 
780 TAlQ4(0,31LM2,31JSL2)tRL1-Q4(*,3ILMZ,* 000660
 
790 TA2.Q3(*.3ILM2,314SL*2)*RLI.Q3(*,31Lt42* 000670
 
780 TA=XX(2)*TAI1XX(3)1TA2 000680
 
800 781T02(*, 3 SLM2,31JSL*2).RLI-Q2(*,3ILH2,* 000690
 
800 TBMXX(31TIXX(I)*TA1 000700
 

7

820 TCaXX(1)*TA2-XX(2 *T81 	 000710
 

i )

1050 MQ6(*,*)xQ6(,*1 000720
 
1050 M01(*,*I.011.1. 000730
 

1120 KM2(4,O).l 000740
 
000750
1130 YDUM(**9)=I.E-3 


1--10
 

http:TA1Q4C.*,3JSL*2)*RL1.04(*,*,*).RI
http:MAA3C*,*)tZZ3(*.10
http:1,60000.9.4l


F 

F 

F 

V 0.0.3.1,60000 94l 


- V O,03.1.60000,9.491 
V O .03,1,60000.9.4.1 
V 0909391,60000v9,491 
V 0.0,391,60000.94#1 
V 0O,93,v60000.9 .Atl1 
V -00,39160000,15,4,1 
V 0.0,391.60000,1594,1 
V 0.0o931,60000.15,4,1 
V 0.0,2,1#600009.4.2 
V 0,0,3,1.60000,9.2.1 
V 0,0,31,60000,15,2,1 
V 0*0,3,1,60000,92.1 
V 0,0,2.l.60000,9.2.1 
H 0.0.2,1,6,100 
F 

F 

V 00.2,1,60000,9t3,2 

V 0.0.1,1,60000,20,2.2 

V OtO O,1,60000,18,3,1 

V 0.0,91,.60000,20,2.2 

V OOO,,160000,183.l 

V 0.0.2,1.60000.9.3,2 

M 0.0,111,60000 

R 2 

R 4 

V 0,0,1.1.60000t2092,2 

V 0,0,091,60000,18,3,1 

V 0909291.60000.1293.1 

C 

" OO2lt6lO0 

" 0,0,1.1.60000,1 

H 0,011,60000,l 

C 

V 0,0,1tl60000,20,292 

M OF0021,6,lO0 
V 0,0,211600,15.311 
V 0.0,31,600924l 
V 0t0,3.1,600,12,391 
V 0,0,391600,129491 
V 0,0,2,1,600,9,391 
R 2 
R 4 
V 0,01t1I600.20.2.2 
V OtOtOl600,18.2.1 
V Ot0v2.1,600.123tl 
c 

C 

V 0t0,1.600,20.2.2 

V 0t0t,01.600*1893o1 

V 090,i11600009.291 

R I 

V 0,0,3,1o6000015,4.2 

V 0,02.1.60000.9,31 

V 0 09,160000,159391 

V OO3,1,60000.15.3,I 

V 0909291s60000,9,391 

V 0.0,2,1,6000093,1 

V 0,0,11.60000,20.2.2 

V Ot0t,0,160000.18#3.1 

C 

V 0,0,3.1,60000.1IS4,1 

R 16 

H 0.0.1tl,6.100 

V 0.0,0,1,600.9,2.0 

V 0,0,01,60099111 

C 

R 5 

H 0909,lt6,100 

V OtOO1,600,9,290 

V 0#09091,600,9,191 

M 0,0.1,1,6 100 

V 010,0,1,600.9290 

V 000,1fO600,9gll 


000760
 
REDEFINE RL & RLI 
 000770
 

000780
 
860 TOISO4(31KH2,3ILM2,O)RL1°O4(*,31LM2,*)* 000790
 
870 TDSaQ3(31KM2,31LMZ")ORLI-03(*031LM2-*)* 000800
 
860 TDBYY(2)3TD1-YY(3)eTD2 000810
 
880 TEl.O2(32KM2,3tLM2t*)*RL1.Q2(*,3ILM2,*)*-000820
 
880 TEOYy(3)*TEI-YY(1)*TDI 

900 TFmYY(I)'T02-YY(2)TE1 

920 Sl=S10.25(TA*TD) 

930 S2-S2*.25(TBTE) 

940 S3.S3*0.25*(TC*TF) 

950 TW1ST1*1 ; TW23T2*S2 

950 TWITW1*TW1I*TW2*TW2 

950 TWaTW1*(T3*T3)*(T3*T3) 

970 U1=02*C20363 

970 U12U1*G4*Q4 


1300 MYOU(*,*)*YDU(*tl,*) 

SURT OF TW & UTOT 

I.E. SGRT(X)


'
 SQIWC X 

5Q1.B/(CX) 

DIVIDE SECOND PASS 

SQIS/CC4X) FOR UTOT 

DIVIDE SECOND PASS 

Y(13A-5Q1 

990 TURMU(*,*O)s0.0 


FOR TW & UTOT 

MAXIMUM OF 4 ITERATIONS FOR NECESSARY ACCURAC 


X/Y(I) 

SECOND PASS 

Y(I.1)*0.5*IYCI)*X/YII)) 


1040 4TAU(*,*)STAS(*,I#*) 

1410 MTAS(,*,*)sTAS(KM2(*.4.*).I) 

1420 MTAS(*,*,*).TAS(KM2(*,*.)O1) 


TAS*ABSCSQRT(TW|] 

UUsSQRT(UTOT)/Q1 


1270 NUU(-*,*,UU(*,1,*) 

1050 TRA.MQ6*MQM
OTAU 

1140 TSCISSMZZI*MZZI+MZZ2*MZZZ 

1140 TYM.C*TYH*MZZ3*MZZ3 

1050 TRAlC*T.A1*REt(1/26.) 

1050/1140 Y(1).A*TRA1 I Y(1)sA*TY 


SORT FOR RA AND YM 

MAXIMUM OF 4 ITERATIONS. 

X/Y(I) 

SECOND PASS DIVIDE 

YcI.*)uo.S*(YtI)X/Y(1)) 


1050 RA 

140 YM.O.5/SQRT(TYM) 

SECOND PASS FOR DIVIDE 


000830
 
000840
 
000880
 
000890
 
000900
 
000910
 
000920
 
000930
 
000940
 
000950
 
000980
 
001010
 
001020
 
001030
 
001040
 
001050
 
001080
 
001070
 
001080
 
001090
 
001100
 
001110
 
001120
 
001130
 
001140
 
001150
 
001160
 
001170
 
001180
 
001190
 
001200
 
001210
 
001230
 
001240
 
001250
 
001260
 
001270
 
001280
 
001290
 
001300
 
001310
 
001320
 
001330
 
001340
 
001350
 
001360
 

1250 EXISNORA(*,21LNAX*.1.)-RA(t,21LMAX*001361
 
CALCULATION OF EXP(EX1I) EXACTLY AS DONE ABOVEO01362
 

001363
 
001364
 
001365
 
001366
 
001367
 
001368
 
001369
 
001370
 
001371
 

1240 YOU(C2ILHAX*I,) SNORA*TAS*(C1O-EXP(EO01372
 
DO 21 L.2.LM 


)

MUU(*,*)wUU(*L*
 

1270 IF{MUU.LT.UMAX{*,l*)) 

THEN MUMIN(.,*) MUU 


00 18 L.2,LEDGE 
MUU(*,.).UU(*,Lt 

1290 IF(MUU.GT.MUMAX) ... 
THEN MUNAXHUU 

MYDU(*,*)xYOU(#,L,) 
1300 BITrYDU .LT. MYDUN 

IF (SIT) THEN MYDUM w MYDU 

1 -F-il1 

001373
 
001374
 
001380
 
001390
 
001395
 
001400
 
001410
 
001420
 
001430
 
001440
 
001450
 
001460
 



H 090.11,06,100 

V Ot,0O,1600,9,1,1 

N0091.1$69100 

V 0,1S,0.l.600,91*,1 

C 

H 15.09191,60000.1 

H 0t2,191,60000,1 

M 0,0.4.1,60000.1 

M 0,3,1,1,60000,1 

V 0#0.0,1,60000.940 

T 2 

V 2#092,1,60000,9,4,2 

V 3,092,1,60000,9,3,1 

V O,0*2,160000,9,3.2 

R 2 

V 0,0,3,1,60000,1594,2 

V Ot,2,1,60000,9,3.1 

V 0903,1#60000.15.3#1 

V 0.0.3,1,60000.15,3,1 

V 09092,196000099,3,1 

V 0.0,2,1,60000,9,3,1 

V 010,1,1,60000,20,2,2 

V 0t00,l60000,18,3,1 

C 

R 30 

L 

L 


-F 

t. 

C 

V 00.3,1,60000,15,4,1 

V 0,0,3s1,60000,15,4,1 

V 090,2,1,00000.914, 

V 0,0,21,60000,9,3.2 

V Ot02,1,60000915,2,2 

V 0,0,3,1,6000099,491 

V 0,0,3,1, oooo,1592.1 

V 0,0,391,60000,99,1 

V 00.1tl.60000.20.2,2 

V O00 0,1,60000.18,3.1 

V 0.011,1,60000.20.2,2 

V 0,0,o0,1600009,Z,0 

T 2 

R 30 

L 

L 

F 

L 

C 

V 0.0, ,1,60000,2092,2 

V 0,0,0,1,60000.18,3,1 

V 0909291,60000,9,3,1 

V 0,0.3,1,60000915,4,1 

V 0,00,1,600009490 

V 090,099130000,9,2.0 

T 2 

R 30 

L 

L 

L 

F 

F 

L 

C 

R 30 

L 

L 

F 

L 

C 

V O,0,0,1,60000,9,1,1 

V 00,Ol,60000491#1 

V 0s,0Ol,6so0ooo9,290 

V 0#0,1,116000099.291 


MSNORA(*,*)wSNORA(i*L.*) 001470 
1320 IF (SIT) THEN NYMwMSNORA 001480 

MKN2(*,*)SKM2(*tL #*) 001490 
130 IF (SIT) THEN MKM2wL-1 001500 

18 CONTINUE 001510 
HSNORO ),*,')3SNOR(KM2(*,,*,)*2) 001511 
MSNORI(* *,*)tSNOR(KM2(*,*,G).1) 001512 
NSNOR2(*,*,*)RSNOR(KM2(*,*.*)l 001513 
MSNOR3(** ,*)=SNOR(KM2(*,*,*)-I) - 001514 

TBITlwKM2(*,*~l).LT.2; T8IT2sK2.GT.LEDGE-001520 
001530
 

1390 TYM3s(MSNORIMSNORO)i TYMISSNORZ*SNORO0154O
 
1400 YM1I0.5TYM1 1390 YH3aO,5*TYM3 001550
 
1410/1420 EXiSYMI-RA & EX2uYM3-RA 001560
 

TWO EXPONENTIALS TO CALCULATE EX1 & EX2 001570
 
NuEX*(U/LOG(2))*6I K=N/161(OR 0) 001580
 
(2**K)2(2*(M/16) 001590
 
QsQOIOF*F+QOO 001600
 
PwPO1*F*F*POO 001610
 
FIx0.F*P 001620
 
F2=Q-F*P 001630
 
2**FxF1/F2 001640
 
DIVIDE SECOND PASS. 001650
 

001660
 
60000 SITSI SCALAR UNIT DOES 64 AT A TIME. 001670
 

001680
 
001640
 
001700
 

1380 SITS TSITI.OR.TBIT2 001710
 
001720
 

1410 YOUMIYM1*MTAS*1.0-E-XP(EX10) 001730
 
1420 YDUM3WYM3*MTAS*(1.0-EXP(EX2)) 001740
 
1430/1440 C2*YOUM-YDUM1 6 C3 YOUM3-YDUM1 001750
 
1450/1460 DY2=YM-YM1 & DY3YM3-YM 001760
 
1470 TAHIOY2*0Y2; TAHZ=OY30OY3 001770
 
1470 TAM1STAMI*C2*TAMZ*C3 0017B0
 
1470 TAN2sDY2-OY3*(DY-oY3) 001790
 
1480 TBM-DY2*C3.0Y3*C2 001800
 
1470 AH=TAM1/TAM2 001810
 
DIVIDE 2ND PASS 001820
 
1480 SMSTSM/TAM2 001830
 
1490 AITlnSMGE.0 001840
 

001850
 
001860
 
001870
 
001880
 
0n1890
 

1500 SIT.(.NOT.8T.ORNOT.AM) 001900
 
001910
 

AN/SM 001920
 
DIVIDE 2NO PASS 00"1930
 
1510 IF(BIT) THEN Y6o00YM-,5*(AM/BM ) 001940
 
1520 IFfBIT) THEN TDU=YDUM-0.25*AM4(AM/BM001950
 
1530 TSIT1=YDU.LT.YOUH; TRIT2=Y60.LT.YH01960
 
1530 TBIT3mY60O.GT.YM3 I EACH HALF DONE 1001970
 

001980
 
001990
 
002000
 
002010
 
002020
 
002030
 
002040
 

1530 8IT1=TBIT1.OR.TBIT2.OR.T8T3 
 002050
 
002060
 
002070
 
002080
 
002090
 
002100
 

RITm8IT.ANO..NOT.RIT1 
 002110
 
002120
 

1550 IF(SIT) VOUMSYOU 002130
 
1560 IF(BIT) YM= Y600 002140
 
1570 YM ,GT. MSNORI & YM *LT. SNOR2 002150
 
1570 INF...) KMaeKM2-1 002160
 

1 -F-I 2
 

http:SIT.(.NOT.8T.ORNOT.AM


V O0t.1I,60009.21 1580 IF( ...) KM2.KM2-1 002170 
V 0.0.3.1.58800.15,492 - 1620 SNOR( lI.LEDGE,*)m*.5(SNORC*1ItLEDGEO02180 
F *SNOR(tE24LEDGE*lt*)); 1680 TFIAMFKLEB*SNOR(*.I:LEDGE*) 002190 
V 0#O.2,158800.15.3.1 

V 0021t600.1593.1 

Y OO2,1,58800,9,3.1 

V 0 O.0#1600,9,3.1 

V 0,0.21,600.12,3.0 

V 0,O1It600,2092.2 

V 0,0,0,1,600,18.3.1 

V 0,09151.58800.9921 

V ,011,S8800.20,2.2 

V Q*,01958800,18.391 

V 0,0,191,588009,21 

V OOtotlt58800992#1 

V 0,.0.,1,58800,9,2.1 

V O01291.58800.1591.1 

V 0,0,3,1,58800,15.3.1 

V 090911,S58800920,292 

V 0,0,0,195880091813.1 

F 

F EXP(-RA*SNOR) 

V 0,O-11,60000.9.2'1 

V 0,0,3.1,60000,15,4,2 

V 00,2.1,60000.9,31 

V 09093.1.60000#1593*1 

V 0.0,3.1.60000.15.3.1 

V90909291,60000,93,1 

V 0,0,2,1,60000,993j1 

V 0,0,s1I60000.20.2,2 

V O00,.60000.18,3,1 

V 0,0,3.1.60000t15,4,1 

V 090,2#1960000,931 

V 0,0,9,1.6000099#2.2 

V oOo1,#300009932O 

V 0,0.0.1.30000,9,2#1 

R 090291-.6,100 

R 17 

M 0.0.2f16,00 

V 0,0.2t1.600,12.3.1 

H 0,0111.600 

C 

E 


1630 FFCKQltclLEDGE.)Q6(ILEDGE) 002200
 
1640 TI*YMYOUM & UDIFFUABS(UMAX-UMIN) 002210
 

1640 TWO(*,IILEDGE,*)SFCC4T1 & FFCWKsFC002220
 
1670 IF( YDUN *GT. UDIFF*YDUMF)... 002230
 
1670 TlsYM*UDIFFOUDIFF 


"TrYOUM 

DIVIDESECOND PASS 


TWO.FFCWK(T1/YDUM) 

1680 TI*SNOR(.1:LEO)/YM 

DIVIDE 2ND 'PASS 

1680 FAsFKLEB*T1 

1690 IF(FIA.GT.IE) ... 

1690 THEN F!ASI.ES 

1700 TlFIA.FIA*FIA 

1700 FI-O1.*5.5*(TI1T) 

1710 TWO.TWO/FI 

DIVIDE 2ND PASS 


1770 EXI1-RA*SNOR 


1770 TIs.4*SNOR*(IeEXP(EX1)) 

1770 T2606*Q10RE 

1770 TMI.ABS(TI*T2;) 1830 

1850" BIT.TMI.LE.TWO 


IF(BIT) THEN TURMU 0 TWO 

1910 SMPSTURMU(*,1.*) 


DO 60 Ls2.LMAX 

1930 TURMSwTURMU(*,L,*) 


002240
 
002250
 
002260
 
002270
 
002280
 
002290
 
002300
 
002310
 
002320
 
002330
 
002340
 
002350
 
002360
 
002370
 
002380
 
002390
 
002400
 
002410
 
002420
 
002430
 
002440
 
002450
 
002460
 
002470
 
002480
 
002490
 

TURMU(*,IILED002500
 
002510
 
002520
 
002530
 
002540
 
002550
 

1940 TURMU(C*L,*)a2.O*SMP-TURMS 002560 
1950 60 SMP.TURMS 002570 

002580 
002590 

* FLOATING POINT SAVEVALUES
 

NUMBER ............. CONTENTS NUMBER ............. CONTENTS
 
VECFP 7.5'99436261100E001 VECBZ 8.5181743077500E-001
 
CLKPD 1529465
 

NUMBER ............. CONTENTS NUMBER............. CONTENTS?
 
MAPFP 1.9635051323680E.002 MAPBZ 3.5302342841140E-001
 

I -F-1 3
 

http:F!ASI.ES
http:IF(FIA.GT.IE
http:O0t.1I,60009.21


H 32768916,3,16 

F 

R 1 

R 1 

R 5 

M 0.0.191.100,1 

C 

V 0,0,291,10091592,1 

R 2 

F 

F 

F 

V 0.0t2#19101.12.291 

V Otl2,10101.99201 

V 0903vll0lt1593#O 

V 0,0,tllOO19,20 

M 0.0#4.1.100.25 

H 0,0.4lo,100.25 

F 

F 

V O002.1,100.9.2.2 

F 

V Ot,02.1.100u12t2.1 

V 0,0t2.lt00,994,2 

V 090t311100912.2l 

V OOtl3,100,1292,l 

V 0,093,1,100,9,2#1 

V 09092t1910099-3 1 

V 0993*11009t3.t 

V O 0.2.1100,12.2.1 

V 0,0,391,l00,9,3tl 

V 09092 19100,9t2.1 

V 0,0,2,1,100,12,3,1 

V 0#03,1,10012,2.1 

V 0,0.3,1,100,12.2,1 

V OtO2.llOO,159*31 

.,0t0,391100,12,2,1 

V 0,0*2.1.100,12.3#1 

V 0.0,3,1.1-00, 5,4,1 

V 0,0,3919100,15,4,1 

V 090,1#1100,9.2l 

R 4 

V 0ioaj,100,9i3'1 

C 

F 

F 

V 090,391,98,153,1 

V 09,03 1,96815,3#1 

V 09091,19809.191 

V 0vo0Oo198,20,2,2 

V 0,O,1,1.98.18S3.1 

V 0,0,101,98.9191 

R 29 

L 

R 5 

F 

C 

L 

C 

R 3 

V 0109299989, 1 

C 

V Q,0 09199820,2,'2 


LX ROUTINE 

;DTDX.OT*DXI 

100 1 KKSIKE2 

100 2 J.JS1.JE2 


,PROTCT( )A 


;PNA*'8C 

;DO 4 Ns192" 


IUII.CA*8)*C 

ITMP(A*B-C) 

;TMPv(A*B.C)-TMP O -CONTROL VECT 

IU(I*1)-U(I)<O -CONTROL VECT 

IFc ) UnIN 

i;F( ) Uri! 

U(i) a 


,RLMBOASA$BSRK.C*O 

;C. S*OY1 


" 
;0YXs(As8)*C
 
;UYXoA-BSVYXuC-0 

l(W-W)*oZ 

;(U-U)*OX 

*VXY*DY*T 

IUXY*0Y-T 

;LMBOA a*MU 

i(V-V)*DX 

IT-VYX*OYX 

IUYXeDY*T 

1(W]W) OYX. 

:(W-W)ODX 

;(U-U)*OZ 

TT-T 

;(E-E)*OX 

IRK*(T.T) 

ISOU.TAU*W 

;DISX.TAU*V*T*T 

WIF1).A*B 


IF(J)A*S.C 


;IF(ISMO=O) GO TO 25 

t;II*I*1 

;T.P-2*P-P 

;T*ZOARS(P)*T 

IC*T 

; / PASS I 

; / PASS 2 

bG*ABS(TI 

;C!I.SQRT(G*ABS) 

IRANGE REDUCTION 


;SCALAR MANIPULATION OF EXPONENTS 


IR(2.1) u P/Q (3.660) 

IP.POLY S Q=POLY 


;R.P/Q 


000090
 
000100
 
000110
 
000120
 
000130
 
000140
 
000150
 
000160
 
000170
 
000180
 
000190
 
000200
 
000210
 
000220
 
000230
 
000240
 
0002S0
 
000260
 
000270
 
000280
 
000300
 
000340
 
000350
 
000360
 
000370
 
000380
 
000390
 
000400
 
000410
 
000440
 
000450
 
000460
 
000480
 
000490
 
000500
 
000510
 
000540
 
000550
 
000560
 
000570
 
000580
 
000590
 
000600
 
0006110
 
000620
 
000630
 
000640
 
000660
 
000670
 
000680
 
000690,
 
000700
 

.SO00710
 
5000720
 
S00730
 
S000740
 
S000750
 
SO0760
 
S000770
 
S000780
 
S000790
 
5000800
 
S000810
 

1-F-I 4
 

http:090,1#1100,9.2l
http:090t311100912.2l
http:0,0.4lo,100.25
http:0.0#4.1.100.25


V OtOol1.9gs18.3.l 
R 2 ;TWO NEWTON ITERATIONS (14.6D) 

5000820 
S000830 

V O0.01.98s2092t2 
V OOt,.198918.3tl 

$X/Y(N) S000840 
S000850 

V 0.0.2.1.98.12.2.1 
C 

;.S*(Y(N)*X/YtN)) S000860 
S000870 

V--OrO,-1-,-t99,9,2.1 ;POST NORMALIZATION - END OF SORT S000880 
V OtO2pl,98,12 31 
R S 

;COEF.(T+T)*T
100 K61l,5 

000890 
000900 

V O#0.3,1.98iS.4.I IF= (A.B)*C*D 000910 
C lEND OF FX SUBR 000920. 
R S WPROICT v 000930 
V 0.03.1.98.15.3.4 
V OtO,39,098915.291 

I(A*B)*C.O 
IA*(T*C*O) 

000940 
000950 

C 000960 
V 0090.1t982Os2*2 I ./PASS 1 000970 
V Gt0t,1,95818.3t 
V OtOt2,198t9,3.2 

; / PASS 2 RHOI.l/PROICT 
;UsA*8 S8=C*8 

000980 
000990 

V 00.2.,198.9,32 ;WzA*8 S T.C*B 001000 
V 0,0.31,98.15,2,1 ;UoU*V*V 001010 
V O0, 2,.9899,2.1 IW*W*T 001020 
V OtO291.9899.2.1 IEItc.ST4T 001030 
V Ot02,1,98d15.211 IP.A*B*EI 001040 
F 
F 
F 

;IF(J.NE.2) GO TO 100 
;IFtJLT.JEZ) GO TO 35 
$IF(K.NE.KE2) GO TO 50 

001080 
001090 
001160 

C I4 CONTINUE END OF N LOOP 001190 
C $2 CONTINUE END OF J LOOP 001230 
C ;1 CONTINUE END OF K LOOP 001240 
E ;END 001350 

* FLOATING POINT SAVEVALUES
 

NUMBER ............. CONTENTS. NUMBER ............. CONTENTb 
VECFP 7.73 48901456800E-001 VECBZ 7.0556960045800E-001 
CLKPO 2398 

NUMBER .............. CONTENTS NUMRER ............. CONTENTS$
 
MAPFP 2.3456436185400E-002 MAPBZ 2.28517813860005E001
 

1-F-1 5
 



N 32768,16,3.16 

R i
R 2 


F 

F 

F ,COLON 

V O1 9091,500o920,1pe 

V 1#2,1,1,5000,18.3*1 

V 29O.31,sOOO,15.3#1 

V 0093.1,g000.15,3.1 

V 0,02,1.5000,9.3,2 

V 09.02.1950009.292 

V 0.093.1.5000.153o1 

V 0,0,31L,5000,15i4,1 

R 6 

M 001.1.1.100 

V 0901.1,100,991t1 

C 

F 

F 

M 0.09191,1#5000 

V 0Oe,1,5o,9.1,1 

V 00921.50000121291 

V 0.0,391,5000,1S,3,1 

V 0,0,2,1,5000,9.2,1 

V 0#0.391,5000,15,3.1 

V 0,0,2,1,5000912,3.1 

V 0G0,3.1.5000,15.3.1 

V 0.0.3.1,5000,15,3.1 

V 090#2#1.5000,1293.1 

V 0,0,3.1,5000o15,3.1 

V 0.0.2t15000,9.3.1 

V 0v0, sI, 5000,15,3.L 

R 3 

V 09092,1,5000,12,3.1 

C 

V 0,0,2,1.S000,9,2.2 

R 3 

V 0.0.2,1,5000,12,3.1 

V 00,P3,1o5000,154.1 

V 0,0.3,1*5000,9,1,1 

C 

V 0 1,a500a0,1,2 

V lo01,1,5000,1S.3.1 

F 

R 4 

V 0.0.291,5000,15,291 

C 

V 0,1,2,1,5000,914,2 

V 1,0.291,5000.9s2*2 

R 3 

V 0,0.3.1,5000.15.441 

V 0,0,3,1,5000,15,391 

V 0.0.2,1,S000.9.3.1 

C 

V 0.0,3,1,5000.153.1 

V 090.2,19500091593.1 

V 0,0,2,1.5000.9,3.2 

F 

F

R 6 


V 00.2,1,100,9*3'1 

C 

V 09013,1100,15 3 1 

V 0,0,2,1,100.9.1#2 

F 

F 

F 

F 

F 


LY! ROUTINE 


IVLYI - SETUP PORTION 

ISINGLE QUOTE a KLEN 


0 KLENOJLEN/2

0
;OLD 00 8 LOOP 

;RHOI= 


;8 CONTINUE 

;HISC 


IUsUI ETC 


;OLD 00 10 LOOP 

ISUSR GI 


IRMU 


IEND OF GI 


IDISX ETC 


A/RHO 


;SUR DIAGON 


lEND OF DIAGON 

110 CONTINUE 


:FFU. 


$13 CONTINUE 

IVLYI - SOLVER PORTION 

IOoLLAR - JLEN/2 

ISINGLE QUOTE - KLEN 

;COLON x KLEN*JLEN/2 


000100
 
000110
 
000120
 
000130
 
600140
 
000150
 
000160
 
000170
 
000180
 
000190
 
000200
 
000210
 
000220
 
000230
 
000240
 
000250
 
000260
 
000270
 
000280
 
000290
 
000300
 
000310
 
000320
 
000330
 
000340
 
000350
 
000360
 
000370
 
000380
 
000390
 
000400
 
000410
 
000420
 
000430
 
000440
 
0004O50
 
000460
 
000470
 
000480
 
0004()0
 
000500
 
000510
 
000520
 
000530
 
000540
 
000550
 
000560
 
000570
 
000580
 
000590
 
000600
 
000610
 
000620
 
000630
 
000640
 
000650
 
000660
 
000670
 
000690
 
000690
 
000700
 
000110
 
000720
 
000730
 
000740
 
000750
 
000170
 
000180
 
000790
 
000800
 

1-F-1 6
 

http:32768,16,3.16


R 7 

M O0,11,1lo0 

N 10Oi1.ilOo 


10 

V 091,2,1,100,99391 

V l292t1l100, 9 o1l 

V 2.3.0,1,10020,1t2 

V 3'4.1,I.100,18.3.1 
V 490,2,loOO,15.2,2 
V 9.-33,10-5,,-1 
C 

R 10 

F 

V 00.2,1,100,9,391 

C 

C 

V 092,1,100,2t2 

V 0.0t1t1,100.9,1.1 

M 0#091,1,1100 

N 0,0.1.1.,1lo0 

R 3 

V 0.0w2905000,15.21 

V 0.0.3.1.5000,1593s1 

V O.1,1q,50009.tl 

"V .0,02,1,50009,2,1 

C 

V 0.0#3#1,5000,15,3.1 

V oOltSoOoO.9,2vl 

R 2 

V 0.03t,50015.21 

V 0.0.3.1,5000,.15.3,1 

V O,0w3,l,5000.15,2, 

V 0.00.1,15O00.9.1.1 

C 

V O0.3.1eSO00,15.31 

V O.0,391#5000,1592,1 

V 090.19195000,991,1 

V 0.0.31,5000.159391 

V 0.0.3,1.5000,15.4,1 

V OtOt3sl.5000.15,2l 

V 0,0.3,195000,15,2,1 

F 

F 

R 3 

V 09#3 1100,15,91 

V 10,O291slOO12.2,1 

C 

P2 

V O 12.1,100.9,2.l 

V 1t02,1,100.9.2,1 

C 

V 09ol 100,9.2.1 

F .FORTH*OY1 


V 0#10391910091593,1 

V 10093#1#10091594,1 

V 09193 1 100,15,3.1 

V O0 ,3,19100,15,3,1 

F 

V lt2.3tllOOlS,3,l 

V 2.3,3tl,100,15.4,1 

V 39092#191009.2.1 

F 

F 

V 0,1,0.1tSO00,20t,2 

V 12t115000,1893,1 

R 3 

V 2,0.1,1.5000,9.2,1 

C 

V OP1.3.1.5000,15,2,1 

V 1093.1,5000,15.2,1 

V 2p3t2.l.SOO9o3,1 

V 3#0291.5000.15.2,1 


ICALL VTRI2 (7 TIMES) 


;
:00 JJSlnJEI 


$0 JsJSL,JE 


lEND OF VTRI2 


$OLD 00 13 LOOP 


113 CONTINUE 

;OLD DO 14 LOOP 


114 CONTINUE 

;A3*OY1 

I-CRKNIS 


IRNU*0Y1'(UI"UI) 

IGUPK23(ASB)*C ETC 


IOU-T*GV 

;SSCBSC*A*B ETC 


lS8C(Is4wA*B 


;(VSQ-VSQ)*C*FUSO 

IUSQ-USQ*T*FVSO 

IDYIRMU*(WSQ-WSO) 

$DYIRK*(EII-EI) 


I-COSTSQ 

IRMUO(-COSTSQ)*T.S 

IA*FWSQ-.B*F 

IS8C(IP51.A48*C


IWAUD 


I RHOI./PROICT 


:U=P*RHOI ETC 


IU*2*VO*2 

1-.5*(T*W**2) 

IEI.P*RNO*T 

IPWA*8*C 


060810
 
000820
 
000830
 
000840
 
000850
 
000860
 
000870
 
000880
 
000890
 
000900
 
000920
 
000930
 
000940
 
000950
 
000960
 
000970
 
000980
 
000990
 
001000
 
001010
 
001020
 
001030
 
001040
 
001050
 
001060
 
001070
 
001080
 
001090
 
001100
 
001110
 
001120
 
001-130
 
001,140
 
001150
 
001160
 
001170
 
001180
 
001190
 
001200
 
001-210
 
001220
 
001240
 
001250
 
001260
 
001270
 
001280
 
001290
 
001300
 
001310
 
001320
 
001330
 
001340
 
0013S0
 
001360
 
001370
 
001380
 
001390
 
001400
 
001410
 
001420
 
001430
 
001440
 
001450
 
001460
0014670
 
00140
 

001490
 
001500
 
001510
 
001520
 
001530
 
001540
 

1-F-I 7
 

http:O0.3.1eSO00,15.31
http:0.03t,50015.21
http:O.1,1q,50009.tl
http:0.0w2905000,15.21


F 
M 0O09191,11O00 

;XF(JS1.LE.2) 
IP(1)aP(2) 

001550 
001560 

R 3 001570 
M O101.1,1,100 ;UwU ETC 001580 
C -001590 
V 00.11,1100,9.191 ;V'-V 001600 
F 
V OtOa.1tiOtq,292 

;IF(I.LT.ILE) GO TO 253 
IWaNW SUi.U 

001610 
001620 

F- IIF(IADBWL.EQ.0) 001630 
F 
R 4 

;IF(I.NE.IE) GO TO 255 001640 
001650 

M 0001,1,1,5000 tUU ETC 001660 
C 001670 
R 10 001680 
R 11 001690 
7 001700-
C 001710 
C 1256 CONTINUE 001720 
R 2 001730 
V OO*.2.15000,9.2.1 IUPwA*B*C ETC 001740 
C 001750 
F 
R 2 

IIF(I.NE.IE) GO TO 70- 001760 
001770 

V O012,iOSOOoq92ai IUP.A.BC ETC 001780 
C 001790 
C, ;To CONTINUE -END OF N=1,2 LOOP 001800 
R 5 001810 
M 0.0.1.1.1,5000 IRHOXZPROICT 001820 
C 001830 
C 11CONTINUE -END OF I=29IE LOOP 001840 
r 001850 
F7 001860 
R 5 -001870 
M 090t1.111,100 I RHOaRHO ETC 001880 
C 001890 
R 10 001900 
R 5 001910 
F 18.C. AT K.KL 001920 
C 001930 
C 001940 
E 001950 

FLOATING POINT SAVEVALUES
 

NUMBER ................ CONTENTS NUMBER ............. CONTENTS
 
VECFP 1.0262380171560E*00 VECBZ 9.3682614968100E-001
 
CLKPD 140233
 

NUMBER ............. CONTENTS NUMRER ............. CONTENTSI
MAPFP 3.2089436825900E-005 MAPRZ" 7.2 137053984600E-002
 

1-F-I 8
 



H 32768916,3.16 

R B 

V O90.2.1,134499.2,2 

V 090O21l,134499.292 

C 

R 3 

R 2 

V 0#0#29191344,92t2 

V 0092,rtl1344'9't2 

R 2 

V 0,0.3.1,1344.9.491 

V OtOt31t1344,99941 

V 0,0,2,1,1344,9,2,1 

V 0,0.2,1,1344.9o2.1 

C 

C 

C 

R 2 

V 0,0.2,1,1344,992.2 

C 

R B 

V Oi,39,113'4.9.'.1 

V 0.0,2,1,1344,9t4,1 

C 

V 0,0,291,1344#9,302 

E 


* 

NUMBER ............. 

CLKPO 


NUMBER ............. 


000099
 
DO IS Lul,16.2 000150
 

RLO(L).RLO(L).RLD(M)I RLD(M)RLD(L)-RLD(M) 000190
 
YMO(L)UYMO(L)*YMD(M)I YMD(M).YMD(L)-YMD(M) 000200
 

15 CONTINUE 


FFT ROUTINE 


000210
 
00 891 -000260
 
DO 89 Jdl,2(APPROX.) 000330
 

RLD(L)I RLD(M) 000390
 
YMD(L); YMD(Ml 000400
 

00 89 K.2,3(APPROX) 000440
 
TI.YMO(M)*W(1tMM).RLD(M)*W2(MM) 000500
 
TRsRLD(M)*W(1,MM),YMD(M)*W2(MM) 000510
 
YMD(M), YMO(L) 000520
 
RLD(M); RLD(L) 000530
 

000540
 
000550
 
000560
 
000561
 

89CONTXNUE 


000562
LEFTOVERS FROM APPROX. 

000563 
000564 

I o I 000565 
of* 000566 

000567 
RLDOI YMO0 000570 

000580 

FLOATING POINT SAVEVALUES I
 

CONTENTS NUMBER ............. CONTENTS: 
161w 

CONTENTS NUMBER ............. CONTENTS
 

VECFP 7.5786540768500E-001 VECBZ 9.8076699818000E-001
 

H 32768.16,3,16 LEGENORE TRANSFORM ROUTINE (SPCFOR) 000100
 
F BEFORE THIS ROUTINE MAY BE UTILIZED. A SINGLE ELEMENT GATHER MUST 000110
 
F BE DONE ONCE (AND ONLY ONCE FOR THE RUN OF THE ENTIRE MODEL) TO 000120
 
F MAKE A MATRIX OF LEGENDRE COEFFICIENTS WHICH WILL BE WELL ORDERED 000130
 
F ANO CONFORMAL WITH THE MATRICIES IN THE FOLLOWING ROUTINE. 000140
 
F THE GATHER I51 000150
 
F DO 10 Jx1,LR1 (1,23) 000160
 
F 00 10 1=1,7 000170
 
F 00 10 Ks1.NLATHF/2 (1,28) 000180
 
F A(KI,J)=P(IJ.K) 000190
 
F 00 10 M-1,NVERT (1,48) 000200
 
F TP(M9Ktv)A(KIJ) 000210
 
F A TOTAL OF 109000 SINGLE ELEMENT GATHERS (15000 CYCLES) - 000220
 
F IN & TYPICAL WEATHER MODEL THIS SUBROUTINE IS CALLED SOME 75,000 000230
 
F TIMES, MAKING THIS INTTIAL INVESTMENT WELL WORTH THE OPPORTUNITY OF 000240
 
F GETTING VECTOR LENGTHS OF 200 ELEMENTS. 000250
 

1-F-1 9 

http:32768916,3.16


N40,09tl,23,48 150 TASPEC(O,1t,:7) 000251
 
H 0,092,1.23,48 160 TASPEC(C*2.iI7) 000252
 
M .OO.2,1.23.96 ?? 170 TASPEC(*,314.137) 000253
 
M Ol,2,1,23,192 180 tASPEC(*,SI18,1,t? 000254
 
V 1#0939191344,9,4,1 200 EVENR*,1S8,L}, 000260
 
V 090#3,1,1344#9,491 210 OOOR(*,1:8,L) 000270
 
V 0,0,2,1,1344,9.3,1 220 EVENA(4,1:8,L) 000280
 
V O 0.2,1,1344.9,3,1 230 ODDR(4.18.L) 000290
 
V OO.2,1,1344,9.3.1 240 EVENP(*,1:8,L) 000300
 
V OtO2,l,1344,9.3tl 250 AGRID(*,118,L & AGR1Dt.99116,L) 000310
 
F 000320
 

000330 
R 22 D0 30 L.2.LRI 000340 
M 09092,1.11948 - 310 TASPECI*.l,]CEICE411) 000350 
4 0,0,2,1,11,25 320 TASPEC(*,2tCEI1CE*11) 000360 
M OtO2,lll96 330 TASPEC(*,324vICEIICE*11) 000370 
M 0,2,2,1,11,768 340 TASPEC(*.5I8,ICEIICE*I1) 000380 
M 390#11,1,400 470 & 490 AI(.*.N*2-L) 000381 
F 

F 


0003q0
 
V 2vO3,1,1344,9.4,1 350 EVENR(*,*tL) 000400
 
V 090,3,1,1344.9.o4i 360 EVENI(*,',L) 000410
 
V 0903,1,1344,9,4,1 370 OODR(, L) 000420
 
V 0#0,3,1,1344,9,41 360 00I(.* ,L) 000430
 
V 0#092,1#13449,391 390 EVENRt',*,L) 000440
 
V 0909291*1344,90311 400 EVENI(*9.9L) 000450
 
V 0.092,1.1344.9#3.1 410 OOOR4*,*,L) 000460
 
V OtO2,1,1344,9#3,1 420 O0DI(*0*'L) 000470
 
V 03,2,1,1344,9,2.2 430 L 450 AGRID(*9'1I8L)l AGRIOC.9I16tL) 000480
 
V OtO,2,11344t9t2.2 440 6 460 AI(*,1tB.L I AIr(,91I6,L) 000490
 
V 0#92,1,1344.9,2.2 480 & 500 A!(',118,N.2-L) I AI(* 91I6,N+2-L) O00500
 
C 30 CONTINUE 000510
 

000520
 
V 0#0,3,1,1344,9,4.1 550 EVENR(t*,*,L) 000530
 
V 0,0,2,1,1344.9.3,1 560 EVENR(*,*.L) 000540
 
V O02,1,1344,9391 570 AGRIO(*.IiS8L) 000550
 

000560
 

F 


F 

V OO@3,12956899gt41 580 EVENR(*,*,2ILRL) 000570
 
V 090.3,1,29568.914.1 600 EVENI(*.0,2tLR1) 000580
 
V O,4,2,1,29568r9,3vl 620 AGRZO(*,118,2ILR1) 000590
 
V 0,0,2,1,29568,93,1 640 AI(41i18,21LR1) "000600
 
R 22 00 79 L=2,LR1 000610
 
M 4v0.1,'1.1t200 670 AGRID(4,18oN2-L) 000620
 

- V 0,0,2,1,672,9.2,2 680 AI(cI8,,N.2-L) 000630 
C 79 CONTINUE 000640 
E RETURN 000650 

* " FLOATING POINT SAVEVALUES 

NUMBER .... ,....... CONTENTS NUMBER ............. CONTENTS
 
VECFP 1.1388200815660Et000 VECBZ 9.5469946957600E-001
 
CLKPO 61590
 

NUMBER ............. CONTENTS NUMBER .,.... ... CONTENTSI 
MAPFP 1.1203106020520E-003 MAPBZ S.0836123116400E-001 

1-F-20
 

http:EVENI(*9.9L
http:OO.2,1.23


M 32768916,3,16 LINKHO 

F 

F LINGHO ROUTINE 

F 

F 
V Ot11,13456,5,21. 

F' 

F 

F 

V 00,1.11152.9a11 

F 

F 

F 

F 

V 1.0.3.1,3456,1594.1 

F 

F 

F 

F 

V 0,.0.,1T68,9.2.1 

F 

F 

F 

F 

V 0,0,ltl,384.9,2.1 

F 

F 

F 

F 

V 0,011,3456,9,291 

F 

F 

E 

F 

F 

V 00,0,1,384,9,2,2 

F 

F 

V 090.0,1.384,9,11 

F 

F 

E 

F 

F 

E 

V 09090,1,3456,20,2.2 

V OO.il,.3456,18.3.1 

F 

V 090,2,l,4608,15,2,1 

V O001tl,4608,20,2,2 

V 0900,1,4608,1S.3,1 

V 00,ll* 3456,2092,2 

V OOtO, 3456918,3,1 

R a 

F 

F 

F 

F 

F 

F 

F 

F 

F 


PARTIAL SIMULATION 	 000090
 
000100
 
000110
 
000120
 
000130 
000140
 
000150
 
000160
 
000170
 
000180
 
000190
 
000200
 
000210
 
000220
 
000230
 
000240
 
000250
 
000260
 
000270
 
000280
 
000290
 
000300
 
000310
 
n00320
 
000330
 
000340
 
000350
 
000360
 
000370
 
000380
 
000390
 
000400
 
000405
 
000410
 
000420
 
000430
 
000440
 
000450
 
000460
 
000470
 
000480
 
000485
 
000490
 
000500
 
000505
 
000510
 
0005Z0
 
000530
 
000540
 
000550
 
000560
 
000570
 
000580
 
000590
 
000600
 
000610
 
000620
 
000630
 
-000640
 
000650
 
000660
 
000670
 
000680
 

1-F-2 1
 



F 

F 

V 0,03.l384.15.1,1 

F 

F 

F 

F 

F 

V 0093,1,384,15,2,1 

F 

F 

V O,0.1,1.384,9,1,1 

V 0#0,1,1.384,20,2.2 

V 0,0.0.1.384.18,3,1 

C 

F 

F 

F 

V 090,29193072,12,3,1 

F 
V 090.3,1.3072.15,4,2 

V 090.2v,13072,9,4,2 

F 

F 

V 09091.1.3072.20,2,2 

V 0t0.0.1,3072,18,391 

F 

F 

F 

F 

V OOoEtl,384,1293*1

F 


F 

F 

V 090,3,1,384,1292,1 

V 0,0,2,19384,4123#1 

F 

F 

V O 0.2.1,384,12,3,l 

E 


000690
 
000700
 
000710
 
000720
 
000730
 
000740
 
000750
 
000760
 
000770
 
000780
 
000790
 
000800
 
000810
 
000820
 
000830
 
000840
 
000850
 
000860
 
000870
 
00080
 
000R90
 
00OO00
 
no00o0
 
000920
 
000930
 
000940
 
000950
 
000960
 
000970
 
000980
 
000990
 
001000
 

001010
 
001020
 
001030
 
001040
 
nOlO50
 
001060
 
001070
 
001080
 

* FLOATING POINT SAVEVALUES 

NUMBER ............. CONTENTS NUMBER ............. CONTENTS

VECFP 1.1345783091280.oo0 VECBZ 9.7103548979500E-001
 

NUMBER .............CONTENTS NUMBER .............CONTENTS
 

CLKPD 16436
 

1-F"22
 



DIVISION 2
 

THE THREE-DIMENSIONAL AERODYNAMIC IMPLICIT CODE
 



DIVISION 2
 

THE THREE-DIMENSIONAL AERODYNAMIC IMPLICIT CODE
 

1.0 INTRODUCTION
 

A final recoding of the Ames implicit code has been completed
 
with the proposed extensions under consideration for the FMP;
 
these extensions are included in the FMP FORTRAN Manual (Volume
 
III) and are discussed tutorially in Division 1 of this volume.
 
This report presents coding strategy which was applied in
 
recoding the implicit algorithm, to create an awareness of
 
factors which affect performance of codes on the FMP. This is
 
followed by a discussion of the recoding which was done.
 
Performance analysis of this recoded version can be found in
 
Division 1 of this volume.
 

2-1
 



2.0 CODING STRATEGY FOR THE 3-D IMPLICIT ALGORITHM
 

To achieve the optimum performance of the FMP, the programmer
 
must be aware of the two key characteristics of the machine
 
architecture:
 

a. 	Memory hierarchy
 
b. 	Functional parallelism
 

The data content of the larger production runs of the 3-D model
 
make it necessary to allocate portions of the data base and
 
working storage to each level of the memory hierarchy in the
 
FMP. For example, a 100 x 100 x 100 mesh would entail the
 
storage of 6 million flow variables (Q matrix), 3 million
 
coordinate variables (X, Y, and Z), and 5 million intermediate
 
results (S matrix). The expansion of this data into working
 
storage areas for the block tridiagonal solution requires 25 x 3
 
x VL elements for the A, B, and C arrays plus 30 x VL elements
 
for 	the L, U, and F arrays in the BTRI computation (VL=vector
 
length). The engineering tradeoffs that have led to the current
 
design of the FMP have dictated a maximum main memory
 
configuration (using existing memory technologies) of 8 million
 
64-bit words. Decisions must be made as to where each of the
 
major portions of the data in the implicit solution are to be
 
retained. It does not seem feasible at this time for a compiler
 
to be able to make the allocation determinations automatically,

thus the programmer must use the LEVEL statements to advise the
 
compiler (and the system) as to the desired storage assignments
 
for 	each block of data.
 

This becomes even more necessary as one contemplates the
 
creation of even larger "research" codes that have meshes of the
 
order of tens of millions of points, since the third level of
 
memory (LEVEL 3) which is made up of block-transfer-only Backing
 
Storage is brought into play. The programmer must not only be
 
aware of the relative storage capacities of each memory level,
 
but also the implications in using that level of memory during
 
processing. The basic groundrules are:
 

2.1 MEMORY HIERARCHY
 

2.1.1 MAIN MEMORY
 

a. 	Arithmetic memory-to-memory operations can only be
 
performed from Main Memory.
 

b. 	Effective rates for arithmetic access in 64-bit
 
mode of Main Memory are four sets of eight

operands transferred to the Vector Units every
 
machine clock cycle, and one set of 8 results
 
stored back to memory in the same clock cycle.
 

c. 	In 32-bit mode these rates are doubled (four sets
 
of 16 operands input, one set of 16 results).
 

2-2
 



d. Depending on the operation being performed, one,
 
two, or three arithmetic processes (ADD, SUBTRACT,
 
MULTIPLY) can be accomplished per set of operands
 
delivered to a Vector Unit, per clock cycle.
 

e. 	Concurrent with vector arithmetic the Main Map
 
Unit can achieve a simultaneous processing rate of
 
8 64-bit input operands per clock cycle, while
 
storing 8 operands in the same clock cycle.
 

f. 	Single-element access rates to Main Memory for
 
scalar load/store or vector scatter/gather
 
operations are one per clock cycle.
 

2.1.2 INTERMEDIATE MEMORY
 

a. 	Data can be mapped in blocks to and from
 
Intermediate Memory at a maximum rate of 8
 
elements every 3 clock cycles.
 

b. 	Single-word access rates are one element every 6
 
clock cycles.
 

c. 	No memory-to-memory arithmetic can be performed
 
involving the Intermediate Memory.
 

d. 	 Data transfers to and from Main Memory can proceed
 
at the Intermediate Memory rates, and are fully
 
concurrent with all Main Memory activities listed
 
previously except other Main Map Unit operations.
 

e. 	The maximum configuration of Intermediate Memory
 
'is 32 million 64-bit words.
 

2.1.3 BACKING STORAGE
 

a. 	Data can only be transmitted between Backing
 
Storage and Intermediate Memory.
 

b. 	 Data can only be accessed and transferred in
 
integral 32,768-word blocks.
 

c. 	Access time per block is negligible since a data
 
transfer begins as soon as a starting address
 
(current address within the block) is transmitted
 
to the backing storage controller (Swap Unit),
 

d. 	Transfer rates for Backing Storage can attain a
 
maximum of 8 64-bit words every 16 clock cycles.
 

2-3
 



2.2 FUNCTIONAL PARALLELISM
 

The memory system description above indicates the degree of
 
concurrency available in the FMP. Maximum performance of the
 
FMP is achieved by maximizing the overlap (or concurrency) of
 
mapping operations (needed to organize data into efficient
 
vectors) and the arithmetic processing. If one examines modern
 
day scalar machines and FORTRAN object code, a "dual" can be
 
found to this "scheduling" situation. Most high speed
 
processors today possess the ability to engage in several
 
simultaneous activities in order to attain high performance. In
 
particular, the time-required to access a data element in memory
 
via a scalar load operation can be overlapped with the
 
processing of other data that had been loaded previously. A
 
great deal of work has been expended in compiler development to
 
maximize the automatic scheduling of load, store, and arithmetic
 
operations so that the arithmetic units are not left idle, while
 
unnecessarily waiting on the results of a load operation to be
 
returned from memory.
 

This same approach is used by the programmer and compiler for
 
the FMP. Data for one set of arithmetic operations can be
 
"prepared" by the Map Units while the Vector Units are operating
 
on a previously aggregated set of data. The degree to which
 
these processes can be overlapped determines the extent to which
 
the Vector Units can be kept-busy. The objective for maximum
 
FMP performance would be to keep the Vector Units 100% active,
 
performing triadic operations at every turn. This level of
 
activity would yield an operation rate of 1.5 billion 64-bit
 
floating-point operations per second, or 3 billion 32-bit
 
floating-point operations per second. It is obvious that to
 
attain a sustained rate of 1 billion floating-point operations
 
per second in 64-bit mode, the combination of hardware,
 
programmer, and compiler have to maintain a 67% efficiency in
 
the use of the Vector Units. Given the current state of the art
 
of compilers, it can be stated firmly that the programmer must
 
provide some assistance in the statement of codes in order to
 
achieve the requisite efficiency.
 

The coding strategy for the 3-D implicit code consists of the
 
following general principles:
 

a. Allocation of all flow variables, coordinate arrays, 
and the -intermediate (S) array to Intermediate Memory. 

b. Reserving Main Memory for working storage and temporary 
holding areas for data being mapped to and from the 
Intermediate Memory. 

c. Backing Storage usage to be invisible for this set of 
metrics, that is, relying on the Operating System to 
roll the entire job in and out of Backing Storage but 
no explicit data transfers during program execution. 

2-4
 



d. 	 Processing of "slabs", "chunks", or "pencils" of the
 
data base at each step of the algorithm to maximize the
 
vector lengths seen by the vector arithmetic
 
operations.
 

e. 	Slab sizes to be limited by the available workspace in
 
Main Memory.
 

f. 	Smaller problems can be run entirely in Main Memory as
 
a single slab but the main program remains unchanged,
 
provided declarations such as LEVEL are done
 
dynamically.
 

g. 	When slabs or subsets of the major arrays are to be
 
processed, they are explicitly described with subarray
 
notation so that this usage is obvious to the reader
 
and the compiler. This means that although the
 
compiler may be able to discern a slab process from the
 
construct
 

DO 10 J=1,JMAX
 
DO 10 L=LI,L2
 
DO 10 K=1,KMAX 10
 
RJ=Q(K,L,6,J)
 

the 	programmer-should use the explicit notation
 

RJ=Q(*,L:LSL,6,*)
 

which highlights the fact that a slab of Q is being
 
used.
 

This notation not only makes it clearer to the reader
 
(particularly in a complex DO loop of several hundred
 
lines) of the code but the compiler can deal with this
 
single statement as a single map function. Note the
 
duality of this concept; in scalar mode the statement
 
at 10 would result in a scalar load, while the subarray
 
statement generates a map operation. Both the load and
 
the map may be handled by the compiler in similar ways,
in terms of scheduling the resulting object code for
 
efficient execution.
 

h. 	 Special-casing of subroutines is used rather than
 
single, general-purpose routines. For example, the
 
XXM, YYM, and ZZM subroutines contain data dependent
 
branch operations whose purpose is discernable at the
 
time the program is being created. An in-line
 
expansion of these routines in the STEP subroutine,
 
eliminates the need for these'branches, since during
 
STEP the execution of XXM, YYX, and ZZM is not data
 
dependent.
 

2-5
 



'. Solution algorithms and methodology (other than the use 
of slabs) remains unchanged.
 

j. 	As much as possible a line-by-line congruency is
 
maintained between the original scalar coding and the
 
FMP vectorized version. The major exceptions to this
 
are the in-line incorporation of XXM, YYM, and ZZM, and
 
the use of eiplicit notation for data structuring,
 
restructuring, -and tr-ansformation. The heavy use of
 
the DEFINE and DYNAMIC FORTRAN extensions makes it
 
possible to deal with the familiar scalar temporaries
 
such as L11, L12,..., and RJ,RR,U. .... as temporary
 
vectors (or arrays).
 

2-6
 



3.0 THE STEP SUBROUTINE
 

The most computationally intensive portion of the implicit code
 
is found in STEP and the called subroutine BTRIP This set of
 
programs has therefore received the most attention in developing
 
language-extensions and compiling strategies. The problem
 
restatement will be examined as-it -impacts data movement and,
 
ari:thmetic in each of the. three sweep directions.
 

3.1 SLABS
 

The maximum vector processing is achieved by ensuring vector
 
lengths of more than 1000 elements so that the effect of vector
 
startup time is negligible. It is desirable to reiterate here
 
that since there are effectively 8 Vector Units (four units,
 
half-clocked), a vector of length 8 would be processed in one
 
clock cycle, but with a startup time of six to nine clock
 
cycles. The non-arithmetic overhead of such an operation would
 
be 600%-900% of the arithmetic processing time. At vector
 
lengths of 1000 or greater this overhead amounts to .6%-.9%, or
 
less, of the arit-hmetic processing time.
 

The first problem then, is to systematically divide the mesh to
 
be processed into chunks t-hat can be fed to the arithmetic unit
 
as long vectors. Obviously, if all flow variable could be held
 
in Main Memory, the entire mesh could be processed as a single
 
vector. For a cubic mesh of N x N x N dimensions, the data
 
storage required would be
 

14*N**3+105*N**2 elements
 

where:
 

N cub'ed is the number of mesh points, 14 the number of
 
variables to be stored-per mesh point, 105 the number of
 
temporary variables per vector element, and N squared is
 
the vector length (one plane of the cube).
 

Assuming an 8 million-word limit on qontiguous high speed
 
storage, then
 

- 14*N**3+105*N**2<8900000 

and thus N can be approximately 80 and there will still be space
 
left for incidental working storage for the solution process.
 

In such a case all memory map oprations would proceed at a rate
 
no slower-than one element per clock cycle, and with a peak rate
 
of 8 elements per clock cycle.
 

2-7
 



For meshes larger then 80x8Ox80 however, the computational
 
variables must be held in Intermediate Memory, rather than Main
 
Memory because of the storage requirements for data and
 
temporaries. In this case.any map operations involving
 
Intermediate Memory would run slower than their counterparts in
 
Main Memory. For example:
 

* 	Main Memory to Main Memory map operation, 8 64-bit words
 
per clock
 

* 	Intermediate Memory to Main Memory map operation, 8
 
64-bit words per 3 clocks
 

* 	Intermediate Memory to Intermediate Memory operation, 4
 
64-bit words per clock.
 

In estimating performance, the problem arises as to what mix of
 
data and memory should be used. That is, how much data should
 
be stored in Main Memory and how much in Intermediate Memory? If
 
for example, a mesh size of 85x85x85 were to be processed, all
 
the flow variables could be retained in Main Memory and the X,
 
Y, and Z matrices placed in Intermediate Memory. Then a process
 
would be coded for 'slabbing' of the X, Y, and Z from
 
Intermediate to Main Memory as the computations proceeded. As
 
the mesh dimensions change the amount of inter-memory mapping
 
also changes, and thus the performance rates change.
 

To simplify the estimation process, it was decided to assume
 
that all meshes are held in Intermediate Memory regardless of
 
size. If the resulting simulations show that the performance of
 
the FMP on these meshes is at least one gigaflop in 64-bit mode,
 
it is obvious that the same problem, if held in Main Memory
 
only, would run at least as fast.
 

To provide maximum overlap, space must be allocated in Main
 
Memory not only for the slab being processed, but also the next
 
slab of data being mapped in from Intermediate Memory. Thus the
 
execution of line 930 (from the FORTRAN listing found in
 
appendix B, Division 1)
 

RJ=Q(2:KMAX-1,L:L+LSL-1,6,*)
 

.would initite a map operation into a data area called RJ during
 
its first pass. As soon as all flow variables have been mapped
 
into Main Memory for the current value of L, code generated by
 
the complier would perform the operation
 

RJl=Q(2:KMAX-1,L+LSL:L+(2*LSL)-1,6,*)
 

where RJ' is a data buffer area created by the compiler and
 
invisible to the programmer. This map operation would be
 
carried out during the arithmetic processing of the first batch
 
of mapped data. At the next pass through the loop, the pointers
 
to data area RJ would be modified (without programmer
 
intervention) by the object code to point to the new data area
 
RJ. Likewise, the pointers to RJ' would be modified to point
 
to the original data area RJ.
 

2-8
 



This activity is similar to the technique used by multiregister
 
machines and compilers that "prefetch" data into working
 
registers during one trip through a DO loop, and move the data
 
to a new register for processing during the next trip through
 
the loop. This "invisible" allocation does impact the total
 
main memory storage requirement however, and is a function of
 
the slab size. Inversely, the slab size is a function of the
 
available memory, the three mesh dimensions, and the sweep
 
direction. The allocation of slab space is now examined for the
 
J-sweep direction.
 

First a slab is made consisting of an integral number of planes
 
(each consisting of JMAX*KMAX elements) as seen in figure 1.
 
Vector lengths then are JMAX*KMAX*LSL elements where LSL is the
 
number of planes in the L direction. Since working storage for
 
the block tridiagonal is 105*(vector length), 105*JMAX*KMAX*LSL
 
words of storage is required for temporary data.
 

Also, 14*KMAX*JMAX*LSL words of storage must be provided for the
 
fl6w variables mapped to and from Intermediate Memory, plus an
 
equal amount of storage for buffering the data for the next trip
 
through the loop. The gross requirements for Main Memory are
 
then
 

105*JMAX*KMAX*LSL+28*JMAX*KMAX*LSL=133*JMAX*KMAX*LSL
 

If for example, JMAX=KMAX=100, then 1,330,000 words of data
 
would be required for each plane to be processed. Given a
 
somewhat unintelligent and brute force data allocation to Main
 
Memory, LSL would have to be about 6 in order to fit the problem
 
within the 8 million words available in Main Memory. This would
 
give vector lengths on the order of
 
LSL*JMAX*KMAX=6*100*100=60,000 elements, which is remarkably

cl6se to the maximum size of 65,536 elements for the FMP. This
 
optimizes vector performance by minimizing startup time per
 
element in the vector.
 

The corresponding slab sizes for the other sweep directions, JSL
 
and KSL are computed in the same manner. Note then that data
 
allocation of arrays such as RJ is different in total size and
 
dimensionality for each sweep direction (assuming JMAX,KMAX, and
 
LMAX not identical). Thus such array variables necessarily
 
become DYNAMIC elements in this code.
 

2-9
 



J=JMAX 

l0 

K=KAX 

K0 

07 0 20 30 40 50 

08 11 21 31 41 51 

02 12 22 32 42 52 

03 13 25533,'43 53 

04 14 24; 34 44 54 

05 15 125 35 45 55 

06 6615 465666 

07 17 2.7 37 i475 

08 Is 28! 38 485 

o09 19 29! :&4 9 

60 70 

61 71 
62 

63 73 

64 74 

65 75 

76 

777 

878 

79 

80 97 

88 91 

85! 93 

84" 

9 

861 96 

87 97 

881 98 

89 99 

f / 

194& 

go 

b'/,/ 
i 

9 

% 

%2 

g 

L-- L-2 

/ 

_______ 

x L=LMAX 

Figure 1. Storage Allocation for the X Array in
 
Intermediate Memory
 

2-10
 



JdJ-;Wtt? U~htUI UN 

The first discussion-will be of the processing for the
 
left-hand-side solution, followed by the subroutines RHS,
 
VISRHS, and MUTUR.
 

The computation of the residue (lines 500 through 680) has been
 
left intact, and in place. The compiler is capable of
 
automatically vectorizing this segment of code. However, the
 
processing rate is limited by the rate at which the S matrix
 
elements can be transmitted from Intermediate Memory (hereafter
 
called LEVEL 2). A better approach for this computation would
 
be to embed the RESIDUE calculation within SMOOTH, where S array
 
elements are mapped into Main Memory.
 

Processing of the flow variables in the J-sweep direction begins
 
at line 730. Figure 1 gives the storage mapping of a specimen X
 
array of dimension 10 x 10 x 10 to demonstrate the method of
 
"slabbing" the data. Elements .of the X array are stored
 
sequentialy in physical memory from 00 to 999. To improve
 
vectorization the metric computation XXM is recoded in-line from
 
lines 930 through 1100. Three intermediate variables not found
 
in the original XXM routine (XKL,YKL, and ZKL) are created to
 
hold the mapped X- Y, and Z slabs. This becomes necessary in
 
order to minimize the number of times map operations are
 
performed, as well as to provide the buffer space which holds
 
mesh data for the differencing operations (lines 970 through
 
1020).
 

The statements
 

XKL=X(.*,L-1:L+LSL,2:JMAX-1)

Y-KL=Y(*,L-1:L+LSL,2:JMAX-1)
 

ZKL=Z(*,L-1:L+LSL,2:JMAX-1)
 

produce map operations which are of the "prefetch and buffer"
 
type described previously. This means that there are actually
 
two buffer areas for each variable XKL, YKL, and ZKL, one of
 
each "invisible" to the programmer. Note that the slab being
 
moved for these variables is 'LSL+2 pl'anes in size. This is due
 
to the need for the adjacent differencing used in the metric
 
computation. If LSL is 6, thus requiring 17 trips through the
 
loop (16 trips for LSL planes and 1 trip for 4 planes), then 2
 
extra planes of data will be moved at each trip through the
 
loop. The effect of this is moving 2*17+LMAX planes of data.
 

This extraneous movement could be reduced by explicitly
 
programming the retention of the LSL+2 plane before commencing
 
the next trip through the loop. This would require additional
 
thought and data movement in the existing program. Instead, the
 
brute force approach of moving the extradata has been taken to
 
keep the program as similar to its scalar counterpart at
 
possible. The overlapping of map operations ensures that this
 
extra data motion is hidden by the computations being done in
 
the loop. The only pen-alty for this technique then becomes the
 
initial overhead in getting the first slabs of data ready for
 

2-11
 



the first trip through the loop. In the worst case this
 
additional burden becomes 2*KMAX*JMAX=2000 elements which are
 
moved at a rate of 8 per 48-nanosecond period, or 12
 
microseconds per sweep per trip (time step) through the entire
 
STEP subroutine.
 

Although.a 10 x 10 x 10 mesh could fit in Main Memory, thbse
 
dimensions will be us.ed for th-is- part of tire discussion while
 
referring to the FORTRAN listing (appendix B, Division 1) for
 
the metric. Thus some of the figures which follow can be used
 
to aid the illustration of the coding of the J-sweep.
 
Therefore:
 

JMAX,KMAX,LMAX=10 LSL=2
 

Figure 2 shows the storage of the XKL array after executing the
 

statement at line 940:
 

XKL=X(*,L-1:L+LSL,2:JMAX-1)
 

This statement becomes a map operation which can be called
 
Gather Record wherein LSL+2 columns,of KMAX operands are
 

gathered JMAX times. The resulting data is moved to Main Memory
 
and appears as the slab in figure 2. Note that the dimension of
 
this temporary mesh is KMAX*JMAX*(2+LSL).
 

In statement 970
 

XK=(XKL(3vKMAX,2:LSL+1,*)-XKL(1:KMAX-2,2:LSL+1,*))*DY2
 

the entire slab is processed by a diadic arithmetic operation.
 
The vector length for this operation is JMAX*(KMAX-2)*LSL
 
elements. The compiler produces object code which computes the
 
proper starting addresses for the offsets needed to compute the
 
adjacent differences. A subsequent map operation is also
 
generated which compresses the K=I1 and K=KMAX elements from the
 
array. This operation proceeds in parallel with the arithmetic
 
statement 980. The result is shown in figure 3 where the final
 
slab of dimension (KMAX-2)*LSL*JMAX is stored. From this point
 
up to statement 1520 all slabs processed are conformal and have
 
the same dimensions.
 

2-12
 



JMAX
 

K% 

L 00 

01 

02 

0 

1.1 

12 

20 30 

Z1 31 

2232 

5 

15A% 61 

03 

04 

13 123 

14 24 

33 

34 

LS 05 15 25 35 6 1 

06 16 26 36 

07 17 27 37 

KIVAX 

0818
o9 

2838 
39 

L=1 L+LSL+2 

in Main Memory

Figure 2. The J-sweep XKL, YKL, and ZKL Arrays 


2-13
 



JMAX 

oil, 

Ki 

6J i 

i 6 15o 

-3a 

LSL156 

1 

joX 

2-146 



Statements 930,1140 through 1170, and 1210 perform gather
 
operations on operands in the Q matrix. Figure 4 shows the
 
storage layout of the Q matrix in physical memory. Note that
 
element 600 of the array is the first element in the J=2 segment
 
of the Q array. This is due to the storage allocation that
 
makes Q(K,L,1,J) the density component of the flow variables at
 
the point (K,L,J) in the mesh. Thus the statement (line 930)
 

RJ=Q(2:KMAX-1,L:L+LSM,6,*)
 

results in a map operation that gathers KMAX-2 elements from
 
each column for LSL columns, JMAX times. Figure 5 shows the
 
resulting slab as it would appear in Main Memory, with each
 
element labled with its original sequential storage location
 
within the Q array in LEVEL 2 memory. Thus the first element
 
moved from the Q matrix would be
 

RJ(1)=Q(2,2,6,1)
 

or element 511 in the linear storage of the array. Note that
 
the entire slab can be processed as a single vector by all
 
statements down to statement 1520.
 

The effect of some of the FORTRAN extensions on this sequence of
 
code is now examined briefly. Statements 930 through 1020 make
 
use of the explicit subarray notation described in the extension
 
specification to define not only the slab to be processed but
 
also the offsets
 

(3:KMAX...
 
(1:KMAX-2...
 
....3:LSL...
 
....1:LSL-2 ....
 

necessary for the adjacent differencing operation. The
 
variables RJ, XKL, YKL, ZKL, XK, YK, ZK, XL, YL, and ZL are
 
defined as DYNAMIC. Thus they take on the dimensionality of the
 
right-hand expression, and their storage is allocated
 
dynamically at object time.
 

Statements 1030 through 1060 then compute with these DYNAMIC
 
variables producing arrays for each of the DYNAMIC ARRAY
 
variables XX(1), XX(2), XX(3), and XX(4). In this case the
 
DYNAMIC ARRAY XX will contain 4 sets of pointer information,
 
with dimensionality established at object time and storage
 
allocation also defined during execution of the statements. The
 
DYNAMIC ARRAY variable D(i,j') is handled in much the same way.
 

2-15
 



JMAX 

/ 

// 
// 

// 

/ / 
// 

// 

J=2 

J 

00 10 20 30 40 50 60 70 80 90 

01 11 21 31 41 51 61 7 81 9 1 1 

02 12 22 32 42 52 62 72 82 92 

03 13 23 33 43 53 63 73 83 93 

041 14 24 34 44 54' 64 741 84 949 
I 

05 15 25 54555 65 75 85 95 9 

06 16 '26 36 46 56 66 76 86 96 

07 17 27 37 47 57 67 77 87 97 1 

08 18 28 38 48 58 68 78 88 98 1 

09 19 29 39 49 59 69 79 89 99 
K-MAX ------- -

/LSL:2 
L=2 

Figure 4. Q Matrix 

2-16
 



JMAX
 

1; 1 
L 


-K 

51 L -, 

KMAX-

LSL
 

Figure 5.-	 The J-sweep RJ Matrix in Main Memory
 

RJ=Q (2:KMAX-1 ,L: L+LSL-1,6,*)
 

2-17 



At statement 1270 it is necessary to insert an explicit DEFINE
 

statement
 

DEFINE (D(1,5),(1:KMAX-2,1:LSL-2,1:JMAX-2))
 

for although all other pointer data in the DYNAMIC ARRAY D is
 
implicitly defined by the associated arithmetic statements such
 
as
 

D(1,2)=XX(1)*HDX
 

where XX(1) is a slab (from figure 5) of dimensions (KMAX-2),
 
LSL, and (JMAX-2), then D(1,2) takes on these identical
 
characteristics. D(1,5) however, has not been given any such
 
characteristics, and the desire is to fill this variable with
 
scalar zeroes. The DEFINE statement explicitly establishes the
 
necessary relationships and then statement 1280
 

D(1,5)=0
 

performs the filling of a created slab with the needed zeroes.
 

Statements 1520, 1530, and 1540 perform arithmetic operations on
 
the slab called RJ. By simply adjusting the starting address
 
and field lengths at object time, these operations yield new
 
slabs with dimensions (KMAX-2)*LSL*(JMAX-2) without the need for
 
any intervening map operations. The DO loops commencing at 1550
 
and continuing through 1650 are a slight restatement of the
 
original scalar-loops. This restatement is partly for
 
convenience and expedience, and partly to make visible the power
 
of the DYNAMIC ARRAY and DEFINE constructs in the FORTRAN
 
extensions.
 

The purpose of statement 1570 is the same as 1270, to assign a
 
,set of attributes to all DYNAMIC ARRAY elements B(n,m), since
 
the dimensionality is not established implicitly.
 

The purpose of statement 1580
 

DEFINE (D1,D(N,M))
 

is to establish the characteristics of a single DYNAMIC variable
 
D1 so that they can be modified with offsets in statement 1590:
 

A(N,M)=-DI(*,*,I:JMAX-2)
 

This is necessary since DYNAMIC POINTERS appearing in assignment
 
statements such as 1590 cannot have any modifiers included, but
 
DYNAMIC VARIABLES such as D1 can possess a modified set. of
 
subscript notation such as shown here.
 

The result of these loops is to establish 25 pointers in the
 
DYNAMIC ARRAYS A, B, and C which point to vectors of data
 
(KMAX-2)*LSL elements in length. The BTRI subroutine then
 

2-18
 



operates on tnese vectors as ii eacn were in racc a,scajar
 
quantity in the original implicit code. In this manner the BTRI
 
algorithm can be kept intact as provided by Ames.
 

Skipping to BTRI briefly (line 4120) this setting up of the
 
input arrays is discussed.
 

3.3 BTRI
 

The DYNAMIC ARRAYS (pointer data) A, B, an& C are passed to BTRI
 
through COMMON. Notice that for every pointer in A a set of
 
attributes exists which describe the vectors created in STEP.
 
Each vector possesses three dimensions (K, L, J). At the
 
beginning of the L-U decomposition the J=1 element should be
 
extracted from each vector. This is done as in statement 4300
 

DEFINE(B1(N,M),B(N,M)(*,*,1))
 

where a dummy DYNAMIC ARRAY BI is created whose pointers each
 
point to the J=1 element of the corresponding B(N,M). Note that
 
this is the only construct wherein DYNAMIC ARRAY pointers can be
 
redefined. The vector length of operations upon B(N,M) would be
 
(KMAX-2)*LSL*(JMAX-2) elements whereas vector operations on
 
B1(N,M) would involve lengths of (KMAX-2)*LSL elements! This is
 
the effective length of most vector operations in the balance of
 
the BTRI routine.
 

This technique is found again at statement 4870 and beyond ....
 

DEFINE (A1(N,M),A(N,M)(*,*,I))
 

In all of the computations in BTRI- no map operations are 

required, just the recomputation of pointers and lengths at
 
object time.
 

Other than the operation on vectors rather than scalars-, BTRI
 
appears almost identical to its scalar version in the original
 
code.
 

On return from BTRI the elements of the S matrix are updated
 
with the tridiagonal solution (see statement 1730)
 

DO 24 N=1,5
 
Sl(N)=FI(N)
 

24 CONTINUE
 

where the pointer data in the DYNAMIC ARRAYS S1 and F1 were
 
established in statements 870 and 880:
 

DO 5 N=1,5
 
DEFINE (F1(N),F(2:KMAX-1,L:L+LSL-1,N,2:JMAX-1))
 

5 DEFINE (Sl(N),S(2:KMAX-,L:L+LSL-I1,N,2:JMAX-1))
 

2-1-9
 



3.4 K AND L SWEEPS
 

The memory mapping of arrays during the J-sweep have been
 
diagramed in what may seem excessive detail. This was done to
 
show the basic organization of data that is efficient for
 
processing by the heavily compute-bound BTRI subroutine.. Since
 
vectors are linearly stored, the statements
 

DIMENSION *(1O0,00,i0_0 A(*,*,1)=2*A(*,*,1)
 

would result in the generation of a vector multiply operation of
 
length 00x1O0, beginning at J=1. The statement
 

A(*,1,*)=2*A(*,1,*)
 

would result in a series of J=100 vector operations, each of
 
length 100 and
 

A(1,*,*,)=2*A(1,*,*)
 

would result in a series of 1OOxiO0 scalar operations for all
 
K1.
 

It can thus be seen for subscript notations of
 

A(K,L,J)
 

that processes applied one at a time to each J index would yield
 
vectors of length KMAX*LMAX. The -sweep direction can
 
therefore be vectorized with ease since the "natural" vectors
 
are already stored in physical memory in the most efficient
 
way.
 

The K-sweep is not an efficient method, since vectors are stored
 
sequentially beginning with K=1, K=2...., K=KMAX, then for L=2
 
they continue in storage for K=1,..., etc. In the K-sweep

direction however, the interest is not in vectors in the K
 
direction, but instead for each K, a vector of length at least
 
LMAX*JMAX is desired. To achieve this a method must be
 
contrived to "transpose" the data from the flow and coordinate
 
meshes so that the LMAX*JMAX vectors result. Using figure 1 to
 
represent the original LEVEL'2 storage of the X matrix, figure 6
 
then shows the desired storage of the XJL array (slab) in Main
 
Memory.
 

2-20
 



L 

K 

20
 

00 100 2"/37
 

7010 170 270 370
 

60 ~ /5 16 


180 210 310
 

80 180 280 380
 

90 190 290 390
 

J SL 

Figure 6. The K-sweep Matrix XJL in Main Memory 

2-21
 



Following the previous representation of physically sequential
 
storage of data by vertical column, with each vertical column
 
contiguous by plane, figure 6 shows the new positions of X array
 
elements as they would appear in Main Memory. Each block in
 
figure 6 contains the original sequential number of the data as
 
it appeared in LEVEL 2 memory. Note that subscrfpt axis (upper
 
left-hand corner of the figure) shows the new directions implied
 
by the subscripts K, L, and J.
 

To achieve this transposition, the map operations of data from
 
LEVEL 2 memory must be described differently than were coded in
 
the first CJ-sweep) phase of this code. The transposition is
 
explicitly described by statements 1900 through 2020, wherein
 
RJ, 	XJL, YJL, ZJL, and the transposed arrays Q1 through Q5 are
 
created. Taking the XJL map operation from statement 1920
 

XJL(1:LMAX,1:JSL+1,K)=X(K,1:LMAX,J-1:J+JSL)
 

it can be seen that for every trip through the loop, K will be
 
adv.anced by one element. The statement shown becomes then:
 

"For each K, transfer a vector of length LMAX*(JSL+2) to
 
the array XJL".
 

The 	map operation called for can be accomplished with a single
 
map function which will not only move the requisite vector but
 
will perform the move for KMAX times. Note that this map
 
operation must make single element references to LEVEL 2 storage
 
for each element of the vector in the L and J directions. This
 
requires 6 clock cycles per reference instead of the 3/8 of a
 
cycle used for the corresponding map operations in the J-sweep
 
direction. The key to the FMP achieving its performance goals
 
is tied directly to the ability of the compiler to overlap this
 
"slow transpose" with computations. A rough estimate suffices
 
to show that for STEP this overlap is achievable in principle:
 

Elements to be moved from LEVEL 2 per mesh point:
 

a. 	Q1 through Q5 = 5 elements
 
b. 	X, Y, Z = 3 elements
 
c. 	Additional data for adjacent differencing = 2/LSL=
 

2/6=1/3 element
 
d. 	S1 through 35 = 5 elements
 
e. 	Update of Si through 35 = 5 elements
 

TOTAL------------------ 18.3 elements per grid point
 

Six 	clock cycles are required per element moved 6*18.3 = 110
 
clock cycles. The peak 64-bit arithmetic rate 24 results per
 
clock cycle; thus in. 110 clock cycles the Vector Unit could
 
produce 24*110 = 2640 results maximum,.or 880 results minimum.
 
To achieve complete overlap of the mapping functions necessary
 
in the K-sweep direction, then at least 880, or at most 2640,
 
different arithmetic operations would have to be performed on
 
each grid point of the whole mesh. The heart of the BTRI
 
subroutine itself yields many more arithmetic operations than
 

2-22
 

http:maximum,.or


2640, so that if the compiler can properly schedule the
 
respective map operations, almost all transpose operations can
 
be overlapped.
 

Once the transpose operations are completed (by the time
 
statement 2090 is reached) the resulting main memory slabs can
 
be proccessed identically by.AMATRX, FILTRY, FILTRZ, and BTRI
 
functions as were used in the J-sweep direction. These
 
functions are retained as in-line code to maintain congruency
 
with the original scalar code, as well as to permit the compiler
 
to perform more intelligent scheduling of the map operations.
 

The L-sweep direction is handled in exactly the same manner as
 
the K-sweep with a transpose operation called out at the
 
beginning of the loop and a transpose operation required for the
 
updating of the Q matrix in LEVEL 2 storage after computations
 
are complete. Figure 7 shows the corresponding storage of the
 
XLJ array in Main Memory for this sweep direction. Note again
 
the revised subscript directions in the upper left corner of the
 
figure. As in the K-sweep direction, once the transpose has
 
been completed the computations on the main memory slabs are
 
identical to those in the J- and K-sweep portions of the STEP
 
code.
 

Two major differences should be noted however. One is the
 
retention of the originally mapped Q array data in a main memory
 
buffer until it is updated in statements 3980 through 4080. The
 
other is the retention of the QI through Q5, D(1,1) through
 
D(1,4), and ZZ(1) through ZZ(4) temporary arrays for use in
 
VISMAT so that no additional map operations are required in that
 
routine.
 

The transpose operation in the L-sweepdirection proceeds at the
 
same rate as the simple map operations in the J-sweep portion of
 
the program. At a maximum,.8 elements are moved every 3 clock
 
cycles (see description of gather in section 2.1.3, Division 1,
 
this volume). This is 16 times faster than the single-element
 
transfers required for the K-sweep direction. Thus only 165
 
arithmetic operations are required to ensure overlap of
 
processing in the Vector Unit and Map Unit for those sweeps.
 
This number of vector operations is much less than the nearly
 
4000 operations that appear in each sweep direction in STEP.
 

2-23
 



II 

01 101 20/ 

O0. /0 /2030 

K 

0006 106206 


00 10012008 3008 1
 

09 109 209 309
 

Figure 7. The L-sweep Matrix XLJ in Main Memory
 

2-24
 

00 



4.0 THE RIGHT-HAND SIDE COMUTAtION
 

The "slab" technique -used in the left-hand side computation is
 
not as efficient in machine usage when employed for the
 
right-hand side (RHS)' The major reason for this.is that the
 
amount of arithmetic computation required for the right-hand
 
side is substantially less than that needed in the left-hand
 
solution, and data mapping for the right-hand side becomes the
 
governing commodity in the calculation rate.
 

As an example, assume that the throughput rate for the
 
right-hand side is limited to the map rate for the data to be
 
used for computations. The data to be moved would be
 

a. 3 X, Y, Z quantities 
b. 5 Q mesh quantities 
c. 5 S matrix quantities (moved back to Intermediate 

Memory) 

for the first (L direction) pass. In order to provide the data
 
for the adjacent differencing needed in metric calculations, 2
 
additional planes of data must be moved for each slab. Thus if
 
a slab consists of 6 planes, then 2/6, more data is moved than is
 
required for the final computation. This extra data is moved
 
from the X, Y, and Z meshes, sb that 3*2/6 = 1 more element of
 
data on the average needs to be moved per mesh point. In the
 
first pass then,, 3 + 6 + 5 + 1 = 15 elements are moved per mesh
 
point calculated on. The time needed to move this data from
 
Intermediate Memory is
 

15"3/8 clock cycles = 6 clock cycles per mesh point.
 

For the second pass (K direction) the 15 data elements already
 
described must be moved plus retrieving the intermediate S mesh
 
elements for a total of 15 + 5 = 20 elements. The rate for this
 
move is the single-element map rate of one element every 6
 
cycles. Thus the per-point cost of mapping is
 

20*6 = 120 clock cycles.
 

The third pass (J direction) requires the transfer of 20
 
elements at the gather-record rate of 3/8 elements per clock
 

'
 cycle. The cost of this map per mesh point then is
 

20*3/8 = 8 clock cycles.
 

The total number of cycles committed to data mapping for the
 
right-hand side (excluding viscosity calculations) is'
 

6 + 120 +-8 = 134 clock cycles per mesh point.
 

A quick count of the floating-point operations for the
 
right-hand side showsthat a total of 221 operations are
 
performed per mesh point. If 64-bit mode only is assumed, the
 
rates for the Vector Units are
 

1-arithmetic operation = 8 ops per clock cycle = .5
 
gigaflop,
 

2-25
 



2 arithmetic operations = 16 ops per clock cycle = 1
 
gigaflop,
 

3 arithmetic operations = 24 ops per clock cycle = 1.5
 
gigaflops.
 

The number of clock cycles needed to process the 221 operations
 
required per mesh point for the various gigaflop rates are
 

221/8 = 28 cycles for a .5 gigaflop rate,
 
221/16 = 14 cycles for a 1 gigaflop rate,
 
221/24 = 10 cycles for a 1.5 gigaflop rate.
 

Note that it takes 134 cycles just to move the data, but only 28
 
cycles (at worst) to compute with it. The right-hand side is
 
thus Map Unit bound. Thus the gigaflop rate for this processing
 
method is
 

GIGAFLOP RATE = NUMBER OF OPS/(NUMBER OF CYCLES*16.)
 

for a 16-nanosecond clock cycle.
 

RATE = 221/(134*16) = .103 gigaflops.
 

This is clearly much less than the 1 gigaflop rate objective for
 
the FMP, and even when combined with the left-hand side
 
computation, the RHS acts as a major constraint on the implicit
 
code performance.
 

The best solution to this dilemma is to recode the right-hand
 
side to reduce the amount of data mapping necessary. The key to
 
this approach is that there is no recursive relationship between
 
the data used at each pass. Therefore it is possible to map a
 
complete slab from Intermediate Memory (see figure 8) and
 
process all three sweeps for that slab. Not only does this
 
reduce the number of data transfers, but the single-element
 
gather operation is eliminated.
 

2-26
 



JMAX
 

60 9Y 9 
SLAB in J direction 

.11 

..... .... .... .... .... iKMX r" 

9 JSL/ SLAB inJ direction09 9 z ,rs 

LMAX 

Right-and Side X Array in Intermedate Memory
Figure 8. 
-

Marix XJL.Shown Before Move to Main Memory 

2-27
 



Lines 260 through 1430 of the RHS listing (found in appendix C,
 
Division 1) give the major DO loop wherein the slabs are moved
 
along the J direction. Note that 9 elements are moved to Main
 
Memory and the slab of S array is retained there until all
 
updates are complete, then mapped back to LEVEL 2 memory at the
 
completion of each pass through the RH loop. To reduce map
 
operations the choice was made to process all data for points at
 
K = 1, K = KMAX and L = 1, L = LMAX even though the operations
 
are meaningless. Thus in- a IOOx-1-00 i-0O mesh-th-is method- will
 
have passed over 40,000 extra data elements that need not be
 
processed. This is an added burden of 4% on the number of
 
computations against a benefit of more straightforward
 
programming which results in fewer (slower) map operations. Note
 
that when the S matrix is mapped back to LEVEL 2 memory, the
 
unneeded data points at K = 1, KMAX and L = 1, LMAX are
 
discarded.
 

The computation rate for this approach is:
 

9 elements mapped into Main Memory
 
5 S elements returned to LEVEL 2 memory
 
1 element per mesh point moved as an extra for adjacent
 
differencing
 

15 elements at 8/3 element moved per cycle = 6 cycles per
 
mesh point
 

A glance at the arithmetic rates given previously for the FMP
 
Vector Units shows that if a way can be found to achieve the
 
maximum of 1.5 gigaflops, 10 clock cycles per mesh point will be
 
required for computation. Obviously the 6-cycle map time can be
 
completely overlapped by the computation (assuming a smart
 
compiler can schedule the object code).
 

2-28
 



5.0 RIGHT-HAND SIDE--VISCOSITY AND TURBULENCE COMPUTATIONS
 

The right-hand side calculations are complicated somewhat by the
 
inclusion of two subroutine calls which have been retained in
 
the recoding for the FMP--VISRHS and MUTUR.
 

The restructuring of this code needed for the FMP consists of
 
bringing the large slabs from Intermediate Memory in the most
 
efficient form possible (minimal memory conflicts during the
 
gather operation).
 

5.1 VISRHS
 

With the storage algorithm chosen for the flow variables and
 
X,Y,Z data (the'L sweep direction proceeds along the
 
FORTRAN-stored "rows" of data), this means that the maximum
 
length of vectors for many calculations in VISRHS are no more
 
than column length of the flow mesh -- KMAX elements.
 

To improve the processing rate of the FMP for this computation,
 
VISRHS (viscosity calculations) contains a transpose operation
 
on the U, V, and W arrays that were generated in the RHS
 
subroutine. The time required for the three key transpose
 
operations is offset by the ability to process vectors of
 
KMAX*JSL*LMAX elements. With no recursion in VISRHS, this
 
technique permits maximum vector performance for the FMP.
 

If the parameter LAMIN is not equal to zero, the turbulence
 
model MUTUR is called. This routine offers some programming of
 
interest since there are both explicit recursion and data
 
dependent IF branches involved in that routine.
 

5.2 MUTUR
 

The computations found in MUTUR are a "mixed bag" for the
 
effective use of the FMP. It was decided that transposition
 
operations on all the necessary meshes in
 
MUTUR--ZZ,XX,YY,RR,QI...Q6--was too expensive to undertake for
 
the performance returned in the vector arithmetic operations.
 
Thus the meshes were left in their original orientation. This
 
means that vector lengths will be as small as KMAX elements. The
 
first approach to conversion consisted of changing the program
 
into a rational form for the STAR compiler. This involved the
 
replacement of the three-dimensional array references with
 
four-dimensional array references. The use of the compound
 
variable KL is thus eliminated. Appendix A is a listing of the
 
original MUTUR code but with KL eliminated.
 

Once this variable was removed the intent of the code is more
 
obvious to the reader and to the compiler. Evaluation of the
 
resulting program by an FMP FORTRAN compiler could possibly
 
yield optimal results. However, to make clear the probable
 
restructuring done by either programmer or the compiler, the
 
choice was made to recode the problem using extensions provided
 
by the proposed FMP FORTRAN.
 

229
 



The next step was to recode as many statements as possible in
 
the subarray form. It b'ecame obvious -that the subscripts and
 
loops at the beginning of MUTUR could be replaced by an
 
"unrolled" form found in lines 430 through 990 of appendix B,
 
the recoded MUTUR. These statements yield vectors of length
 
KMAX*LMAX*JSL, despite the fact that there are offsets in the
 
subscripts of +1 and -1 for all three dimensions. A feature of
 
the FMP is its ability to discard results under the guidance of
 
a bit-by-bit control vector. In this case the compiler is
 
capable of discerning the fact that Q3(3:KMAX+2,*,*) will
 
involve only adjustment of starting addresses and discarding of
 
results later. Thus the length of the operation will be
 
KMAX*LMAX*JSL although the useful results will, in the final
 
output, be (KMAX-2)*(LMAX-2)*JSL elements.
 

The presence of IF statements in original FORTRAN source code
 
usually causes some difficulty in the vectorization process. In
 
MUTUR there were four different classes of IF statements, each
 
of which has to be resolved by analyzing the intent of the
 
code.
 

1) 	The first class of IF statement in MUTUR was apparently used
 

to reduce source and object code computation of arrays TA,
 
TB, TC .... through manipulation of subscripts and a one-time
 
looping back to recompute a new set of values. This was
 
resolved, as discussed previously, by unrolling the'loop
 
into statements 430 through 990. Although unrolling of the
 
loop requires a greater allocation of object code, the
 
intent of that sequence seems to be clearer in the
 
restructured version (see appendix B).
 

2) 	The second class of IF statement is used to identify and
 
locate the maximum and minimum elements of arrays UU and
 
YDU. The replacement construct shown in lines 1260 and
 
1270
 

DO 21 L=2,LM
 
21 IF(UU (*,L,*).LT.UMIN(*,1,*))UMIN(*,I,*)=UU(*,L,*)
 

creates object code wherein a control vector is generated
 
for every J,K element at the position L in the matrix, with
 
a one representing the fact that the particular K,L,J
 
element of UU is less than the corresponding element in
 
UMIN. The entire statement 21 then causes a replacement
 
(using the Map Unit) of all UMIN elements by new minimum
 
values where indicated by the control vector. A slight
 
modification in the source statement would have instead
 
generated the machine instruction Q8SMIN (minimum of vector
 
X):
 

DO 21 L=2,LM
 
21 
 IF(UU (*,L,J).LT.UMIN(*,I,J))UMIN(*,,J)=UU(*,L,J)
 

where the maximum would be evaluated for vectors of length
 
KMAX. If the position of the minimum element is desired,
 
the programmer must invoke the 'Q8 IN-LINE' construct that
 
permits direct access to the hardware from the FORTRAN
 
compiler. Thus the previous example would become
 

2-30
 



DO 21 L:2,LM
 
21 
 CALL Q8SMIN(UUC(,L,J),UMIN,MINPOS)
 

In -this case the parameter MINPOS will be returned with the
 
index of the minimum element in array UU.
 

Examination of the MUTUR code showed that the maximum-length
 
for the minimum function under these circumstances would be
 
KMAX elements. By using the control vector and processing
 
planes of data, the maximum and minimum functions can also
 
be accomplished, but at a much higher performance level.
 

In lines 1280 through 1330 the control vector is generated
 
for a plane of the meshes at each L and then used to
 
suppress or permit the movement or insertion of data into
 
the arrays YDUM, YM, and KM. This control vector use is
 
performed solely by the.Map Unit, while the generation of
 
the control vector requires the use of the Vector Un-its to
 
accomplish the arithmetic compare operations.
 

Note-that in line 1330 a single scalar is broadcast to all
 
elements of KM2 where permitted by the control vector. The
 
construct
 

IF (BIT) ......
 

where BIT is defined to be of type BIT, will normally
 
generate control vector operations.
 

3) The third class of IF statement appears to have the same
 
function as that-of the second, that is, the selective
 
insertion of data into meshes under the control of some
 
conditions of interest. This class becomes converted to
 
control vector operations as shown in statement 1490 through
 
1560 and also in statements 1570 and 1580 (although less
 
obvious in this latter situation). A bit vector BIT is
 
generated at line 1380. It is then combined in a logical
 
operation with another bit vector generated at line 1490
 
resulting in a new BIT at line 1500. This new BIT is thence
used to control the modification of corresponding elements
 
of YMM and YDU in statements 1510 and 1520.' Note that in
 
this case the arithmetic is performed for all elements of
 
YM, AM,, BM, and YDUM but- results are stored into the result
 
vector only where permitted by the control vector. Since
 
this is a data dependent operation, estimation of processing
 
rates is difficult. In the- analysis of the simulation
 
results (see Division 1) this will be dealt with for MUTUR
 
by providing three possibilities for the contents of the
 
control vectors -- 0%, 50%, and 100% density of permissive
 
bits. The processing rate range can then- be determined for
 
thsportion of the code.
 

4) 	The final IF statement class is similar also to the last
 
two, but has one additional area for caution and analysis.
 
In this case (lines 1840 through 1860) elements of TURMU are
 

2-31
 



to be set depending upon the position of a crossover point
 
in the values of TMO'and TMI. Until the crossover point is
 
reached data is to be moved from TMI, and after the
 
crossover, data is to be moved from TMO. In this particular
 
situation, analysis shows that all elements of TMO and TMI
 
have values which are on the proper side of the crossover
 
point. That is, elements 1 through n of TMI will all be
 

less than their counterparts in TMO. If n is -chosen as the
 
n
crossover point then it can be said that all elements from 


to LMAX of TMO will be less than those in TMI. It is this
 

fact that allows simply replacing the IF statements with a
 
control vector operation which will place the correct TMO
 
and TMI elements in TURMU.
 

If, however, the positional relationship of TMO elements and
 
TMI elements did not hold 
on both sides of the crossover
 

point, a form of recursion exists which requires
 
manipulating the control vectors to produce the proper
 
'mask' for movement of data.
 

Because of recursions like that in lines 1920 through 1950 it
 
has been necessary to retain the DO loops in L and to process
 

planes of data at each point L. The maximum vector length in
 
all of the recursive portions is thus KMAX, although the
 
compiler does generate all.of the necessary vector operations in
 

the J direction, automatically. No gather operations are
 
indicated, as the Map Unit expense would overshadow the value
 
that longer vectors in arithmetic might have.
 

2-32
 



APPENDIX A 

ORIGINAL NUTUR ROUTINE
 

SUBROUTINE MUTUR 000100
 

COMMON/SASE/NMAXJMAXKMAXLMAXMKMLMOTGAMAGAMISMUFSMACH 000110
 
I ,OXOYI,OZIND.ND2,FV(Sh),D(S).HDALPGD.OMEAIiDX.HDYIHOZ 000120
 
2,R ,CNBR.plItTR.INVISCLAMINNPINT1.INT2,INT3 000130
 
COMNOM/GEOJNRI.NB82,RRONT.RMAX.*XRXNAX.ORAD.OXC 000140
 
COMMON/REAO/IREAD, WRITNGRI 000150
 
COIMON/VIS/REPRQMUEQK 000160
 
COMMON/VARS/Q(720,6,301 000170
 
COMMON/,VARO/S(720.5.301 000180
 
COMMON/VAHI/X(720,30),Y(720,303,Z(720.30) 000190
 
COMMON /VAR3/P(120.30.XX(60,4),YY(60,0),ZZ160.4) 000200
 
LEVEL 2.QS.XYZ 000210
 
COMMON/COUNT/NCNC1 000220
 
COMMON/BTRrO/A(60.5.5I,8(60.S.S),C(60,SS.).D(60, S5),F(60]53 000230
 
COMMON TURMUt72O.301 000240
 
DIMENSION TASC60),UU(60),SNOR(60].TMO(60),TNI(60).SS(60).S6(60), 000250
 
I Uc60)Vl60),WC60),E(60),RR(60) 000260
 
EQUIVALENCE (PA1,1) *TAS(1)1,{P(I.2) ,UU(1))((1.3) ,SNOR(I)).000270
 
(P1i.') TMO(1)1,tP(1,S .TM4(l)),(P(1,6) .S5(1)1, 000280
 

'(P(l1.) *S6(1)).(P(1.8) ,U(1)1,(P(,9 ,V(I)),IP(1,10) ,W(1)). 000290
 
(P(1.11) *E(1),(Pll.12) ,RR(1)) 000300
 
DATA FE7,LEOOE/1.a,25/ 000310
 
DATA FKFKKYOUNF/0.4,0.0I68,1.0/ 000320
 
DATA FKLEB/0.3/ 000330
 

C 000340
 
C CALCULATE TURBULENT VISCOSITY 000350
 
C 000360
 

DO 80 j . 2t,4 000370
 
00 80 K . 21KM 000380
 

C ZZM COMPUTATIONS ELIMINATEOsZZ RETAINED FROM RHS CALCULATIONS 000390
 
C 000400
 
C CALCULATE VORTICITY TAS(L) AND TOTAL VELOCITY UU(L) 000410
 
C 000420
 

00 11 L'. ILM 000430
 
ALI1./U(K.L.1.1.4) 000440
 
RL s 1.,Q(KL,1,) 000450 
Ti * .5.(zztL.1,a).zz(L,2I).(Q(KL.1,4,J)RL-(KL4iJfR.) 00046) 
1 -(ZZ(L,13)*ZZ(L,3)(Q(KL-13t.J)RLI-Q(KtL,3,U)-RL)I 000470 
T2 *5*((ZZtL.1,3)-ZZIL,3))t(Q(.Lt,12,J)-RL1QtKL,2,4)-RL) 000480 
1 .(ZZ(L.1,13Z(L,1)40KL.4,5RL1-(KL. J).RLD 000490 
73 * .5*(ZZ(.I1,1)ZZ(Ll))(O(tKL*13,J)RLISQ(.L3,4)RL) 000500 

1 -(ZZ(L.1,Z)tZZtL,2)ls(O(XL41,2.43eRL001CKL2,J3*RL3 000510
 

Si t 0.0 000520 
S2 * 0.0 00053D 
53 •0.0 00054D 

C 'XN COMPUTATIONS CLI INATEODUE TO RETENTION OF XX RESULTS 000550
 
C YYM COMPUTATIONS ELIMINAT&D.YYM RETAINED FROM R15 CALCULATIONS 000560 

ALI a '1/0(KL,1,4*I) 000570 
RL = i./Q(KL.1,Jllooos o 
TA S 000590
*5*XX(4,22-IQ(K,L.4.J4L)-RLIQ(KL.4,-1)*RL) 

1 *.5*XX(J.3).(Q(KL3,d.I)RLI.Q(K.L,3,J.I)-RL) 000600
 
VB *XX14.3)(0(ICL.6,4*1, RLI.Q{flL,2.4-I)*RL) 000610 
1 .5.XX(,1).(Q(KL.4,J.I)0RLIQ-(KIL,4J-1) R) 000620 
TC * ,SXX(Jl) (Q(K.L.3.J.I)RLI-Q(K,L.3.- I)ORL) 000630 
1 *.5XX*4.20.(Q(X.L.2.4.I)'RL1.Q(K.L.2,JoIIAL) 000640 
ALI ./0(K.1,L,1,d2 000650 
RL * l./Q(I,1,'J) 000660 
TO * .StYY(K.2)*(G(X*t.LA,)tRLI"gtK.IL,4) RL) 000670

1 .. 5*YYIK.3)*(0(Kfl.L.3.4)*RL1.Q(KI L.3,4) RL) 000680 

TEi Yy(K,31*(OIKetL.,41'RL.Q(IC L,2.})RL) 000690
 
1 -*.SYY{IX 3(OtK.1 ,L.4.)RLNQ (K1,Lt*4l 'RL 000700 

TF * .SYY(K. )*(0(K.1,t.3,4)4RLI-0(X-1.L,3.4) RL) 000710 
1 *,S*YYIK.2)'(0 (K 1 ,L,2,43*RL1'Q(K-t .2,*RL) 000720 

2-A-1
 

http:E(1),(Pll.12
http:COMMON/VAHI/X(720,30),Y(720,303,Z(720.30


SI . SI..51(TATO) 000730
 
52 . S2..5fT.T) 000740 
S3 . S3..5*(TC.TF) 000750 
ALI * 1.j0(K.LOI.1ed*1) 000160 
RI.* /I(X.L.1.1.J-lI 000770 
TA * .5oXX(J.2) (0Ik.L.I4,J*l) RL1.0(x.L.14.-1).RL)-000780
 
1 a.S*XX(J.3)*Q(KL1.3.J*1I)*RLX-Q(KL1,3,J.1)*RL) 000790
 
TO .5*XX(J31*(QIKL1.2J*I)tRLI-Q(iK.L12.J-1)4RL) 000800
 
1 *.5tXXJ*(QfkL.1t4.d*I).RL1-Q(k.L.I .. J-1)'8L) 000810
 
TC a **XXti13)-(0(KL-1.39.J-1)tRLi-Q(K,L1 .3.J-1)-RL) 000820 
1 -.S.AXId.Z)tIQfKCL.I.2,J*1) RL1-Q(KL.1,2,J-1) RL) 000830 
ALI 1./0(K*1.L1*1.J) 000840 
RL • 1./0(K1,L.1,JI 000850 
TO * .5*YY Kt2 {IK*1 4*1 4,JIeRL1-0CK-1L*1 4,4) RL) 000860 
1 .*Y(K.3)°(0CK.1.L.1,3..)tRL1-0(K-1,L.I.3.4).RL). 000870 
TE a *S*YY(KtWCIC.1,L*1,2) RLI.Q(K-1.L)t ,2,)tRL) 000880 
1 *.5*YY KI1 *QIK*1 L*1,,J) RLI-C(1,L.1,4,4)*RL) 000890 

IF * .StYYKK.) 1L.1.3.JVPLI'.(I.1 L.1.3.) 8P) 000900 
1 *.evY( 'to (X*1tL*1 2.43 RLI-Q(K-1 L*I.2.4)*R4) 000910 
SI - S1-.5*(TA.TO) 000920 
S2 - S2..*(TBTE) 000930 
S3 . S3.,.0(TC.TF) 000940 
TW * (rl.S1)..zflT2.s2). .-2T3.S3).2 000950 
TASL) * SOR(TW) 000960 
UTOT * 0(K.L.2.J)*2*QIK.L,3.4)*tEt0(KL,4,d)t*2 000970 
UU(L) ,s SQRT(UTOT)YQ(KL,IJ) 000980 
TURMUfK.L.J) - 0.0 000990 

11 CONTINUE 001000 
C 001010 
C COMPUTE RA 001020 
C 001030 

L - 1 001040 
WNU . 1. 001050 
TAU . ARS(1AS(L)) 001060 
RA . S9RT(RE*QtKL.t6.JQ(KLltJ)eTAU/WMU)/2. 001070 

C 001080
 
C COMPUTE NORMAL OISTANCt SNOR() AND YOUM 001090
 
C 001100
 

$NOR11) . 0. 001110
 
K02 . 1 001120
 
YOUM . 1.E-3 001130
 
YM * *5/SGRT(AESIZZ(I.1)-ZZ02,1).ZZ(1,2).ZZ(2,2).ZZI1,3)CZl(2,3)))001140 
UMAX . UUC1) 001150
 
UMIN . UU(1) 001160
 
YOUS * 0.0 001170 
00 20 L. 2,LM 001180 
IF(UU(L) oLT. UMINI UMIN . UU(L) 001190 
SCIS . A8SIZZCL-1,1 'ZZ(LI).ZZIL-1,2)'ZZIL,)ZZ(L-l.3)'ZZ(L.3)) 001200 
SCAL . 1.OSQRT(SCIS) 001210 
SNOR(L) . SNOR(L-i * SCAL 001220 
SNORA - O.5S'SNORIL) S 001230
SNOR{L-L)) 

YOU . SNORA*ABS(TAS(L-I1)*(i..EXP(-RASNORA)) 001240
 
IF(L.GT.LEOGE)GO TO 20 001250
 
IF(UU(L).GT.UMAX) UMAXSUU(L) 001260 
IF(YOU *LT. YOUM) GO TO 20 001270 
K42 * L - 1 001280 
YOU4 * YOU 001290 
YM . SNORA 001300 

20 CONTINUE 001310 
C 001320 
C INTERPOLATE TO FINU YM, YOUM, ANO UM 001330 
C 001340 

IF(KM2 .LT. 2 *OR. KM2 .GT. LEDGE-!) GO TO 22 001350 

2-A-2
 

http:rl.S1)..zflT2.s2
http:S3.,.0(TC.TF
http:S1-.5*(TA.TO
http:Y(K.3)�(0CK.1.L.1,3..)tRL1-0(K-1,L.I.3.4).RL
http:RL1.0(x.L.14.-1).RL


YM3 . O.S*(SNOR(KH2*1) * SNOR(KM2.2)) 

YM . O.5*(SNOR (KH2-1) * SNOR (KO2)) 

YOUMI YMI*A8S(TAS(KM2-))*41.0 - EXP(-RAOYMI)I 

YDUM3 a YM3tAS(TAS(1KM2.1))41.0 - EXPC-RA*YM3)) 

C2 * Y0U - YOUMI 

C3 . YOUM3 - YOUM 


DY02 YM - YN1 

013 . YM3 - YN 

AM . IDY3tDY3tC2aOY2*Dy2.c33/(DY2.0Y3(DY2.DY3)) 

BM . (DY2-C3 * 0Y3'C2]/(OY20DY3(OYZ * 073)) 

IFIBM *GE. 0.) 60 TO 22 

YMN . Y4 - 0.8AM/M 

YOU . YOUM - 0.25-AM-AM/RM 
YMM . Y* - O-S*A/8 
IF(YOU .LT. YOUR *OR. YMN *LT. YNI .OR. YMM .GT. Y43) 
YOU a YOU 
YN * yMM 
IF(YM GT6.SNOR(KNM2*)) KN2 . KM2 * 1 

F(YH *LT. SNOR(KM2)) K42 - KM2 - 1 


22 CONTINUE 
C 
C COMPUTE OUTER EDDY VISCOSITY 
c 

00 25 LIiLEDOGE 

SNOR(L) * 0.S(SNOH(L) * SNORIL.1)) 


FFC . FXKKFl27REOQ(KL.1,J)2.(KL.6,J)

TMO(L) * FFC*YM*YOUM 

FFCWK * YOUNF-YDUMF*FFC 

UDIFF * ABS UMAX-UMIN) 


001360
 
001370
 
001380
 
0013q0
 
001400
 
001410
 

001420
 
001430
 
001440
 
001450
 
001460
 
001470
 
00140
 
001490
 

GO TO 2R 	 001500 
001510 
001520 
001520
 
001540
 
001550
 
on1560
 
001570
 
001580
 
001590
 
001600
 

001610
 
001620
 
001630
 
001640
 

IF(YOUM *GT. UDIFFYOUMF) THO(L) * FFCWK.YM.UOIFFUOIFF/YDUM 0016 0
 
FIA = FKLEB*SNOR(L)/YM 

IFIFIA GT. 	1.ES1 FIA 


FI - 1.0 * 5.S8FTA*'6 

THOIL) . TMO(L)/Fl 


T7O(L) . ARSCTMO(L)) 

25 	CONTINUE 


C 

C COMPUTE INNNER EDOY 
C 

00 30 L.t1LEOGE 
TAU . ABSITASL)) 

. 1.E5 


VISCOSITY 


THICL) a Q(KL69J)0Q(KLt,,.J*RETAU(, 
1 -SNOR(L)))}-*8 
THI(L) . ARS(TMI(L)) 

30 CONTINUE 
C 
C LOAO VISCOSITY COEFFS. INTO ARRAY, USE
C MATCH POINT IS REACHED 
C-

L A 1 

40 	TURMU(KL,J) - TM IL) 


L - L.I 

IF(L.GT.LEDGE) Go TO 10 

IF( TM1CL) *LE. THO(L)) Go TO 40 


41 	TURMU(KLJ) A TMO(L) 

L - L-1 

IF( L.LE. LEDGE) GO TO 41 


10 CONTINUE 

C 


001660
 
001610
 

0016A0
 
001690
 

001700
 
001710
 
001720
 
001730
 
001740
 
001750
 

001760
 
SNOR(L.*(1..EXP(-RA 001770
 

001780
 
001790
 
001800
 
001810
 

INNER VALUE UNTL 	 001820
 
001830
 
001840
 

001850
 
001860
 
001870
 

001890
 
001890
 
001900
 
001910
 
00190
 
001930
 
001940
 

C REARRANGE TURMU(L) SUCH THAT WHEN AVERAGED AT L AND L*I 001950
 
C THE CORRECT MIDWAY VALUE WILL BE OBTAINEO 001960
 
C 001970
 

SMR A TURMU(K.1,J) 001980
 
00 60 L . 2,LMAX 001990
 
TURNS - TURU(KL.J) 002000
 
TURMU(K,LJ) - 2.0*S)PTURU(KL-1.) 002010
 

60 SMP . TURNS 002020
 
80 CONTINUE 002030
 

RETURN 002040
 
END 002050
 

2-A-3
 



APPENDIX B
 

RECODED MUTUR ROUTINE
 

SUBROUTINE MUTUR 000100
 
COSMONUBAS,/NHAXJMAXtKMAXLMAXJM.KMtLM,0TGAMAGAMISMU.FSACH 000110
 

1 ,OXDY1,DZIND,N02,FV(3).FD(S),HDALPGDOMEGA,HDXHDYHDZ 000120
 
2,RMCNORPIITRINVISC.LAMINNPINTIINT2,INT3 000130
 
CONMON/GEO/NBNB2RFRONTRAXXRXMAX.ORAD.OXC 000140
 
COMNON/REAO/IREAO.IWRITNGRI 000150
 
COMHON/VIS/REPRRMUERK 000160
 
COMMON/VARS/O(720,6.30) 000170
 
COMMON/VAR0IS(720.5-301 000180
 
COMMON/VARI/X(720,30),Y(720,30)Z(72030) 000190
 
COMMON /VAR3/ P. XX YYT,ZZ 000200
 
LEVEL 2,QtSX.YZ 000210
 
COMHON/COUNT/NCNCI 000220
 
COMMON /BTRIO/ A. 8. C. 0. F 000230
 
COMMON TURMU 000240
 
DYNAMIC PXX.YYZZABgC.D,F,F1 000244
 
DYNAMIC TASTMOTMIISS.S6.UVW.ERR 000250
 
DYNAMIC YOUNYOUMItYOUM3,YM.YHITYM3,SCIS.SCAL 000260
 
DYNAMIC BIT.OY2,SY3,AM.BMYMMBITI 000262
 
DYNAMIC ZZlZZ2,ZZ3tZZ4ZZSRL.RL 000270
 
DYNAMIC T1,T2,T3,S1.S2,S3TA,TBTC 000280
 
DYNAMIC TOTE.TF.Tw.TAS.UTOTUU.TURMU 000290
 
DYNAMIC TAU.WMURA*SNORSNORA 000300
 
DATA F27,LEDGE/1.6.25 000310
 
DATA FKFKKXYOUMF/0.4,0.0166,1.0/ 000320
 
DATA FKLEE/0.3/ 000330
 

C 000331
 
DEFINE CTASP(160.1)2,(tUUP(1160,2)3.(SNOR,P(160,31 000332
 
DEFINE (TMOP{l:604)),(TI4,P(1160,5))(SS.P(l:60.6)) 000333
 
DEFINE (S6,P(1160,?)),(U.P(1260.8)) ,(VP(1160,9)) 000334
 
DEFINE (wP(1060,10)),(EP(1,60,113) PRP(1160.12)) 00033S
 

C 000340
 
C CALCULATE TURBULENT VISCOSITY 000350
 
C 000360
 

DEFINE (ZZIZZTC1)2.(ZZ2.2ZZTC2)).(ZZ3(ZZT3)3,(ZZ.ZZT(4)) 000370
 
DEFINE (ZZ5.ZZT(S)) 000380
 

C ZZN COMPUTATIONS ELIMINATED*ZZ RETAINED FROM RH5 CALCULATIONS 000390
 
C 000400
 
C CALCULATE VORTICITY TAS(L) AND TOTAL VELOCITY UU(L) 000410
 
C 000420
 

DEFINE (RLI.RR(,IOLM,2JSL)i,{RLRR(,2ILMAX.21JL)) 000430
 
71 - *S'((ZZ2(-,2;LMAX3)ZZ2.,1LMAX.-I)(Qgt4,2LMAXt)|RLI 00040
 
1 Q4{t,*,-t)RL)-(ZZ3(,2LAXI,*3ZZ3t*-,-,))*(Q3(*,21LMAX-bt) 0004SO
 
2 *RL1-Q3(e,.3 000460
 
T2..5t((ZZ3(,ZILMAX1,*-)3ZZ3(.,'3).-{O2(-OILMAX.I,.(RLI 000470
 

-.2(t.,)RL){ZZC,2LMAX.1,3.ZZI(*,t ) 000480
 
2 *(04(,ZLMAX.1,*3tRL1.414*,43RL)3 000490
 
T3*.S((ZZI(t,2ZLAX.1,*).ZZI(--,-)),(03(.,2ILMAX.I*)tRLI 000500
 
1 .Q30,-.,)3RL)-(ZZ2(,a:LAX1*,3).ZZ2(,1LMAX)) 000510
 
2 ((.,2lLAX.1,3*RL1.Q2(*,,e.RL 000520
 
St - 0.0 000530
 
62 - 0.0 000540
 
$3 - 0.0 000550
 

C XXM COMPUTATIONS ELIXINATED,OUE TO RETENTION OF XX RESULTS 000560
 
C YYM COMPUTATIONS ELIMINATEOYY4 RETAINED FROM RHS CALCULATIONS 000670
 

DEFINE (RL1,RR(t,-,38JSL.23,(RL.RR(*. IIJSL) 000580
 
TA * .5.XXi21(O4(*,.,3IJSL.2) RL1Q4(*,t]IRL) 000590 
1 *XX13)*(Q3(et,3IJSL.2J RL1-O3('*t*) RL) 000600 
TB * *S.XX(3).(02(*,,3:JSL.2).RLI.Qa(* ).RL) 000610 
1 -*StXX(j) tG4(-t,*31JSL.23 RLl-Q4(.,,e)3RL) 000620 
TC * .5*XXt1)'{03('.*,3IJSL.2)eRLIQ3{*p*)*RL) 000630 
1 .tXX(2) (Q2(.,3JSL.2)RL1.02(.,,.3eRL3 000640 
DEFINE (RLIRR(3KAX,.*).RL(RRIIIKMAX2 E)) 000650 

2-B-1
 

http:tG4(-t,*31JSL.23
http:S.XX(3).(02(*,,3:JSL.2).RLI.Qa
http:XX13)*(Q3(et,3IJSL.2J
http:RL1,RR(t,-,38JSL.23,(RL.RR
http:2lLAX.1,3*RL1.Q2(*,,e.RL
http:PRP(1160.12
http:F27,LEDGE/1.6.25
http:ZZlZZ2,ZZ3tZZ4ZZSRL.RL
http:2,QtSX.YZ
http:COMMON/VARS/O(720,6.30


TO .. YY{2)*(04(3tKOAx.2*)*RL1.Q4e*,e).RL) 
.S*SeYY(3)*(Q3(3IKMAX*2,t~tl*RL1-Q3(* *)*RL)

TE * *5*YY(3)-IQ2{31KMAX.2..t.J*RLI-Q2(*,*,*)-RL) 
1 .*OYY(1)(Q4(3tMAA2.)RL1Q4t RL000690 
TF a *5*YY(I2(Q3(3IKMAX.2.*,*)*RLI.Q3*.*,3*eRL) 
1 ",S*YYI23*(02(3lKMAX2,*,1.eRL1Q2(e RL 
S, S..5-(TAeTO] 

S2 * S2..5*(T8.TtI 

S3 = S3a.S-tTC.TF) 

DEFINE (RLI1RR(*,31LU2.31JSL.2),(RLRR(t,3LM2,*l) 

KM24KMAX.2 

LM2.LAX*2 

TA A *5-XX(2)3(Q4(-*3RLM2,3JSL2RL-Q4(-.3L2.)L) 

1 o.S*XX(3I*(Q3(t,3L2,3t.JSL.2)*RLI-Q3(.,3ILM2,.).RL)

TB - *5A*(3)-tQ2(t31i2.3IJSL*2)fRLL1Q2 (.31LM2E.) RL 

1 -.S-XX(13*(Q4(*t31LM2.31JSL2aRLI-Q4(t,31L2..I*RL) 

IC I *5SXX(I)-(03(.31LM2,31USL2)*RI-03( 31L42-ItPL) 

1 .S*XX(2).(Q2(*,31L142,3JSL2)2RLI-Q2(*.3tL2.)*RL) 

DEFINE (RL1,RRI31IHK23LM291I)(RtRRI-.3$LM-,I3 

RL - .,/01(.,3;LM2.-) 

TO . .5YY(23)(Q4(3:KM2,3tLMa..).RLI.0[(-.32LM2.-e2PL) 

1 -*.SYY(32e(Q3(3:KN23:LM2N* RL1-Q3..3:LM2.2 t)RLI 

TE *.5*YY(3) IQ2(3IKME.3lLl2.P) *RL1-02(O,3Itj42,o34RL) 


1 *-,SYY(II(Q43KM2,3L2)*IRLI-Q(.3,LM2*).RL

TF - .5*YY(1)(03(3.KM2,3L2.*J *RLI.Q3(..31LM2,*) RL) 

1 -.S.YY(2)(Q2413CKM2,3tLM2.*)*QL1.-QZS,31LM2,*).RL) 

Si . SI*8.(TATOJ 

SZ . S2..5*(T8.TE) 

$3 . 53.S*(TC.TF)

T7 . (TI.S1)*t2472*S2)*2*(T3*S3)*02 

TAS . SQRT(TW)

UTOT s 02*2.3-n*o4-n2 

UU . SQRT(UTOT)/Q 

TURMU(,.,JIJSL)O 


C 

C COMPUTE PA 

C 


1WU . 1. 

TAU. ABSITAS(.l.*)) 

RA a SOQR1(RE*Q6(*,1,t).t*..t)tTAU/WMU)/26. 


C 

C COMPUTE NORMAL DISTANCE SNORI. AND YOUM 

C 


DEFINE (SNOR,(IlKMAX.lLAA.I ,SL)2aYOUM(IlKMAXlIlJSL))

DEFINE (SNORA,(11KMAX,1:LIAXIIsSL)).(YMc1lKMAX.1,IIJSL)) 

SNOR1I) . 0. 

KM2 1 

YDUM I*.E-3 

YM .5/SQRTAOSZC1 i*1 .) nZ1 *.z,* *ZZ21C.1.3*222i8.2. 

1 *ZZ3(.-.I*2*ZL3(*.2,.)2, 

YOUS . 0.0 

SCISsABS(ZZl(*,tO)ZZl(..2iLMAXI).ZZ2(**I )-ZZ2(*,2,LMAX.1) 

1 .ZZ3it*-, )2ZZ3.2:LMAX,.)) 

SCAL - I./SQRT(SCIS) 

00 19 L.22LMAX-1 

SNOR(L) - SNOR(L-1 * SCAL 

SNORA - 0.5(SNDP(L) SNOUR(L.I)) 


19 CONTINUE 

YDU(t*2tLMAX.,s)nSNORA(*.2tLMAX*1t*I.aS(TAS)), 

1 II.EXP(PRA({.2LAX.I.*-ISNORA(*,21LMAX2,*)) 

00 21 L.2,LM 


21 1F(UUI(,L,-).LT.UMINI UTN!t,1,*)SUUtL,*) 

00 1 LA.2LEDGE 


000660
 
0006TO
 
000680
 

000700
 
000710
 
000720
 
000730
 
000740
 
000750
 
000760
 
000770
 
000780
 
000790
 
000800
 
000810
 
000820
 
000830
 
000840
 
000850
 
000860
 
000870
 
000880
 
000890
 
000900
 
000910
 
000920
 
000930
 
000940
 
000950
 
000960
 
000970
 
000980
 
000990
 
001000
 
001010
 
001020
 
001030
 
001040
 
001050
 
001060
 
001070
 
001080
 
001090
 
001100
 
001110
 
001120
 
001130
 
001140
 
001150
 
001160
 
001170
 
0011 0
 
001190
 
001200
 
001210
 
001220
 
001230
 
001240
 

001250
 
001260
 
001270
 
001280
 

2-B-2
 

http:53.S*(TC.TF
http:S.YY(2)(Q2413CKM2,3tLM2.*)*QL1.-QZS,31LM2,*).RL
http:L2)*IRLI-Q(.3,LM2*).RL
http:o.S*XX(3I*(Q3(t,3L2,3t.JSL.2)*RLI-Q3(.,3ILM2,.).RL
http:S3a.S-tTC.TF
http:YY{2)*(04(3tKOAx.2*)*RL1.Q4e*,e).RL


IF(UU(.tL'*hGTUIA(*1.)UAXC.,I~ta)UUO..L.., 
 001290
 
BITs(YDU('.L~t) .LT.YDUN{*,1,*) 
 001300
 
IFlSIT)YDU(*,I')'YOU((.Ltl) 
 001310
IFIBIT)YM(-.I,).SNQRA(tL') 
 £01320
 
IF(BIT)KM2OsL*) LI-
 001330


18 CONTINUE 

0 0013,0


001350
 
01360
C INTERPOLATE TO FIND YM,Y UUH.ANDU0 


C001370
 
BITu(I-t42(K,.,t) LT.2.OR Sc1*}.,.GT.LEDGE.1) 001380 
YM3 
YMI 
YOUMI 
Y U 

0..O~SeNOROKN2C*..,.o1) * SNOR(K42( ,-,*, 2))
O5*(SNOR (KM2(0e9t*).L) * SNOR {KM?(,,*33l
- YMI*ABS(TAS(KM12(.,-,).Ij).0I.O 5 EXP(-RAYM1) )1ol0lO 
YMI.ASSITAS{K042(t....).(joO  EXP(-RA-Y3)f) 

001390 
001400 

001420 
C2 
C3 

. YOUR - YOUtH 
- YOUR3 - YOUR 

001430 
001440 

DY2 
0Y3 

. Yr - Y31 

. YM3 . Y 
001450 
001460 

'AM - (DY3-OY3*C2.DY2OY2C3)/(DY2*0Y3(OYc.OY31 
B - (

DY
2-C3 - 0Y3'C22/OY2*OY3.(OYa * oY3))

81712(1.GE.O0 
BITi(.NO

T 
.81T.OR.NOT.eM) 

001470 
001480 
001490 
001500 

IF(81T)YmM . YM - O.5tAM/M 
IF(SIT)YOU - YOUN OS.25-AAMR?4 

001510 
001520 

81T1(YOU.LT.YOUM.OR.YNM.LT.YMI.OR. MM.oGTYM3I 
81=T51T.AND..NOT.811 
IF(SITVOUNSYDU 
IP(IT)YM.YHM 

001S30 
0015 0 
001550 
001560 

C 
C 
C 

IF(YM .GT. SNOR(K12(2-C*.,*;I K2(4,-,-) . KN2(-t,*,* " 1
IFYM .LT. 5NOR(KMa(-,*,

1 ,e) KM121,*¢,' . KNCHV,.*,) - I 

COMPUTE OUTER EDDY VISCOSITY 

001570 
001380 
001590 
001600 
001610 

SN0R( .1lEDGE.) - 0.5(SNOR(-.tLEOGE,., * SNOR(C,2ILEDGE.I,.))
F C FKK-F2?*RE oI(*,t.EcGc,.o*Q£s,1LEooE,.
T70(L) * FFC-YM*YDUH 

001620 
001630 
0016&0 

FFCWK * YOUMFSYDUMFFFC 
UOIFF * ABSIUMAX-UMIN 
IFIYOUN .9T, UOFF*YOUNF) T70 . FFCWK.YM.UOIFFUOFF/YDUM
F!A = FLSB*SNOR(-,1hLEDG5.E.)yN 
IF(FIA ,0T. 1.ES2 FIA - 1.E5 
FI S 1.0 5.SFIAt6 
TO - TO /F
TO - ASS(TIO 1 

001650 
001660 
001670 
001680 
001690 
001700 
001710 
001720 

C 001730 

C 
CONRUTE INNNER EDDY VISCOSITY 

TAU . AgS(TAS I 

001740 
001750 
001760 

C 
c 
C 

T74 - Q60Q91REeTAU-c.4-SNOR *(I.EXP(RA
1 -SNOR ))).*a 
T7! . ABS(TMI) 

LOAD VISCOSITY COEFFS. INTO ARRAY, USr INNER VALUE UNTIL 
MATCH POINT IS REACHED 

001770 
001780 
001790 
001800 
001810 
001820 

c 
TURMU(,IILDGE,.I.TIs.ISLEDGE,., 

001830 
001840 

B!T.0T1111t.IILECGE,.3.LET3401,lLEOG!.o)] 
IF(0!T)TURUISIILEOGE,-.ITMO(.,ILEDSE,.) 

001850 
001860 

C 001870 
c REARRANGE TURMUIL) SUCH THAT WHEN AVERAGED AT L AND L-1 001880 
C 
C 

THE CORRECT MIDWAY VALUE WILI. BE OBTAINED 001890 
001900 

SHP - TURMUit,1.t) 001910 
DO 60 1. . 2,L4AX 
TURNS - TURMU*,L,S)
TURU*,) - 2.0.SMP-TURMU(-,Ll.') 

001920 
001930 
001940 

60 SHP - TURNS 001930 
RETURN 001960 
ENO 001970 

2-B-3
 



DIVISION 3
 

THE THREE-DIMENSIONAL AERODYNAMIC EXPLICIT CODE
 



DIVISION 3 THE THREE-DIMENSIONAL
 

AERODYNAMIC EXPLICIT CODE
 

1.0 OVERVIEW
 

The second metric provided to Control Data analysts was the
 

Hung-MacCormack 'explicit' code which used meshes of 31x31x31
 

to model three-dimensional corner flows. This metric exhibited
 

several characteristics of interest which differ from the
 

'implicit' form of solution previously discussed (Division 2).
 

Instead of restructuring the entire code as was done for the
 

Steger-Pulliam code, those routines of greatest interest were
 

essentially dealt with independently, within the code itself.
 

The routines chosen were LX, LYI, and LYC/CHARAC because they
 

constituted the major part of the computation in the explicit
 

code, and because they demonstrate the essentially-different
 

characteristics needed for this study.
 

The LX and LYI subroutines were each vectorized first for the
 

STAR-100 because the programming techniques used are expected
 

to be common for the STAR-100 and the Control Data FMP.
 

Further, this permitted verifying answers against the scalar
 

code, and permitted analysis of the code using the STAR-100
 

performance counters.
 

The major points of interest in this section are the findings
 

regarding o short vector lengths (compared to the counterpart
 

vectors in the implicit code);
 

* 'local' vectorization instead of 'global' vectorization;
 

3-1
 



* 	data dependent branching, fundamental to the method of
 

characteristics.
 

In a later section the effects of these factors on the
 

performance of the FM will be discussed. What follows is the
 

basic programming considerations employed in vectorizing the key
 

parts of the three-dimensional aerodynamic explicit code.
 

3-2
 



2.0 OVERALL ANALYSIS
 

The explicit code is a numerical scheme for solving the
 

three-dimensional Navier-Stokes equations for a supersonic,
 

laminar flow over a compression .corner with sidewall effects
 

(ref. 4). There are three directional operators (Lx,Ly,Lz)
 

corresponding to the three coordinate directions. The Ly- and
 

Lz- directional operators are split into suboperators; each of
 

these uses a different method to solve the appropriate equations
 

on the appropriate grid. The three different methods are the
 

explicit method, the Implicit method and the method of
 

characteristics.
 

The computational procedure for each time step can be outlined
 

in this way:
 

(1) The Ly- directional operator is executed
 

(a) LYC - characteristic method on fine mesh
 

(b) LYI - implicit method on fine mesh
 

(c) LY - explicit method on coarse mesh 

(2) The Lz- directional operator is executed
 

(a) LZC - characteristic method on fine mesh
 

(b) LZI - implicit method on fine mesh
 

(c) LZ - explicit method on coarse mesh
 

(3) The Lx- directional operator is executed
 

(a) LX - explicit method on whole grid
 

(b) TURB- turbulence model
 

(c) LX - explicit method on whole grid
 

3-3
 



(4) The Lz- directional operator is again executed
 

(a) LZI - implicit method on fine mesh 

(b) LZC - characteristic method on fine mesh 

(c) LZ - explicit method on coarse mesh 

(5) The Ly- direction operator is again executed
 

(a) LYI - implicit method on fine mesh
 

(b) LYC - characteristic method on fine mesh
 

(a) LY - explicit method on coarse mesh 

To determine the relative effect of vectorization on each of
 

these components, relative timings of the different methods on
 

the 7600 for a 31 x 31 x 31 grid were collected:
 

Implicit Method 

LYI 24.53% 

LZI 24.81% 

Total 49.34% 

Explicit Method 

LX 23.58% 

LY 5.76% 

LZ 6.12% 

Total 35.46% 

Method of Characteristics
 

LYC 3.29% Excluding subroutine CHARAC
 

LZC 3.33% Excluding subroutine CHARAC
 

CHARAC 6.64%
 

Total 13.26%
 

3-4
 



Miscellaneous other operations
 

Total 1.94%
 

Overall Total 100.00%
 

2.1 Data Handling
 

The model for the FMP version of the code is to use the same
 

algorithm, but expand the problem to a 100x1Ox10O grid. The
 

basic variables associated with each grid point are RHO,, RHQU,
 

RHOV, RHOW, E, EI, U, V, W, RMUL, giving a basic storage
 
6
 

requirement of 10xlO data points.
 

6
 
In the proposed FMP the Intermediate Memory contains 32x10
 

6
 
words, which is sufficient to hold 1 program of the 10x10 size
 

while permitting the staging of the next job to Intermediate
 

Memory during current job execution.
 

6 6
 
The Main Memory has 4x10 words (option to 8x10 words), a size
 

not large enough to store the whole problem, thus forcing the
 

algorithm to incorporate some sort of "circular buffering"
 

scheme. The Intermediate Map Unit must be used to read in new
 

data to the Main Memory and write out old data to the
 

Intermediate Memory while the Vector Unit is processing the
 

"current" data.
 

In addition to the circular buffer, the algorithms must also
 

reorder (or rotate) the data, so that the vectors for the Vector
 

Unit are stored in sequential locations. One can do this in
 

several ways. First, one can do gathers and scatters from/to
 

Intermediate Memory. Second, one can also do a
 

3-5
 



"transposition" within Main Memory or Intermediate Memory. A
 

third option depends upon the groupings of the operators in each
 

time step. One can initially store the data indexed by (k,j,i),
 

then perform the 3 methods of the Ly operator vectorized on "k".
 

The data is stored back or fetched from the Intermed-iate Memory,
 

in (j,i,k) order for the Lz operator which is vectorized on "j"
 

etc. Stated differently, it is not required that the data be
 

rotated between each of the subroutines. In any case, it is
 

clear that the data handling between the Intermediate and Main
 

Memory is an integral part of the problem.
 

2.2 Speed Optimization
 

When launching into a vectorization effort on a new piece of
 

production code, the programmer/analyst is well advised to get
 

reacquainted with the basic tradeoffs inherent in the FMP
 

architecture. The basic execution rate of the Map Units and the
 

degree to which they can be made to operate concurrently with
 

thC Vector Unit is a major factor in the vectorization process.
 

In the case of the implicit and explicit codes, it has been
 

determined that the map operations (scatter, gather, transpose)
 

can be almost totally overlapped with other functional unit
 

execution. The 'second order effects' of the FMP architecture
 

then become of great concern.
 

In particular, the effectivity of the Vector Unit becomes the
 

real measure of the machine performance. The efficiency of
 

operation is tied to the amount of time the unit can be kept
 

productively busy throughout a code execution. The sole
 

contributing factor that limits the unit's full capacity from
 

being utilized is vector startup time. This concept is
 

3-6
 



U ± tJ L.IO U iii UIMl Lil UWdI C UW=tSL .LJ UI I LVJWC YC , O Jl* 

should be reviewed here. First, startup time is a function of
 

the pipeline configuration for the previous operation, the
 

function now being initiated, and the interdependency of one
 

vector operation with another. Thus a short vector operation
 

whose results must feed another vector operation requires that
 

all the data be stored in memory before the subsequent operation
 

can be started. The time delay required for data to clear the
 

pipelines and be stored back to memory, then brought back from
 

memory to refill the pipelines is, in effect, called startup.
 

Startup time is a fixed overhead assigned to a particular
 

sequence of instructions, and thus the longer the vector to be
 

processed, the less effect that startup time has on overall
 

rates of computation.
 

Tables I and II are provided to illustrate the effect of this
 

architectural characteristic. These tables represent the
 

relative -megaflop rate of the- FMP pipelines when compared to
 

operations on vectors of length 30, or when compared to
 

theoretical sequences of vector operations which have zero delay
 

between operations due to the dependency of one vector on another.
 

Table I
 

R(N,f,d) N= 30 100 500 1000 10000
 

R(30,f,d) d = 0 1.0 1.66 2.16 2.24 2.324
 

d = 5 1.0 2.04 3.16 3.395 3.638
 

d = 10 1.0 2.27 4.03 4.46 4.94
 

3-7
 



Table II
 

R(N,f,d) d= 0 5 10
 

R(N,f,O) N=30 1.0 .63 .46
 

-1-00 11-0 .77 .63
 

506 1.0 .93 .87
 

1000 1.0 .96 .93
 

From this example one can conclude that long vectors are much
 

faster. Next, it can be seen that for shorter vector lengths
 

(30-50), reducing the average dependency delay can produce the
 

same increase in speed as going to much longer vectors
 

(500-1000).
 

The reduction in dependency delay can be accomplished by two
 

techniques. The compiler can schedule a sequence of
 

interdependent vector operations far enough apart, and with
 

other independent operations interspersed, so as to obviate the
 

need for the dependency key being used. This is analogous to
 

the current scalar compilers scheduling a number of
 

interdependent scalar operations by interspersing other
 

operations between the dependent ones, to maximize the use of
 

the floating point bandwidth of the Scalar Unit. The second
 

approach is to maximize the use of long vectors, for the purpose
 

of eliminating the dependency keys. If a vector is sufficiently
 

long, its first elements will be well settled in memory long
 

before the last elements have emerged-from the pipelines. These
 

first elements can be 'fetched' from memory for the next vector
 

operation while the current one is still in progress. In this
 

instance the compiler (if it knows that the
 

3-8
 



vectors are long enough at compile time) can eliminate the
 

dependency keys, and the consequent delay.
 

To achieve long vector operations for the majority of the
 

explicit code execution requires a recoding of the explicit
 

portions such that they no longer compute successive
 

displacements (that is the next value at the current point is
 

based on the just computed new v-alue for the adjacent points),
 

but instead use a process of simultaneous displacements. The 

metric, as provided, requires the use of successive 

displacements however, and this fact is reflected in the short 

vector lengths that were used in its simulation. 

3-9
 



3.0 IMPLICIT METHOD
 

The two routines that use the implicit method are LYI and LZI;
 

t'hese routines account for approximately half the compute time
 

required on the CDC 7600. They are basically the same, except
 

that LYI operates in the Z direction. The LYI routine is
 

discussed below.
 

The LYI routine operates on "j-pencils" and takes two "half
 

steps" for each pencil. Each half step requires setting up and
 

solving seven tridiagonal systems of equations. The j-pencils
 

are solved successively by-a pair of outer DO loops on "i" and
 

"W". The J-pencils only extend over the fine mesh region, which
 

is about half of the total grid.
 

There are several approaches that may be used to vectorize the
 

LYI routine. One could run the vectors in the "j" direction.
 

This runs head on into the problem of the inherently sequential
 

nature of solving tridiagonal systems by the standard Gaussian
 

elimination scheme; each computation depends on the result of
 

the previous computation. There are several algorithms
 

available for solving tridiagonal systems on vector.machines
 

given in reference 5.
 

Their analysis indicates that the best algorithm is cyclic
 

reduction. However, the timing comparison (albeit for the
 

STAR-l0) shows no significant improvement over the standard
 

Gaussian elimination, until the vector lengths are on the order
 

of 250. Since the j-pencil will only have a length of
 

approximately 50 for a 100x1OOx10O mesh, there is little promise
 

in vectorizing on the "J" direction.
 

3-10
 



One can run the vectors in the "k" direction. In this case all
 

problems with solving the tridiagonal systems disappear. In
 

addition,.the vectors are now of length 100 instead of 50. There
 

is the problem associated with computing the j-pencils
 

simultaneously, rather than successively, as they are in the
 

original scalar code. This means that any terms involving the
 

subscript "k-i" will be using values from the previous time
 

step, rather than the newly computed values from st the (k-i)
 

j-pencil.
 

One could also run the vectors in the "il direction; however,
 

the two variables "UP" and "VP" are indexed by "il masquerading 

under the names of "1K3", "K4", and "1K5", and the computations 

depend heavily on "UP" and "VP", i.e. there is "recursion" on 

As a final alternative, one could try to vectorize the problem
 

by-treating the whole "Ik"x "i" plane as a vector. This
 

approach would run into the same problem that the "i" vector
 

approach had with the variables "UP" and "VP". In addition,
 

there would be a problem with temporary storage, since the
 

temporary vectors used in the scalar code would now have to be
 

three-dimensional matrices, each of order 1OOx10Ox5O.
 

A combination of this last alternative and the second method
 

(running the vectors in the "k" direction) was implemented (see
 

* appendix A) and run on the STAR-100 for the ten time steps.
 

3-11
 



There are differences between the scalar version and the vector
 

version, as expected. The timings per time step on a 31x31x31
 

grid are shown below.
 

7600 STAR STAR
 

Scalar -Scalar Vector
 

LYI 8.2 19.8 4.1 seconds
 

The recoding of the VLYI subroutine (as the vector version of
 

LYI is called) was kept as straightforward as possible, and
 

every attempt was made to make the statements as similar as
 

possible to the original scalar code. VLYI permits a high
 

degree of local vectorization compared to the implicit code. In
 

this instance the variables to be processed were retained in the
 

same form as in-the scalar code, and were transposed within the
 

VLYI subroutine itself, where necessary. This permitted direct
 

replacement of the LYI subroutine with the VLYI subroutine on
 

the STAR-100 to verify the correctness of the final results. To
 

accomplish this a small routine called ROTATE was created for
 

the STAR-100 version. This routine is replaced on the FMP by a
 

vector map operation which performs the rotation while gathering
 

data from Intermediate Memory for the current slab.
 

In a totally vectorized version of the explicit code these map
 

operations would be moved outside the VLYI subroutine and
 

'hidden' under the arithmetic operations of routines like TURBDA
 

(which is called before the Y operations are initiated). Local
 

optimization then consisted of further local vectorization,
 

almost on a DO loop by DO loop basis. The rotation process
 

3-12
 



arranged the data such that all arithmetic operations could
 

proceed over vectors of at least KMAX length. Each of the DO
 

loops in J were analyzed to determine if there were recursions
 

in J, and if not, the loop was vectorized for the J direction
 

also, yielding vectors of length KMAX*JMAX/2. For mesh sizes of
 

1O0x1OOx10O this would provide vectors of about 5000 elements,
 

which is considerably shorter than the 60000 elements possible
 

in the implicit code.
 

In the vectorization of the tridiagonal routine, the maximum
 

vector length can only be KMAX since the solution is recursive
 

in J. The maximum vector length is then 100 in TRIDIAG, which
 

is the same as that in BTRI in the implicit code.
 

To make the vectorization easier, routines such as GI and DIAG
 

were incorporated in-line, rather than as subroutines. Although
 

it is expected that the compiler will be able to include
 

out-of-line subroutines into in-line object code automatically,
 

the programmer's help is still desirable.
 

3-13
 



4.0 EXPLICIT METHOD
 

The three routines that use the explicit method are LX, LY and
 

LZ. These routines are basically the same except for the
 

direction of the operator, and the fact that the LY and LZ
 

routines are restricted to the coarse mesh portion of the grid.
 

The LX routine is discussed below.
 

The LX routine operates on i-pencils and takes two half steps
 

for each pencil. Each half step solves the explicit equations
 

for the LX operator. The i-pencils are solved successively by a
 

pair of outer DO loops on "k" and "j".
 

Again there are several ways in which to vectorize the LX
 

routine. 'The most straightforward way is to run the vectors in
 

the "il direction. This can be done since the equations are
 

explicit equations. There is some apparent recursion on "i" in
 

the "DO 5 I=2,IE" loop, but a careful examination of the FX
 

subroutine shows that it is, in fact, not recursive on "i". This
 

was implemented (see appendix B) and run for ten time steps on
 

the STAR-100. The timings per time step on a 31x31x31 grid are
 

shown below:
 

7600 STAR STAR
 

Scalar Scalar Vector
 

LX 8.2 16.7 3.6 seconds
 

Running the vectors in the "j" or "kk" direction will run into
 

the rate of convergence question arising from solving
 

simultaneous pencils, rather than successive pencils. The
 

equations for SIGX, TAUXY, TAUXZ, and DISX show a greater
 

dependence on the "j" index than the "k" index, which implies
 

3-14
 



i 

that it would be preferable to vectorize on "Ik"rather than "j".
 

This gives the second option of vectorizing the routine on both
 

"i' and "k". This would give a vector length of up to 10,000
 

rather than 100 and a corresponding speed increase of up to
 

approximately 80% (subject to the dependency delays and size
 

restrictions of Main Memory).
 

3-15
 



5.0 METHOD OF CHARACTERISTICS
 

There are two routines LYC and LZC that use the method of
 

characteristics.
 

The original scalar subroutine.-CHARAC i-s comput-ationally very
 

efficient. One can attribute its efficiency to the scheme used
 

to generate the mesh points. The mesh points are generated in
 

such a manner that the solution of the characteristic equations
 

involves simple additions and subtractions. The mesh generation
 

scheme involves some very tricky logic that does not readily
 

lend itself to machines with a pipeline architecture.
 

Examination of the routine LYC shows that except for the call to
 

CHARAC, the remainder of the routine is easily and directly
 

vectorized in the same local fashion as were LX and LYI.
 

Assuming that all vectorized routines improve uniformly in
 

performance from the 7600 to the FMP, it is necessary then to
 

fodus on the potential 'weak spot' in the vectorization--the
 

CHARAC routine itself. This routine, quite obviously, cannot
 

remain scalar in nature if all other routines become highly
 

vectorized, for although it takes up only 6% of the compute time
 

of the 7600, it could be the bottleneck in the FMP performance
 

on the explicit code.
 

One method of attack in vectorization is given in the routine
 

VCHARAC which is shown in appendix C. The key feature in this
 

approach is the processing of entire planes of data of length
 

IL*KL/2 by both LYC and CHARAC. The problem with this is that
 

in CHARAC each element of the plane may be handled differently
 

from any other element depending upon the data itself.
 

3-16
 



As in MUTUR (in the implicit code) use of the 'control vector'
 

is introduced; this is a bit-string of ones and zeroes which
 

controls the storage of data, depending on the presence (or
 

absence) of one-bits in the string. In the CHARAC routine the
 

control vector has as many bits in it as the plane (IL*KL/2).
 

Elements in this plane are updated depending upon whether the
 

the corresponding element of the control vector is a one or not.
 

The control vectors may be manipulated and combined using the
 

bit logical operations -- .NOT., .AND., .OR. .... etc.
 

A brief glance at the listing of CHARAC in appendix C will show
 

that, for the most part, the scalar variable names have been
 

retained from the original CHARAC but have become DYNAMIC
 

variables representing arrays (usually of IL*KL/2 size). This
 

can create some confusion on the part of analysts familiar with
 

the original version and thus some care must be used in reading
 

the listing to remember that almost all operations shown are
 

array operations and not scalar operations.
 

There are two FORTRAN constructs used here that do not appear in
 

the implicit code: IF(BITO)Y(*,*,*)=Z(*,*,*)
 

and
 

Y(* ,*)=Z(JLIST(*,*))
 

The first construct moves elements from the array Z to the array
 

Y depending upon the presence of a one-bit in the control vector
 

BITO. The second construct subscripts the array Z with an array
 

JLIST. This operates as follows:
 

The first element of JLIST--JLIST(1,1)--is used as an
 

3-17
 



integer subscript for the array Z. The element at that
 

position in Z is then moved to the first element in the
 

array Y--Y(I,I). The next element of JLIST--JLIST(2,1)--is
 

then used as a subscript of Z and the data moved to Y(2,1).
 

This cont-i-nues until all elements of JLIST and Y are
 

processed. Obviously JLIST and YLIST must be conformal,
 

but Z need not be. If a subscript in Z is out of range of
 

Z no error message is created.
 

A third construct used employs the Q8xxxx in-line call for
 

machine language instructions that is referenced but not
 

illustrated in the FORTRAN specification. In the CHARAC routine
 

the call Q8NOBITS(BITO)
 

determines if there are any one-bits in the string BITO. If
 

there are none, the condition is TRUE and a branch may be
 

triggered by that condition. This call is used to 'bail out' of
 

the DO loops when all elements in the I-K plane have become
 

inactive, to prevent unnecessary passes through the DO loops.
 

Examining one example of the vectorization technique illustrates
 

how these constructs help in 'parallelizing' CHARAC.
 

DO loop 10, lines 1730 through 2060 of VCHARAC, shows the means
 

used to process each element in the plane separately, while
 

still performing vector operations.
 

First, the starting value of the DO loop index could be
 

different for each element in the plane depending on values
 

calculated for elements of JLIST in the preceding loop. Thus
 

the DO 10 loop must be viewed as a parallel set of DO 10 loops
 

3-18
 



(as a matter or fact, a whole plane's worth of DO loops), each
 

with a potentially different starting index. The DO 10 shown is
 

then set up to start at the earliest index found in JLIST (via
 

the function Q8SMIN which returns the scalar minimum of the
 

entire vector JLIST), and the loop 10 could potentially end at
 

JL, unless ended by a 'bail out' earlier.
 

Once launched into the loop, the immediate need is to find out
 

which elements in the I-K plane to process, first of aT1, which
 

elements have indexes in JLIST that have not yet reached the
 

limit JL. This is accomplished by the statement at 1870
 

BIT4=(JLIST.LE.JL)
 

which forms a control vector at vector rates from the
 

conditional test shown. In statement 1880 any elements (bits)
 

from this control vector are eliminated if they have already
 

been 'deactivated' in previous loops. This information is
 

carried in the bit-string BIT5 (and BIT3), and the logical AND.
 

operation thus provides a BIT4 which represents all active
 

elements at this time.
 

The 'bail out' check is then made at statement 1890, to skip
 

processing entirely if all elements are inactive.
 

Statements 1900 through 1930 deal with temporary data areas
 

where there is no need to worry about controlling the data
 

storage. Likewise the updating of YJK2 temporary data need only
 

be controlled by the condition YJK2.GT.Y2. Note that the form
 

shown in lines 1940 and 1950 could be replaced by the original
 

3-19
 

http:YJK2.GT.Y2
http:BIT4=(JLIST.LE.JL


IF(YJK2.GT.Y2)YJK2=Y2
 

however, the desire was to explicitly show how the hardware
 

actually performs the operation at this point in the listing. In
 

later examples the original scalar form is preserved and the
 

programer must be aware of its vector/control vector nature.
 

Lines 1960 through 2010 then update key data arrays based on the
 

contents of the control vector. Finally at line 2030, a test is
 

made to determine if other elements should become inactive. For
 

all remaining active elements, the individual indices are then
 

updated in JLIST, and a return is made to the beginning of the
 

loop. It can be seen that elements can become 'deactivated' in
 

this loop by having their individual index reach the limit JL,
 

or by having the computed value of YJK2 for that particular
 

element become equal to the value of Y2.
 

The computations in lines 1960 through 2010 involve the use of
 

the list of indexes JLIST rather than the scalar DO variable.
 

Thus a potentially different value of Y may be used in the
 

processing for each element of the I-K plane. The operation
 

implied by this involves performing gather operations from the
 

array Y. The Map Unit can perform both gather operations for a
 

single statement such as 1980:
 

IF(BIT4)VIJK2=WT1*HYV(JLIST')+WT2*HYV(JLIST+I)
 

In this example one map and one vector operation will be
 

generated by the compiler.
 

The use of index lists and control vectors throughout the oth er
 

loops in CHARAC follows the same pattern described here. In
 

3-20
 



some cases the DO loop limits rather than the DO indexes
 

themselves are separate entities, and in the case.of LOOP 38
 

both the starting and -ending conditions are individualized for
 

every element in the I-K plane.
 

6.0 IMPLICATIONS
 

The method of vectorization shown here appeared to be the most
 

straightforward one handy. The use of control vector
 

techniques is not without its penalties, however; as more passes
 

are made through the loops, and more elements are deactivated,
 

the efficiency of this scheme degenerates quickly. NASA and
 

Control Data mathematicians firmly believe that in the domain
 

of real problem solutions, the number of iterations through
 

each loop would be from 3 to 5, as the 'waves' tend to travel
 

closely together in real physical solutions. In this instance
 

then, the unused calculations in the I-K plane would be
 

discarded, but would still take processing time. If a 1/2
 

reduction in elements is assumed for each pass until the last,
 

then the number of useful operations would be
 

Pass 1---IL*KL/2
 

Pass 2---IL*KL/4
 

Pass 3---IL*KL/8
 

Pass 4---IL*KL/16
 

Pass 5---IL*KL/32
 

while the number of actual operations.would he constant for
 

each pass at IL*KL/2 operations. In five passes 5*IL*KL/2
 

operations would have been done, but only 31*IL*KL/32
 

operations would have been used in actual results. This can
 

3-21
 



reduce the floating point rate potential of the vectorization
 

by a factor of 31/80.
 

If it turns out that the number of passes required to resolve
 

all the waves is quite Large and the number of residual active
 

elements remaining from pass to pass is quite small, then
 

another approach would be called for. In this instance-, the
 

structure of the program would remain the same, but instead of
 

performing controlled storage operations, the choice would be
 

to perform compress and merge operations using the control
 

vector to squeeze the I-K plane down to only the active
 

elements each pass.
 

In the section on performance evaluation of the metric codes
 

(see Division 1) the impact of this vectorization technique can
 

be seen more clearly.
 

3-22
 



APPENDIX A
 

VECTORIZED VLYI ROUTINE
 

*DECK VLYI2 000100 
SUEROUTINE VLYI 000110 

C 000120 
COMMON /A11/ RHO(3.a1,31) . RHOU(31.31.31) , RHOV(31,31,31) 000130 
COMMON /A12/ RHOW(31,31.31) 
COMMON /A13/ U(31,31.31) 

, 
, 

Et31,3131) 
V(31,31.31) 

. 
, 

EI31,3131 
W(3131,31) 

000140 
000150 

COMMON /A6 / RMUL(31.31,31) 000160 
COMMON /A3/ Y(31)IOYCELL(31)IJS,JEIJS2,E2JLFMJLYFYH, 000170
 
I Z(31).DZCELLC31),KSIKEI.KS2,KE2tKLFMKL,ZFZH 000180
 
COMMON /A4/ ISNK. ILE, IE IL. KI, X2, K3, K4, K5 000190
 
COMMON /AS/ GAMMA, GAMMI, GAMMPR, CV, CVI. STOKES, UO. CO, 000200
 
I PO. RHOO RL, XO 000210
 
COMMON /AT/ 0XDXOIOY.OUMDYltDZOO1.EIWALLIAOBOLOTCFLCONST 000220
 
COMMON /AS/ ISMTHX.ISMTHY, ISMTHZ. LYICNT, LYCCNT, LZCCNT, LZICNT,000230
 
V' NLYINLZIBET&.SETAXCRKNIS 000240
 
COMMON /SSC/ S8C(31,31,5) o SBCN 000250
 
COMMON /ANOL/ TANT(3a) COST(32)* TANTHTANTHByCOSTHCOSTSQSECTH 000260
 
COMMON /A2/ PDUMI3Z,5) , CP(32) 000270
 
COMMON /TRIO/ KLEN 000280 

C 000290 
DIMENSION UP(31.23.3) , VP(31,23.31 t 000300 

U31,23) . VIC31.23) . W1(31,23) 000310 
2 USQ(31,23) * VSQ(31,23) , WSQ(31,23),EI(31,23), 000320 
3 AA(31,23) BB8(31,23) , CC(31,238 000330 
4 AAE(31,23) BEBE(31,23), CCE(31,23) 000340 
5 FFU(31,'31 * FFV(3 1.23) . FFW(31.23) 000350 
DIMENSION FFUSQ(31123 .FFVSQ(31,23)FFrSv 31,23)nFFEI(3123) 000360 
DIMENSION FUSQ(31-23), FVSQO31,23), FWSQ(31.23) 000370 
DIMENSION ETA(31.23), RKAPPA(31,23). RLMROA(31.23 000380 
DIMENSION F131,23.5). P01331). PRDICT(31,31,S) 000390 
DIMENSION DYI(31.23IOZ1(31,23), DTOROY(31,23) 000400 
DIMENSION OISX(31,23), 015Y(31,23), DISZ(31.23) 000410 
DIMENSION GUPK2(31), GVPK2(31), GWPK2(31) 000420
 
DIMENSION RHOI(31,2,), RMU(31,23), RK(31.23) 000430
 
DIMENSION OYSELL(31,23) O00O440
 

C 000450
 
DATA FORTH /1.3333333333333/ 000460
 

C 000470
 
O0 2 J=I.JL 000o0
 
P(1,J) . CPIJ) 000490
 

2 CONTINUE 000500 
CALL ROTATE (RHO * IL, IL? KL) 000810 
CALL ROTATE (RHOU It.,JLi KL) 000S20 
CALL ROTATE (RHOV , IL. JL, KL) 000530
CALL ROTATE (RHOW I IL. JLv KL) 000540 
CALL ROTATE (E , I JL. KL) 000550 
CALL ROTATE (E!I IL, JL, KL) 000560 
CALL ROTATE (U I IL. JL. KL) 000570 
CALL ROTATE (V IL. JL, KL) 000580 
CALL ROTATE (W * ILt JL' KL) 000590 
CALL ROTATE (RMUL , IL, JL, KLI 000600 
TSTR - SECOND ED) 000610 
LYICNT . LYICNT * 1 0006o 
JADD - MOD(LYICNT,2) 000630
 
A3 = FORTH 000640
 
KLEN K - 1 000650
XE2 
K3 U i 000660 
K4 . 2 000670 
KS - 3 O000O0 

C 000690
 
DX2 . .S8OXl 000700 

C 000710 
C - SETUP VECT EQUIV OF UY1.OZi, AND DYCELL 000720 

3-A-1 Pq 

http:RK(31.23
http:DISZ(31.23
http:RLMROA(31.23
http:ETA(31.23
http:FWSQ(31.23
http:FFW(31.23
http:VIC31.23
http:VP(31,23.31


OZi(1.1).1. 000730
 
OZ1(2,1$KLEN)sl./(1Z3;KLENI-Z(I;KLEN)) 000740 
00 251 Ju1,JEI 000750 
0Y1(.j).1../(Y(J*1)'Y(J)) 000760 
O21I',3OZI1(",13 000770 
OYSELL(tJ OYCELL(J) 000790 

251 CONTINUE 0007qO 
C 000800 
C- ALL PRIMARY VARIABLES ARE INDEXED BY (K.J,!2 000810 
C- VECTORS ARE ON K FOR C2.CE2 (CLNKE2-1) 000820 
C - MAIN LOOP IS ON 1 000830 
C IN OROER To MARCH DOWN STREAM 000840 
C 000850 

00 1 12IE 000860
000870
 

TANTHSTANT(I 000880
 
TANTHS.t*S-iTANT(1t-12TANT(I-1)2.*TANT(I)) 000890
 
COST . COST (t) 000900
 
SECTH 3 I./COSTH 000910 
COSTSQ . COSTH*COSTH 000920 
TANTM - 1.0 . TANTH*TANTH 000930 

C 000940
 
C.. .... CALL PRESTY(IK.1,JS2,0) 000950
 
C 000960
-


PRDICTe,IIJS2a,) - RHO ('t1JS2.I) 000970 
PROICT(,1:J52,2) - RHOUt*,1iJS2.1) 000980 
PROICT(-t,1JS2,3) - RHOV('.1152.I) 000990 
PROICT(*,IS2,4) 3 RHOW(',IJS21,I) 001000 
PROICT(*.1I.S2.5) - E t'.1,$S2.1) 001010 
P('-,JS2) * OAMM1lRHO(,I$S4S2,I )EI((,ltJS2,I) 001020 
P(.tl).P('.2) 001030
 

C 001040
 
C O010SO
 
C- BUFFERS FOR UP * VP K3.I.1 4.! K5.1.1 001060 
C 001070 

K6353 001080 
K13K4 001090 
K4AKS 001100 
K5-K6 001110 

001120
 
IF(I.NE.2) 60 TO 4 001130
 
UP('-,IJS2*K3)*U(',1IJS2,1)TANT(l)tVli,11JS2,1) 001140 
VP('-.1ISZ.K33 V(,II4S2.1)-TANT()'U('.IIJ821 001150 
UP(*.11JS2.fl41*U(*.1 :4S2,Z3.TANT(2'V(',IsJ52,2; 001160 
VP(*,IIJS2.K4).V(4,IIJS2,2)-TANT(2)*U(b.IIJS22) 001170 

4 CONTINUE 001180 
UP(t,124S2,K5).U(1IIJS2,1-1*)TANT(I)-1)V(,IlJS2,I.L) 001190 
VP (IIIJS2KS).U( I1JS2,I'1)-TANT(I.1)*U(',1IJS2.1*1) 001200 

C 001210 
C PASS TWICE FOR TIME-MEAN OF R.MS. 001220 
C 001230 

00 70 N1.2 001240 
C 001250 
C SET UP IMPLICIT VBLS 001260 
C UIVI.WIEu IUSO.VSO.NSQ 001270 
C 001280 

RHO1(-,JSItJS2)1,I/RHO(tJS1:J53,! 001290
"1 
 001300


U I t-JS I f-S2) I RMOU(-,J5S tS.) TANTH-I 001310 

1 RHOVI*.J1S4IJS2,1))RHOI(',JS1JS2I 001320 
001330 

V!(t.JSIIJS2)(RHOV(*JSIJS2,I)-TANTH 001340 
1 RHOUt*,,JSIIJS2.I)I]RHOI(t-,SIJS2) 001350 

3-A-2
 



WIl(*.JSIIJS2I.RKOW(*,JSI:4S2.I).RHOI (,JSltJS2) 


USQ(O,.JSIJS2)sU!*,,JS1IJS2)*UI(-.JSIJS2) 


VS0(*,tJSltJS2).VIt.,J~IjS~JS2V!(..JS18US2) 


WSQ(4,JSIIJSZ).WV(,JS1IJS2) wt11,JSItJ2) 


EI (*.,J10JS2)Et-tS1U4S2,I})RHOIf.4SIJS2)

1 ..5.u(uSQ(,.JSI,452)VS Q(',431,JS2))* 

2 COSTSQ * WSO('.JS1IJS2)) 


a 	 CONTINUE 

NMI.N.1 

81./N 

UI('.I).UI(.t2) 

wI(*.I)WttC,2) 

Vl(*,1)a.VI(o,2) 


USQCt.yL.USQ(C.2) 

VSQ(*,1)sVSQ(*,23 

WSQ(*,l).WSQI*.2 )

El! (*.l).E!I C.2l 


IFCI.LT.IE)0O TO 7 


IFCIAOBWL.EQ.0) EIi(t 1}.2.QIVAL-EII(*.2) 

'U! t,1.-U!(, 23 

W!(,I)s.-WI't.21 


7 	 CONTINUE 

Al t FORTH 

A
62-1.0 


C 

C........... CALL G1(I.4,KJJ) 

C 


dJal 

J2-JE1 

J1PJIMJADD 

J2PaJ2tJAOO 

K(m1O 

KaZMKEZ.1 

KXP-2 

K2P.KCE1 

RMUt*,llJE1) a RMUL(*nJlPIJ2PL) 

RK(.IIJE1) GAMMACRMU(t.,UJE1) 

RLMBOA(*.lbJElI . $TOKES-AMU(-,12JE1) 

F(*.411Ja,2) . R$U( t1IJ2)a(VP(l,41PtJ2PK2)-

1 VPcoJ1PtJ2PK3) -TANTH.(UP(tJIPIJ2PKS)-
2- UP(I,JlIPJ2P.K3)))tOX2 t 

SF(-,JIIJ2.3) a .RLMSDA(.,J1:2)-SECTSO OX 2  

1 t(Ut.,4PJ2PI.)-U( .JUP:J2P.I-1))]
 I))
2 *(W(KlPIzPtJIPtJdap,)-W(sKMIK2MJPtJ2P 
3 OZ1(-,JIJ2)) 
4 ,2.*RMUtJ1J2)TANTN(CVP(-,JIPIJ2P.KS) 
5 *VP(tJ1PIJ2PK3))}OX2 

c 
C**NOTE - THE INOEX ON THE DELTA W TERM 1S OUT OF ARRAY BOUNOS 

C IN THE ABOVE EXPRESSION 
C 

F(*,d1IJ2,A) . -RMU(t.U1IJ2)fl((V(KIPIK2PIJPIJ2P.I) 

001360
 
001370
 
001380
 

001390
 
001400
 
001410
 
001420
 
001430
 
001440
 
001450
 
001460
 
001470
 
001480
 
001490
 
001500
 
001510
 
001520
 
001530
 
001540
 
001550
 
001560
 
001570
 
001580
 
001590
 
001600
 
001610
 
001620
 
001630
 
001640
 
001650
 
001660
 
001670
 
001680
 
001690
 
001700
 

001710
 
001720
 
001730
 
001740
 
001750
 
001760
 
001770
 
001780
 
001790
 
001800
 
001810
 
001820
 
001830
 
001840
 
001850
 
001860
 
001870
 
001880
 
001890
 
001900
 
001910
 
001920
 
001930
 
001940
 
001950
 
001960
 
001970
 
001980
 

3-A-3
 

http:2.*RMUtJ1J2)TANTN(CVP(-,JIPIJ2P.KS
http:W!(,I)s.-WI't.21
http:UI('.I).UI(.t2


I -V (K1M:K2$,J1PJ2Pp1)-TANTHtU(KIPIx2P,41PI 2P.1) 001990 
2 .U(K1MIK2M.JlPIJ2P,I)))*OZ(*,JlSJ2)) 002000 
3 .(W(t.JIPtU2P.1.1JW(.JIPtJ2PI1))3OX2TANTHB) 002010 

C 002020 
CflNOTE - THE INDEX ON DELTA V AND DELTA U IS OUT OF BOUNDS 002030 
C 002040 

Ft*,JlJ2.5I - TANTH*RK(.,J13J2)*(EI(*,JIPt42P.I1) 002050

2


I EIC-.J1PIJ2P.I.1)D.DX 0020A0 
FUSQ(-*JltJ2) - (UP(tJ1PIJ2PK4).UP(tJ142t.K4))F(J1I42,2) 002070 
FVSQ(*,41142) S (VPC.,41P:J2PK4).VP(eJlJ2.K fl.F(,JIJ2.3) 002080 

t
 
FWSQ(*,JI3J2) {w(.,JjPJ2Pfl..deJ1:u2,I33 F(-,J1J2,4) 002090
 
ETA(.,JIIJ2) . TANTI4RMU(-,J1J2)-DYI(,JIIJ2) 002100
 
RKAPPAt(.J.4J2) S TANTMRK(-.JIJ2)tDYl(*,JIJ2) 002110 

C*...* ENO OF Gt SUeR. 002120 
C 002130
 
C "002140
 
C" NEED TO MODIFY OUTPUT OF 01 FOR THE J-1 CASE 002150
 
C 002160
 

FVSQ(,l) - 0.0 002170 
41 . iSt 002180 
J2 * JE 002190 
JIM . 11-1 002200 
J2M . J2.1 002210 
J1P . 41.1 002220 
J2P . J2-1 002230 
DISX{.Jt(lJ2)- *.5(CUP(*,JlPtJ2P.K4)-UP*,JIJ2.K43))3F(*.JliJ2,2)002240 
1 *(UP(e.J1:J2d(43-UP(.tJHnJ2,?c))eFc*,J1MtJ2M.2)) 002250 

C 	 002260
 
0ISy(*,J1,J2). .S((VPt-.JPIU2PK4)-VP(oJ1:42.K4))F(t.J:J2.3) 002270
 
1 *(VPC*,J1:J2.K4).VP(,J1IIJ2M.fl4))}F(tJ1Mtj2M.3)) 


C 

OMSZ.,41142)s-.S*((W(*,4IPI2P,1).W(*O1IJ2tI) )SF(ttJ1JJ2*4) 

1 (W(.J.i1:J2,)-W(,JIMIJ2N,))eF(eJIMIJ2M.4)) 


C 

DTORDY(*rJI32)(I.OSETA)0OT/(OYSELL(.,1lIJ2tRMO(,JtJ2.I)3 


C 

C .... CALL DIAGON 

C 

CRKNIS . I./NLYZ 
8B(.,Jl:.2).-OTDROYt*,J1tJ2)ETA(t..JltJ2ltCRKNIS 
CC(.,JI3J2)-OTDROY(-,JIJZ)ETA(-,U1PtUZP3CRKNIS 

AA(*,41342)}fB{*Ve J14U2)-CC(*.41142)3 -002400
 

C 

aeE(.,J1.42)s.OTOROYCOJ,4,2)*RKAPPA(eOJI12)*CRKNIS 

CCEtIj14j2).-OTDROY(CJlI42)*RKAPPA(-,JIPTJ2P)-CRKNIS 

AAEC-.J.412)S-(SBE(.,J41 2)*CCE(,,J1J2)) 


C 

PFU(*,41142)SU UI,JtJ2)DTDRDY(*,4t,42E* 

1 tF(.,J1:J2.23.r(4,,J1M;J2M.2)) 


C 

FFV(*.III2)V(-.jllj2)-TDRDY(.,JlJ2). 

1 OF(JI1,2.3)-F(.J1M;42M.3)) 


C 

FFW(..-J4132).WUttJIIJ2).OTOROY(*,J1IJ2).


1 (FC-t.JJ2.4)-F(*tJIMJ2M4)) 
C 


FFUSQ(.IIAJ2)USQ(OJIIJ2I-OTDROY*,4II2) 

1 	 (FUSQ(4.JIIJ2)FUSQ(ftlJIMhJI4)2,*SX(*,JIIJ2)) 

C 

FFVSQ(..J1 342)aVSQ{.J1 342)-OTDROY(-.II12)* 

1 IFVSQ(eJIIJ2)-FVS5t01JdMJ2M).2..O!SY(*,JIIJ2)) 
C 

FFWSQ(C*Jlt2)=WSQ(#,J1342)-DTOROY(SJlJ2l* 


002280
 
002290
 
002300
 
002310
 
002320
 
092330
 
002340
 
002350
 
002360
 
002370
 
002380
 
002390
 

da02410
 
002420
 
002430
 
002440
 
002450
 
002460
 
002470
 
002480
 
002490
 
002500
 
002510
 
002520
 
009530
 
002540
 
002550
 
002560
 
002570
 
002580
 
002590
 
002600
 
002610
 

3-A-4
 

http:342)aVSQ{.J1
http:UP(tJ1PIJ2PK4).UP(tJ142t.K4
http:TANTH*RK(.,J13J2)*(EI(*,JIPt42P.I1
http:Ft*,JlJ2.5I


002620
1 (FWSQfIJIIJ2).FWSQ(*,J1MtJ2M)*2.O°ISZ('JlIJ2)) 

002630
 

FFEI(-.,JIJZ)EI(.wjllj2)OTOROY(-.41hJ2) 

c 
 002640
 

O
 002650
 
2 (OtSX(,U114d2)3.ISY{t,J1J23)OISZCJlJ2)) 

1 (FtJ1iJ2,S)F(-.J1NI2tM.S)-C STSQ-, 


002660
 
002670
 

CS-NOTE** LAST PART OF OIAGON IS SKIPPED 002680
 
C 


C 


002690
 
C 
 002700
 
C...******e*.. ENO OF DIAGON 
 002710
 

002720
C 

10 CONTINUE 
 002730
 

C 
 002740
 
C MODIFY FOR usuEl 
 002750
 

002760
C 

002770
 
002780
 

FFUc.,J)FFU(..J).CC(...JUI(t.441) 


J-JEl 

002790
 
FFV(.,J).FFV(.,J).CCt*.J)*VI(tJ.I)*A3 
 002800
 
FpW(otJ) FFW(*,J) -CCC*,.ltW ('.Jt) 002810
 

002820
 
-002830
 

PFWSQ(*.J)sFFWSQ(.I.)-CCI'.J).WS(t.J.13

FFUSQ(OIJ)SFFUSQ(*J)-CC(,42)*USQ(-,JU1) 


00280
 
002850
FFEI(tJ)sFFEI(*,J)-CCE(,fJ)*EII(-,JeI) 

002860
 

1 VSQ(*,.J.1) 

FFVSQ(eJSFFVSQ(.)4). FORTH -CC(-tJ)-


002870
 
002880
 
002890
 

CCe(-, )tO.O 

CC(*,J)tO.O 


002900
 
IF(NLYI.EQ.1) GO TU 11 
 002910
 

002920
C 

C SPECIAL BORY CONOITION 
 002930
 

002940
C 

002950
 
002960
11 CONTINUE 

002970
AlI1.0 
002990
 
002990
 

A20.0 

IF(I.LT.ILE) AI-I.O 


003000
C 

003010
C 


CALL VTRI2(UIAA.BRCCFFUA1,A2O1.0,JS,,E13 
 003020
 

CALL VTRI2CWtAA.B8,CC.FFWA1,A2,1.09JSI.JE1) 
 003030
 
CALL VTRIE(VI.AA, H CC,FFV.I O.A2,A3.JSX.JE1)' 003040
 

003050
J.JS1l 

Ui(tJ)..U!(,U~1) 003060
 
VI (t.J)sVI*.,J*1) 003070
 

003080
WtI(*,Ji.W!(*,J.1) 

003090
IF(I.GE.ILE) GO TO 12 

003100
Wi(*.)sWII*.Jol) 

003110
 
003120
 

u t..J)tUlt..J'Iu 

12 CONTINUE 


003130
C 

C OLD DO 13 LOOP 
 003140
 

0031s0
C 

003160
31 - iS1 


J2 - JE1 
 003170
 
003180
J1M - J-1 


.2M = J2-1 
 003190
 
JIP. J1.1 
 003200 
J2P * J2.1 003210
 
DISX(*,JllJ2)=.SU{{UII.,JWJ2Pz .IU J l *2 003220
 

2 ) , I I 2 
 003230
1 CC(,JIIJ2).(UI,JIIJ U( J J2))"
 
2 *68(..JIlSJ2) 
 003240
 

3-A-5
 

http:VTRIE(VI.AA
http:PFWSQ(*.J)sFFWSQ(.I.)-CCI'.J).WS(t.J.13


C. 

0ZSY(*,a1:J2)s".5*({VZc..,J1P:42P3'V[(sjjlj ))..
2 2 

1 	 *CCft*J,4i2).IVI(*tJlJ2)-V(CtJ11tJ2M))*2

2 858(,.J1lJ2)NA3 


C 

OISZ(*,41J2).-.5*((WI{tJ1PIJ2P)-WIl(,JltJ2))*2

1 *CC(..JllJ2)-(W(-*,Jl123.WX(.,J1MtJ2M)).
 
2 *B(*.4lJ2)) 

2 


C 

FFUSQ1I J2).FrUSQitJ1102).2.*OISXA(.4I IJ2) 

#FVSQ(',J1I42).FFVSQ(*,J:IJ2)2.'OISY(*.J1:42) 

FFWSQ(.,Jl4J2)SFFVSQ(.,J J2).2.*OISZ(coIIJ2)


C 

FFEIC*,JlSJZ)VFFEI(.tJlIJ2).(CDISX(,4I1Ja). 

1 	 OISY(d,4J112))'COSTSGOOISZLI:J1J2) 


13 	 CONTINUE 

A1°1.0 

A2.O'.O 

CALL VTRI2(USQ.AA.8BCCtFFUSOAIA2,1.,JSIJE1) 

CALL VTRI2IWSOAA.88,CCFFWSQAI.A21.i.JSJE) 

CALL VTRI2 (VSQ.AA.BBCC.FFVSQ,Al1A2.A3.JdslJE )

IF{IAOSWL .EO. 0 *AND. I .GE. ILE) A1I.0 

IF(IAO8L .EQ. 0 .AND. I GE. ILE) A222.*EIWALL 

CALL VTR12 CEII.AAE.BSECCE.FFEI.A1.A2.1..JSI.JE) 


C 

C 

C OLD 00 14 LOOP 

C 


41 . 451 

J2 - dEl 

IF(N .EQ. 2) GO TO 141 


C 

C N.l CASE 

C 


PROICT(*,41 J2,Z)a{RHO(.,41142,I).(UI (*,dI:3 
1 TANTHVlt-,J1:42))*COSTSOSETARHOU(.-JI52.1))RBETAI 

PROXCTe,J1I2,3).(RNOfIiLIJ2,I).(VI (*.al1,2) 

1 *TANTK-UltJIIJ2))COSTSO.BETARHOV(-,JIIJ2,)) E7A1 

PROICT(..JII2,4)a(RHO(.,JII2,I).wI(*.JI J2)

1 *BETA*RHOW(*,J1,lJ2W
I EBTA1 

PROICT(e,41:.J2,5)s(P$0c. J1;J2.I).cEI (.,4j2). 
1 .5.t(USQ( I JI121VSo(.,J I W2,)COSTSoG
2 VSQ(*,J4142)).OETA.EC.,JI1:JuI)),ETA 
0 TO 142 

141 CONTINUE 
C 
C N-2 CASE 
C 

PRDICT(OIIU2,23)(CPROICTI(*,41Jz,2) 
1 RHO(,JI4J2.I)(U(,4IJ42)-TANTH-Vu.,u1II) 
2 *COSTSQ)..5 .ETA.AHOU(*,UI:J2.1))-OETA1 
PROICT(,tJIISJ23).{(PROICT(*,.IIJ2.3). 

1 RHO(* .IJ4.ZI)*(VI(..4IIJ).TANTHNU(,JIIJ2)) 

2 *COSTSQ)'.5-EETA-RHOV*,.JI:2,I))SETA1

PROICT(.,-IIJ32.4)((PROICT(.,d1Ja.4). 

1 RHO(t41142,VI(,J1:42)l).5 

2 *BEVA*RHOW(*,JI12.I)).BETAI 

PROIC7CT,41:.Ja.5).( IPRDZCT(',41 .51. 

1 RNO(,412I).(EI~ltJ ).,S.((USQ(/,Jld2)

2 *VSQ(t..-JI42))COSTSQgVsg.,d1:42))).5

3 .8ETA*EISt11)2,tl).8ETAl 

142 CONTINUE 
C 


003250
 
003260
 
003270
 
003280
 
003290
 
003300
 
003310
 
003320
 
003330
 
003340
 
003350
 
003360
 
003370
 
003380
 
003390
 
003400
 
003410
 
003420
 
003430
 
003440
 
003450
 
003460
 
003470
 
003480
 
003490
 
003500
 
003510
 
003520
 
003530
 
003540
 
003550
 
003560
 
003570
 
003580
 
003590
 
003600
 
003610
 
003620
 
003630
 
003640
 
003650
 
003660
 
003670
 
003680
 
003690
 
003700
 
003710
 
003720
 
003730
 
003740
 
003750
 
003760
 
003770
 
003780
 
003790
 
003800
 
003810
 
003820
 
003830
 
003840
 
0038s0
 
003860
 
003870
 

3-A-6
 

http:PROICT(..JII2,4)a(RHO(.,JII2,I).wI
http:J2).FrUSQitJ1102).2.*OISXA(.4I


003880
 
C 003890
 

KZ - JEl 003900
 
14 CONTINUE 003910
 
C 003920
 
C SPECIAL B.C. AGAIN 003930
 

C DEFINE HE 


C 003940
 
J.JE1 003950
 
GUPK2(*)s..RMU(-,J}t(UI(.,J.1). 003960
 
1 UI(*.}J}OYI(,J).F(.K2,2))CRKNIS 003970
 

003980
 
GWPK2(*)=.(RMU(*,J)*(WI (tr*1). 003990
 
1 WI(-,J))OYI(,J).F(OKZ.4))CRKNI5 004000
 

004010
 
GVPK2It-.-(A3*RMU(*,J3-(VI(.,J.I)- 004020
 
1 VI(*.JJ)I.YI(.gJ-F-n ,KZ.3}]*CRKNIS 004030
 

004040
 
SBC(I-,.2)-SOC(*,I.2l tGUPK2{.) 004050
 
1 -TANTHIGVPK2(*).COSTSQ 004060
 

004070
 
-SBC({ ,.3)SBC(-,I,3)*(GVPK20-) 004080
 
1 *TANTHGUPK2(-))3COSTSQ 004090
 

004100
 
SBC~t.I,4JsSBC(ttl4.GWPK2(*) 004110
 

004120
 
SBC(-.I.5I=SBC(-.1,5} {.AHU(-.J)- 004130 
1 (USQ(t.J4-1.USU'(,J). FORTH * 004140 
2 (S(UI-SCJ)1(.)004150 
3 *FUSG(*,K2)-FVSQ(I.K2)}}COSTSO 004160

4 RI4U(,.Jlt(SQI*tJ*13.WSQ(..fl)e0Y1(,.JI 004170
 

5 FWSQ(t-,K2.RK(,J)(ElIIl,J-1) 004180
 
6 -El (t'J))-OYl(-,J}F(',K2.S))-CRKNIS 004190
 

004200
 
CC QO 004210
sr O0 BlO
 
C MODIFY JAD O004220
 

C 004230
 
JADODMO0 (JAOO.f,23 004240
 

C 004250
 
C......... CALL PRSETY (I.K,JSIJEI.2) 004260
 
C 004270
 

RHOII*,JSItJE1)n1./PROCTCtJSIJE .I) 004280
 
004290
 

U{-,JSlbJEl.I).PROICT(,JSI.JE1,2)RHOIC(.,JSIJEI) 004300
 
004310
 

VC-,4SIIt4E1.IlPROICTca.JSliJEI.3)-RHOI(a.JS12JEII 004320
 
004330
 

W(*,JS1JEII)PROICT( ,JSIIJE1,4)-RNOI(*,JSIIJEI) 004340
 
004350
 

El (-,JSlEl1,I)PROICT(,JSItJEIS)8RHOI(,JSItJEI) 004360
 
I -.StU(*.JSlsJE1.I).*2..JSIlJET *#2 004370
 
2 *W(tJSIJE1lt.)}2) 004380
 

004390
 
P(.,JSI;.JEI)GAMMl*PROICT(*,JSIIJEll)*EI(-,JSIIJE1lIJ 004400
 
IF(JSI.LE.2) P(*-.I=P(.,2) 004410
 

C 004420
 
C. SCY (l(I.CALLtJ51.JE) 004430 
C 004440 

U(..I.I).U(*.2,I) 0044 0 
W(*, * 1sW (2.ll004460 

VC'.1.11 ..VC,2,I) 004470
 
El£t~.I.!) 'EI-,2,I) 004480
 
IF(I.LT.ILE) GO To 253 004490
 
W(*, .) .-W(*,2, 1) 004600
 

3-A-7
 

http:VC'.1.11
http:SBC(I-,.2)-SOC(*,I.2l


U{*1.12 s-U(t,2.12 


IF(IADBWL.EQO) EI(uII)2'EI*TLL-EI(-,2.I) 

253 	 CONTINUE 


IF{X.NE.IE) GO TO 255 

U {.tJSISJEIZL)U (L,JSIJEI.1IE) 

V (*.JSISJE1,IL)SV (t,JSILJEI.IE) 

w (CJSIIJEIIL)-W (*,JS1IJEI,IE) 

El te,JSIIJE1IIL) aE!(.,JSI;JEI.IE) 


255 CONTINUE 

C 

C SET THE B.C. FOR ENDS OF K-PENCILS 

C .. SCALAR OPERATIONS ... 

C 


00 256 J-JSlJEI 
U(1,JI).U(2,4,I) 

V(IJI)=V(2,J.I) 

W4C1.J.1).W(2.4,I) 

E:(I.J,!)-EI(2, .)) 

U (KLJI)U((E2,.J,) 

V(KLoJ, )V(KEZJI) 

W(KL.JdI)SW(KE2,J.1) 

EI(K,J.I)4I(KE2.J.)

IF CI.LT.ILE) GO TO 256 

UC1,.JI)a-UIZJI) 

V(I.JI).-V2.JI) 

IF(IADBWL.EQ.0) EI;I.J,1).2.EIWALL-EI(2.J.l) 


256 CONTINUE 

C .... ..... END OF aCY 

C 

C 

C NOW UPDATE UPVP FOR N.2 PASS 

C 


UP(.~l.JS2,X4)aUt*.IIJS2,t).TANT(I3)V.(,1,JS2,I) 


VP(*IIJSN.K4)aV(*.13US2.1)-TANT(i)U(*.i :Js2.) 

IF (I.NE.IE) 60 TO 70 

UP (*.22JEIKS)SU(.2h21 .1.1) 4TANT (I.I3.v (*,2E1 .1.1) 


VPI*.21JE1.KS) tV(*,23.JE1, ?41)1ANT (I.1)'U(t.21JE1*1) 


C 

C - END OF 00 70 NZI.2 LOOP 

C 

70 CONTINUE 

C 

C....*.e..***. CALL PNSETY(I.K. JSIJE1,1) 

C 


RHO (*.JSI2EI1I).PROICT(t,JSIIJE,1.1 


RHOU(-,JS1$4EI1,).PRDICT(nJS1ltjE.) 


RHOV(-,JS1I3E,I)aPROICT(4,JSIJE1,3) 


RHOW(t.JSIIJEII)PRROICT(,JSIIJI4) 


E (-,JS1IJE1,13.PRoICT',,JSIIJE15) 


C 
C END OF 00 1 I'2.1E LOOP 
C 
I CONTINUE 
C 

004510
 
004520
 
004530
 
00A540
 
004550
 
004560
 
0045?
 
004580
 
004590
 
004600
 
004610
 
004620
 
004630
 
004640
 
0046S0
 
004660
 
004670
 
004680
 
004690
 
004700
 
004710
 
004720
 
004730
 
004740 
004750
 
004760
 
004770
 
004780
 
004790
 
004800
 
004610
 
004820
 
004830
 
004840
 
004850
 
004860
 
004870
 
004880
 

004890
 
004900
 
004910
 
004920
 
004930
 
004940
 
004950
 
004960
 
004910
 
004980
 
004990
 
005000
 
005010
 
00S 20
 
005030
 
005040
 
005050
 
005060
 
005070
 
005080
 
005090
 
005100
 
005110
 
005120
 
005130
 

3-A-8
 

http:VPI*.21JE1.KS
http:V(I.JI).-V2.JI
http:aE!(.,JSI;JEI.IE
http:t,JSILJEI.IE
http:IF{X.NE.IE
http:s-U(t,2.12


C..*.t.-.t**CALL OUTER (JSI.EI.KS1.KEZ) 005140
 
C 
 005150 
C - DOWNSTREAM B.C. AT I'lL 005160' 

C 005170 

RHO (KSIIKElJSIIJE1.ILI . RHO (KSIIKE2.USIIJEIIE) 005180 
RHOUlKSISKEl.JS1 JEIIL) . RHOU(CXSIIKE2JSItJEIIE) 005190 
RHOV(KSIIKE ,JS|IIUElIL) . RHOV(KS1IKE2.JSIJE1, E) 005200 
RHOCKS1KE..JSIJEI. .L). RHOW(KSIIKE2JS1.JE1,!E) 005210 
E (XSIKEIJS1IJE1.IL) . E (KSIIKE2,JSIIJE1,IE) 005220 

005230
 
C- 005240
 
C - SKIP B.C. FOR J4.L 005250
 
C 
 005260
 
C - EOGE B.C. AT K.KL 005270
 
C 
 005280 
C ** SCALAR * 005290
 
C 
 005300
 

00 259 J.,SI.JE1 005310
 
00 259 I'2.IE 005320
 
RHO CL.J4Il - RHO KE2J.I) 005330 
RHOU(KLrJ.II - RHOU(KEZ,U.I) 005340 
RHOV(KL.,JIl . RHOV(KE2.JI) 005350 
RHOW(KLoJ!) - RHOWtKE2,,J,) 005360 
E (KL,.J*13 - E (KE2,jl.) 005370 

259 CONTINUE 005380 
005390 

TONE a SECONO(O) 005400 
TIME . TONE - TSTR 005410 
WRITE (6.900) TIME 005420 

900 FORMAT(1HO5X,6HTIE *,FIO.6.3X,4HSEC.) 005430
 
005440
 

00 240 J.1.JL 
 005450
 
005460
 

240 CONTINUE 

CP0J) - Pil.4 


005470 
CALL UNROT (RHO . IL. JL, KL) 005480 
CALL UNROT (RHOU , IL, JL. KL) 005490 
CALL UNROT IRHOV . IL, JL. KL) 005500 
CALL UNROT (RHOW IL JL KL) 005510 
CALL UNROT (E , IL, JL, KL) 005520 
CALL UNROT (El , IL, JL. KL) 005530 
CALL UNROT (U , IL. JL. KL) 005540 
CALL UNROT (V . IL, UL, KL) 005550 

CALL UNROT CW , IL. UL. KL) 005560 
CALL UNROT (RMUL IL.JL. KL) 005570 

005580
RETURN 

005590
END 

3-A-9
 

http:RHOV(KE2.JI
http:RHOU(KLrJ.II
http:XSIKEIJS1IJE1.IL


APPENDIX B
 

VECTORIZED VLX ROUTINE
 

SUBROUTINE VLX 000100
 
C 000110
 
C LX OPERATOR 000120
 
C 000130
 

COMMON/A11/ RHO(31,31.31),RHOUC31t31,31,.RHOV{31,31.31) 000140
 
COMNON/A12/ RHOe(31.31.31).E(31,31,31)hE1(31,31.31) 000150
 
COMMON/A13/ UC31,31.31),V(31.31.31).W(31.31.31) 000160
 
COMMON/A2/ PROICT(32.5itP(32) 000170
 
COMMON/A3/ Y(31),OYCELL(31),USlrJEIS2JEZJLEMJLYFYN 000180
 
1 Z(31),OZCELLC31),KSI,KEItS2.KE2.KLEH.KLZFZH 000190
 
COHMON/A4/ ISHK.ILE.IE.ILKI.K2K3,K4.KS 000200
 
COMMON/AS/ GAMMAGAMM.GAMMPR.CVCVI.STOKES.UO.CO.PORHOORLXO 000210
 
COMMON /A6/ RUL31,31,31) 000220
 
COMMON/A71 OXOX1,OYOYltOZ, OZ1.EIWALLIAOSWL ,DT.CELCONST 000230
 
COMMON /AS/ ISNTHXISMTHY. ISHTHZ, 000240
 
1 LYICNT. LYCCNT, LZCCNT, LZICNT. 000250
 
2 NLYI. NLZI, BETA. BETAI, CRKN!S 000260
 
COMMON /ANGL/ TANT(321, COST(322, TANTH TANTHO. COSTN. COSTS , 000270
 
1 SECTH 000280
 
DINENSION UII(311 000290
 
1 RMU(31).RK(3I)RLMSOA(31) 000300
 
2 ,OYX(31),UYX31),VYX(31),SIGX(31) 000310
 
3 ,TAUXY(3I),TAUAZ(31),OISX(31).F{31.S1 000320
 
4 .COEF{31),CII(31),RHOI(31),TMP(31) 000330
 
OIMENSION TMPI(31),TMP2(31) 000340
 
DATA NNVLX/O/ 000350
 

000360
 
.000370
 

TSTRTSSECONO(O) 000380
 
NNVLX.NNVLXtI 000390
 

000400
 
DTOX.OT-OXI 000410
 
00 1 K-KSIKE2 000420
 
00 R JJSI.JE2 000430
 
K - IL 000440
 
PROICT(I.IN).RHO (I1..KIM) 000450
 
PROICT(I,2f)NRRHOU4I,J.c1;) 000460
 
PROICT(I,3)M)=R$OV(IJKI;M) 000470
 
PROICT(I.41M).RHOW(I.4.K;MI 000480
 
PROICT(1.5;MI-E (1.J,KIM) 000490
 
P(1;MISGAMMI*RNO (I1J.KM)IEI(IUKM) 000500
 
IF(NNVLX.NE.1)GO TO 400 000510
 
IF(K.NE.SIGO TO 400 000520
 
IFtJ.NE.51O TO 400 000530
 
WR!TE(86800)(K6.K6S1.)5 000540
 
WRITE(6,801)(I.,JK,{PROICT(IK6).K6-1,5),IsIIL) 000550
 

400 CONTINUE 000560
 
00 4 N1.2 000570
 
IADODN-I ooosao
 
NML.N1 000590
 
8c1./N 000600
 

C 000610
 
e


C-0 *t.. EQUIVALENT (00 S !II.IE LOOP) 000620 
C NOTE F(K2..) - F(CI-) 000630 
C F(K1,-) - Ftd,.) 000640 

C COMPUTE P(I) FOR s1lIE 000660 
C PROICT(IIe) FOR 1.2,IE 000670 

C 3000690
 
C ,.000700
 
-

C COMPUTE UZ! 000710
 
C 000720
 

3-B-I
 

http:PROICT(I,2f)NRRHOU4I,J.c1
http:TAUXY(3I),TAUAZ(31),OISX(31).F{31.S1
http:ISHK.ILE.IE.ILKI.K2K3,K4.KS
http:UC31,31.31),V(31.31.31).W(31.31.31
http:RHOe(31.31.31).E(31,31,31)hE1(31,31.31
http:RHO(31,31.31),RHOUC31t31,31,.RHOV{31,31.31


000730
 
000740
 

14.IE 	 000750 
000760
 
000770
TMP(lI.(3.*U(2.43K11)oU(L,Ks|)e 000780 

1 (3.*U(1.JK$IM)-U(2,JK3)| 000790 
000800
 

C 	 000810 

C- SCALAR LOOP INSTEAD OF 2 Os"S 	 000820
C 000830 

00 5 I-2,IE 000840 
IF(U(I*IJK) ,LE. U(IJ.K)) U!I(I)U(I.IA0O.J.K) 000850 

000860IF(T)49(I) .62. 0.) UIIIflsU(I.I00,JIK) 	 000870
 

000880

000890


8 CONTINUE 
 000900

C- FIRST POINT 000910 

UXItl) U(I4IAODJ.K) 000920
C 

000930
C-0 .. #*.**. CALL FX(UIII.).KII) 

- WHERE IIS11IAOD 000940 
C 000950 

M - IE 
 000960 
II-IAO0 000970 
R4U(13)sRHULI II,4J,K) 000980 

000990
001000

RLN8OA(1MNI-STOKES*RMU(I;) 

RK(I).GANMPRfE$U iIMo 	 001010 

001020
DY1I.wiY(J*1)..y(U-1)) 	 001030O11fI./l(Xb1)-Z(C100 	 001040 

001050
 

0YX(I3MImS.SSTANT(334)TANT(21)IoOY1 	 001060
 
001070
 

UYX(IIM)IU(II.J1I.33-U(IIJ.1K.14 001080
 
001090
 

VYX(134)SV(II,J.IKI|-V(IoIJ-IKI3 001100
 
001110
001120
 

SIGX(1lM)SP(IITMIU (RLM OAtI;M).a. RMU(1;M)) 

001130
 

I *((U(2,J.KIM)-U(.JK;M)3 OoX1-

2 UYX(1M}1OYX(13801 001140
 
3 .-L BDA(1)CtVYX(I3)0OY1 001150
 
4 *(W(tIJK.I14)-wCII,J.K.13M) OZ21 "001160
 

001170
TAUXY(IM).-PMU(IIM)eCUYX(I3) DY1 001180 
I .(V 2,JKtMY-V(IJKI)3*0XI 001190 
2 .VYx(lim)DYX(1;Mj) 001200 

001210
001220
 
TAUXZCIIM).-RU(I3).((U(I1,J,K.1fl) 

1 -U(II,.JKIIMI)*OZI. 001230
 
2 (W(pJdKMM)-WI,JK4M))tDX1 	 001240

3 -(Wf(I'!JIVKI-W(I£,J-II3;))IOYXCI 1)I 	 001250
 

001260
 
DISX(11)SIGX(lM)UI(1|84 001270
 
1 *TAUXY(IlM)ViIIJK) 001280
 
2 .TAUAZ(13H)V(IIJK1M) 001290
 
3 RK(IIM)-((EI(2J.KIM)-EI(I,JK;M))OXI 001300
 
4 nIJ.1.K3$)-EI(II.J-1.KIH)OYX(UM) 001310
 

001320
 
F(1tl;H3)PROICT1I,3M)*UII(IM) 001330
 

001340
F(1.2$14).PPOICT (11.2334)UI I 10) SIGX4 1314 	 001350
 

3-B-2
 

http:33-U(IIJ.1K


001360
 
F(1,3;Ml.PRDICT(II,31M).UII(II4)TAUXY(IIM) 001370
 

001380
 
F .4:$$).PROICT(1ii4;N).UII (I1)1 TAUXZ IIM) 001390.
 

001400
 
F(1.SS I.PROICT!I.11)'UiII4I*DTSX(114) 001410 

001420 
IFtISNTHX EQ. 0) 60 TO 25 001430 

C 001440 
C- SMOOTHING 001450 
c 001460 
C SUMP 1I SINCE STARTING AT I . 2 001470 

I1 . I1 * 1 001480 
MAIL-2 001490 
TNP(2;Mf.P(II.IIMI 2.PtIIIN)IPtIl 114) 001500 
TXPI21M).VASS(P(II.IIM)ITMP2(2M1)).2.OVASS(P(IIM}ITMP2(21M) 001510 
1 *VABS(P(II.11lTMP2tIM)) 001520 

001530 
TMP(2;M)sCONSTTMP211M)/TMP(21M) 001540
 
TMPI(2$MISOAMMAOGAMMIOVASS(EIIIJKIM)tTMP(21M)) 001550
 
CII(2EM)sVSQRT(TP1(21M)ITMP2(21M)) 001560
 
COEF(2fN4aTMPIZMI*(VA8S(U(II.JKIM)$TNP2(2iM)3.CII(21M)) 001570
 

001580
 
00 20 K6.1,5 001590
 
F(2.6;M)SF(2K61)-COEF(2l4)3 001600
 
1 (PROICT(3,K6I$)-PROICT2C6;Ml) 	 001610
 

20 CONTINUE 001620
 
25 CONTINUE 001630
 
C- END OF FX SUBR. 001640
 
C 001650
 

'M4E-I 001660
 
PRDICT(2.1tM)-(NMI-PRDICT2II1) RHO (2,JKIN) 001670
 
1 -OTDX&(F(2,1IM3(F1.1IN) ))*8 001680
 

001690
 
PRDICT(2,2M),(NMI.PRDICT(221).RHOU(2.J.tIM) 001700
 
1 -OTDX*(F(2,2I)-F(IZiM)))*8 001710
 

001720
 
PROICT(2,31M).(NM1PROICT(Z3$M) ROV(2.J.KIN) 001730
 
1 .OTOX(F(2,3l).fltI31H)3 S 	 001740
 

001750
 
PROCTt2,41M)s(NM1-PROICT(2.4IM)-RHOW(2J.,KI) 001760
 
1 -OTX-(F2,#4)-F(I.41N))B 001770
 

001780
 
PROICT(2.SIM)s(NMI'PRDICT(2,51M).E (2.J.;M 001790
 
1 -OTDX-r(2,SII4).F(1,51M))I.6 	 001800
 

001810
 
C 00180
 
C.......... ENO OF 00 5 LOOP 001830
 
C 001840
 
C 001850
 
C DECOOE 1.2.IE 001860
 
C 001870
 

MIE-1 001880
 
RHOI(211). ./PROICT(2,11) 001890
 

001900 
U (2,JKIN)*PROICT(2,21M)RMO(21M) 001910 

001920 
V (2,J.KIM)SMOICT(2,3NI'RHOI(2;M) 001930 

001940 
W (2,JKIN).PROICT(2,48;M)ROI(21) 001950 

001960 
El (2,J.KIMNIPROICT(2,9S; )RHOI(2114) 001970 
1 -. 5S(U(2,JKM-.2 *V(2,.J.KIN)*2 001980 

3-B-3
 



2 *W(2.J.KlM)-*2 ) 


PC2IM).GAM4I1PRDICT(2.1;HM EI(2.4KIM) 


C 

C DOWNSTREAM B.C. AT IAIL 
C 
C *' SCALAR ** 

00 9 K6.1,5 
9 PROICTILK6)3PROICT(IEK6) 
C 
C......... CALL BCY (K.2.IEJ..J 
C 


MulE.1 

IF(J ..ME. 2) 60 TO 30 

C 
C * BC AT J.2 
C 

U(2.1,KIM)SU(2,2,K;M 


W(2,1,KI)l.(2.2,KlM) 


V(2.1KIM)SV(2,2,;M) 


EI2.1,KM3SEI (2.2.Kl) 

C 
C TEST ON 1 

IFULE *LT. 2) 0 TO 30 
MuILE-1 
W(2.1,KIM)..Wt2,2.KIM) 

U(2, 1,KIM)-Ut2,2IM) 


IF(IAOBSL sEQ. 03 EI(2tl,KSM)s2.EIWALL-EI(2,2,KtM) 
30 CONTINUE 

C 

C- BC AT J*JL 
C 

M-IE-l 

IF(J .LT. JE2) GO TO 35. 

U(2.LK|M)3U(C2JE2tKIM) 

V(2,.L.KMlV(ZJEZK;M) 

W(2,JLKZ$)zW(2,JE2,KtM) 


EI(2,JL-.K1)EI (2.JE2,KtM) 

35 CONTINUE 
C 
C SC AT lIL 
C 
C*-SCALAR* 


U(IL.JK)U(IEJUK) 


V(L.J*K)V(E ,K) 

W(IL.dK)*W(IE.U.K) 

ElIILJ.KI tEIIE,4,K) 


C 


001990
 
002000
 
002010
 
002020
 
002030
 
002040
 
002050
 
002060
 
002070
 
002080
 
002090
 
002100
 
002110
 
002120
 
002130
 
002140
 
002150
 
002160
 
002170
 
002180
 
002190
 
002200
 
002210
 
002220
 
002230
 
002240
 
002250
 
002260 
002270 
002280 
002290 
002300 

- 002310 
002320 
002330
 
002340
 
002350
 
002360
 
002370
 
002380
 
002390
 
002400
 
002410
 
002420
 
002430
 
002440 
002450
 
002460
 
002470
 
002480
 
002490
 
002500
 
002510
 
002520
 
002530
 
002540
 
002550
 
002560
 
002570 
002580
 

002590
 
002600
 
002610
 

3-B-4
 

http:ElIILJ.KI


C SC AT K-2 002620 
IF(K oNE. 2) GO TO 40 002630 
U(2.J.1,H)-U(2.J,21 ) 002640 

002650 
V42,. I;:)-V{2J.2IM) 002660 

002670 
W(2,4 13s1(2J.2U4) 002680 

002690 
ElI(2I,4 )MEI(2,J.21) 002700 

C 002710 
C TEST ON 1 0027?0 

IF(ILE .LT. 2) 0 TO 40 
N.ILt-1 

002730 
002740 

U(2,4.LIM) s-U (2.J,2M) 002750 
002760 

V(2.J.ll)s-V (2,4J2 ) 002770 

!F(IAOBWL sEQ. 0) EI(2.J4I;M).2.*EIWALL-EI(2J.2;1m 
40 CONTINUE 

002780 
002790 
002800 

C 002810 
C BC At Wl3E2 002820 
C 002830 

MslEt1 0n2840 
IF(K ,NE. KE2) GO TO 50 002850 
U{2.4,KLIM)sU (2,JtKE21M) 002860 

002870 
V(2,4,KLI$)sV (2,JKE2;M) 002880 

002890 
W(2.,JKLH)-W(2,4J.tE21) 002900 

EZ(2,J.KLl
M
)sEI(2,J.KE24I 

002910 
002920 

50 CONTINUE 
002930 
002940 

C 002950 
C-ENO OF 00 4 N.1.2 LOOP 002960 
C 002970 
4 CONTINUE 0029 0 

3IL-1 002990 
RHO (2,J.KlH)SPROICT(2,It) 003000 

003010 
RNOU(2.j4XIH3)PROICT (2,2U) 003020 

RKOV(2lJKl)-PROICT(2,3lM) 003030003040 

003050 
RKOW(2,JIM).PROrCT(2.4i) 003060 

003070 
E (2,JK3M)sPRDCT12.5;H) 003080 

IF(NNVLX.NE.1)00 TO 450 
003090 
003100 

IFIX.NE.SIGO TO 450 003110 
IF(J.NE.S1GO TO 450 
WRITE(6,800)(6K6I5) 
WRITE(6,8O1) (I.JKO(PROICT{IK6,,K6 bs5) SIL) 

003120 
003130 
003140 

450 CONTINUE 003150 
800 FORM T.IHO23X2IH.13X,1HJ.3XIHK,5{3X,9NPROICTIZ, 12. 14) ) 003160 
801 FORMAT(IX,314.SE15.6)
C 

003170 
003180 

C.ENO OF 00 2 J.JSIJE2-LOOP 003190 
2 CONTINUE 003200 
C 003210 
C-ENO OF 00 1 K-KSIKS2 LOOP 003220 
1 CONTINUE 003230 
C 003240 

3-B-5
 



C-* e CALL OUTER (JS1,4E2,KSI.KS2) 

C 

C 

C 8C-AT I.IL 

C -SCALAR--


00 6C K.KSIKE2 

DO 60 J.JSI.JE2 

RHO (IL.JK)RHO IIE,J.X) 


RHOUlILJK).RHOU(IEJK) 


RHOV(ZL.4,KISRHOVIEJ.K 


RHOS(IL.J.K)RHO(4IE.J.K) 


E (IL..JK)SE (IE.J.K) 

60 CONTINUE 

C 

C BC AT J.JL 

C 


MIE-1 

00 70 K.KSIKE2 

RHO (2,JLKIM)RHO 02,JE2KIHI 


RHOU(CZJL,KlM) RHOU(2,JE2,KIM) 


RHOV(2*LtKIM)=RHOYCZtJEZ,K;) 


RNOW(2,JLKIN) . RHOW(2,JE2*KIMI 


E (2,JLKIN)=E (2,.E2,K)4 

70 CONTINUE 

C 

C SC AT KaIL 

C 


O0 80 J.JS1,JE2 

RHO caJtK LM).RHO t2JKEZTM 


RHOU(2,JKLIU4-RHOU(2,J.KEEIM) 


RHOVtJ2.KLi).RNOV(2,J,KE2;M) 


RHOW(2,J,KLIM).RHOW(2,J.KEZWI 


E (2,J.KLIM)-E (2.JKE21M) 


80 CONTINUE 


TONE-SECONO(D) 

TINMETONE-TSTRT 

WR!IE(6.900TZME 


900 FORMAT{1HOIXHVLX TIME .FIO.3.41i SEC 1 


RETURN 

END 


003250
 
003260
 
003270
 
0032RO
 
003290
 
003300
 
003310
 
003320
 
003330
 

003340
 
003350
 
003360
 
003370
 
0033A0
 
003390
 
003400
 
003410
 
003470
 
003430
 
003440
 
003450
 
003460
 
003470
 
003480
 

003490
 
003500
 
003510
 
003520
 
003530
 
063540
 
003550
 
003560
 
003570
 
003580
 
003590
 
003600
 
003610
 
003620
 

003630
 
003640
 
003650
 
003660
 
003670
 
'003680
 
003690
 
003700
 
003710
 
003720
 
003730
 
003740
 
003750
 
003760
 
003770
 
003780
 
003790
 

3-B-6
 



APPENDIX C 

VECTORIZED VCHARAC ROUTINE
 

SUBROUTINE VCHARAC(YOYCELL,4LFM,JL,COSTH) 000100
 
DYNAMIC HYC.HYPHYVHYRHO,HYP 000110
 
DYNAMIC NOT.OTC.DYC.YJCYJCBYJCT.JCLNSUMSUM3 000120
 
DYNAMIC WTIWT2,RIPIVI .CISDYItJCADDYIY9JK2VIJK2.PIJK2,CIJ1tY2 000130
 

DYNAMIC CIJ2,VIJKSPIJJCIJCLNP1,DPOYIOVDYISUMZSUM4,YJCETYJCSB 000140
 
DYNAMIC YCELLB.YCELLT.VTPT 000150
 
DEFINE tHYCPROICT(I1ILflL,1,43),{NYRHO.PROICTOI;IL,IIKL1.11) 000160
 
DEFINE (HYPPRDICT(lIIL.IBKL.1,2)1,(HYV.PROICTCIIL.IIKL,1,3)) 000170
 

C 000180
 

000190
 
C CHARAC PROCESSES ALL DATA AS PLANES OF IL BY fL ELEMENTSEACH 000200
 
C PLANE AT A DIFFERENT VALUE OF J. 000210
 

000220
 
LHTS300 000230 
YF-Yt-,-,JLFM}*.5-OYCELL('-'.JLFM] (I,.OYCE Lt ,*JLFH)/ 000240 

1 OYCELL(e. .JLFM-1l 000250 
OTI.I./OT 000260 
COSTSQCOSTH* 2 000270 

C * FROM SUBROUTINE JCLMN 000280 
JLMO 000290 
JLN.JLNI 000300 
DYNSOYCELL(2) 000310 
YLIYL1 000320 
00 51 N-1.2 000330 
NDT-2..DTHYC(*,,2. 1)/DYN*L 000340 
CDTC-.20OT/NOT 000350 
OYC.DTCoHYC(-t.,2,I) 000360 
YJC.-OSDYC 000370 
DEFINE (yCB.(ISILIIKL),(YJCT.tIIILISKL)) 000380 
YJCB.OO 000390 
YJCTO.0 000400 
4nl 000410 
JCL-LMT 000420 
DEFINE (JCLN.i10LIIKL)),(SUMI,(IIIL.IKL)I.(SUN3,(1II[LIKL)) 000430 
JCLN.JCL 000440 

C THIS BROADCASTS THE CONSTANT JCL THROUGHOUT A MATRIX IL BY KL ELeHEN0004SO 
SUNIsOO 000460 
SUN3SO.O 000470 
DEFINE (JLIST.(IOILKIKL)) 000480 
DO 5 JCs2,JCL 000490 
BITOI(YJCB.LT.YLAND.YJCT.GT.YL) 000500 

C 000510 
C THIS STATEMENT GENERATES ONE VECTOR OPERATION WMICH CREATES 000S20 
C TWO BIT STREAMS RCPRSENTINo THE CONDITIONS BEING TESTED FOR 000530 
C THE ENTIRE I-K PLANE AT Jdt 000540 
C THE BITS STRING$ ARE THEN 'ANODED TOGETHER BY THE SCALAR UNIT 000550 

C AT THE RATE OF 64 BITS EVERY FOUR CLOCK CYCLEStAND THE 000560
C CONSEQUENT BRANCH INSTRUCTION EXECUTED. 000570 
c 000580IF{GBNOBITS(BIT0))GO TO 6 o0osqo
 
c 000600
 

C WHERE 08NOBITS IS A MACHINE LANGUAGE CALL TO THE DATA FLAG 000610 
C BRANCH TEST.ANY FUNCTION BEGINNING WITH THE SYMBOLS 'Q8' 0006PO 
C IDENTIFIES AN IN LINE MACHINE LANGUAGE INSTRUCTIONoWHICH 000630 
C CANNOT BE INVOKED BY NORHAL FORTRAN 000640 
C 000650 

IF(BITO)UCLN.JC 000660 
IF(BITO)YICSYJC*OYC 000670 

C 000680 
C THIS CONSTRUCT GENERATES THE MACHINE LANGUAGE CONTROL VECTOR 000690
 
C OPERATION WHEREIN THE ARITHMETIC STATEMENT IS EXECUTED 000700
 
C FOR EVERY ELEMENT OF THE I.K PLANE WHERE THE CORRESPONDING 000710
 
C BIT IN THE STRING alTO IS A ONE. 000770
 

3-C-I
 

http:IF(BITO)UCLN.JC
http:BITOI(YJCB.LT.YLAND.YJCT.GT.YL
http:tHYCPROICT(I1ILflL,1,43),{NYRHO.PROICTOI;IL,IIKL1.11


000730 
DEFINE (JLIST, I1IL1:KL) 
JLIST.O 

000740 
000750 -

C 000760 
C JL.IST WILL BE USED AS AN INDEX VECTOR OEPEOING ON THE VALUES 000770 
C GENERATED BY THE FOLLOWING1 000780 
c 

00 3 JJ.1.JL 
9IT1=(YJC.GT.Y tJ),ANO-YJC.LE.Y~e.eJ.1)o 

O007qo 
000800 
000810 

IF(O8NORITS(9IT1)GOTO * 000820 
.JJ*I 000830 
BITI.81TI.ANO.SITO 000840 

C 
C WE ARE ONLY GOING TO PROCESS ELEMENTS IN THE PLANE THAT ARE 

000050 
000860 

C STILL ACTIVE 000870 
C 000880 

C 
C 

IF(BITIIJLIST.JLISrI 

WHEREVER THE CONOIION IS MET.JLIST WILL BE UPOATEO 

0000 
000900 
000910 

C 000920 
3 CONTINUE 000930 
A CONTINUE 000940 
C 000950 
C WE NOW HAVE A LIST OF INOEXES FOR EVERY I-X ELEMENT THAT IS 0009h0 
C ACTIVE.THIS L!Sr CAN SE USED AS A MEANS TO GATHER 000970 
C THE CORRESPONOING ELEMENTS FROM VARIOUS FLOATING POINT ARRAYS 000980 
C 000990 

WTII(YOJLIST'IIYJC)/IY(JLSTI).Y(JLIST) 001000 
C 001010 
C THIS OPERATION GENERATES-ONE GATHER OPERATION USING JLIST INDICES 001020 
C 
C 

INTO THE ARRAY Y. 001030 
001040 

WT2U.0-WTI -
RIIJC)SWTI.MYRHO(JLIST).WTHYRHO4LIST1) 

001080 
001060 

PI(JCOWTInYP(JLIST).WT2HYP(JLIST1) 001070 
VICJC)sWTlNYV(JLIST).WTZ.HYV(JLIST1) 001080 

C 

CI(JC)SWTItIYC(JLIT)*WTZ*HYC(JLIST1) 
OYC-OTCCI(4

C 
) 

001090 
001100 
001110 

C REMEMBER AT THIS POINT THAT RIPI.V(,ANO CI CONSIST OF 001120 
C PLANES OF DATA IL BY KL IN SIZEAITH A PLANE FOR 001130 
a EVERY ACTIVE VALUE OF JC 001140 
C 001180 

YJCSuYJCT 001160 
YJCT.YJC.O.SOYC 001170 
OYMI C).Y.JCTYJC 001180 
BIT2('JC.LENDT*1) 001190 
IF(8IT2)SU)41SUHIPI(JC) 
IF(SIT2)SUN3aSUH3-VI (WC) 

001200 
001210 

5 
& 

CONTINUE 
CONTINUE 

001220 
001230 

DEFINE (JCAOOIIILIIKL) 001240 
JOADO O 001250 
BIT3.(N0T'3-2-JCLNGT.0) 001260 
IF(SIT3)JCAOO.(NOT-3-2tJCLN)
JCMAX*%JCLN*NDT.JCADO 

001270 
001280 

C 001290 
C WRITE STATEMENT ELIMINATED HERE TEMPORARILY 001300 
C 01310 

C 
C 

IF(QBNOBITS(.NOT.9IT21)GOTO 12 

87T2 INOICATED WHERE ThERE WERE VALUES GREATER THAN ZERO IN 

001320 
001330 
001340 

C JCAOO,IP THE ENTIRE PLANE OF JCAOO IS ZERO SKIP THE 001350 

3-C-2
 



C NEXT PART COMPLETELY 
C 
IFtSIT2YI.YJCT 


BIT3.Y1.OT.Y(JLIST-1)) 

BT3sB6T3.AND.BIT2 

C 
C WE ARE ONLY INTERESTED IN ACTIVE ELEMENTS 
C 

IF (8T3hJLIST.JLXS
T
*1 

C 

001360
 
001370
 
001380
 
001390
 
001400
 
001410
 

IN THE PLANE AT THIS T1M001420
 
001430
 
001440
 

-001*50
 

C ANOTHER CONTROL VECTOR UPDATE OF THE INDEXEO LIST 001460 
C 001470 

IF8T31wTls(Y(JLIST.1)-Y1)/CY(JLIST$1)-YIULIST)) 001480 
C 001490 
C THIS STATEMENT REQUIRES TWO NEW GATHER OPERATIONS FROM THE 001500 
C ARRAY Y WHICH IS HELD IN MAIN MEMORY.... 001510 
C 001520 

IF(0IT3)WTZI.0-WTI 001530 
IF(SIT3)YJK2.YI 
IF(SIT3)VIJK2-WTI.HYV(JLST) WTZ-HYVfJLIST1) 

001540 
001S50 

IF(BIT3oPIJK.WT1.HYP(JLIST).WTZ'HYPtJLIST.1) 001560 
IFiSIT3OCIJUWTWHYCCJLIST) WT2*HYDCJLIST*I) 001570 
J1LZST.JLIST 001580 
Y2-YI.OCADD*OTCeCIJI 001590 
DO 9 K-1,2 001600 
LISTS4ILIST 001610 

00 7 J4.1.JL 001620 
BIT4t(YZ.GT.Y1.,*,JLIST).AND.Y2.LE.Y(,*-.JLIST1)) 001630 
8IT4*.NOT.BIT4 . 001640 
IF1SIT)LIST.JLIST-1 

7 CONTINUE 
001650 
001660 

" 

IFI(T3)WTI.(YtJLIST.I)-Y2)/(Y(JLIST.I-YJLIT)
IFC8IT3)WT2I.0-$TL 

001670 
001680 

IF(S8T3)CIJESWTIH$TCCJLIST) WTE*MYCCJLIST.1 001690 
IF(SIT3)YZ.Y1IJCADD-OTC*.SV(CIJI*CIZ) 

9 CONTINUE 
001700 
001710 

C 001720 
C THE DO 10 LOOP MUST BE REPLACED COMPLETELY,SINCE EACH ELEMENT 001730 
C IN THE I-K PLANE CAN BE ADVANCED INDEPENDENTLY FROM ANOTHER 001740 
C ELEMENT N THE PLANE.SINE IN THEORY THE STARTING INDEX JI 001750 
C WILL SE DIFFERENT FOR EACN.IN ADDITION ALL OF THE OPERATIONS 001760 
C ARE UNDER THE FURTHER CONTROL OF BIT3 WHICH INOICATES 001770 
C WHICH ELEMENTS IN rHE PLANE ARE ACTIVE.ELEMENTS ARE FURTHER 001780 
C DEACTIVATED BY THE STATEMENT IF(YJK2.EO.Y2)00 TO 11 AT THE 001790 
C ROTTOM a, THE ORIGINAL SCALAR LOOP 001800 
C SO WE MUST GENERATE A NEW CONTROL VECTOR WHICH WILL CONTROL 001810 
C OPERATIONS IN THE REMAINDER OF THIS SEQUENCEI 001820 
C 001830 

JLIST-JILIST 001840 
BITSBIT3 001850 
O0 10 JJ 4L 001860 
81T4.(JLIST.LE.JL) 001870 
8IT*4B.T4.ANO.8ITS) 001880 
IF(G8NOBITSISIT4)GUTO 11 
YJKIsYJK2 

001890 
001900 

VIJK1SVIJK2 001910 
PIJKIPIJK2 001920 
YNJKZ.YJLIST4L) 001930 
SIT6UOYJK2,GT.Y2) 001940 
IF(81?61YJK2Y2
IFtBIT4)WTI.Y{4LIST4I)-y.JK2)/(YJLISTI).Y(JLIST)) 

001950 
001960 

IF(BITA)WT2.I.0.WTI 001970 
IF(8IT4IVIJX2WT1*MYVIJLIST).WTZeHYV(ULST1) 001980 

3-C-3
 



IFiB[T4)PIJK2.WTI-MYP(JLIST).WT2"HVP(JLIST-1) 
 001990
 
IF(8IT4)SUHI.SUHI.JCADD.O5'(PIJKI.PIJZ, 
 (YJK2-YJK1)/CY2-Y) 002000
IF(SIT4)SUM3sSUM3dJCADD0.5c(VIJK1VIJK2)(YJKE
Y.JUR/(Y2-Y) 002010
2
IF(81T4)JLASTZJLISr

2IT6e(YJK2.EQ.y2) 

BIT5S.ITS.AND..NOT.BIT6 

IFfBIT4.ANODEIT5)JLISTJLIST.I 


10 	 CONTINUE 

JLISTSJLAST 

IFISIT4)CIJZ.WTIHYC(JLIST)*WT2*HYC(JLIST1 

IF(8IT4DYCSOTCCIJ2 

IF(SIT4)YJCsY2-Os5nyc 


12 CONTINUE 

JCLNP1.JCLN.1


C 


002030
 
002030
 

002040
002060
 

002060
002070
 
002080
 
002090
 
002100
 
002110
 
002120
 
02130
 

THEDO 20 LOOP MUST ALSO BE RECONSTRUCTED SINCE THE STARTING 
 002140
C VALUE FOR JC COULO RE DIFFERENT FOR EVERY ELEMENT IN THE I-K PLANEO021S0
 
C 

02160
JCLIST-JCLNPI 
 002170
JCSTARTQSNIN(JCLIST) 
 002180
C" 

002190
C THE 08 FUNCTION HENE RETURNS THE SCALAR MINIMUM OF THE ENTIRE 
 002200
C VECTOR JCLIST
 

C 
 002210
 
00 20 JCS.JCSTART.LMT 002220
 
8IT&*( JCLIST.JCAOO.GTJCLNNDT 002230
 
BITbu.NOT.AIT6 002240
 
IF{QBNOSITS)GOTO 21 002250
 
IFBIT61YJC.YJC.OYC 002260
 
00 17 JJ.I.JL 0022T0
 
BITS(YJC.GT.Y(JLIST).ANO.YUC.LE.Y(JLISTI)I 002290
 
SITT..NOT.ITT 00230
 
IF(QBNOBITS(SITTJ)6OTO 1 002300
 
IF(BIT6,ANO.BIT7) dLIST-JLIST.I 002320
 

17 CONTINUE 
 002320
 
1 CONTINUE 002330
~ 00230IF(SITb}WTI-(Y(JLIST-I). O)/(y(JLIST-|}.yiJLZST)) 002340
 

IF(BITS)WT2I ,0-WTI 002350
 
IF(8IT6)PI (JCLISTISWTI*HYP.JLIST),WT2.HYPOJLISTI) 002370
 
IF(SIT6)VI0JCLIST) WT1-HYV(JLIST).WT2.MYCtOLISTI) 002370
 

002390
 
C NOTE THAT THE PRECEEDING TWO STATEMENTS WILL RESULT IN 
 002400
C BOTH GATHER AND SCATTER OPERATIONS UNOER THE CONTROL OF 
 002410
C 
 SIT VECTOR SIT06
c 	 002420
002430
 

IF(BIT6)OYCS(WT1SHYC(JLIST)*WTZHYC(JLIST.l).DTC 
 002440
SITT(JCLISTiJCAOO.GT.NDT,1) 
 002450
IF(IT6.ANO..NOT.BITT)SUMI.SUMI.*P(JCLIST) 
 002460
IFSIT6.ANO..NOT.aITT)SUM3SUM3VZI(JCLIST) 
 002470
IFtBIT6).JCLIST..JCLIST02
 
20 CONTINUE 002480
 
21 CONTINUE 002500
 

SUM2.SUMN 002500
 
SUM44SUH3 002520
 
YJCTuo.O 002530
 

C 002530
 
C NOW IN O0 30 ALL ELEMENTS IN THE PLANE ARE STARTEO TOGETHER 002550
 
C HOWEVER THE TERMINATING CONDITIONS COULD BE DIFFERENT 
 002560

C FOR EACH ELEMENT OEPENOING ON THE CORRESPONDING VALUES IN THE 002570
C ARRAY JCLN 
 oasso
C 


002590
002600
 
002610
 

.JCENOQ8AX(JCLN) 


3-C-4
 

http:2IT6e(YJK2.EQ.y2


C WE MUST SET THE END OF THE LOOP TO THE MAXIMUM VALUE IN JCLN 002620
 
C 002630 

00 30 JCZ.JCEND 002640 
SIT5(,JC.LE.JCLN) 002650. 
JCM-JC-NOT*JCAOO 002660 
DEFINE CSNG.(1:L *IIKL)) 002670 
SNG.1.0 002680 
8IT4.(JCM.LE.1) 002690 
IF(BIT4)SN8*-I. 002700 
IF(8tt1l CHs3-JCM 002710 
JCPSJC.NOT-JCAOO 002720 
IF(BITS)SUMItSU$IPI CJC) 002730 
IF{8IT)SUMZ.SUM2.PI(-JCP) 002740 

C 002750
 
C NOTE THAT THE USE UF JCP AS AN INDEX IMPLIES A GATHER OPERATION, 002760
 
C WHILE 

T
HE USE OF JC AS AN INDEX IMPLIES A SCALAR BROADCAST 002770
 

C 002780 
IF(BITS)SU3*SUN3.VI(dC) 002790 
IF(BITS)UM4HSUH4-VI(JCP) 002800 
IF(BITS) 002810 
1 0POYI(JC)s-I(SUM1.SUM2)/(COSTSOGRI(JC)*CItCi))SUN3-SUM4)/ 002820 
2 (2*(NOT.1))-VI0JC),*RI(JC)-tOTICOSTSO) 002830 
IF(BITS) 002840 
1 OVDYI(JC)s.((SUMI.SUMa2(RI(C)CIIJC)*COSTSQ)(UM3SUM4f))/ 002850 
2 (C2(NIT.1))-WI(JC),/(OT.GAMNMAPI(JC)) 002860 
IF(IT5)YJCB.YJCT 002870 
IF(BITS)YJCT.YJCB.UYI(JC) 002880 
BIT6.(JC.EG.JCLN) 002890 
IF(.NOT.8IT6)SUMI*SUM-PI(JCM) 002900 
IF(.NOT.BIT6)SUN2.SUM2-PISJC) 002910 
IF(.NOT.BT6)SUM3sSUM3-SNGtVI(JCM) 002920 
IF(.NOT.8IT6)SUM4ASUM4.VT(JC) 002930 

C 002940
 
C AGAIN SUMI AND S)U3 COMPUTATION HERE REQUIRE GATHER OPERATIONS 002950
 
C USING THE LIST JCMWNILE SUM2 AND 5UMA ARE SCALAR BROADCASTS 002960
 
30 CONTINUE 002970
 
31 CONTINUE 002980
 

IF(JLN.Ne.JLFM)GOTO 32 onE990
 
JCLISTSJCLN 003000
 
PT(JLFN.I)(SUMI.SUN2.(RICJCLIST)*CI(JCLIST)*COSTSQ).SUN3.SUHM))/003010

1 (2.(NDT-1)).(YF-0.s5(YJCBwYJCT),.DPOI(JCIST3 003020
 

32 CONTINUE 003030
 

DEFINE (YCELLT,(IILIIKL),(YJCSB(IILIIL)) 003040
 
DEFINE (JCE.1!1L.IIKL)) 003050 
VT(I*,*,,s0. 003060 

PT(..*,1)sPO 003070 
00 40 J*2,JLN 003080 
YJCETSYJCSB 003090 
YCELLSYCELLT 003100
 
YCELLTSYCELLB.OYCELL t-(,OJ 003110
 
JCSJCE 003120
 
JCSTnRT.QSNIN(JCS) 003130
 
DEFINE (T8,(1:llIL,1lKL)) 003140
 
B1T8.4TRue. 003150
 
DO 35 JCSJCSTARTLMT 003160
 
IF(BITS)UCE.JC 003170
 
IF(81TGY4CET-YCET.OYI14C) 003180
 
BITA=(YJCET.GT.YCELLT) 003190
 
BITOUBITS.AND..NOT.BITA 003200
 
IF(O8NO9ITS(8!T8)GOTO 36 003210
 

35 CONTINUE 003220
 
36 CONTINUE 003230
 

DEFINE cOYDY,(1tILhIzgL)i,I0POY,(1IL.IKL)) 03240
 

3-C-5
 

http:IF(BITS)UCE.JC


OVOY=C*O 

OPOY.O0 

YJCT*YJCSS 


c 

C AS IN THE PREVIOUS LOOP 2O AND LOOP 30 CASES LOOP 38 WILL 


C BEGIN AND END AT DIFFERENT POINTS FOR EACH ELEMENT OF 


C THE I-K PLANE 

C 


JCSTARTsOSMIN(JCS) 

JCENO.QBHAX(JCE) 

JCLISTSJCS 

DEFINE (WTtllILIIKL)l 

O0 38 JCJCSTARTJCENO 

RIT9=(JCLIST.LE.JCE) 

IF{BIT9)YJC8Wt4CT 

IF(8IT9)DYC-OYI(JCLIST) 

IF(8IT9gYJCTUYJCEBDYC 

IF(SITglWTsI. 

IF(YJCB.LT.YCELLS)WT.WT-(YCELLB-YJC8)/DYC 

IF(YJCT.G1.YCELLT)WTWT-(yJCT-YCELLT)/OYC 


C 

C ALTHOUGH THESE LAST TWO STATENENTS APPEAR TO BE SCALAR 

C THE IF TEST AND ARITHMETIC ARE OVER HF ENTIRE 1.K PLANE 


-c 

IF(BITIgOVDYSDVDY.WT*OV0YI(JCLIST)OYC/DYCELL(J) 

IF(BIT9)OPOYSOPOY.WT*OPDYI(JCLIST)-OYC/DYCELL(J) 


38 	 CONTINUE 

YJCSBYJCET-OYC 

IF(J.LE.JLN)GO TO 40 

VT~t.eJ)VT-,*,J-)DVOY0YCELLJ) 

PT(e..,J)=PTI*.,4,.I).OPOYOYCELL(J) 


40 	 CONTINUE 

50 	 CONTINUE 


IF (JLN.E.JLFH)GOTO 52 

OYNsOYNI 

JLMNJLN 

JLNxJLFN 
YL-YF 


51 CONTINUE 

52 CONTINUE 


RETURN 

ENO 


OR 

003260
 
003P60
 
003270
 
0032SO
 
003290
 
003300
 
003310
 
003320
 
003330
 
0033,0
 
0033S0
 
003360
 
.003370
 
003380
 
003340
 
003400
 
003410
 
003420
 
003430
 
003110
 
003450
 
003460
 
003470
 
003480
 
0034QO
 
003500
 
003610
 
003520
 
003530
 
003540
 
003550
 
003560
 
003570
 
003580
 
003590
 
O03600
 
003610
 
003620
 
003630
 
003640
 
003650
 
003660
 

3-C-6
 



DIVISION 4
 

WEATHER/CLIMATE
 

APPLICATION STUDY
 



DIVISION 4
 

WEATHER/CLIMATE APPLICATION STUDY
 

1.0 INTRODUCTION
 

A portion of this study effort was to be devoted to analyzing
 

operation of the FMP on codes other than aerodynamic flow
 

simulations. For this purpose, the application of weather/
 

climate modeling was selected and NASA provided two codes to. be
 

studied. One code was developed by Goddard Institute for Space
 

Studies (GISS); the other code was developed at Massachusetts
 

Institute of Technology (MIT). Sections 2 and 4 present some
 

specific aspects and salient points of the GISS model and MIT
 

model, respectively. Section 3 briefly discusses investigation
 

of portions of the GISS code, and section 5 provides analysis
 

of the MIT (spectral) code. Some background and significant
 

events leading to these two models was supplied to NASA-Ames as
 

a separate, incidental report.
 

These two models represent, to some extent, current
 

state-of-the-art in dynamical forecasting with numerical
 

methods. They differ from each other, among other things,
 

mainly in their approaches: the GISS model employs the finite
 

difference method whereas the MIT model employs the spectral
 

method. Both are more or less designed for the purpose of long
 

term prediction rather than the day-to-day weather forecasting.
 

However, there is no fundamental reason why they could not be
 

extended to predict daily weather. In the MIT model, the quasi

geostrophic approximation is imposed to conserve computations.
 

For the operation of day-to-day global prediction, the
 

4-1
 



quasi-geostrophic approximation is not very desirable and
 

therefore has to be relaxed. On the other hand, the Australian
 

meteorological community has successfully put the spectral
 

method, without the quasi-geostrophic approximation, into

op-eration for predicting -weather.
 

Although both are more for climate than weather, the GISS model
 

is mainly concerned with the dynamical development in the
 

troposphere, the climate/weather in which man lives and that
 

which is commonly discussed. The MIT model, on the other hand,
 

is geared to the state of the upper atmosphere which certainly
 

affects the troposphere below. Consequently, in the GISS model
 

the effect of radiation, such as ozone absorption, is
 

parameterized in some tractable manner for the purpose of
 

calculating the circulation. In the MIT model, the production
 

and destruction, as well as transportation, of ozone are
 

computed explicitly using the dynamical model as a vehicle.
 

Table 1 tabulates some of their differences for a closer
 

comparison.
 

Symbols used in this report are listed and defined in table 2.
 

4-2
 



TABLE 1. Characteristics of the GISS and MIT Models
 

Characteristic 


Method 


Prediction time scale 


Dynamic system 


Time step ( At) 


Vertical coordinate 


Number of layers
 

Total 


In troposphere 


In stratosphere 


Pressure at top 


Height at top 


Horizontal resolution
 
0 0
 

Grid C lat x long) 


Waves 1 


GISS Model 


Finite difference 


Medium (wks/mos) 


Primitive 


5 minutes 


a 


9 


8 


1 


10 mb 


30 km 


4 x 5 


-20 


MIT Model
 

Spectral
 

Very long (yrs)
 

Quasi-geostrophic
 

1 hour
 

in P
 

25
 

6
 

19
 

0.04 mb
 

72 km
 

-15 x 15
 

6
 

TABLE 2. Symbol Definitions 

a radius of earth 

C rate of condensation 

eP specific heat at constant pressure 

E rate of evaporation 

F horizontal frictional force 

f Coriolis parameter (--2wg) 

G production/destruction rate of ozone 

G' deviation from horizontal average 

4-3 



Ho scale height 

hp an ultraviolet photon 

h(Z) an empirical infrared cooling coefficient 

solar flux incident on the top of the atmosphere 

J meridional wave number resolution 

k vertical unit vector 

Kd vertical diffusion coefficient 

kok1 k3 k4 'ks parameters of chemical reaction 

M planetary wave number resolution 

N number of ozone molecules in the column 

PI pr'ssure + 1000 mb 

Pm, n associated Legendre polynomial 

P pressure 

Pt pressure at top of model atmosphere, constant 

Ps pressure at bottom of model atmosphere 

Q heating rate per unit mass 

q water vapor mixing ratio or specific humidity 

R gas constant 

S stability 

T temperature 

T* an "equilibrium" temperature 

t time 

T ;q' deviation of temperature andgeopotential from the standard atmosphere distributions 

V horizontal velocity 

W dZ/dt 

X number of mixing ratio of specie j U = 03, OH, HO2 , NO2 ) 

X03 ozone number mixing ratio 

X0o3 horizontal average 

X 03 deviation from horizontal average 

4-4 



Yin,n spherical harmonics of order m, degree n 

Z vertical coordinate (= - nP) of the MIT model 

a absorption coefficient 

0 mass of an average.molecule 

7 catalyst 

E energy of a photon of wavelength A 

" solarteith angle 

17 number dunsily ol the "*neutnaf" atmosphere 

0 potettal temperature 

A optical wavelength 

x longitude (counted eastward from Greenwich) 

pt sine of latitude 

vorticity 

IT Ps - P, 

.densily 

a vertical coordinate {=(p-pt)/(ps-Pt)} of the GISS model 

T index for simulated time 

,D geopotential 

stnan function for horizontal velocity 

' M ., Fourier and spectral coefficients of 'P 

t *m* ,n complex conjugate 

W angular velbcity of the earth 

axial, velocity potential for horizontal velocity 

V spherical gradient operator 

4-5 



2.0 THE GISS MODEL
 

The GISS model is a 9-layer primitive equation model. Its
 

evolution began with models developed at UCLA by Arakawa and
 

Mintz, in particular their 3-level model. Consequently, the
 

GISS model shares the overall structure of the UCLA model and
 

retains the vertical coordinate formulation, the Arakawa scheme
 

with advective quasi-conservation of important quadratic
 

quantities, as well as much of the UCLA representation of
 

physical processes occurring at or near the lower boundary of
 

the atmosphere.
 

It differs from the UCLA model, however, not only in having
 

finer vertical resolution, but also in its treatment of four
 

crucial areas of physical processes, namely, moist convection,
 

turbulent subgrid-scale processes, solar radiation,- and
 

long-wave (terrestrial) radiation. As the GISS model was used
 

for observing system simulation experiments, asynoptic data
 

assimilation studies, and experimental long-range forecasting,
 

it was not bound by the very high horizontal resolution nor
 

the stringent real-time requirements of the operational
 

numerical weather prediction. Also, those aspects which are of
 

importance only to very long time-scale are simplified because
 

the GISS model is intended for medium-range forecast. The
 

model was verified by the short-range forecast, and by
 

integration which is intermediate in length between the few
 

days of the operational prediction and the seasonal, annual, or
 

multi-annual period of climate simulation.
 

It includes a realistic distribution of continents, oceans, and
 

topography. Detailed calculations of energy transfer by solar
 

4-6
 



and terrestrial radiation make use of cloud and water vapor
 

fields calculated by the model. The hydrological cycle of the
 

model includes two precipitation mechanisms: large-scale
 

supersaturation and a parameterization of subgrid-scale cumulus
 

convection.
 

Numerical integration requires about 70 minutes of IBM 360/95
 

computer time for each simulated day. In the interest of
 

computational economy, most aspects of the model
 

representations of physical processes (other than advection) are
 

calculated only for every half-hour of simulated time. These
 

processes include surface interaction and hydrology. Similarly,
 

solar and terrestrial radiation calculations are performed,
 

however, only for every 2 hours of simulated time.
 

The system of governing equations for the GISS model is
 

displayed in figure 1. It consists of the following:
 

(1) the equation of motion,
 

(2) the equation of continuity,
 

(3) the equation of state,
 

(4) the first law of thermodynamics,
 

(5) the hydrostatic approximation,
 

(6) the conservation equation of water vapor.
 

The behavior of the atmosphere is represented primarily by the
 

following dependent variables:
 

* 	 the temperature,
 

* 	 the specific humidity (mixing ratio) of water vapor,
 

* 	 the difference of surface pressure and pressure at model
 

top,
 

4-7
 



e 	 the horizontal velocity with the components zonal
 

wind and meridional wind.
 

The basic independent variables are:
 

* time,
 

- latitude,
 

* 	longitude,
 

* 	 the vertical coordinate.
 

The atmostphere is modeled to have a vertical resolution of 9
 

evenly divided layers. The top of the atmosphere is taken as a
 

It should be noted, however, that in
10 mb isobaric surface. 


the treatment of terrestrial radiation, the number of layers is
 

doubled and in addition, 2 more layers are introduced to extend
 

the model atmosphere from 10 mb to 1 mb, in order to obtain
 

better estimates of the radiative fluxes.
 

a V=- {(V'V)V+fkxV+V4+VT+a-V} +F (1) 
at 	 P
 

-ar- V (IrV)+2- ((2) 

(3)- RTp 

(V	 ' 7 ) O + & a O + (4)a0=-	 1 Q 

(5)
L 	 4 = 

a q=- (V-V)q+&Lql +(E-C)(6 

Figure 1. System of Equations for GISS Model
 

4-8
 



The horizontal grid of the model has the configuration of a
 

Mercator projection with increments in latitude of 4 degrees
 

and in longitude of 5 degrees. With the 9 layers, this results
 

in a total of 29,160 grid points, each having 4 points
 

associated with it as drawn in figure 2. This way, variables
 

of identical location in true physical space are attached to
 

different points on the grid mesh. This placement is of great
 

importance in maintaining the numerical stability of the
 

integration, as well as simulating planetary flows.
 

5W 0 5E 175E180W 175W 
J o o -0-o o 0 - o-, 90N 

~I I 1 II I: O|90
 

J A--+--A--+-
I I I I I 1 I I I I I +I 

I I I I I I I 1 ~ I i I'* I 

j+l o> o->- -o-> o->-O->- ->-O-> 6NIII t I 

j A+A>"o+> - -- > - ->-o-> 2N7: II ~ 1 ITq~u* 
|

j----> > ..--> 0O> 2S 

I I I III I I I I I I 

I I I I I I I I I I I 1 I 

I 1 2 2 . . i-I I i 1 i+1 ... I-1 1 I 

Figure 2. Finite Difference Grid for GISS Model
 

4-9
 



In older versions,, the grid of the model contained an equal
 

number of longitudinal points at all latitudes. This means
 

that a grid square near the pole will occupy less area than a
 

grid square near the equator. This nature of the grid was
 

later modified to have the capability of readjusting tile
 

relative areas. The latter is known as a split grid in which
 

the number of longitudinal points can be properly selected at
 

each latitude.
 

In the prediction equations (1), (2), (4), and (6), terms other
 

than the time derivatives on the right-hand side fall into two
 

categories, namely, dependent terms and source terms (refer to
 

figure 1). Specifically, Q in (4) and C and E in (6) are
 

source terms. They arise from physical processes and are
 

generally small in magnitude relative to those dependent terms
 

which arise from the conservation and continuity properties of
 

the atmosphere. Consequently, dependent-terms are evaluated at
 

every time step but source terms are not. Some source terms
 

that come from radiation are even smaller. To conserve
 

computations, source terms other than radiation are evaluated
 

once every 6 time steps and radiation once every 24 time steps.
 

The time step is chosen to be 5 minutes.
 

For time integration at each time step, a first estimate B, as
 

a predictor, is obtained with the forward differencing in time
 

B(n) = A(n-1) + At * D(A(n-l))
 

where A represents the appropriate physical quantity such as
 

one of the primary dependent variables, n is the index for a
 

particular time step, D( ) represents the value evaluated for
 

the derivative which is the contribution from appropriate terms
 

4-10
 



on the right-hand side in the prediction equation. With such
 

a first estimate of B(n), a second and refined estimate An) is
 

then obtained with the backward differencing in time
 

A(n) = A(n-1) + At * D(B(n))
 

to serve as a corrector. This predictor-corrector cycle
 

completes one time step of integration. The predictor and
 

corrector are signified by the flags MRCH=1 and MRCH=2,
 

respectively (see figure 3). In both cases, the space
 

differencing is centered. For the first 2 time steps however,
 

D( ) is evaluated as follows: for n=1, by up-right uncentered
 

space differencing flagged as MRCH=3; and for n=2 by down-left
 

uncentered space differencing flagged as MRCH=4.
 

Every sixth cycle of this marching process, an additional
 

prediction cycle is imposed upon the already predicted value,
 

with D( ) now representing only the contribution of the
 

physical processes (but excluding that of radiation), as
 

indicated by the box of COMP3 and GOMP4 in figure 3. Every
 

24th cycle, the radiational contribution is included with all
 

the physical processes mentioned above. Also, as represented by
 

n=O, the initial quantities are'given as data input to start
 

this marching process. This marching process in time is
 

summarized in figure 3.
 

4-11
 



1 

T 

2 

r+1 

II 
3 

T+2 

I 
4 

r+3 

5
I 

T+4 

6
II 

T+5 

7 

T+6 

NCYCLE 

t 

A-I) A(-+1) A(+2) A(T+3) A(r+4) A(+5) A(T+6) 

Forward MRCH=I MRCH=I MRCHi MACI MRCH=1 MACH=1 

BlC +1) B(T +2) B(+3) B(T+4) B(T+) B(T+6) 

Backward MRCH=3 MRCH=4 MRC=2 MRCH=2 MRC2 MRC2 

MRCH=I, centered in space and forward in time 

MRCH=2, centered in space and backward in time 

MRCH=3, up-right uncentered in space and backward in time 

MRCH=4, down-left uncentered in space and backward in time 

A'(T+6) 

COMP 3 

COMP 4 

Figure 3. Marching Sequence for GISS Model 



in tne actual computation, primary aepenaent variao±es ao nor
 

stand by themselves. Rather, they appear in the form of
 

pressure-area-weighted variables like rA. Accordingly, they
 

have to be scaled by the factor r(r) at the beginning of each
 

time step and de-scaled by the factor ir(,r + At) after the
 

integration of the time step. Furthermore, in order to avoid
 

reducing the time step in high latitudes, the zonal mass flux
 

and zonal pressure force are smoothed longitudinally.
 

The distribution of variables over horizontal grid points
 

adopted in the GISS model, shown in figure 2, is suitable for
 

simulating the geostrophic adjustment. The space differencing
 

for the nonlinear advective (dependent) terms in the equation
 

of motion is constructed so as to maintain a constraint
 

analogous (but not strictly equivalent) to mean square
 

vorticity (enstrophy) conservation. In fact, the differencing
 

for these terms reduces to the enstrophy- and
 

kinetic-energy-conserving Jacobian scheme, when the mass flux
 

is non-divergent. The resulting integral quasi-conservation of
 

enstrophy as well as kinetic energy is an effective aid to
 

preserving the shape of the energy spectrum and the area
 

enclosed by it.
 

4-13
 



3.0 GISS MODEL VECTORIZATION
 

The GISS code conceptually is divided into two parts, namely,
 

the physics portion and the dynamics portion. The physics
 

portion of the code is found in subroutine COMP3, while the
 

dynamics is found in subroutines COMP1 and COMP2. The division
 

of the physics into two separate routines was done mainly as a
 

matter of convenience, to reduce the length of the source
 

programs and divide the workload among the team members. A
 

byproduct of this division is, however, that COMP1 contains all
 

of the data dependent branches (which impact the vectorization
 

process) that appear in the dynamics calculations.
 

COMPI1 and COMP2 are readily vectorizable routines, yielding
 

vectors of moderate length for the model in its present state
 

of resolution. COMP3, however, consists of a collection of
 

physical processes which are programmed in composites of many
 

imbedded short loops (yielding very short, inefficiently
 

processed vectors).
 

The COMP3 routine in the original scalar model was called once
 

for every grid point, as opposed to being called to process a
 

plane or subplane of grid points. This was due to the concern
 

for storage of temporary data on the 7600 class machines that
 

were being used for the model. Given a massive amount of
 

memory, COMP3 can be directly recoded to process all grid points
 

at a single call. Thus the short DO loops, induced by the
 

inherent physics, will be applied to groups of data points
 

rather than a single point. This form of vectorization leaves
 

the original computations almost exactly as it was in the
 

original scalar model. The sheer size of the GISS model and the
 

amount
 

4-14
 



of resources needed to recode the model in the same way the 3-D
 

implicit code was recoded makes the effort impractical under the
 

current study contract.
 

Control Data was fortunate to possess a version of the GISS
 

model which had been vectorized for the STAR-100 by David Soll
 

and his team at the Goddard Institute for Space Studies. Since
 

the basic programming characteristics of the STAR family and
 

the FMP are the same, it was felt that the STAR version could
 

be used for purposes of this report. In this model the physics
 

processing in COMP3 is recoded to process multiple grid points
 

together, as was discussed previously. Since the model and
 

results of its operation have been the subject of several
 

public disclosures (e.g. ref. 6) a decision was made to limit
 

this investigation to two key routines which illustrate the
 

behavior of the FMP when challenged by the GISS code.
 

It.should be noted that although the STAR-IO version of the
 

GISS code solves the same problem as the metric provided by
 

Ames, and retains the same basic structure, some of the
 

mathematics had to be revised to achieve effective
 

vectorization of the model. This difference will become
 

evident by examination of the AVRX and LINKHO routines, whose
 

listings appear in appendices A and B. The other major
 

difference between the metric provided by Ames and the STAR-100
 

model is the degree of resolution in each. The STAR-100 version
 

uses a 24x16 grid while the Ames version uses a 46x72 grid.
 

The result of this is that vector lengths in the model studied
 

by Control Data are shorter (.384 versus 2312 in most instances).
 

The shorter vector length happens to be below'the knee in the
 

4-15
 



theoretical performance curve of the FMP, and thus yields
 

considerably less than optimum results. The effect of this is
 

that any extrapolations made for the FMP performance on the
 

GISS model should be considered essentially 'worst case' for
 

comparison with the model provided by Ames.
 

Figure 4 displays the original code for the routine AVRX, as it
 

appeared in the Ames version of the model. Figure 5 is a
 

listing of a version of AVRX for a climatology simulation with
 

a course grid. This version was then adopted by David Soll for
 

the STAR-t00, the coding for which is found in figure 6,
 

restated in figures 7 and 8 for the purposes of this discussion.
 

Figure 7 contains loops in J=2,5 and J=12,15 with 7(a) showing
 

an imbedded loop on K=2,24, while 7(b) shows a sequence solely
 

for elements at K=1 and K=25. The sequence in 7(b) can
 

conceivably be executed in parallel with that in 7(a). If the
 

double loop in 7(a) K=2,24 is extended to K=1,26, the whole
 

double loop can be addressed with a single vector statement of
 

length 26x4=104, whilst the loop in 7(b) is processed by the
 

Scalar Unit. The cost of this technique is that, for each J,
 

elements K=1, K=2, K=24, K=25, and K=26 must be saved
 

beforehand, as well as K=1, K=25 updated and K=26 restored
 

after finishing the vector operation. This updating and saving
 

requires the use of gather and scatter operations.
 

4-16
 



SU8ROUTINE AVRX 09810
 
C C 0 E 4 A S 0 F N 0 V 2 9 11 9 7 3
8 L 0 C FB94 

C
 
C" 
 NOTE COMMON IS SPECIFIED TWICE BECAUSE THE NUMBER OF CONTINUATIONS
 
C EXCEEDED THE COMPILER LIMIT
 
C
 

REAL-4 KAPALAT
 
COMMON
 

JSPIJNP.IM.NLAY.PTROPISTARTJSPPIJNPMI.FINNLAYM1,NLAYP1,
 
-JiI.JMKMTAUTIROTMROTTAUTHTMROTHT,
 
NRJAYS(l12)INCS(Ii) .JS8.NBOLAT.OLON.JTESTITEST
 
DT.TAU.ITAU.XINT.IDAYJDOAYTOFAY.JDATE,,JMONTH2).JYEARNSTEP,
 

* 	NCYCLE.NCOMP3.NHUOGANTAUP.TAULtTAUEtTAUO.
 
* 	PIGRAV.RGASKAPA*PSL.EOFMUNFLWPSF,4RCHRSOISTSINDCOSD,
 
* NC3T.MPOC3T.LC3T.PROJAR.TOTABS.SOX.ISPACEDUMHYI(4) .TAUU.TIPE,
 

MACHIN,
 
* 	"IALTERNNIMBPTB.PT82,NIHPTS.SETNIMMINJMAXJ.TIRANO.IRTYPEISS
 
* 	SS.IDIAG.PERIOOALPHA(4),SETAGAMMA(4),TIMEO(4),KTPB.RINFLU,
 
* 	 MODELT.LRAO{16) ,NMCTNRAO(16).TPA.JTAPE.COXFLAOS(10O) 
* 	 MINt.NAXIOUNMY(IS),TOTRNSINSTTVRMSINSVTRMSUINSUTINT, 
* 	XLABEL(20).SIG(2),OSIG(20).SIGE21),DSIGO19,
 
* 	JIPS(1II) mPS(II),JIUS1I).JHUS(II),Ip,.JM UJMUdJPVJMPV,
 
* 	 INC.JIPY.JIPMIJMPY,.JMPPIJHPPIXUJIUXJIUMIJIUMIXJMUX.FINC.
 

INC2,INCH

COMMON
 
CN UV TSH.PTS.SMS.GTGWTOPOGUT.VTTTSTPTSPAPV.PU,
 

* 	CONV.PHIS,
 
* 	LAT.UXU.DXPtDYUOYPtSINLCOSLOXYPFCIOUMMYNTARRHXX(,672t9)
 
* 	 RHMAX.INWRFG.TAUINW
 
DIMENSION P(46,72).U(46, 219 .V(4 6,72 T( 6.7 2,g),SH(4 6,7 2,9),
9
 
* 	TS146*72).SHS(46.72).TOPOG(46.723,PTC46.T),UT(46.729).


VTI46,72,9) TT(46,72.9),SHT(46,72,91SPA(46.72),PV(46,72)
 
* 	PU(46,72),CONV(46.72,2O)GT(46,72),GW(,e.72),PH1sc

4 6,723.
 
* 	Q[46.7z.9.4),QTf46.72,94)

* 	S046,72,&I9Si46.T,2),US(4&,72).VS46,T2),PHI(46.?2),
 
* 	 PIT(46.72),FD146,721, 
* 	LAT(46),DAU(t6')UXP(46),OYU(46).YP46,,SINL(46),COSL(46)
 
* 	DXYPIA6).FC46),C(300),CI(300,DUMMY(72
 
EQUIVALENCE(Q111LUti1 ,(Ti,1,I,(1iI,

* 	 (SD(1I.,i .CONV(l.1,1).I(QS(I.,IJUS(1.1).SPA(Ii).(VS(1,l)

* 	PHI(Cl).PtTIltltPV(i.1)), F(O(11) PU(1,1)),(C{3}.JSPI
 
OOMON/A BCO,/RSURP.SLEDO(46,72),VALBFGITCCSW.JALB.IALSSMOOT$
 
LOGICAL SMOOTH
 
INTEGER*4 SLBEDO
 
LOGICAL FLAGSINWRFG, ALBFO
 

C
 
C END C D E B L 0 C K F894 A S O F N O V 2 9, 9 7 3
 
C
 
CINCL 009 
 09820
 

DEFFuOYP(JIP) 
 09830
 
DO 40 J.JlPJMP 
 0980
DRAT.YPfJ)/DXP(J) 
 098-70
 
IF(DRAT.LT.I.) 0 TO 40 
 09880
 
ALPt.125.(DRAT-.) 09890
 
NMSORAT 
 09900
 
FNMN4 
 09910
 
ALPHWALP/FNM 
 09920

00 30 N.IjNM 09930
 
IMINC.IM.INC 
 09940
 
II " 
 09950
 
O0 10 IPINC.ZNCIMIINC 
 09960
 
DUMMYII)SPU(J.I).ALPH.fPU(J.IPNC).PU(JIMINC)PUCJI)PU(JI)) 
 09970
 
IMINC.u 
 09980
 

10 	I.IPINC 09990
 
DO 20 I3INCIMINC 
 10000
 

20 PU(JI)tOUMMYI) 10010
 
30 CONTINUE 
 10020
 
40 	CONTINUE 
 10030
 

RETURN 
 1l040
 
END 
 10050
 

-Figure 4. Original Code for AVRX Routine .
 

4-16.1 	 _ G1S1N L 

QUAjr 

http:TSH.PTS.SMS.GTGWTOPOGUT.VTTTSTPTSPAPV.PU
http:mPS(II),JIUS1I).JHUS(II),Ip,.JM


OAVRX
 
.... OAVRX 3
 
t
 

SUBROUTINE AVRX 


C*.. THIS-SUBROUTINE SMOOTHES THE ZONAL MASS FLUX AND GEOPOTENTIAL OAVRX 4
 
0 ... GRADIENTS NEAR THE POLES TO HELP AVOID COMPUTATIONAL INSTABILITY. OAVRX 5
 
C ....
 
C... COARSE NINE LAYER COE BLOCK FEBRUARY 1976 


REAL KAPA.LAT 
 N
 
COMMON J$,4.NLAYPTROP,JMMI.FIM,NLAYM1.NLAYPIOLAT.OLO .
 

* ISTART.KM.TAUTINROT.NROT. 

* OTTAUITAUtXINT,IDAY.JOAY.TOFDAYPJDATE.JMONTM(2) JYEAR*NSTEP, 

* NCYCLENCOMP3NHUOGANTAUP,TAUI.TAUETAUOMRCH. 
" P GRAV.RGAS.KAPA.PSL,EO.FHUNFLW.PSF.RSOIST.SNOCOSO.RNAX. 
* COX.JUHYC(151), 
* XLABEL 20).SIG(20),DSIGC2Oh)SIGE(21),DSGO(19). 
* LATIB).SINL(16)*COSL(161.OXU(16).OXP16},OYU(16),DYP(16|,
* OXYP116).F(16),DUMHY(24). 

* TS(16,24!)SHS(16,24GT(16,24),GW(16.24).PHIS(16,24 , 
* 	 TOPOG(16.24) 
DIMENSION U(16.24,9)V(16.24,qhT(16,24,9).S$(16.24.9)P(16.24). 

* 	 C(300) 

EQUIVALENCE (C(1),JM3 

COMMON UVI.SH.P 

COMMON/WORKIPU C16.24) 

O0 40 JsCUNMI 

DRATxOYP(21/DXP(J) 

IF(DRAT.LT.I.) GO TO 40 

ALP.,125*(DRAT-.) 

NNSORAT 

FNM.NM 

ALPH.ALP/FNM 

00 30 Nl1,NH 

IHl4-1 

ISIM 


00 10 IPi.lIM 

OUMMY(1).PUJl)*ALPH*(PU(JIPII-PU(JIMl).PU(JI)PUJ,})) 

IM1.1 


10 ISIPi 

O 20 l.!,1$ 


20 PU(JI).OUMMY(I) 

30 CONTINUE 


40 CONTINUE 

RETURN 

END 


OAVRX 6
 
OAVRX 7
 
OAVRX a
 
OAVRX 9
 
OAVRX 10
 
OAVRX 11
 
OAVRX 12
 
OAVRX 13
 
OAVRX 14
 
OAVRX 15
 
OAVRX 16
 
OAVRX 17
 
OAVRX is
 
OAVRX 19
 
OAVRX 20
 
OAVRX 21
 
OAVRX 22
 
OAVRX 23
 
OAVRX 24
 
OAVRX 25
 
OAVRX 26
 
OAVRX 2T
 
OAVRX 28
 
OAVRX ?9
 
OAVRX 30
 
OAVRX 11
 
OAVRX 12
 
OAVRX 33
 
OAVRX 34
 
OAVRX 35
 
GAVRX 36
 
OAVRX 37
 
OAVRX 38
 
OAVRX 39
 
OAVRX 40
 
OAVPX 41
 
OAVRX, 42
 
OAVRX 43
 
OAVRX 44
 

Figure 5. Version of AVRX for Climatology
 

Simulation with a Course Grid
 

4-16.2
 

http:U(16.24,9)V(16.24,qhT(16,24,9).S$(16.24.9)P(16.24
http:TOPOG(16.24


SUBROUTINL AVRX({ PU ) AVX a 

C AVPX 3 
DIMENSION PU(416),NM(16 ALPHA(6IA(E26).y(26 AVQX A 
DATA NMfO,31,1,6,0.0.0.0,,ttO.,1.1,3.0/ AVRX S 
DATA ALPHA/O..1.18bS72E-II,.?08591E-I,4.S13QI3E.2.9.56332?E-3. AVRX 6 
* 0..O.0,0...OoG9.SS3327E-3.I.5I3dI3E-2.I.?0R5QIF-I. AVRX 7
 
* 1.186572t-1,O./ AVRX 8 

C AVRX 9 
C SMOOTHES THE ZONAL MASS FLUX AND GEOPOTENTI'L GRADIENTS AVRX 10 

C NEAR THE POLES TO HELP AVOID COMPUTATIONAL INSTABILITY AVNX 11 
C AVRX 12 
C NOTE. THIS ROUTINE HAS TEEN SLIGHTLY ALTERED AVRX 13 
C AVRX 14 

DO 40 J.2,15 AVWX 15 
IF (NM(J4.LE.0) GO TO 40 AVRX 16 
Jt=26({J-1) . AVRA 17 

J24jl.l AVQ. Is 
NMJ=NH (J AVRX 19 
00 30 N.jN4J AVX ?0 

X(24PI) z PU142124) - PU(JIU?4) AVRX PI 
xcllX(25) AVHX 2 
X(26)=A(2) AVQX 23 

Y(ItaS) . X(2I2S) - X(112S) AVR ?4 
Y(I12S) Y(I;25) ALPHA () AVQX >5 
PU(JI1253 . PU(JII2ST * YIlIPS) AVRX ?6 

30 CONTINUE AV4X 1T 
40 CONTINOF AVOX ?8 

RETURN AVUR l9q 
END AVR 30 

Figure 6. Code of Figure 5 Vectorized for the STAR-100
 

4-16.3
 



I= 2,5 (or J = 12,15)
 

DO 20 K = 2,24
 

P(K, J) 	- [{P(K+1, J) - P(K, J)} 

-{P(K, J)- P(K-I, J)}] 

*A + P (K, J) 

20 CONTINUE 

(a) 

Z= 	[{P(2, J) - P(I, J)} 

-{P(25, J) - P(24, J)}] 

*A
 

=
P(1,J)	Z + P(1,3)
 

=
P(25,J) Z+ P(25,J)
 

P(26, J) 

(b)
 

Figure 7. Restated AVRX Loops in J=2,5 and J:12,15
 

4-17
 



The code in figure 8 is executed twice. The J index takes the
 

values 2 and 15 during these executions. This fact is
 

highlighted in figure 8 by underlining the indices J=2, the
 

first of' which can be found to have a 15 underneath it. As in
 

the previous example, figure 8 consists of two parts, (a) and
 

(b). The loop shown in 8(a) can be put in a vector form with
 

-length of only 23 elements. There is no need in this case,
 

however, to gather and scatter data in order to save and
 

restore elements, since the large register file of the FMP can
 

be scheduled to handle the necessary sequence of scalar load and
 

store operations.
 

In addition to sequences like AVRX which cause concern for
 

analysts wishing to optimize code for the STAR-IO0/FMP, another
 

subroutine loomed as a mighty challenge for FMP vectorization.
 

The subroutine LINKHO in the original GISS model was recoded
 

for the Control Data FMP and yielded a sparse .020 gigaflop
 

performance. No amount of 'local' vectorization, as was

applied to the other metrics, could seem to yield any better
 

performance. The LINKHO routine developed by David Soll was
 

then acquired and its STAR-1O0 listing is included in appendix
 

B. The methodology employed in this vectorization is amply
 

discussed in reference 6.
 

4-18
 



K= 2,24 

P(K 2 -= {P(K+I,f[ )-P(K,2)}
is 

-{P(K, 2-P(K-I,2}] 

*A +P(K,) 

(a) 

Z [{P(2, -P(I, __)} 

- {P(25, )P-(24,2}] 

*A 

P(1, 2) = z + P(1, 2) 

P(25,2=Z + P(25,2) 

(b) 

Figure 8. Restated AVRX Executed for J=2 and J=15
 

4-19
 



4.0 THE MIT MODEL
 

The MIT model is authored principally by Cunnold, Alyea,
 

Phillips, and Prinn and supported as part of the Climatic Impact
 

Assessment Program by the U.S, Department of Transportation.
 

Its objective is to simulate the distribution of ozone as
 

effected by a simple but reasonably realistic dynamical model
 

with some more-up-to-date photochemistry. The dynamics is
 

simplified by the quasi-geostrophic approximation so that a
 

time step of one hour can be used because the pronounced
 

seasonal variations in ozone require several years of
 

integration before a statistically steady state can be expected.
 

Although the heating due to the absorption of solar radiation
 

by ozone is computed explicitly and precisely for the
 

stratosphere, empirical representation is employed for the
 

lower atmosphere. The latter is not appropriate for daily
 

prediction of tropospheric weather, nor is it satisfactory as a
 

means of predicting in a fundamental sense such properties as
 

the typical pole-to-pole temperature difference in the
 

troposphere. In spite of its simplicity, it fulfills its
 

purpose to create zonal flows, large-scale eddies, and
 

meridional circulations in the troposphere which are realistic
 

in a statistical sense, and which can be affected by
 

stratospheric ozone at higher elevations and can redistribute
 

that ozone in a natural manner.
 

The model was used to simulate stratospheric motion patterns,
 

meridional circulations, and ozone density over a 3-year period
 

as a function of height and latitude, eddy transports of
 

4-20
 



ozone, surface destruction of ozone, correlations of ozone with
 

other variables, and annual cycle of columnar ozone in high
 

latitude. It has a mission to predict ozone distribution under
 

some perturbed conditions such as those which could conceivably
 

be caused by NO from aircr-aft engines.
 
X
 

For the MIT model, the system of governing equations, shown in
 

figure 9, is basically similar to that of the GISS model shown
 

in figure 1. Comparing the two figures, a few differences can
 

be noted. First, because the emphasis of the MIT model is more
 

on the development in the upper atmosphere where the water vapor
 

is virtually non-existent, equation (6) in figure 1 for the
 

conservation of the specific humidity is replaced by a
 

corresponding one for the ozone mixing ratio denoted as (6t) in
 

figure 9. The heating term Q in equation (4) will consequently
 

no longer have any contribution from the precipitation. Rather,
 

the radiation is the only process that plays here.
 

Secondly, the quasi-geostrophic approximation necessitates some
 

reformulation of the equation of motion for prediction. A
 

vorticity equation is first derived from the equation of motion
 

by cross-differentiation to cancel the pressure term. In the
 

meantime, the vorticity can be represented in terms of the
 

geostrophic wind and, in turn, the balanced pressure which can
 

be taken as the stream function of the horizontal velocity.
 

Thus, equation (1) in figure 1 as the prediction equation of
 

motion is replaced by the vorticity equation in terms of the
 

stream function as in equation (1'), together with the balanced
 

condition (geostrophic), equation (1'a), both in figure 9.
 

4-21
 



The vertical coordinate is Lz-inF where V is pressure aiviaea Dy 

1000 mb which represents the surface pressure. In this 

vertical coordinate, the continuity equation takes the form 

shown as equation (2'), and the hydrostatic equation is given in 

equation (5').
 

Equation (3), the equation of state, remains the same and is
 

duplicated as (3'). The thermodynamic equation (4) becomes (4')
 

in figure 9, where Q contains the absorption of solar radiation
 

by ozone as well as infrared cooling.
 

v2 = kX~kxV V±+24P) 7aaX (F
at fV--F 

' (11a)v2 2wV.iuV 

w=,72 ax  (2')
aP
 

(3')-=RT 

P 

aT'= _ kXVqPVT' - WS +Q (4') 
at c 

(5')RT' = a4?/aZ 

K§3 

at - 3 3Z703HoVP ) 

'_X03  =-kXV'P-Vx -o a a d G' ( 
3az 

Figure 9. System of Equations for MIT Model

4-22
 



The derivation of this set of equations went back to Lorenz'
 

work in 1960 for an energetically consistent formulation of the
 

quasi-geostrophic system (ref. 7). In order to have suitable
 

energy invariants, all terms in the vorticity equation which
 

involve both the rotational and the divergent part of the wind
 

field should be omitted.
 

Peng in 1965 (ref. 8) was the first one to successfully perform
 

a simple numerical experiment concerning the general
 

circulation in the lower stratosphere with Lorenz' dynamical
 

system. Inaddition, he chose the spectral method on the
 

grounds that
 

i) the variation of the Coriolis parameter can be handled 

easily; 

ii) there is no distortion of bass distribution; 

iii) no artificial lateral boundary conditions are 

necessary.
 

For simplicity, only wave numbers 2 and 6, in addition to wave
 

number 0, are included to represent the extra-long wave in the
 

stratosphere and the dominant unstable wave in the troposphere,
 

respectively.
 

Following in Peng's footsteps, Clark used the same dynamical
 

framework in 1970 (ref. 9) to model the radiative and
 

photochemical process as suggested by Lindzen and Goody (ref.
 

10) for the winter stratospheric circulation with waves 0,1,2,3,
 

and 6. Clark did not include odd nitrogen but increased his
 

ozone absorption coefficients artifically by 40%. The
 

4-23



integration was carried out to only 230 simulated days which is
 

certainly not long enough to show any complete annual cycle.
 

The MIT model continues the work of Clark to predict ozone by
 

simulation of a three-year period with a 25-layer dynamic model.
 

The distributions of NO and odd hydrogen deduced by McConell
 
2
 

and McElroy (ref. 11) are used to incorporate in a simple way
 

the chemical effect of these species. The dynamics is
 

essentially the same as that of Clark and Pengi except that all
 

waves up to wave number 6 were included.
 

Because the number of waves resolved is as low as 6, taking
 

advantage of the tendency for larger-scale motion in the
 

stratosphere, use of the classical interaction coefficient
 

method is justified to handle the nonlinear terms. An
 

exception to this is the ozone heating term Q of (4') and
 

photochemical term G' in the rate of change of ozone mixing
 

ratio (6').
 

For convenience, the two hemispheres are assumed to be
 

geographically similar. This has the advantage that the
 

approach to statistically stationary behavior of ozone can be
 

examined at intervals of 6 months rather than 12 months in the
 

presence of a pronounced annual cycle at a fixed latitude. The
 

difference between hemispheres is a matter which the authors of
 

the code chose to postpone. Accordingly, the orographic height
 

used in the model is defined such that the southern hemisphere
 

is a mirror image-of the north.
 

The vertical domain of the integration extends from Z=O at the
 

surface to Z=10.13675 at the model top which corresponds to an
 

4-24
 



isobaric lid on the model at a pressure of about 0.04 mb, a
 

standard atmospheric height of 71.6 km. This height was chosen
 

to be suitably far above the main ozone layer, high enough to
 

include the photochemical equilibrium region and to minimize
 

the mechanical effects on the motions below. The range in Z is
 

divided evenly into 25 layers, each of thickness AZ=0.40574.
 

The values of stream function are defined at the midpoints of
 

these layers, while vertical motion and temperature are defined
 

at the interfaces. The coordinate Z varies almost linearly
 

with height according to the hydrostatic relation so that AZ
 

corresponds almost uniformly to a height increment of 2.89 km.
 

This choice gives good resolution in the stratosphere.
 

The spectral method calls for expansion of variables in terms
 

of spherical harmonics. Thus the representation of the stream
 

function, for example, takes the form of equation (7) in figure
 

10. Equation (8) gives the structure of the spherical harmonics
 

and (9) gives the associated Legend re Polynomial. Note that (8)
 

is in complex form and to insure that the fields are real, it
 

is necessary to have equations (10) and (10a) in which the 

asterisk denotes the complex conjugate. Equation (11) gives the 

vorticity. 

The methodology is illustrated with a shorter version of the
 

vorticity equation (1') having only 2 terms, namely the
 

Coriolis term and the advection term as in equation (12).
 

Inserting the appropriate expansions into the vorticity
 

equation (12) and integrating the whole equation with respect
 

to g and X obtains the transformed form as equation (13).
 

The truncation used to date has M=J=6. This provides 79
 

degrees of freedom in each variable at each vertical level.
 

4-25
 



M M ImlIJ 

' 0m=ln1)en = "n,n (7) 
=--M n=mI 

" 
Ym,n(pX) P11 &)),n(l n (8) 

F (n-m)!-I T" ! dngtm 

Pm,n(P= [(2n+) el-v dn+m 
2nn!d,* (A/')~n(9) 

O-m,n = (-I)m 0*m~ 0Oa)
4m,n(Ia 

M Iml+J n n+
 
t=V2,P- E E- tpm,nYmIn
 

2m=-M n=lml a

L all+1P a alpa (12)-c 

at a2 ax a2 L ax ax a. J 

dcm,n 2 m . a2 

dt =n(n+l) ' mnmn n(n+l) (13) 

I - M Iml 1-j M 1m2I+j . mnmm 

where Fm, = -- a4 Y E z z Im,n m2 ,n2 non (14)mj-M n1=1mI n2=mmj-M 2 112 

mrnI rnn
and the interaction coefficients Ln nin 

2 
are given by 

mm 1 m2 dPm'n2 dPmn, d14 
L n n I =n [n,(n+)-n2 (n 2 +1 ) 1 S Pm,n mlPm,,nl dp m 2Pm2 ,nl2 d)t

-I (15) 

form m.1m-n 2 

nnn 2
 

form # MiIrn2
 

Figure 10. Some Algebra of Spectral Model
 

4-26
 



The interaction coefficients are pre-calculated and stored. To
 

extropolate in time (prediction), the "4-cycle" version of the
 

time-differencing scheme formulated by Lorenz (ref. 12) is used
 

for step-wise numerical integration. Taking advantage of the
 

quasi-geostrophic approximation, a time step of one hour is used
 

in each cycle. Using this model, four hours of computer time
 

was required on the IBM 360/95 to integrate one simulated year.
 

The ozone heating term and the photochemical term are
 

transcendentally nonlinear, and quasi-linearization to put them
 

in a quadratic form did not seem to be accurate enough in some
 

cases because of the rapid dependence on temperature of some
 

reaction rates. These were therefore evaluated at each time
 

step by the transform method as follows:
 

i) transform the wave number representation of variables 

to physical space at points of a fixed 

longitude-latitude grid; 

ii) compute the above terms at these physical points; 

iii) transform these computed physical point values back 

into the spectral form; 

iv) add these contributions (now in spectral form) to the 

remaining terms (that were calculated by the 

interaction coefficient method). 

The longitude-latitude grid of the physical space employed in
 

this transform method had 16 points in longitude and 15 in
 

latitude. The latter provides an exact quadrature for the
 

quadratic product.
 

4-27
 



The heating scheme consists of a relatively precise evaluation
 

of heating in the stratosphere combined with the more empirical
 

Newtonian cooling in the lower atmosphere (see figure 11). The
 

contribution due to the absorption of solar radiation by ozone
 

is computed explicitly by evaluating the integral of equation
 

(17) in figure 11.
 

(16)Q1 = (X03 /j)Q(N sect)-c , h(Z)T' 

(17)
where Q(N sec) zfaie exp(-aN sect)dA 

(18)Q2 = cph(Z) (T*-T') 

(19)Q= Q1 + Q2 

Figure 11. Heating/Physics for MIT Model
 

. 4-28
 



The same kind of integral is also employed in the computation
 

of photochemistry as in equation (21) of figure 12. For speed
 

of computation, a table was initially evaluated by numerical
 

procedure in integration with respect to A for a large range of
 

N(sec) in equations (17) and (21). In the -course of the model
 

simulation, a table look-up is then performed in place of
 

actually carrying out the integral when encountered.
 

The model photochemistry includes the Chapman reactions, the NO
 

and NO catalytic cycle, and several reactions between hydrogen
 
2
 

and atomic oxygen. Figure 12 includes a list of the reactions
 

used in the model.
 

G= 002 
G0 

1 
0 +XN0JNO) 
0.21k [2(k x+ 

k 
3XNo + (k 4 XoH 

kx 
2 (20) 

where Ji=f (A)I(A) exp (-aN sect) dA (21) 

i= 03 ,NO2 

Reaction 

I. 02 +hv-20 
2. 0+02 +' 03 +'Y 

3. 03 +hv-*02 +0 
4. 0+03 . 202 
5. NO+0 3- NO2 +02
6. No2 + O -NO +O2 

7. N02 +hv-NO +0 
8. OH +O0-.2 + H 

9. HO2 + 0  2 +OH 

Figure 12. Ozone Generation/Chemistry for MIT Model
 

4-29
 



5.0 SPECTRAL CODE ANALYSIS
 

The MIT code consists of two parts/programs, namely STRAT1 and
 

STRAT2. The primary purpose of STRAT1 is, among other things,
 

to establish an appropriate "initial" condition for the long

term climate simulation, with full dynamics and chemistry,
 

which is coded in STRAT2. The main concern therefore, in this
 

analysis, will be with the program STRAT2 only.
 

The code is, in general, quite well structured in that it is
 

very modular. As can be seen in figure 8, the execution of the
 

program STRAT2 is essentially a double loop in which one
 

subroutine is called after another. Hence, figure 13 can also
 

be taken as a flowchart in the sense that each subroutine
 

represents a block for a task.
 

Much of the code is structured in loops. In fact, a few
 

subroutines are composed of only one single, simple loop as
 

displayed in appendix C. To vectorize these is a rather trivial
 

matter.
 

The subroutines in appendix D have been recoded, from the
 

standpoint of syntax only, so that they can be easily followed
 

as well as verified. This could be considered as a pre

vectorization pass to show an intermediate step on the way to
 

complete recoding and restructuring of data. This is discussed
 

at greater length later in this report. In the original code
 

the indices of arrays are managed/manipulated explicitly by the
 

programmer. In the recoded version, use has been made of the
 

array structure implied by the FORTRAN DIMENSION declarations in
 

terms of the ordering of elements. This brings the logic of
 

most routines into much better perspective, i.e., in simpler
 

4-30
 



READ3 
-READ10-
NLNADJ 
TOPHT 
START/RESTRT 
THWIND 
ENERGY 
WRT6 
CLOCK 

CORFOR 
FRICTN 
MJAB(PSI,ZETA,...) - DZERO,UPACK 
MJAB(TOPO,PSI,...) -DZERO,UPACK 
ADD2A 
MJAB(PSI,T,...)-- DZEROUPACK 
DBHEAT O3HEAT 
RGAMMA 
RKJMAT DX3CHM 
D3SLN 

z V2W O3CHEM 
WRT9 I 
SSWTCH AVQJ--O3COL ' QJT4 
WFIELD -DZERO 
STABLE RTECON-EXPT 
PRDICT(ZETA,...) I 
PRDICT(T,...) CHEMEQ 
DZERO 
MJAB(PSI,XO3, ... )r DZERO,UPACK 
DIFFXI FCOEF 
WADVXI -- XDERSP ERROR 
XIGENR VPROF 
PRDICT(XO3,...) 
03SURF 
OXTOO3-- SPCGD1,GDSPC1 
STREAM 
THWIND 

ENERGY 
WRT6 

CLOCK 

Figure 13. Program Flow of MIT Model
 

4-31
 



structures of loops whose vectorization can be effected readily.
 

As amatter of fact, it exposed not only the possibility/
 

feasibility, but also the advantage to restructure the data
 

block in the entire program.
 

In the process of recoding, an effort was made to pull out
 

portions of code that have to be executed/initialized only once.
 

These are grouped together under an entry point with the same
 

name as that of the routine except appended with a digit 0. In
 

addition, a letter V was added as a prefix to the original name
 

of each routine that was recoded, as a name for the recoded
 

routine. However, the recoded version is not necessarily in
 

vectorized form.
 

The 	discussion of the spectral code will start with the
 

simplest routine, DZERO.
 

SUBROUTINE DZERO(A)
 
COMMON /CONSTS/ INOEXNRLRINSINSZKINT.ILEVlILEV2,NVERTNRTP,
 
I LRTPNTYPENVECT.NVREAL.NVZON.NCYC.DT
 
DIMENSION A(1)
 
ILa(ILEVI-1)*NVREAL*I
 
IH.ILEV2*NVREAL
 
DO 100 IIL'IH
 

100 	 A(I)s0.DO

RETURN
 
END
 

This routine is used to zero out a block in the memory for
 

initialization. The construct is straightforward; it consists
 

of a single, simple loop 100 which can be put easily in one
 

vector instruction as
 

AD=0
 

where AD is the descriptor representing the vector A(I),I=IL,IH.
 

However, since each of the FMP vector pipes has two paths, it
 

would be wise to break the vector AD into two halves, recoded as
 

follows:
 

4-32
 

http:A(I)s0.DO
http:LRTPNTYPENVECT.NVREAL.NVZON.NCYC.DT


SUBROUTINE VDZEROCA)
 
COMMON /CONSTS/ INDEX9 

DIMENSION A(1)
 

DYNAMIC ADliAD2
 

9001 	AolO.
 

RETURN
 

ENTRY DZERO0
 
ILn(ILEVl-1)*NVREAL*1
 
IMUILEV2*NVREAL
 
LuIH-IL*t
 
L2=L/2

DEFINE (AD1, A(ILIIL*L2-1))
 
ILZIL+L2
 
LL=LL-L2
 
DEFINE (ADZ, A(IL2,IL2ELL-1))
 
RETURN
 
END
 

In the program, ILEV1=2, ILEV2=25, and NVREAL=79. Consequently,
 

here L=1896, L2=948 and LL=948. With the rate of 8 results
 

(in 	64-bit mode) per cycle, it takes 119=(948+4)/8 cycles for
 

both vectors ADI and AD2 to pass through the pipes. With the
 

start-up of 6 cycles, 15.17 results per cycle are obtained, or
 

0.95 gigaflop. This takes advantage of the multiple paths of
 

the 	FMP vector pipes, but not the capability of performing
 

multiple operations in each vector pipe. This is exploited in
 

the 	following.
 

SUBROUTINE AO02A
 
COMMON P(2366)
 
COMMON /CONSTS/ INDEXNRLRINSINSZKINTILEV1,ILEV2,NVERTNRTP,
 
I LRTPNTYPEtNVECTNVREALINVZONNCYCDT
 
K*ILEV2
 
00 200 ITMSILEV1*ILEV2
 
IH=K*NVREAL
 
IL'(K1I)*NVREAL41
 
00 100 IuIL9IH
 
J=I-NVREAL
 
P(I)..S'(P(J)+P(I))
 

100 CONTINUE
 
K=K-1
 

200 	 CONTINUE
 
RETURN'
 
END
 

4-33
 



This is another example of straightforward vectorization. The
 

vector length is much shorter. The vector code is as follows:
 

SUBROUTINE VAD2A
 
COMMON P(2366)
 
COMMON /CONSTS/ INDEX,
 

DYNAMIC QOiPO(26)],PO1P02
 

DO 150 KmX1KK,2
 
KI=K*i
 
K2=K*2
 

9002 QDPD(Kl).PO(K)
 
PD(KI).PD(K2)*PO(Ki)
 
PO(K)aQO
 

150 CONTINUE
 
9003 PD1=,5PlD1
 

PD23.S*PD2
 
RETURN
 

ENTRY ADD2AO
 
IL"(ILEV21)*NVREAL*1
 
KKhILEV2-ILEVI.
 
Do 50 K=19KK
 
DEFINE (pO(K),PCILZILtNVREAL'1))
 
ILwIL-NVREAL
 

50 	 CONTINUE
 
LzILEV2*NVREAL
 
L2'L/2
 
DEFINE (Pol.P(1:L2))
 
IL1zL2*1
 
LL=L-L2
 
DEFINE (P02,P(IL1IIL1+LL-1))
 
RETURN
 
END
 

Notice that in loop 150 there seems to be a temporary QD.
 

In fact, this temporary is not necessary during execution, as
 

the 	FMP is equipped with 4 read ports and 2 write ports which
 

can 	operate simultaneously. The appearance of the temporary QD
 

is therefore merely for the sake (or convenience) of
 

presentation to avoid any confusion (or ambiguity). Another
 

point worth mentioning here is that in loop 150, the FMP is
 

processing 2 vectors at a time, taking advantage of the
 

parallel nature of the FMP vector pipes in performing multiple
 

operations.
 

4-34
 



For NVREAL=79, it takes 16=6+(79+4)/8 cycles to complete the
 

vector statement 9002. Also, 2 cycles are required for the
 

Scalar Unit to update the indices K and K2. With KK=25, loop
 

150 takes 234=18*13 cycles. On the other hand, L=1975 and
 

LL=988, statement 9003 takes 130=6+(988+4)/8 cycles. There are
 

a total of 6050=(3*79+5)*25 flops. This therefore achieves 1.04
 

gigaflops.
 

SUBROUTINE PRDICT(YtZtFYpN)
 
COMMON /CONSTS/ INDEXNRLRINStINSZKINTILEV1,ILEV2,NVERTNTRP,
 
1 LRTPtNTYPENVECTtNVREALSNVZONNCYCOT
 
DIMENSION Y(1).ZII).FY(j)
 
DATA IFLG/O/
 
IF (IFLGGT.0) GO TO 100
 
OTINV~l.DoO/DT
 
DOTINVaI,D*O/(NCYCOOT)
 
IFLe=100
 

100 CONTINUE
 
ILCILEVI-1)'NVREAL*I
 
IHILEV24NVREAL
 
Au.(N-1)EODTINV
 
BaDTINV+A
 
B.1.D*O/B
 
IF (N.GTI) GO TO 300
 
00 150 IwILIH
 

150 ZCI)sB*FYI)
 
Go TO 400
 

300 CONTINUE
 
00 350 IsILtIX
 

350 ZCI)uB*(A*Z(CU.FY(I))
 
400 DO 450 ImILIH
 
450 Y(I)uY(I)+Z(1)
 

RETURN
 
END
 

The main code consists of loops 150, 350, and 450. All three
 

are simple loops and can easily be put in vector form. For
 

example, loop 450 will take the form
 

YD=YD+ZD
 

where YD and ZD represent the vectors Y(I) and Z(I),
 

-respectively, as initialized in the following. Since the FMP
 

4-35
 



vector pipes are capable of performing multiple operations in
 

parallel, it is not advantageous to separate loop 150 from loop
 

450 for the case of N=1. Therefore it should be recoded as
 

follows:
 

SUBROUTINE VPROICT(YOZ,FY.N) 
COMMON /CONSTS/ INDEX, . . 

DIMENSION Y(1)0 , a o 

DIMENSION BB(4)tCC(4)
 
DYNAMIC ZDYDFYDZDItZD29YD1.YD2
 

IF (N,LE.1) O0 TO 200
 
9004 ZDaCC(N)*ZD*BB(N)*FYD
 
9005 YDI=YDI*ZD1
 

YD2=YD24ZO2
 
RETURN
 

200 CONTINUE
 
9006 ZDsBB(1)*FYO
 

YDuYD*ZD
 
RETURN
 

ENTRY PRoICTO
 
OTINValD0/DT
 
OOTINV=I.DO/(NCYC*DT)
 
DO I Iw1,NCYC
 
AAs(1-I)*DDTINV
 
BB()loDO/(AA*DTINV)
 

1 CONTINUE
 
IL(ILEV1-1)*NVREAL*1
 
IHEILEV2*NVREAL
 
LsIH-IL*I
 
DEFINE (ZDZ(ILZIL.L-1))
 
DEFINE (YDY,(ILL*Ll))
 
DEFINE (FYDFY(ILIIL*L-1))
 
L2=L/2
 
DEFINE (YDIY(ILyIL*L2-1)
 
DEFINE (ZD1Z(ILIIL*L2-1))
 
IL1uIL.L2
 
LLPL-L2
 
DEFINE (YD2,Y(IL1IIL1+LL-))
 
DEFINE (ZD2,Z(IL1IIL .LL-1))
 
RETURN
 
END
 

4-36
 

http:IL1uIL.L2


For ILEV2=25 and NVREAL=79, the vector length is L=1975, and it
 

will take 247=(1975+4)/8 cycles to pass through the pipes.
 

With a startup of 6 cycles, it takes 383 cycles for 7910 flops,
 

or 1.29 gigaflops, in the case of N not equal to 1. When N=1,
 

0.98 gigaflop is attained as there are 3960 flops for 253
 

cycles.
 

One of the important points is that in the case of N=1, the
 

whole routine can be completed in one single pass of the pipes,
 

thereby doubling the efficiency. Since N will be less than or
 

equal to 4, the saving should be quite noticeable.
 

Statement 9004 is seen to take full advantage of the multiple

operations capability of the FMP vector pipes.
 

SUBROUTINE RTECON(LEV)
 
COMMON /CHEM/ XNEUT(26)hTEMP(6240),XK(240)tXK3(240).DOL(240),
 
1 TABEXP(50002)
 
COMMON./FTCST/ NLONNLATNGRID
 
COMMON /CHMCON/ XKIP(26)oXK3P(26),ACTEN1,ACTEN2,XDOHP(26)
 
DIMENSION T(570)
 
TLOWU,2560516.5536
 
J.NGRIDO(LEV-1)
 
JPUJ*1
 
K=O
 

00 100 LAT=1,NLAT
 
DO 100 LONsINLON
 
juj-l
 
KaK*1 
T(K),TEMPcJ)
 
IF (T(K).LT.TLOW) T(K)=TLOW
 

100 CONTINUE
 
CALL EXPT(TABEXPTNGRID)
 
L=O
 
K=O
 
DO 200 LAT=1NLAT
 
DO 200 LONQ1,NLON
 
L.L*1
 
K*K*l
 

XKI(K)aAK1P(LEV) T(L)
 
LuL*NGRID
 
XK3(K) XK3P(LEV)T(L)
 
DOHL(K)=XOOHP(LEV)*T(L)
 
LxL-NGRID
 

200 CONTINUE
 
RETURN
 
END
 

4-37
 



1 

In both loops 
100 and 200, the formal indices are LON and LAT
 

but the true indices are J, K; and L. This fact is not
 

detected by the compiler and therefore these loops are
 

considered uncollapsible for 
the purpose of vectorization.
 

Incidently, this type of loop appears throughout the entire
 

program. It has the virtue of ease 
in managing the loop.
 

SUBROUTINE VRTECON(tEV)
 
COMMON /CHEM/ . ,
 

COMMON /FTCST/ . .
 
COMMON /CHMCON/ . .
 
DIMENSION T(57O)
 

BIT C(4h)CD
 
DYNAMIC CDTEMPD(25) oTDXK1D'XK3DDOMLDtTL
 

9011 TDTEMPDCLEV
 
CDuTEMPD(LEV}*LT.TLOW
 

9012 IF (CD) TO=TLOW
 

CALL EXPT(TABEXPTtNGRID)
 

9013 XKXDMXKIP(LEV)*TD
 
9014 XK3DuXK3P(LEV)TDL
 

DOHLDuXDOHP(LEV)*TDL
 
RETURN
 

ENTRY RTECONO
 
TLOWu.25605/6.5536
 
MGRID=NLATONLON
 
DEFINE (TDqTtIlMGRID))
 
DEFINE (TDLiT(MGRID1I1MGRIO))
 
DEFINE (XKIDXKI(13MGRID))
 
DEFINE (XK3DXK3(1IMGRID))

DEFINE (DOHLDO0HL(-IIMGRID))
 
JPs1
 
00 I I.ILEV1,LEVZ
 
DEFINE (TEMPD(I),TEMP(J:J*MGRID-1))
 
Jud*NGRID
 
CONTINUE
 
RETURN
 
END
 

There are 1680:7*16*15 flops. The statements 9011, 
9012,'9013,
 

and 9014 are vector instructions of length 240. 
 Each of these
 

will need 36=6+(240+4)/8 cycles. Therefore, the rate 
is 1.47
 

gigaflops.
 

4-38
 



Worth noting here is that statements 9013 and 9014 cannot be
 

combined since the FMP vector pipes cannot perform more than 2
 

multiplications in parallel. Half of statement 9014 could be
 

moved to statement 9013 but in that case, all 4 read ports would
 

be put to use, and the total system would be busier. The way
 

the 	above is coded, only 2 read ports would be used in statement
 

9013 and 3 read ports in statement 9014.
 

The 	data in the vector TEMP is prepared in the routine 03HEAT
 

which calls DX3CHM, which calls O3CHEM, which calls RTECON.
 

Therefore, statements 9011 and 9012 could have been rescheduled.
 

The 	routine RTECON is called by the routine O3CHEM in a loop.
 

For 	greater efficiency, this structure should be modified.
 

SUBROUTINE CHEMEQ(DUMMY#LE V )
 
COMMON /SPECIE/ X03(6240)#CNO3(6240)9XNO2(330)
 
COMMON /FTCST/ NLON'rLATNGRID
 
COMMON /WORKBK/ AVJO3(5280)iAVJO2(E280)@AVQ03(5280)
 
COMMON /CHEM/ XNEUT(26),TEMP(6240)XK(240)XK3(240)9OOHL(240)
 
COMMON /CONSTS/ INOEXNRLRINSINSZKINTILEV1.ILEV2
 
COMMON /030X/ 03XFAC(2400)tO3XCON(2400)

DIMENSION DXO3DT(1)vmUMMY(i)
 
EQUIVALENCE (AVJO3(1)tDXO3OT(1))
 
,J(LEV-1)*NGRID
 
IN02u(LEV-1)'NLAT
 
KsO
 
FAC9.IE-12*XNEUT(LEV)*6856.8
 
00 300 LATUINLAT
 
INO23IN02+l
 
00 300 LON*leNLON
 

IF (AVJO3(%).GT.1.E-20) Go TO 200
 
03XFAC(J)sl,
 
03XCON(J)uOo
 
DXO3OT(J)z0,
 
GO TO 300
 

200 	AuXKI(K)
 
B.OOHL(K)*XN02(IN02)4XK3(K)
 
CsAVJO2(U)
 
D(B914C

BBAVJO3(UJ)A*C
 
CaD 
A=A*AVJO3(J)
 

4-39
 



03XFACtJ)ulc*XK3(K)OAVJO3(J)/FAC
 
03XCON(J)zAVJO2(J)*AK3(K)/FAC
 
Du*884*A*C
 
IF (D.LE,*) DuO
 
XU(-B*SQRT(D))/2**A-

XO3(J)AXO 3 (J)*O3XPAC(J)*O3XCON(h)
 
YxX03(J)-29S*DUMMY(K)
 
IF (Y.GT.0.) GO TO 299
 
XO3(J)uX*O3XFAC(J)4O3XCON(J)
 
OXO3OT(J)uO.
 
G0 TO 300
 

299 DXO3OT(U)uAVJO2(J)-DUMMY(K)
 
300 CONTINUE
 
500 CONTINUE
 

RETURN
 
END
 

This is another routine that has similar structure to the
 

subroutine RTECON and is also called by O3CHEM in a loop just
 

like RTECON. Here, the vector temporaries A, B, C, and D will
 

be made to streamline the vectorization by using dynamic arrays.
 

4-40
 



SUBROUTINE VCHEMEQ(DUMMYLEV)
 
COMMON /SPECIE/ * a .-

COMMON /FTCST/ , * .
 
COMMON /WORKBY/ . 0
 
COMMON /CHEM/
 
COMMON /CONSTS/ . .
 

COMMON /030X/ s * *
 
DIMENSION DXO3DT
 
EQUIVALENCE (AVJ03 . 

DYNAMIC ABtCDtX9Y
 
SIT E(4),EOZ(4IvZDZ1(4),ZID
 
DYNAMIC DOHLDXK3OrAVUO2DAVUO3OO3XFACDO3XCONDDUMMYDX03D
 
1 DXO30TD
 
DYNAMIC XXNO2DEDZDZID
 
DIMENSION XXNO2(16.1S)XFAC(2S).O3XFAC(2S),03XCON0(25)t
 
I DXO3OTO(25)
 
DIMENSION AVJ03D(25)9AVJO2D(2S)XO3D(25)
 

INO2i(LEV-I)eNLAT
 
DO 49 1=19NLAT
 
XXNO2(*,I)=XNO2(1I1N02)
 

49. CONTINUE
 
ZID=AVJO3D(LEV).LE.l.E-20
 
Y=2.S*DUMMYD
 
B=DOHLD4XXNO2D*XK30
 
C=*AVJO2U(LEV)
 
03XFACD(LEV)=I*XK3D*AVJO3DfLEV)*XFAC(LEV)
 
BBAVJ030(LEV-).XK1D*AVJ20(LEV)
 
A.XK1D'AVJO3D(LEV-)
 
C=(C-AVJO20(LEV))A
 
03XCOND(LEV)=AVJ02D(LEV)*XK3D*XFAC(LEV)
 
DinB*-4*C
 
ED=D°LT°.0
 
X=XO3D(LEV)*O3XFACO(LEV)+O3XCOND(LEV)
 
ZD=X*GToY
 
DXO3DTD(LEV)=0
 
IF (ED) D=O
 
X=(SQRT(D)-8)*.5
 
XaX/A
 
IF (ZD) nXQ3DTD(LEVI=AVJO2D(LEV)-OUMMYD

X=XO3D(LEV)
 
IF (ZID) 03XFACO(LEV)=1
 
03XCOND(LEV)=O
 
IF (sNOT.ZlD) X030(LEV)=X*0o3XFACD(LEV)*03XCON0(LEV)
 
RETURN
 

ENTRY CHEMEQO
 
MGRIO=NLATt NLON
 
00 24 ICTLEVlILEV2
 
XFAC(I)=9.lE-l2*685b8*XNFUT(I)
 
J=(LEV-I) NGRID.1
 
DEFINE (03XFACD(I).U3XFAC(JhJ+MGRID-1))
 
DEFINE (03XCONO(I),U3XCON(JJMGRID1)I
 
DEFINE (0X030TD(I),UXO3DT(JIJ.MGRID;l))
 
DEFINE (AVJO3O(I),AVJO3(JJ.MGRID-1))
 
DEFINE (,AVJO2D(I),AVIO2(JIJ*MGRID-))
 
DEFINE (XO30(I),XO3JIJ+tMGQID-I))
 

24 CONTINUE
 

DEFINE (XK30,XK3(iIMGRID))
 
DEFINE (XXNO2DXXNOZ(*.f))
 
DEFINE (XKiOXKl(ItMGRID)-)
 
DEFINE (DUMMYDDUMMY(IIMGRID))
 
DEFINE (DOHLDDOHL(1tMGRID)
 
DEFINE (ZD.Z(IMGRID))
 
DEFINE (ZIDOZI(iIMGRID))
 
DEFINE (EDE(iIMGRIU))
 
RETURN
 
ENO
 

4-4 1 



This routine is relatively lengthy. A number of things can be
 

found here. The dynamic arrays have illustraied themselves.
 

In fact, the condition vectors ED, ZD, ZID may be put in the
 

form of dynamic arrays to save some syntactical handling.
 

Loop 49 is an example of broadcasting that creates a longer
 

vectQr from a shorter one so that the former is compatible'with
 

other vectors.
 

In addition to vectorization, the order of the computations has
 

been somewhat rearranged to avoid delay/conflict as
 

necessitated by waiting for operands which would have been the
 

result of the previous instruction. This is, however, not
 

completely successful as can be seen in the computation of the
 

quadratic root X. Since 8 results can be produced per cycle,
 

and it takes 30 cycles for the first result to come out of the
 

pipe, the vector length has to be longer than 240=8*30 to avoid
 

any wait. Interestingly, in this case, NLON=16 and NLAT=15, the
 

vector length is 240=15*16 which barely avoids a wait.
 

A square root function is included in this routine; it will not
 

be discussed except to remark that it can be approximated with
 

some rational function. For the purpose of timing, it will be
 

treated as a known quantity.
 

There are 7221=6+15*(1+30*16) flops. It takes 16 passes of the
 

FMP vector pipes. With the vector length of 240, a rate of
 

0.78 gigaflop is achieved in this routine.
 

In this routine, there are two data dependent paths. A
 

strategy has been adopted to perform all the operations but to
 

4-42
 



store only the selected components. Another approach is to
 

compress out appropriate components before operations and
 

insert them back after computations. When the vector length is
 

rather short, the latter is not used.
 

Worth noting however, is that things may be different if the
 

loop in which this routine is called is expanded. This will be
 

pursued further in the following.
 

SUBROUTINE 03CHEM
 
COMMON /SPECIE/ X03(6240).CN03(6240),XN02(3301904(5340)
 
1 XNEVEN(16),XNOOO(176)
 
COMMON /FTCST/ NLONNLAT.NGRID
 
COMMON /QJBLK/ NZJL03,COLO3(26),LEVPCMtLEVOYN
 
COMMON /030X/ 03XFAC(2400),O3XCON(2400)
 
COMMON /CHEM/ XNEUT(26),TEMP(6240)tXK1(240)IXK3(240)*OOHL(240)
 
COMMON /WORKBK/ AVJO3(S8O) ,AVJO2(S280)1AVQ03(5280)
 
COMMON /CONSTS/ INDEXNRLRINStINSZKINTILEVlILEV29NVERToNRTP9
 
1 LRTP.NTYPENVECT9NVREALINVZONINCYC#OT
 
COMMON /MNCON/ SDqCO9SOXN
 
DIMENSION DUMMY(240) DXO3DT(1)
 
EQUIVALENCE (AVJO3(1)9,XO3DT(1))
 
NHs(NLAT*I)/2
 
'J0
 
La-NLAT
 
00 650 LEV=1,NZJ
 
LSL+NLAT
 
00 640 LATs1,NH
 
IuL+LAT
 

IPmL*NLAT-LAT.
 
AaXNOOD(J)*SDXN
 
XNO2(r)xXNEVEN(j)+A
 
XNO2(IP)aXNEVEN(J)-A
 

640 CONTINUE
 
650 CONTINUE
 

CALL AVQJ
 
ILEV1=LEVOYN
 
ILEV2=NZJ
 
s (ILEV4-1)*NGRID 
INO2=(ILEV1-1)*NLAT

0O 500 LFVITLEV1,NZJ
 
K=O
 
CALL.RTECON(LEV)
 

4-43
 



00 300 LAT=W1NLAT
 
INO2zINO2+1
 
DO 300 LON31,NLON

j=j+1
 

K=K~1
 
X=XK1(K)*X03(J)*XK3(K)*XNO2(IN02)+DOHL(K)
 
Y=AVJO3(J)*XO3(J)*AVJ02(J)
 

300 	 DUMMY(K)=X4 Y
 
IF (LEV.GT.LEVPCM) GO TO 295
 
CALL CHEMEQ(DUMMY',LEV)
 
GO TO 500
 

295 JMJ-NGRID
 
DO 299 K=lNGRID
 
J=.*J
 

299 DXO3DT(J)=AVJO2(J)-DUMMY(K)
 
500 CONTINUE
 

RETURN
 
END
 

A number of observations are in order. As noted before, in loop
 

500, routines RTECON and CHEMEQ are called. IT would be
 

desirable to incorporate these routines into the loop to avoid
 

any subroutine call. In addition, the loop should be broken
 

4-44
 



into two parts, namely, one for LEV=ILEV1,LEVPCM and one for
 

LEV=LEVPCM+1,NZJ. In fact, this division can be implemented
 

only for the second half to avoid a conditional branch.
 

The broadcast which was done in the routine CHEMEQ is seen here
 

toio. The double loop 640 and 650 s-eems to be needed only once.
 

In fact, the mission of routine O3CHEM is to obtain the vector
 

DXO3DT. In the process, intermediates such as X, Y, and DUMMY
 

are computed; they actually play a role of dynamic temporaries.
 

To conserve the storage space requirement, they were originally
 

dimensioned with a moderate length for the available computing
 

machinery. It has been said that one can buy computer time but
 

not computer memory. The FMP offers memory size that is
 

unthinkable to the "old timers", in addition to its
 

revolutionary computational capability. Therefore, it is not'
 

necessary to continue being stingy in the use of memory space,
 

though there is no point in wasting it either. As longer
 

vectors would be preferred by the FMP for performance, it is
 

wiser to increase the dimension for the intermediates X, Y, and
 

DUMMY, etc. in order to avoid calling routines RTECON and CHEMEQ
 

in loop 500.
 

SUBROUTINE VO3CHEM
 
COMMON./SPECIE/
 
COMMON /FTCST/ .
 

COMMON /QJBLK/ . .
 

COMMON /03 0X/, . .
 
COMMON /CHEM/ *. .
 
COMMON /WORKBK/ . ,.
 
COMMON /CONSTS/ . ,
 
COMMON /MNCON/ .
 
DIMENSION . . .
 
EQUIVALENCE . *
 

DYNAMIC ZK19ZK3,TOH.DUMZNO
 
DIMENSION YNOC16.15),ZK1P(40,a),ZK3P(24025,ZTOH(2O,25),
 

ZFAC(24O,25)
 
DIMENSION ZNO(24O.25)
 
DYNAMIC AoBCDXY
 

CALL AVQJ
 

4-45 

1 

http:ZNO(24O.25


T=TEMPD
 
EWTEMPD*LT*TLOW
 
YYsAVJO3o2*XO3D2*AVJ02O2
 
IF (E) T=TLOW
 

CALL 	EXPT(TABEXPT, . 

9020 	ZK1SZK1POT
 
ZK3=ZK3P*TL
 
TOHUZTOH*TL
 
DUMUZK1iXO3D2*ZK3*ZNO
 
DUMtYY*(OUM*TOH)
 

9021 	DXO3DTD1=AVJ02D1-DUMMYO1
 
DX03DTD3rAVJO203-DUMMY03
 
ZIAVJO3DLE.1,E-20
 
Y=2-S*OUM
 
BuTOH*ZNO*ZK3
 
CnB*AVJ02D
 
03XFACODl*ZK3*AVJ03D*ZFAC
 
B8*AVJQ3U+ZKI1AVJ020
 
A=ZK1*AVJO3D
 
Cs(C-AVOdD) *A 
03XCONDSAVJO2D*ZK3*LFAC
 
0sB4 8-4*C 
E=O.LTO
 
XnXO3D*O3XFACD*O3XCOND
 
ZaXtGT,Y 
DXO3DTDSO
 
IF (E) DuO
 
Xs(SQRT(D)-B)*,5 
XuX/A
 
IF (Z) DXO3DTDxAVJ2D-DUM
 
XuXO3D 
IF (Z) 03XFACDu1 
03XCONDxO
 
IF (.NOT.Z) XO3D=XO3XFACD*O3XCOND
 
RETURN
 

ENTRY O3CHEMO
 
J=(LEVDYN-1)*NGRI0*.
 
L2=(NZJ-LEVDYN1)'NGRID
 
DEFINE (TEMPDTEMP(CUJ*L2-1))
 
DEFINE (X0302vXO3(JtJ+L2-1))
 
DEFINE (AVJO3D2,AVJO3(CJJ.L2-1))
 
DEFINE (AVIJ0D29AVO2(,JJ*L2-1))

L1S(LEVPCM-LEVDYN1)*NGRID
 
DEFINE (AVJO2DAVJO2(JIJ#L1-1))
 
DEFINE (AVO3DAVJO3(CUJ.L1-1))
 
DEFINE (O3XFACDO3XFAC(JtJLI.l))

DEFINE (03XCONDO3XCON(j*u.LI-I)T
 
DEFINE (OAO3DTDvDX03DT(Jtd+L-i)
 
DEFINE (XO3DXO3(JIL1))
 
LL=(NZJ-LEVPCM)*NGRID
 
JJs(LEVPCM-1)*NGRID*1
 
LL2wLLI2
 
DEFINE (DX03DTOlOXC3DT(JJIJJ+LL2-1)}

DEFINE (AVJO2D1,AVJ02(JJtJJ*LL2-1))
 
DEFINE (DUMMYDIDUM(JJtJJ*LL2-1))
 
LL3WLL-LL2
 
JJ33J*LL2
 

4-46
 



DEFINE (DX030TD3,OXO3DT(JJ31JJ3LL3-1))
 
DEFINE (AVUO2D3AVJO2JJ3zJ34LL3-1))
 
DEFINE (tUMMYD3.DUHMYCJJ3I.J3*LL3-1))
 
NHU(NLAT.1)*.5

JwO
 

Lu-NLAT
 
DO 651 LEV=1-,NZJ
 
LSL NLAT
 
00 641 LAT=1,NH
 
JuJ*1
 
INX(J).L*LAT
 
IPX(J)L+NLAT-LAT*1
 

641 CONTINUE
 
651 CONTINUE
 

LOUNH*NZJ
 
XNOZ(NX)UXNEVEN(1:LO)*XNOOD(IILO)'SOXN
 
XNQ2(IpX)EXNEVEN(ISLO)-XNODD(lILO)*SDXN
 
INO2w(LEVOYN-1)*NLAT
 
DO 41 IwINLAT
 
YNO(*C.)wANO2(I*INO2)
 

41 	 CONTINUE
 
D 42 I=LEVDYNNZJ
 
ZK1P *('1)XKIP(l)
 
ZK3P(*I)sXK3P(l)
 
ZTOH(*,I)uXDOHP(I
 
ZFACi*,I)x
 
ZNO(*tI)uYNO(*)
 

42 	 CONTINUE
 
RETURN
 
END
 

The statement 9021 replaces the loop 299. Since it consists of
 

one single operation, it is broken into 2 halves for parallel
 

processing. The vector length in this case is 1920=16*15*16/2
 

and it takes 246=6+(1920+4)/8 cycles for statement 9021 to
 

complete.
 

4-47
 



Statement 9020 can be considered similarly. The vector iengtn
 

here is 3000=16*15*2572; it takes 381=6+(3000+4)/8 cycles to
 

complete.
 

After statement 9021 are codes from the routine CHEMEQ except
 

that the vectors are 9 times longer. Each therefore needs
 

276=6+(16*15*9+4)/8 cycles. Except for statement 9020, the
 

vector lengths for lines before statement 9021 are
 

6000=16*15*25.
 

The 	code after statement 9021 needs 4140=276*15 cycles, while
 

the 	code before needs 4161=756*5+381 cycles. A grand total of
 

138,042 flops is required. With 8547 cycles, it yields 1.01
 

gigaflops.
 

Loops 41 and 42 are for broadcasting. Loops 641 and 651
 

prepare the index vectors INX and IPX which are used to scatter
 

XN02 using indirect addressing.
 

SUBROUTINE FFTFOR(DATARLOATAIm)
 
COMMON /FFT/ WP(T,7,15),W( 2 97),NTRANS(16),NNNNNLR,NLATHF
 
1 NCPAR(7)LOGN
 
COMMON /FTCST/ N
 
DIMENSION DATARL(1inDATAIM(l)
 
ISIGNu1
 

1 	 DO 91 INN.N.NNNN
 
KNNUINN-N
 
DO 12 .J.1N
 
TEMPR 0ATARL.(J*KNN)
 
TEMPlwDATAIM(J*KNN)
 
DATARL(J*KNN)SOATARL(NTRANS'J)*KNN)
 
DATAIM(*KNN)=DATAIM(NTRANSCJ)*KNN)
 
DATAIM(NTRANS(J),KNN)STEMP!
 

12 	 DATARL(NTRANS,(J)*KNN)=TEMPR
 
NSSzN/2
 
DO 15 JxI9 NSS
 
Ls2*J-I+KNN
 
M*L*1
 
TEMPRaDATARL(L).DATARL(M)
 
TEMPIWDATAIM(L)+DATAIM(M)
 
DATARLCM)=DATARL(L)-OATARL(M)
 

4-48
 



DATAIMCM)=DATAIM(L.)-OATAIM{M)
 
DATAIM(L)aTEMPI
 

15 	 DATARL(L).TEMPR
 
IF (N-9) 91.91.20
 

20 	 00 90 1'2,LOGN
 
NUMU2*lI
 
NUMHF=NUM/2
 
NSSSN/NUM
 
DO 90 Jfl,NSS
 
NUMJK=NUM*(J-I)+KNN
 
Lz*NUMJK
 
MuL+NUMHF
 
TEMPRUOATARL(L).DATARL(M)
 
TEMPIxDATAIM(L)4OATAiM(M)
 
DATARL(M)uDATARL(L)-DATARL(M)

DATAIM C)OATAIM(L.)-DATAIM(M)
 
DATARL(L) TEMPR
 
DATAIM(L)*TEMPI
 
DO 90 K=2,NUMHF
 
LuKNUMKk
 
M=L*NUNHF
 
MM=NSS*(K-i)
 
W2cW(29MM)
 
IF (ISIGNGT.0) Go To So
 
W2anW2
 

80 	 CROSSR=OATARL(M)*W(IMM)*DATAIM(M)*W2
 
CROSSI=DATAIMCM)*W(IMM)-DATARL(M)W2

DATARL(M)*DATARL(L)-CROSSR
 
DATAIM(M)uOATAIM(L-CROSSI
 
DATARL(L)*DATARL(L) CROSSR
 
DATAIM(L)aATAIM(L)*CROSS!


90 	 CONTINUE
 
91 	 CONTINUE
 

IF (ISIGNLT.O) GO TO 99
 
DO 97 Xs1tNNN
 
DATARL(I).OATARL I)/N
 

97 	 DATAIM(I)SOATAIM(I)/N
 
99 	 RETURN
 

ENTRY FFTREV
 
ISIGN%-l
 
30 TO I
 
ENO
 

4-49
 

http:91.91.20


Routine FFTFOR performs the Fast Fourier Transform as a step in
 

the transformation between the physical space variables and
 

their spectral coefficients. First, the branch to statement 80
 

can be avoided if the variable W2 is properly set upon entry.
 

This is very little pre-processing but would allow having a
 

branch-free code sequence. Another branch after statement 15
 

can be removed as it serves no real purpose in practice.
 

Besides the pre-process setting, the code can be divided into 2
 

parts. The first part consists of loop 12 only to rearrange
 

the input sequence in support of the branch-free computation
 

that follows as the second part. The code is constructed to
 

transform, at one time, a single input sequence whose elements
 

are in the memory consecutively. Since the length of the
 

sequence N=16 is a small number in the program, there is very
 

little point to vectorize the transform itself. A better way of
 

utilizing the FMP is to perform the transform in the same manner
 

over many input sequences together. To do this, the sequences
 

must be aligned in such a way that all the first elements of
 

input sequences are consecutive in the memory, followed by all
 

the second elements, etc. This involves a transpose operation
 

which is time consuming in that one can expect as few as one
 

single word/result per cycle.
 

SUBROUTINE VFFTFOR(DATARL.OATAIM)
 
COMMON /FFT/ * , 

COMMON /FTCST/ , o
 
DIMENSION QATARL( .
 

DIMENSION RL(NN,1)YM(NN1)
 
EQUIVALENCE (RLDATARL)#(YMIOATAIM)
 
DYNAMIC PRPI#TR.TI
 
DYNAMIC RLDRLD0,YMO9YMO0
 

ISIGN=O
 
W2=W0
 

CONTINUE
 

4-50
 

9 

http:PRPI#TR.TI


CALL 	REA R
 

DO 15 L=19N,2
 
M=LI
 
PR=RLD(L +RLDCM)
 
RLD(M)=RLD(LI-RLD(M)
 
RLD(L)=PR
 
P!YMD(L).YMO(M)
 
YMO(U)=YMD(L)-YMO(N)
 
YMO(L)=PI
 

15 	 CONTINUE
 
NUMs2
 
NSSsN.S
 
00 89 1=2,LOGN
 
NUNHF=NUM
 
NUM=NUM4 2
 
NSS=NSS*.5
 
NUMJKs-NUM
 
D 89 Jml.NSS
 
NUMJKuNUMJK*NUM
 
Ls1.NUMJK
 
MSL+NUMJK
 
PR=RLD(L)*RLD(M)
 
RLD(M)SRLD(L)-RLD(M)
 
RLD(L)=PR

PI=YMOCL)*YMD(M)
 
YMD(M)=YMD L)-YMO(M)
 
YMD(L)=PIO
 
MM=O
 
00 89 K=2NUMHF
 
MMuMH4NSS
 
L=K*NUMJK
 
MsL+NUMHF
 
TItYMD(M)OW(I#MM)-RLD(M)*w2(MM)
 
TR=RLD(MI*W(IgMM)+YMD(MV*W2(MM)
 
YMO(M)=YMD(L)-TI
 
YMO(L]=YMO(L)*TI
 
RLD(M)=RLO(L)-TR
 
RLD(L)=RLD(L)*TR
 

89 CONTINUE
 
89 CONTINUE
 

IF (ISIGN.NE.-I) RETURN
 

RLDO=RLDO*FN
 
YMDO=YMDO*FN
 
RETURN
 
ENTRY FFTREV
 
ISIGN='
#2=-WO
 
60 To 9
 

ENTRY FFTO
 
00 110 Ili,N
 
DEFINE CRLO1)9RL(1ZNN.I))
 
DEFINE (YMO(I),YM(IINNII))
 

110 CONTINUE
 
DEFINE (RLORL(1INNN,11)
 
DEFINE (YMDO0YMCIINNN91),
 
FNsI.N
 
DO 111 1-1.7
 
Wo(I)=W(2,I)
 

111 	 CONTINUE
 
RETURN
 
END
 

4-51 



This routine is one that cannot be vectorized from the point of
 

view of the algorithm. There are 496 flops in each transform.
 

Assuming no instruction has to wait for the previous result,
 

each transform will need 496 cycles to get out of the Scalar
 

Unit. Each time an FFT subroutine is called, it has to perform
 

(15*NLEV+1)/2 transforms, where NLEV is the number of levels
 

involved.
 

NLEV is less than or equal to 25. If NLEV=25, for example,
 

there will be 188 transforms and 93,248 flops altogether.
 

If all transforms are performed through the pipeline as coded
 

above, the number of cycles needed for NN transforms is
 

126M+867 where M=(NN+4)/8.
 

For NN=188, 3891 cycles are required, which yields 1.5
 

gigaflops. This is for the computations only.
 

SUBROUTINE SPOFOR(ASPECAGRID,AIPNVERT)
 
REAL ARSP(30)1AGRIDiAX
 
COMMON /FT/ Wp(7.7P1)3W(2,7),NTRANS(16),NNN.NN.LRilNLATHF
 
1 NCPAR(7),LOGN
 
COMMON /CONSTS/ JI(2) ,LRJ2(I0).NREALNZONE
 
COMMON /CGBLK/ J4(861,NCOMP(12)
 
COMMON /FTCST/ NgNLAT,,6,ARSP
 
COMMON /GLOP/ P(7#7u15),WT(SO)9AR(0)
 
DIMENSION ASPEC(1),AGRT()tAI(1)
 
00 5 IdiNNN
 
AGRID(I)=O,
 
AI(I)=O
 
00 30 K2iNVERT
 
M=(K-)*NLAT*N
 
MM=(K-i)eNREAL
 
DO 30 J=1lNLATHF
 

4-52 

5 



4J=NLAT*1-J
 

EVENRmOo
 

LJOM*(J-J1)N
LjJOuM.JJ1)N
 

D0 10 I=19NZONEP2
 
10 	 EVENR.EVENR+ASPEC(MM+I)*P(t1,)
 

IF (LJO.NE.LUJO) GO +0 11
 
AGRID(L40*1)=EVENR
 
GO TO 16
 

11 DO 15 !=2,NZONE,2
 
15 ODDR=OODRASPECCNM*I)*P(IoIUt)
 

AGRID(LJ01l)=EVENRUDOR

AGRID(LJJOl)CEVENR'ODDR
 

16 	 ICE=NZONE.1
 
ICONZONE*3
 
DO 30 L=2,LRI
 
ODORSO.
 
OODImO.
 
EVENRnO,
 
EVENI=O.
 
IENONCUMP(L)
 
LJaLJOL
 
LJ.jLJJ0*L
 
DO 20 I=1.IEN0D2
 
EVENR=EVENR*ASPEC(MMfICE)*P(L,IJ)
 
ICEwICEfl
 
EVENI=EVENI*ASPEC(MM*ICE)*P(LtIJ)
 

20 	 ICEzICE*3
 
IF (LJ.NE.LJJ) GO TO 21
 
AGRID(LJJ)aEVENR
 
AILJJ=EVENI
 
GO TO 26
 

21 00 25" 12IENO,2
 
O00R=ODDR*ASPEC(M.ICO)*P(LI.J)
 
ICO=ICO"l
 
ODDIzOODIASPECMMICO)*P(LiIiJ)
 

25 	 ICOICO3
 
AGRIDO(LJ)=EVENR*OODH
 
AICLJ)=EVENIOODI
 
AGRID(LJJ)=EVENR-ODOR
 

)AI(LJJ)=EVENI-ODDI
 
LLJ2LJO+N+2-L
 
AGRID(LLJ)=AGRIDCLJ)
 
AI(LLJ)=-AI(LJ)
 

2 LLJJ=LJJ0*N*2"L
 
AGRID(LLJJ)sAGRID(LJJ)

AICLLJJ)z-AT{LJJ)
 

IF (NCPAR(L).EQ.0) GO TO 30
 
ICK=ICO
 
ICO=ICE
 
ICEmICK
 

30 CONTINUE
 
RETURN
 
ENTRY FORSPC
 
00 80 I=I,NVERT
 
Mn(-I)*NLAT*N
 
MMa(-1)*NREAL
 
00 70 J1lNZONE
 
R=04 
Do 60 KdlNLAT
 

4-53
 



LLxM*(KI) N+i 
60 RwR*AGRID(LL)*WP(IJK) 
70 ASPEC(MM*J)SR 

IC=NZONE 
DO 80 J 2,LRl 
IEND=NCOMP(J) 
DO 80 JJ=1tIEND 
Rae. 
c-0.
ICZIC+1 

00 75 Kxl.NLAT 
LLSM+(KfI)*N*J 
R=R*AGRID(LL)*WP(J,.J.K) 

75 C=C*AI(LL)*WP(J.JJK) 
ASPEC(IC*MM)=R 
ICWIC*1 
ASPEC(IC*MM)=C 

80 CONTINUE 
RETURN 
ENO 

There are two parts in this subroutine to perform the Legendre
 

transform in both directions. SPCFOR transforms the spectral
 

coefficients into Fourier coefficients and FORSPC transforms
 

the Fourier coefficients into the spectral coefficients. They
 

are really independent of each other in instructions, although
 

they share the same data block.
 

The data is structured in such a way that the spectral
 

coefficients of a given level are grouped together and followed
 

by those of the next level, and so on. The Fourier
 

coefficients of a sequence are grouped together and followed by
 

those of another sequence. This is a good structure for most
 

conventional non-vector computers to process data in vector
 

fashion, mainly to maximize the data flow rate. In fact, this
 

entire program was coded originally in this manner to achieve
 

vector-like performance with non-vector computers.
 

4-54
 



For 	the FMP, it is wiser to structure the data another way,
 

namely, to group coefficients of same index but for all
 

different levels and latitudes. This way, every instruction in
 

the transform can be performed on an array of elements that are
 

of the same index, rather than one single element. The
 

algorithm can then be kept virtually unchanged. As a matter of
 

fact, a closer look at the code will reveal that the algorithm
 

is basically scalar in nature and vectorization of it is almost
 

self-destructive.
 

One of the fundamental operations here is the inner product
 

between two vectors. One machine instruction on the FMP will
 

do this but it is designed to serve long vectors. In fact, for
 

a vector length of 4, nothing will be accomplished. In the
 

routine SPCFOR, the vector length will range from 3 to 4; in
 

FORSPC, the vector length is 15. In both parts, the inner
 

products are in the innermost loop. To avoid the drawback, the
 

program is recoded in such a way that the inner product is
 

broken into fundamental arithmetic operations and the loop for
 

it is turned inside out as follows:
 

SUBROUTINE VSPCFOR(ASPEC,AGRIDAINVERT)
 

00 30 KS1,NVERT
 
MM.(K-I)*NREAL
 
DO 30 J=I,NLATHF1
 
L-I 
EVENR(KoJL)=ASPEC(MM1)*P(Lol,J)+ASPEC(M4*31*P(L.3,J)
 
ODDR(KJ,L)SASPEC(MM.2)*P(L2J).ASPEC(MM4)0P(L4tJ)
 

10 EVENR(KoJL)=EVENR(KIJL).ASPEC(MM45)*P(1,StJ)
 
15 	 OO0R(KJ,L).ODOR(K,#JL) ASPEC(MM.6*P(16,J)
 

EVENR(KJL)EVENR(KJ.L} ASPEC(MM*7)*P(L,7,J)
 
AGRID(KuJL)=EVENR(KtJeL) 0DDR(KJL)
 
AGRIO(KNLATI-.JL)=EVENR(KJL)-ODDR(KvJL)
 

16 
 ICE=NZONE-11
 
DO 30 L=2,LR1
 
ICEzICE4 12
 
EVENR(K,UL)=ASPEC(MMICE)*P(L19J)*ASPEC(MM*ICE+4)*P(Lt3J)
 

4-55 



EVENI(K#J*L)=ASPEC(MM*ICE*I-)*P(Lol*,J)*ASPEC(MM*ICE*S)*P(Lo3vJ)
 
ODDR(KtJL)=ASPEC(MM*ICE*2)*P(L,29J)#ASPEC(MM+ICE*6)*P(Lt4tJ)
 
ODDI(K*-JL)=ASPEC(MM+ICE#3)*P(L,2*4)*ASPEC(MM*ICE*7)*P(Lt49J)
 
EVENR(KgJ L)=EVENR(K*J#L)*ASPEC(MM*ICE*B)*PCL959J)
 
EVENT(KvjtL)=EVENI(KvjiL)*ASPEC(MM+ICE*9)*P(LoSvJ)
 

20 CONTINUE.
 
21 CONTINUE
 

OCiDR(KvJL)uODDRCKJoL)*ASPEC(MM*ICE*10)*P(L,69J)
 
ODDL(KoJtL)uODDI(KJ*L)+ASPEC(MM+ICE*11)*P(L96vJ)
 

25 CONTINUE
 
AGRID(Ktj*L)=EVENR(KoJtL)*ODOR(KtJoL)
 
AI(K#JL)uEVENI(K#JtL)+ODDI(KtJ94)
 
AGRIO(KiNLAT*1-J*L )zEVENR(KgJ*L)-ODDR(KtJtL)
 
AI(KoNLAT*1-J*L)xEVENI(KoJ*L)-ODDI(K@JtL)
 
AGRIO(KtJtN*2-L)*AGRID(KJL)
 
AI(Ktj*N+2-L)=-AI(KPJ*L)
 

26 CONTINUE
 
- AGRIO(K#MLAT*I-JN*2-L)=AGRID(KiNLAT+1-JL)
 

AI(K#NLAT*I-JtN*2-L)=-AT(KNLAT*I-JtL)
 
30 CONTINUE
 

00 80 K=19NVERT
 
MMz(K-I)*NREAL
 
L=1
 
EVENR(KoNLATHFL)=ASPEC(MM*I)*P(Ll9N4ATHF)+ASPEC(MM*3)
 
1 *P(L,39NLATHF)
 

60 EVENR(KgNLATHFgL)*EYENR(KNLATHFoL)*ASPEC(MM45)*P(ISNLATHF)
 
AGRID(K$NLATHF#L) EVENR(KNLATHF94)+ASPEC(MM*T)*P(L,7,NLATHF)
 

66 	 ICE=NZONE-11
 
00 80 L=2,LRI
 
ICE=ICE+12
 
EVENR(KoNLATHF*L)=ASPEC(MM41CE)OP(L#19NLATHF)*ASPEC(MM*ICE*4)
 
1 	 *P(L,39NLATHF)
 
EVENI(KtNLATHFtL)aASPEC(MM*ICE*I)*P(L#2tNLATHF)+ASPEC(MM*ICE*5)
 
1 QP(L,4,NLATHF)
 

TO CONTINUE
 
AGRID(K*NLATHFtL)=EVENR(KNLATHFoL)+ASPEC(MM*ICE*8)*P(LiSiNLATHF)
 
AICKNLATHFL)=EVENI(KNLATHFL)4ASPEC(MM*ICE+9)*O (L,-;,NLATHP)
 

T6 CONTINUE
 
AGRIO(KPNLATHFiN*R-L)=AGRIO(K*NLATHFiL)
 
AI(KNLATHFN+2-L)=-AI(KNLATHFL)
 

so CONTINUE
 
RETURN
 

ENTRY FORSPC
 
0_0 180 IultNVERT
 
MMO(1-1)*NREAL
 
Jul
 
00 170 JJ*19NZONE
 
00 160 K=I#NLATHFI
 
KKz16-K
 
R(igjjojK)zAGRID(IgK*J)*WP(JtjjoK)*AGRID(IKKtj)*Wp jgjjoKK)
 

160 	 CONTINUE
 
R(I*JJ9,Jtl)*AGRIDtltBtJ)OWP(JgJJ98)*R(IPJJ9Jtl)
 
R(I#JJ*J*3)NR(IJJ9J92)*R(IoJJJY3)
 
R(IvJJtJo5)OP(IpJjtJ*4)*R(IiJJJ95)
 
R(19JJtJ*7)=R(19JJtJ96)*R(IgjjJ*7)
 

ASPEC(MM*jj)uR(ljjjt3)+R(IojJvJtl)
 
170 CONTINUE
 

ICmNZONE+I
 
00 180 J=2tLRI
 
DO lao JJ=191END
 

4-56
 



D 174 K1,oNLATHF1
 
KK=16-K
 

P ( J	 J K )

i
RCIJJJK)AGRID(IKJ)*WP(J*JJ K).AGR!D(IKKJ)*WP(JJJ9KK)
C(I#jj*JoK)NAI(ItKoJ)*WP(JqJJsK)AI(loKKoJ}*W
 

174 	 CONTINUE
 
R'1 ,JJ,J,7)R{IJJJ#7).AtRID(C!8J)*WP(JtJJOS)
 
C(IjjvJ,7) C(I ,JJ,'7) AI(I,8,J)WP(J.JJ,8)
 
00 175 K=19592
 
R(I.JJgJpK)tR(IJJtJOK)*R(I,4joJoK*l)
 
C(1JJJ,K)=C(IJJJ.K)*C(IJ.hJKI)
 

175 CONTINUE
 
DO 176 K=1,54
 
R(I,JJ,JK)SR(IJJtJK).R(IJJJK*2)
 
C(I,JJJ,K)3C(I,JJJIK).C(IJJ,JK*2)
 

176 CONTINUE
 
ASPEC(MMIC)=R(IJJtJ1) RIJJ.J'5)
 
ASPECCMM.IC*I)=C(I9JJoJ1l)*CIJJ'J'5)
 
IC=IC.2
 

180 CONTINUE
 
RETURN
 

ENTRY INT
 
NLATHFINLATHF-1
 
IEND.NCOMP(2)
 
RETURN
 
END
 

The 	intermediates R, C, EVENR, EVENI, ODDR, and ODDI have been
 

made vectors, and the variables AGRID and AI have been
 

re-dimensioned. The new dimensional structure is compatible
 

with the counterpart in the routine FFTFOR/FFTREV. However,
 

'the structure of the array ASPEC is for this moment left
 

untouched. In fact, what has been done in the above is far
 

from vectorization intentionally because the purpose was to
 

retain the main code structure so that it is easily followed.
 

Though it is not at all in vector form, it can be put in vector
 

form in a straightforward manner for one to see without having
 

it actually carried out. The key here is to move the loop over
 

the 	level into the innermost. The dimensional structure
 

reflects the order of the loops, and therefore the form of the
 

vectors.
 

4-57
 



SPCFOR is broken into two parts to avoid branches, leaving a
 

branch-free code!!
 

The performance is incredibly good; nearly the full speed of the
 

FMP can be realized as much of the instructions are 3-operation
 

combinations. The only consideration remaining is to
 

restructure ASPEC before SPCFOR and after FORSPC. This is slow,
 

but a proper segmentation can be arranged so that the
 

computation would be done for free.
 

The index of ASPEC takes the form of MM + K where MM provides
 

the starting point of the level L, and K gives the index of the
 

spectral coefficient. Conceivably, the data of the entire
 

program could have been restructured with ASPEC(L,K) in place
 

of ASPEC(MM+K). In that case, no further restructuring such as
 

pre- or post-processing is required.
 

Most subroutines of the original code not discussed above were
 

recoded using multiple indices, i.e., replacing Z(MM+K) with
 

Z(K,L) in syntax. These are found is appendix D where each
 

subroutine appears followed by the recoded version which has
 

the same name except prefixed with a V. It can be noticed that
 

one of the most common structures is as follows
 

DO 200 K=K1, K2
 

DO 100 L=L1, L2
 

Z(K,L) = ... X(K,L) ... > (22)
 

100 CONTINUE
 

200 CONTINUE /
 

4-58
 



LUOP,5 WincnI df-U QeL16t.Iay Q1Uxt jur44CC rlaVe geeui1!JLIL 


identified by brackets around them in the left margin of
 

appendix D.
 

A double loop in this very form is not collapsible for
 

veg-torization-because-the elements of the array Z and X are not
 

visited consecutively. However, if the data array is
 

restructured in such a way that the indices K and L interchange
 

their positions, the result is
 

DIMENSION Z(LL,KK), X(LL,KK)
 

DO 200 K=1, KK
 

DO 100 L=1, LL
 
> (23)
 

Z(LK) = ... X(L,K)
 

100 CONTINUE
 

200 CONTINUE
 

This same double loop is then readily reducible to one single
 

vector instruction of length LL*KK.
 

Simple loops are identified by an arrow in the left margin of
 

appendix D; these are, of course, readily vectorizable. Other
 

loops which are not quite in the form of (22) are marked with
 

brackets in the right margin of appendix D. However, these can
 

be converted to the form of (22) by merely interchanging the
 

'order of the double loop; these, in turn, can be changed to the
 

vectorizable form of (23) by restructuring of data.
 

What this amounts to is essentially that each data array not
 

only can be, but also should be, restructured into its
 

transpose. In other words, elements of same index (spectral or
 

4-59
 



physical) but of different levels should be grouped tgether,
 

followed by a group of another index, etc. This will virtually
 

render the entire program instantly vectorizable without change
 

to the program logic. In this sense, the code in its original
 

form is suitable for the FMP.
 

'Some comments are in order regarding the streamlining of the
 

code for high performance. Although these considerations have
 

to be treated on an individual basis, they are by no means
 

obscure and should be rather obvious to a reasonably well

trained programmer.
 

It can be noted that level delimiters, say LI and L2,
 

frequently appear in the code such that most loops run from Li
 

to L2. Data should be structured so that the loop can be
 

transformed into a single long vector from LI to L2. Elements
 

for L < LI and L > L2 can be grouped separately and processed
 

differently. Conceivably, these are few and could be processed
 

by the Scalar Unit in parallel with the vector operations.
 

The 79 components of the spectral coefficients for a 4-level
 

case are originally ordered as shown in figure 14. Elements of
 

the same index but different level should be grouped together
 

and, in addition, the data should be structured in three
 

portions as shown in figures 15a, 15b, and 15c. This avoids
 

the necessity to Compress in VCORFOR and Compress/Merge in
 

VSPCFOR, ... , etc.
 

In the physical domain, the data block should be structured as
 

A(LONG1:LONG2, LATI:LAT2, LVLI:LVL2). This change of the data
 

4-60
 



315
316 
303 313
314 304 

291 301 311
312 302 292 
310 300 290 280 -- --- - 279 289 299 309 

308 298 288 278 268 - - - 267 277 287 297 307 

306 296 286 276 266 256 244 255 265 275 285 295 305 

294 284 274 264 254 243 253 263 273 283 293 
-
- 236 271 281 - 

- 224 234 269 - - 235 225 -- ------- - |233 223 213 -. . . . . . .- 212 222 232 - 

231 221 211 201 -- --- - 200 210 220 230 

229 219 209 199 189 - - - 188 198 208 218 228 

227 217 207 197 187 177 165 176 186 196 206 216 226 
17192 202 - -- 215 205 195 185 175 164 174 184 194 204 214 
158 - - - . . ..-- - 57IO 

156 146  -- - ------ 145 155190 -- -
154 144 134 ------- 133 143 153 - - - -

152 142 132 122 --- - 121 131 141 151 _ _ - -

150 140 130 120 110 - - 109 119 129 139 149 

148 138 128 118 108 98 86 97 107 117 127 137 147 

79 -.-
-

.-.-
136 126 116 106 

-78 -113 
96 85 95 105 115 125 135 

123 -

-
-

77 67 --------- 66 76 111 

75 65 55 -- -- ---- 54 64 74 

73 63 53 43 ----- 42 52 62 72 

71 61 51 41 31 - - - 30 40 50 60 70 

69 59 49 39 29 19 7 18 28 38 48 58 68 

- 57 47 37 27 17 6 16 26 36 46 56 -

- - 45 35 25 15 5 14 24 34 44 - -

- - 33 23 13 4 12 22 32 - - -

- - - - 21 11
9 

3
2 

10
8 

20 - - - -

Figure 14. Ordering of Spectral Components in the Original
 
a 4-Level Case as an Example.
Code/Data for 


4-61
 



--- 

- - -1 3 51- - - - - 

70- - 11 - 3 . . - . .- 1.
 

4- -2 -2 -0 - - n W 11
 

21 1 0~ 2 ~ 7 916 

47-- V7 . jl - 

7.3 11.
 

2
12. 

-5 38 - - 89-3 -1 1. I - 

1
5 9 

29
19 89 


1 1 6 .1 11 -12- 1 1
 

0 -- -- 130n M1 

O. .

I349 n1 --

-
113 . . .. - - 76 2. 1- - 

1
- :.5315111 


- -7 - -7 -7 -176"
1 - . -


I-I
 
--95 79 


7 -- -- 

31 
- 5 

- - - - - . . .
26 IS W61~'6- - - - -

In n 1062 42 U
 

. .1 . ...
 

negrotheorder
b) Components of 


-B-ckfo
Retrutue ad Rordrin-o-th-Daa
Figre 5. 

Spectra 14- -omponents--n-Figure 


4-62



structure will not effect the above analysis for O3CHEM, RTECON,
 

and CHEMEQ if the code is integrated so as to remove the
 

subroutine calls.
 

With the restructuring of data just discussed, the transforms
 

-SPCFOR and' FFTFOR are free from the time-consuming-task of data
 

shuffling. As a matter of fact, REARR can be removed from
 

VFFTFOR if loop 110 under ENTRY FFTO is changed:
 

DO 110 I=1,N
 

ITEMP = NTRANS(I)
 

DEFINE (RLD(I), RL(1:NN, ITEMP))
 

DEFINE (YMD(I), YM(1:NN, ITEMP))
 

110 CONTINUE
 

Total analysis and evaluation of the spectral code was not
 

completed; time and resource limitations precluded carrying it
 

to a point where it could be run on a benchmark basis.
 

Relative importance in execution time of each routine is not
 

obvious. An educated estimate of performance can be
 

extrapolated from the analysis which was completed as being one
 

gigaflop or better for the spectral code.
 

4-63
 



APPENDIX A
 

AVRX ROUTINE FROM GISS MODEL
 

SUBROUTINE AURXC PU 3 AVRX 2 
AVRX 3 

DIMENSION PUtA16NM(16)ALPHA,(I61,X(2ShY(263 AVRX 4 
DATA NM/O,3 I l,1,OO.O,0.C,0,1,1,I,3,0/ AVRX. 5 
DATA ALPHA/O.,1.1865?2E-1,1.208591E-1,4.513013E-2,9.563327E-3 AVRX 6 
* O..0.0.O.0.OtG. ,9.563321E-3,4.513013E2.,l.208591E-1, AVRX- 7
 

11.186572t-1,O./ AVRX a
 
C AVRX 9 

C SMOOTHES THE ZONAL MASS FLUX AND GEOPOTENTIAL GRAOIENTS AVRX 10 
C NEAR THE POLES TO HELP AVOID COMPUTATIONAL INSTABILITY AVRX 11 
c AVRX 12
 
C NOTE. THIS ROUTINE HAS BEEN SLIGHTLY ALTERED AVRX 13
 
C AVRX 14
 

00 40 J.2,15 AVRX 15
 
IF (NHM().LE.0) 00 TO 40 AVRX 16
 
Jl-26t(d-1 1 AVRX 17
 
J2-j1.l AVRX 18
 
NH JNM(J) AVRX 19
 
00 30 Nl1,NMJ AVRX 20
 
X(s424) x PU(U2124) - PU(JI;24) AVRX PI
 
X(ls.X(2S) AVRX 22
 
X(263 X(2) AVRX 23
 
Yt11251 . X(2125) - X(11251 AVRX 24 
Y (1;25)Y(1;2] * ALPHA(J AVRX 25 

* PUCJII2S) . PUdJ1125) * Y(1125) AVRX 26 
30 CONTINUE AVRX 27 
40 CONTINUE AVRX 28 

RETURN AVRX ?9 
END AVUX 30 

4-A-1
 



APPENDIX B
 

LINKHO ROUTINE FROM GISS MODEL
 

SUBROUTINE LINKHO 
INTEGER LIST(1O 
DATA LISTII/1/,NLST/1/ 
'INTEGER**108l ) 


REAL RI1(384)

COMMON /EINT/TE3 


C.... FOR COARSE GRID IMS24 ANO JM16 

C ... 384.IMtJM 

C ... 768*2'IM,J 

C*... 1152.3fIMJM 

C.'*1536s4*IM'JM 

Cf... 1920.5SIMJM 

Ce . 23046*IM*JN 

COO-- 2688.7aIMOM 

C ... 3072-8*IM*JM 

e


C... 3456t9IsMed 

COO** 3840u1OIM*,JM 


ee  

C* 4224t1IM*JM 

C ... 4608.12-IN*JM 

C ... INTERFACE 


0007820LINKNO 2
 
O007821LINKHO 3
 
ODOT822LINKHO 4
 
0007823LINKO 5
 
00078ZLINKHO 6
 
000782SLINKHO 7 
0007826LINKMO 8 
o000827LINKHO 9 
0007828L!NKHO 10 
O00OB29LINKHO i1" 
O007R3OLINKHO 12 
O0007831LINKHO 13 
0007832L1NKHO 14 
0007833LINKMO 15 
0007834LNKNO 16 
00783SLINRHO 17 
0007836L1NKHO 18 
O007837LINKHO 19 
O00783LINKHO 20
 
O007839LINKMO 21
 

COMMON /NAICOM/JMIMNLAY.PTROP,4MMIFINNLAYMINLAYPI.OLATOLON. O00784OLINXHO 22
 
ISTARTKMXTAUTAIROTMHUT O000T41LINKHO 23
 

*OT.XTAUXITAUXINIIDAY.JDOAY.TOFOAYJDATE,JMONTH(2),JYEARNSTEP. 0007842LNXHO 24
 
* NCYCLh.NCOMP3.NMOGANTAUPTAUI.TAUETAUOMRCH, 

* PI.GRAV.RGAS.KAPA.PSL.ED,FMU.NFLWtPSFRSDISTSINO.COSO.RHAX 

* COXOUHMYC(151), 

" XLA8EL(2O).SIGO(20).OSG(20),SIGE(21).OS1GO(191| 

* LAT(16).SINL(16)hCOSL(Cb).OXU(16)1.XP(16),DYU(16)0OYP(16) 

* 	DXYP(16),F(16).OUMMY(24), 


TS(3812 SHS38) , GT(386). 

*GW(384). PH15(3841, TOPOG(384), 


U(3456).V(3456),T(3AS6hSH(34561 

COMNON/RACO4/ PL(3456),PLE(380),PKK(34563.TG(384), 

* TSTR(I1152)CLOUD(4608).RE(3840),RESTR1523. 

* FLXONG(3841.SG(384),AS(3456),ASSTR(1152).SOX(3R4,COSZ(384), 

* RSURF(384),SCOSZ(384)RAP(38jRA(384)PLK(3456) 

COMNON/CLOCOM/SWALE(38401SIEL(3456),AL(3840)TAUL(3840), 

* OZALE(6144),TOPAUS(38.) 

COMMON /TMPSLK/ A.AA.AAA,66,CCSEBE.UNIUTAU1,TAUTTNSTN 

* TAUAE#U.AERV.AERCEX1 EX2,OENOONMOONMIPEFUP.PEFON, 

* P!OCTAUNC.BTOPN.RTOPNPEUPCN, 

* RUPCNIXIX2,X3.RII 


O007843LNMO 25
 
0007844LINKHO '26
 
O00O8TSLINKHO 27
 
"O007846LNKNO 28
 
O007S4TLINKHO 29
 
O000784LINKHO 30
 
O000749LINKHO 31
 
0007850L18NKHD 32
 
OO07851LINKMO 33
 
O00785LINK$O 34
 
O007853LINKHO 35
 
0007854LNK O 36
 
O00SS5LINKHO 37
 
0007856LINXHO 38
 
OO0TS0SLINKHO 39
 
O00758LINKHO &0
 
0007859LINKHO *1
 
O00786OLINXHO 42
 
0007861LNKHO 3
 

COMMON /LNK/ EUPRDNC.REFTOFCTDF.EDNCEUPCEON.TAUNFEBTOPTE, 0007862LINXHO 44 
ECPUNO3.UNCO2,UNH20.NCLOUO O000863LINKHO 45 

DIMENSION TL(345b), SXL(3456) 0007864LINXO 46 
* EQUIVALENCE (TL(l).T(1)), (SLtl),SM(I)) O00786SLINX$O 47
 

C .... 0007866LINKHO 48
 
C ... GRID ARRAYS 0007867LINKHO 49
 

BIT CLDFLG(384)hAERFLGI34),LI(3841.L2(384),L3(38) O007R6LINHO SO
 
BIT TSTEXP(384) OO07869LINKMO 51
 
DIMENSION ZERO(3G),ONE(384) OO0?87OLINKNO 52
 
INTEGER ILI(6)L2(6).IL3(6) O007R71LINKHO 53
 
INTEGER ICLO(6) ,IAER(6) O007SZLINK$O 54
 
INTEGER ITY(384) O00?873LNKHO 55
 
REAL MITY(384) O00774LINKNO 56
 
REAL A(384).AAA(384).SE(384),8E(384).UN(384), 0007875LINKMO 57
 

* TAUXt384).TAUT(384).AA(384)h68(384),CC(3843,TNSO38)3 DO00876LINKHO 58
 
* TN(38.ITAU(384).EDNCN(384),TOFCN(384),RONCN(384), O00787L!NKHO 59
 
* TAUCIR(394)4PIO(384).EXTAU(384).TY(38,.AER1(384],- O00O8YSLINKNO 60
 
" AERZ(384).AERA(384).AERUC38)4AERV(3845,AERC38.). O007R79LINKNO 61
 

EX1I384b.EX2(384).OENO(3841,ONMO(384),ONMI(384), O00088OLINKHO 62
 
oPEFUPC38.) PtFON( 3846 o0007m'8aLINKHO 63
 
REAL X1(a3ftIX2(384) O007882LINKNO 64
 

4-B-I
 



65
 

REAL PIOC(384).TAUNC(384l.RTOPN(38).RTOPNP(38) 

DIMENSION UNH2O(4608).UNCO2160)UN3(4608),P4608), 
 O007886LINKHO 68
 

REAL XXI(3072),XX2(3072),PLKE(3072),TH(3456) 
 OO783LINKHO 
REAL EUPCN(384),RUPCN(3864)X3(384) 
 OO0R84LINKHO 66
 

O0788SLENKHO 67
 

* £(4608).NCLOUD(46O8ITE(5376).dTOP(5376).FE(4992). 
 O00788TLINKHO 69
 
70
" TAUN(13824) FKGAS(152).FKGAS2(1S2).EUP(4608), 
 O007EER INKHO 

* EON(4608),EUPC(460OR)EDNC(A60)hTOF(4608)TDFC(A608)t 
 OOC7889LINKHO 71
 
* REF(4608).RONCtAbC8) 
 0O0789OLINKHO 72
 

O0OTg9IINKHO 73
 

EQUIVALENCE (XX1(1),TAUN(1))t(XX2(1)TAUN(A609)1, 


EQUIVALENCE (ITY(I).RITY(l))WII(1I),RIIlI)) 

EQUIVALENCE (FKOAS{1J,EUP(1)),(FKGA32(l);EUP(1153)) 
 0007892LtNKHO 74
 

0007893LINKHO 75
 

EQUIVALENCE (A(1,.EDNCN(If)t(AAAI1)rTDFCN(111,(SE(1l.RDNCN(1)). 

* 	(PLKE(I).TAUN(921T))*(TH(l1),EUP(1I)I 
 O007894LINKHO 76
 

O0079SLINKHO. 77
 
* (BE(l),TAUCIR(1))I(UNI(I)*PIO(I))(TAUI(I)IEXTAU(I) , 
 0007896LINKHO 78
 

O000797LINKHO 79
* (TAUT{l)*TY(1)),(AAC1).ITY(1))(AERI(1) .8(1)),(AER2() CC(l)). 


EQUIVALENCE (L00078IL1U))L(1).L21)). L3(i) .L3(1)) 

EQUIVALENCE (CLOFLO(1)ICLD()),(AERFLG(IhIAER(l) 
 OOO7900LINKmO 82
 

Ce.... 
 O00T9O1LINKHO 83
 
C...SCALAR ARRAYS (TABLES OR USED FOR INITIALIZATION) 
 0007902LINKHO 84
 

* TEN(231,TE3(301),OV(11)PAEROA12.22.NAERO(12). 


* CIREXT(12),CCOSN(12hCOELAM(I12),COEK3) 


"'(TNSQ(j)*AERA(I)) 
 0007898LINXHO 80
 
OOO7B99LINKHO 81
 

DIMENSION CStl2,12).PIZ(12,12).TA(12,121,PVI(12),PF2(12)t 
 O000TO3LINKHO 85
 
0007904LNKHO 86 

* ACSBR(122),AERET(12.2),ATAUSS(2hoPICIRO(121* 
 00O790SLINKHO 87 
0007906LINKHO 88
 

DIMENSION SHEO(3.3).BH2013,3),WK(531.AIIX2,3),A2(12,3),A3(12.3), O0079OTLINKHO 89
 

Ce****OATA V/240,360R48O*560OO68,O760O840,960,lOSODlbO.1320,1560/ 


C*0e*20 MICRON WAIER VAPOR CONTINUUM 

DATA 
 0K4O,2.65lOE-030007912LINHO .7.Z321EO4,6187E-O24.982EO2/
94
 

C.... CIRRUS CL0UO PROPERTIES 
 0007913LINKHO 95
 

DATA OV/2b0..40.,60..2*40.,60..45.,SS.,80.,120./ 
 OOO791OLINKHO 92
 
O007911LINKHO 93
 

*A4(12,3I,81(3,3,2),8a(3.3,2).s3(33.3,CI]z,3)C2(23).WKo(2,2), 
O00OT9OLINWHO 90
 
0OO7909LINKHO 91
 

DATA CTAU5/1.EO/ 
 O007914LNKHO 96
 
DATA CCOSRR/O.827220.O.812128,O.7706S6,0.,878938.0.884853,.906536.0007915LNKHO 97
 
* 0.928219,6.93609O0,941993,0.937202,945603.0.963118/ O000196LINXHO 98
 
OTA CIREXT/l.291097,1.431162, .025916.O.861792.0.T83619.0.763708.0007917L!NKNO 99
 
* 0.743796O.770507,0.790540,O.742040,0,688896.O.64358O/ OO0791LINKHO 100
 
DATA PICIRO/O.510881.0.747140,0.680009,0.524641 0.27854O*O.29016,Og7919LINKHO 101
 
*, 0.219492,0.349411,O.446850,0.353371,0.263841.0.161871/ 
 000792OLINKHO 102
 

C.....AEROSOL PROPERTIES 

104DATA ATAU5S/2ZO.O/ 
 0007922L1NKH 

DATA ACOSRR/0.00331,0.00703,O.01093,O.01S89-O.02011.0.00000. 

DATA NAERO/12-0/ 
 0007923LINKHO 105 

0007924LINKHO 106 
* O.0A478.O.00000.0.066D.04875,O.OSQ°OEROO09297. 
 0007925LINKHO 107 
S0.28075.0.33668,0.35990.0.46584.0.59244,O.00000. 
 O007926LINKHO 108 

O.55S60.O.000000.39450.O.69517.0.71047. 109.69187/ 
 O007927LINKHO 
DATA PIAERO/O.00248.O.0c678,0.OO798,.001180.0.01817,0,O0000. 
 O00T928LINKHO 110 

0007929L1INKM0 111* 0.05839,O.00000,0.04052.0.03904,0.01792.0.09674, 

SO.0024 O.00678,0.00798,O.01180,O.01817,.OO0000. 
 00T93OLINKHO 112 

* 	 O.652,O.0OQO O.13152. O.18389,0.10690.0.04951, 
 0007933LINKHO 115 
O.03343,O.05528,QOSSTI,0.O7T75,0.058210.00000, 


C.*e..PLANCK FUNCTION COEFFICIENT AT V

0.07908.0.00000.0.15930,0.08634.0.06592.0.07536/ 
 O00793SLINKHO 117 

0007936LINKHO 118 

S 45.1351,68.2692,89.3263,120.444,1T7.473,292.944/ 

O007939LINKHO 121
DATA PF2/345.319,517.979,690.638.8C5.74S978.404 1093.51 

O00794OLINKHO 122* 1208.62,1381,2,1510.77.1669.04,1899.26.2244.57/ 


0007921ILrNKO 103

O 


O.05839,0.OO00,0.04052.0.0390 .01792,O.09674/ 

DATA AEREXT/0.00637,0.009 

68,.0,19.O.0354O.022TA ,O0000. 

0007931LINKO 113 
0007932LINHO 114 

0007934LNKMO 116 

DATA PFI/1.0667103.60014*8*53366,135511,24.2626.33.8729I 
 0007937LINKHO 119 
OOD793bLINKHO 120 

OF WATER VAPOR AT 680,76010500007941LNK8O 123
 
DATA 5H2 0/6.861SEO03.33054E.031.4435EOAr-1.9453E 02, 8.9078E030007942t NX 124


C*.-eOQUAORATURE FIT COEFFICIENTS OF S.8 - '	 H O 

* *3.9394E.04,1.4498E.02.6.1017E-03.2.73b4E-04/ OO079A3LINKNO 125

E 


DATA BH20/-1.0739E-02,1.ZIOOE-O1,9.6612E03, S.883E02,- .253 OO00079ALINKHO 126
 
*.2.33RSE.02,3.2402E02,t1.SOSE01,-1.0194f.O2/ 00079SLINKHO 127
 

ORIGINAL. PAGE IS 

OF POOR QUALI Y 

http:2.33RSE.02,3.2402E02,t1.SOSE01,-1.0194f.O2
http:1208.62,1381,2,1510.77.1669.04,1899.26.2244.57
http:CTAU5/1.EO


C....QUADRATURE FIT COEFFICIENTS OF WATER VAPOR CONTINUUM AT 840,1050. OOOT946LINXO 125
 
C.....AND 1160 CM-1 OOO794TLINKNO 129
 

DATA Kl/O.2227614.0.1013448.OO.828664,0.060817,0.057787,-O,3091528000794BLINKHO 130
 
*.-0.133841,-O.1138839,-O.080575.-0.077208.0.1093719.0.045289, 
O.039877,0,027158.O.026355/ 

C..'.QUADRATURE FIT COEFFICIENTS OF WATER VAPOR SELECTIVE AESORP 
DATA A1/5.22OOE-02,3.7670E01,6.78TOE-01,S.6300E-02.1.6690E-02. 
0 4.7784E-Oa,2.9330E-03,0.OOOOE 00. 
1 7.gOOE-O4.3.4T90E-3S.0278E-oI,3.1559E 01, 
2 1.8971E 0L-6.390E OO.-I.SBOE OO,-1.930E-O1,-.S131E-02, 

' T.4814E-Ol.-T.795E-03.0.OOOE 00, 
3 -2.156EO3.- .O44E-O2,-.541E 00,-3.3418E 01, 
4 9.5713E 00.1.0424E 01.1.38S8E 0O,I.9100E-01,4.1490E-02. 
* 2.9366E.025.2520E-03.O0OOOOE 00, 
5 

0007949LINCHO 131
 
O00T95OLINKNO 132
 
OOOT9SILINHO 133
 
OOOTS2LINKO 134
 
OOO7QS3LINNHO 135
 
0007954L1NKHO 136
 
00079SSLINKMO 137
 
0007956LINKHO 138
 
O000TS7LINKHO 139
 
0007958LNKMO 140
 
O00079SLINKHO 141
 

1.A930E-03.8.23ZOE-03,1.3180E 00,1.4540E 01/ O00T96OLINKHO 142
 
DATA A2/1.9924,1.3814,-0.6081.1.0755,-0.6334,8.S72?,-0.099O,0.OO00OO0761LINKO 143
 
*,0.2136. 0.8515.15.0347.3.7794,-1.6729.1.2349.2.3437.6.2tlE-03. 0007962LINKXO 144
 
*3.271,-1'.4357,1;1s4,0.OOO.2.0357,O.1680,-21.886,-2.0612.1.0139. 0007963LINKHO 145
 
*.1.1A83,O.04T8,-e3.S5E.03..1.8006,6.8275..0,7560.0.00000.9935, OO0T94LINKKO 146
 
*8.722E-02.9.919,1.0342/ 

DATA A3/3t2.674E-03,2.685E-03,2.69SE-03.2.677E-O3.2.687E-03


*0.400E 0O.2.686E-03.2.684E-03,2.60SE-03.e.614E-03,31.S7SE-02, 
fl,883E-02.1.890E-02,1.878E021.884E-02O.OOOE 00,1.80Ef02

o1,81E.02,1.826E.02.1.833E-02.12t1.0/ 

DATA A4/0.02042,0.020SOO.02051,0.02114.0.022460.02061.0.02149. 

*0.OOO,0.01716,0.02114,0.01798,0.01825.2EO.08660.0868.O0887. 

*0.09089,0.08739.0.08918,0.00008,O 76,O.O8l To.O791O..07993. 

*12*1.0/ 


C..*.QUAORATURE FIT COEFFICIENT OF CARBON DIOXIDE AT 680 760 CM-1 

DATA 81/1.279T.6.837,20S.7428.O2-882l,.8905-277.6561,I.6415 

110.0278,294.3491. 

*I.3940E-O2,9.?310E-O2,4.O01E O0.-2.O57TE-O2,-I.4362E-01, 
*-5.9580E O0,7.6840E-03,5.3619E-02.2.2095E 00/ 
DATA 82/0.8390.0.7830.6.3778,-O.03698,-0.7746,-3.2630,0.-O3424 

11.0899,12.1420, 
4*42260E.02ol,2300E.01,84814E 01*1.8314E-01,9.6351E-01,-1.2326E 
*-,4.6549E-02-29198E-01,5s0527E 01/ 
DATA 83/0.1639,4.9301,1.3578.-0.2338.0.06693,-0.3961,0.2574. 
1-0.02676,0.2506. 

C*****OUAORATURE FIT COEFFICIENT OF OZONE AT 1050 CM-I 
DATA CI/14.1003,89.8407 14.3659,81.9237.9.7780,59.SOS1/ 
DATA C2/1.0952,2,9766.1.3823,11.92S8.-O.1894,-3.2240/ 
DATA IOATA/O/ 

C FTEMP(XYZT)*X-Y*TZ*T*T 
C..... 
C***009 LAYERS DYNAMICAL MODEL IS USEO WITH 3 EXTRA LAYER AT 0-10 M8 
C 

IF(IOATA) 2000.2OOOi2001 

NLAY.9 
C*00**GROUND ALBEDO 

AGRNDO.O* 

-4.9551E-Ol,-S.2184E-02.1.3029E-011.0379E 00,1.1386E-01. 
*-I.6563E-01.3.7517E-o1,9.2239E-01,1.SS4E 00/ 

2000 CONTINUE 

NLAYINLAY*1 

NLAYRS.NLAY.3 

NG*NLAYRS-1 

NGI.NO.I 


Ce*..CM-STP/Md S.11E.4.2.24E4/44/G 

CO2CM2.65287E-01 


C*...*STRATOSPHERIC WATER VAPOR MIXING RATIO 

MZOMIX3u.E-06 

COEK(1)s.293478 


0007965LINXHO 147
 
0007966LINKMO 148
 
0007967LINKHO 149
 
000796SLINKNO 150
 
0007969LINKHO 151
 
O00797LINKHO 152
 
O007971LINKHO 153
 
O000972LINKHO 154
 
0007973LINKHO 155
 
O07974LINXHO 156
 
000797SLINKHO 157
 
OOO916LINKHO 158
 
0007977LfNKHO 159
 
O007978LINXHO 160
 
0007979LNKHO 161
 
O0079S0LINKHO 162
 

02000798LNKHO 163
 
O000T92LINKHO 164
 
O007983LINKHO 165
 
0007984LINKHO 166
 
O00798SLINKHO 167
 
0007986LINKHO 168
 
0007987LINKNO 169
 
0007988LNKHO 170
 
0007989LINKHO 171
 
0007990LINKHO 172
 
0007991LINKNO 173
 
0007992LINKHO 174
 
0007993LINKHO 175
 
O.....0007994LINKHO
176
 
O00799SLINKNO 177
 
0007996LINKMO 178
 
0007997LINKHO 179
 
O00799SLINKNO 180
 
OO0qO99LINKHO 181
 
OOOROOOLINKHO 182
 
008O01LINKHO 183
 

0008002LtNXHO 184
 
000SOO3LINXHO 185
 
0008004LINKHO 186
 
OOOROOSLZNkHO 187
 
O00OOS6LINXHO 188
 
OOOOO7LINKHO 189
 
OOROO8LINKHO 190
 

4-B-3
 

http:1.1A83,O.04T8,-e3.S5E.03


O008009LINKHO191
 
COEK(3).COEK()1 O00GOIOLINKHO 192
 
COELAM(II]DV(1*120. O0O8OIILINKHO 193
 
COELAM(12)QV(11)*400. 0008012LINKHO 194
 
00 43 LAMH2.11 


COEK(2)=.413O43 


O0OOI3LINKHO 195
 
43 COELAH(LAMIsV(LAH)4OV(LAM.1) OOOROI4LINKHO 196
 

t

C* * 	CALCULATE COSSAR AND TAUAER*PIAERO OOOROISLINXHO 197
 

DO 51 N.1,NLAYRS 000R016LINKHO 198
 

0C 51 LAHt112 
 O000P07LINKO 199
 
GO To tSZ.52,52.53,52.92,52,52,52,S2,52,54),N O00SOIBLINKHO 200
 

53 TA(LAMN)AEREXT(LAHI)ATAU55(1) 
 0008019LINKHO 201
 
NN.I 000SO2OLINKHO 202
 

00OR021LINKHO 203
 
54 TA(LAMN)*AEREXT(LA4.2)*ATAUSS(23 OOO822LINKHO 204
 

GO TO 	5e 


NN.2 OR02LINkHO 205
 
GO TO 58 
 0008024LINXHO 206
 

52 TA(LAMN)O. 000RO02SLINKHO 207
 
C. .*....... 	 0008026LINKHO 208
................................................. 


C NN UNDEFINED FOR THIS 8RANCH IN oARIINAL O00RO27LINKHO 209
 
C SET IT TO 1 TO PREVENT MACHINE PROBLEMS 
 O002LINKHO 210
 
C........................ .......................... *...* 0008029L1NKHO 211
 

NNSI 
 O00O030LINKHO 212
 
58 CS(LAM.N)S(ACOS8R{LAMNNI-AEREXT(LANNN).CCOSER(LA)-OCIREXT(N))/ 
 0008031LINKHO 213
 

0006032LINKHO 214
* AEReXT(LAMNN3.CIREXT(N)I.E-4O) 

0O0S033LINKHO 215 

51 CONTINUE 0008034LINKHO 216 
H2OFAC.H2OHIX/(H20M1X.1.)fl.27E3 000803SLINKHO 217 
ZERO(1;384) - 0.0 

PIZ(LAHN)STA(LAH.N).PIAERO(LAH.NN) 


0008036LINK8O 218
 

ONE(11384) - 1.0 0008037LINKHO 219
 

C....FILL UP TSTR FIRST TIME AROUND ONLY 
 0008038LINKXO 220
 
TSTR(1;1152) . 200.0 0008039L1NKMO 221
 
IDATASI 
 O0004AOLiNxmO 222
 

2001 CONTINUE 
 0008041LINKHO 223
 
C .... 0008O42LINKHO 224
 

C ... 	CHANGE GRTD TO 12 LAYERS 
 OO08043LINKHO 225
 

C.... COMPUTE LAYER THICKNESS-STORED IN UNCO2 
 O000044LINKHO 226
 
C*... UNCO2I1)SPE(23-PE(I) 
 .-O..2. 000O04SLINKHO 227
 

C*** UNCO2f2).PE(3).PE(2)t5.-2.a3. OOO8046LINKHO 228
 

C ... UNCO2(3)*PE(4)3PE(3).I0..5.S. 
 0008047LINKHO 229
 
UNCO2(11384)22. 
 00804LINKHO 230
 

UNCO2(38S13843)3. 
 00080A9LINKHO 231
 
UNCO2(76933843)S. 
 O00805OLINKHO 232
 

C UNCO2(NlPLE(N-2)-PLEtN3) 
... N84,NLAYRS 0008051LINKHO 233
 
UNCO2(11f3456).PLE(385134563-PLE(113456) 
 0008052LINKHO 234
 

C.... COMPUTE H20 PARTIAL PRESSURE 0008053L!NKHO 235
R 

C FOR LAYERS I TO 3 UNM2OSH2OHX/(IH2OM4X)*1.27E3e(LAYE THICKNESS) 0008054LNKHO 236
 
C FOR LAYERS 4 TO 12 UN2OSO(SHL(N-3)*1.E-203fl.27E3-(LAYER THICKNESS) OOO05SLINKHO 237
 

UNH20(1;1152)H2OFAC*UNCO2(1;1152) 
 O008056LINKHO 238
 

UNH2O(I1531356).SHL1133456).1.E-20 
 OOOSOTLINKHO 239
 
UNH2O(1153)34561.27E3UH20C1153;3456-
 O08O5BLINKHO e4O
 
UNH2O{1153134562)UNH20(lS3134S6)eUNC02(115333456) 
 0008OS9LINKHO 241
 

C.... COMPUTE OZONE PARTIAL PRESSURE OOOO6OLINKH0 24?
 
UNO3(13384)SOZALE(4225f384)-OZALE(3841U84 0008061LINKHO 243
 

UNO3(3858384)OZALE(46091384)-OZALE(42251384) 
 0008062LNKHO 244
 
UNO3{769;384).OZALEtII38,-OZALE(4609;384) 000S063LINKMO 245
 
UN03(I1533345638OZALE(385;3456)-OZALE(1;3456) 
 0008064LINXHO 246
 

C'e.. COMPUTE NORMAL.ZED PRESSURE 
 0008065LINKHO 247
 

C PECIIO. 
 0008066LINKHO a48
 

C PE(M213. 
 0008067LINKHO 249
 
C PE(3)05. 
 00806SLINKHO 250
 

C PE(43310. 
 OO0806LINKHO 251
 

C 00 48 N.1.3 
 O008O70LINKHO 2S2
 

C PSTR(N)3(PE(N)*PE(N*1))/2. 
 O0080TILINKHO 253
 

4-B-4
 

http:UNCO2f2).PE(3).PE(2)t5.-2.a3
http:PIZ(LAHN)STA(LAH.N).PIAERO(LAH.NN
http:LAMH2.11


C 48 P(NI.PSTR(N]/1013.25 00080?2LINKNO 254
 
P411384)s.98692323E-3 0008013LINKNO 255
 
P(3851384)s.345423 14E-2 O00SO7TLINKHO 256
 
P17691384)S.74019209E'2 000807BL1NKHO 2ST
 
P4115313496)nPL(U34563)/1013. 0008076LINKHO 258
 

C*
O
. COMPUTE E (H20 ABSORPTION PARAMETER) 000807?LINKNO 259
 

C E(N)sUNH20(N)*12,38E-4/UNC02(N)-P1N) 0008078LINKHO 260
 
E(114608 12.382-4*UNH20(1:4608) 0008079LINXHO 261
 
E(114608.E(114608)/UNC02(114608) OOROSOLINKHO 262
 
E1I16OSsE(1:4608)9P(14608j 0008081LINKHO 263
 

C***- COMPUTE TE (LOGARITHMIC INTERPOLATION) 00OR082LINHO 264
 
TH(113456).TL(1 3456)/PLK(1 3456) O000083LINKWO 265
 

C 0O08084LINKHO 266
 
C USE EXPBYX APPROXIMATION TO GET -*.286 0O0808SLINKMO 267
 
C 0008086LINKHO 268
 

O0 66 L-2,NLAY 0008087LINKHO 269
 
KLU(L1)-384-*1 000800BLINKH0 270
 
KLI-KL-384 0008089LINH0 271
 
CALL EXPUYK2(PLKE(KL),PLE(KL) oL) 00OR09OLINXHO 272
 

66 CONTINUE 00OR091LINKHO 273
 
XXI(1;3072).PLKE(113072).PLK(385:3072) 0008092LINKHO 274
 
XX1(1:3072)SXXI(113072)OTH(1:3072) 0008093L1NKM0 275
 
XXZCL3072)*PLKC113072).PLKE{t:3072) 00OR094LINKHO 276
 

000095L0INKHO 277
XX2(1;3072)AX2tl13072.T(38513072) 
XXI(113072)8XX1(1?3072).XX2(13072) 00&b096LINKH0 278
 

00OR097LINKNO 279
XXl(fI3072)XXI(1l13072).PLKE(133072) 
XX2(1:3072).PLK(1:3072).PLK(385:3072) 0008098LINXHO 280
 
TE(133713072).XX(1113072)/XX2(1l 30 72 0008099LINXHO 281
 

C.... TE FOR STRATOSPHERE ODORI0OLINHO 282
 
TE(38S:384)STSTR(I38,) TSTR(385384) O00OR1OILINXO 283
 
TE(2131384)=TE(385:384)/2. 0008102LINKH0 284
 
TE(769;384).TSTR(3859384)TSTR(76913841 000R103LINKHO 285
 
TE(769:384) TE47691384)/2. 00081OALINKHO 286
 
TE(1':38 432.*TSTR(I13841) 001O5LINKHO 287
 
TE(1;38.)3TE(1384)-TE(385:384, 00OAI06LINKO 288
 
TE(1153:3843]TSTR(7691384) TLf113841) 000Ol7LINKH0 289
 
TE(11531384- TE(1153:384)/2. OOORIO8LINKHO 290
 

C*... TE NEAR GROUND 000109LIN(HO 291
 
TE(4609:384) TS(1;384) OOOllOLINHOP292
 
TE(49931384)3TG(1l3E4? 0008111LINKH0 293
 

C.... C02 PARTIAL PRESSUoE FROM OP 000R112LINKHO 294
 
UNCO2(1i4608]3C02CM.UNC02(1 608) 0008113LINKHO 295
 

C.... CLOUD ARRAY 000RIILINKKO 296
 
NCLOUD(CI12,a0 000811SLINXHO 297
 
NCLOUO(1153:3466)=CLOUO(II3456) 0008116LINKHO 298
 

CO.... 000R17tXNKHO 299
 
C... 8ANG LOOP 0008118LINKHO 300
 
C....- 0008119LINKH0 301
 

FE(1l:992)sO. 000812OLINXHO 302
 
00OR121LINKHO 303
FLXONGt11384)0. 

0O 200 LAMS.1 2 0008122LINKHO 304
 
C... CALCULATE OPTICAL THICKNESS TAU(N.K) 0008123LINKHO 305
 

00 2 N.1,NLAYRS 000812LINKHO 306
 
NPTRu(N-1)*384.t 0008125LINKHO 307
 
IF (N.LE.3) TN(II38A.TSTXNPTRf384)/273. 000R2SLINKHO 308
 
IF ( 1. .4) TN(1384).TL((N-4)9384*.U384)/273. 0008127LNKM0 309
 
TNSGtI 384).TN(l)384)TN(l 384) 0008128LINKHO 310
 

C A*FTEMP(AIRLA1IIAI(LAM2.AI(LA,3),TN 000AI29L1NKH0 311
 
000130LINKNO 312
A(l384)EAl(LAM,3)TNSQ(11384) 

Xl(l3384).Al(LAM.?JTN(I:38&) 00081311.|NKNO 313
 
A(1;3864)A(I;384).A(l: 3 84) - 0008132LINKM0 314
 
A(j1384)=A(1l384)AILA4.) 000R133LINKO 315
 

C AAA*FTE'P(AOtLAM,1),A2(LAM.2),A2(LAM,3).TN) 0008134LINKHO 316
 

4-B-5
 

http:AAA*FTE'P(AOtLAM,1),A2(LAM.2),A2(LAM,3).TN
http:P(NI.PSTR(N]/1013.25


AAA(11384) A2(LAI,3) TNSQ(113841 0008135LINKHO 31,7
 
XI(I384)3A2(LAH.2)tTN(11384) 0008136LINHO 318
 

-0008137LNXHO 319
AAA(IU384fAAA1Ij3A4).X|11384) 
AAA(I;384)SAAA(1|38.).AZLAM.1) 000138LNKHO 320
 
GO TO (3.3.3,3,20,20,3.3.203.3,3 tLA£4 0008139LINKHO 321
 

*
 
C *** OVERLAPPING REGION 0008140LINK4O 322
 
C.... WATER VAPOR SELECTIVE ABSORPTION 000IILINKNO 323
 
20 JJLAM-* 000AR42LINHO 324
 

JJ.LAN-6 000143LINKXO 32S
IF(L*M.EQ.9) 
C SEFTE(SH2(JJ,1),520(JJ,2),SH2O(JJ.3),TN) 000I4LINKHO 326
 

SE11138-.)SH20(JJ,3)-TNSQ(11384) 00014SLINKHO 327
 
000P14&LINKHO 328
Xl(I;384)=SH20(JJ.2)2TN(I;3841 

SE11384)SSE(1;384) AI(IJ84) 0008147LNKHO 329
 
000814LNKHO 330
SE(I1384)-SE(l138)SHaO(JJI) 

C BESFTEMP(BO(JJl),BH2O(JJ.2),BH20(J.3).TNIPN 0008149LTNKHO 331
 
8E(113R4)8HN20(JJ,3)*TNS(II384 00081SOLIKHO 332
 
XI(1l384J-SH2O(Jj.2)tTN(I13841 OOORISILINHO 333
 
BE(I1384).BE(11384).XI(;3864 0008152LcNKHO 334
 
SE(1;384)s8E(1;384)- 8420JJ,1) 0008153LINX O 335
 
BE(11384)*BE(fI384)*PtNPTRS38,) 00lnIS4LINKHO 336
 
XI(1 3R4)SEqI£384) UNH2O(NPTRI384) 00SI5LINKHO 337
 
XttI|3RA)=*I(li384)/8E(138k) 000IS6LINKHC 338
 
LI(1;384)AXI(11384).L.T..E-2 0001SILINKHO 339
 

C IF(NOT LI) TAUa2.*S-(SQRT(I.X)|I) 00081581.NKHO 340
 
TAU(1;384)22.8SE(13384) 00081S6LINKHO 341
 

0008160LINKHO 342
XI(1I384)*X1(I13841*1. 
XlAIU38).VSQRT(X( 1 384);Xl 38)) 0008161LINKHO 343
 
Xl(11384)-XIUl 334) -. 0008162L!NKHO 344
 
TAU(1;384)*TAU(1l384)-XI(I1384) 0008163LINKMO 345
 

C IFL1)TAUSE*UN420(N) OOR1I64LINKHO 346
 
Xl (lISB3S)SE(1384)*UNH20(NPTRI384) 00OB16SLINKHO 347
 
TAU(11384)4QBVCTRL(XI(I3384).LII384)ITAU(1|38)) 0001t6LINkHO 348
 

5 0o TO (6tbS.2)JJ 0008167LINIO 349
 
C... OZONE SELECTIVE ABSORPTION 00O16SLINKHO 350
 
C21 SEI.12.789214.3669TN7.3921-TNTN 0008169LINKXO 351
 
21 SEC1138,)t7.3921*TNSQ(11384 000T170LINKN0 352
 

XI(13841I4.3689'TN(I;384) 00081I71LINKHO 353
 
SE(11384)sSE(It38S4-Xl (1384) 00072LNKHO 354
 
SE (1384)-SElI1384)*12.7892 000R173LINKHO 355
 

C 8EI.sh1063S.1.9570*TN-.3227TN'TN)-PN 0008174LINWHO 3S6
 
BElI384)-,32277TNSQ(1I384) 000817SLINKO 357
 
Xl (13841i.9570TN(I1384) 000R1?6LINKHO 358
 

000177LINkHO 359
BE(I1384J3'E(1)384).XI(Ii38k) 
GE(I;384)13E(I1384)-l.0635 000BI78LINKHO 360
 
BSE(13U84)SE(384)P(NPTRI384) 0008179LINKHO 361
 
UNI (1384) UN03(NPTR;38A) 0008180M NKHO 362
 
GO TO 7 0008181LINKHO 363
 

Cv*** CARRON OIOXIDE SELECTIVE ABSORPTION OQOBIB2LINrHO 364
 
C6 SE17,4197-6.9225t TN.4.2328TNTN 000183ILINKHO 365
 
6 SE(11384)-4.2328.TNS04I1384) 000RI84LINHO 366
 

Xl(11384)2..9225.TN(I138,) OOOBI8SLINKHO 367
 
SE(1;354)-SE(I;384)-X1(j1£3b) 0008161 INKHO 368
 

0008187LINKHO 369
SE(1;38')-SE(!;384)*7.4197 
C BEX(0.16970.1734TN.0.2410.TN-TN)*PN OOOSBIBLINKHO 370
 

BE(I1384)s.24-0.TNSQ(I:394) 0008189LINKHO 371
 
000819OLINKMO 372
Xl(13843*.1734TN(1138) 

8E1l1384)33E(11384)-X1(l1384) 0008191LINKNO 373
 
8E(1;384)-SE(I1384)-.1697 0008192LINKHO 374
 
BE(lIi364)8EfIl3841)P(NPTRi384) 0008193LINKMO 375
 
IF(LAM.NE.6) GO TO 666 0008194L1NK8O 376
 
SE(1 384..O0815TNSQ(11384) 0008tSLINKHO 377
 
XI(l384)-.1II3fTN(11384) 0008196LINKNO 378
 
SE(I1384)SSE(11384)-XI (1384) 000819TLINKHO 379
 

4-B-6
 



SE(11384)-SE(11384-*.0392

EE(l 384)s.0297*TNSQ(13384) 

X141384)-.2077T(13384) 

BE(ll3843 BE(11384)-Xl113384) 

8E(I;38S4)SE(13384)-.O6Sl 

8El1 384)s8Et1;384)-P(NPTR33843 


666 	 CONTINUE 

UNl(l1384).UNCOZNPTRl384) 


C? 	 XXsSEIOUNI/BEI 

7 	 XlI1384).SE(11384)eUNI(l138d4 


Xl111384JXl(1384)/8E1384) 

L(I11384)UXI(13841.LT.l.E-2 


C IFt.MOT4.L13 

TAUl(1138412.BtEIII3843 

X1(11384)aXI(133841.. 

Xl(138)4VSQRT(X(1138,)IXI(13384)) 

XI(13384)-XA(133843-1. 

TAUL(II3aJI=TAUI(11384;-XI11$38) 


C IVLI)

X1(I13843SE(I384)3UNl(II38) 

TAUl(C1384)-QVCTR(X(I$384).LI(11384)TAUI(11384)I 

TAUT(138,)sTAU(13384).TAUI(13a4) 

DO 14 K-1,3 


C 

KPTR.(K-l)384.1 

NKPTRKlK*1) 4608&NPTR 

AAlt;384)s(I1384)A3(LAM.K) 

B811384)SAAA(I3384)A4(L A,) 


C 	 FKGAS(K)SAA*PN/(I..8S9PN 

Xl(l3843288(11384*3P(NPTIl3R4)

Xl I1384)aXl(1;384)3 .
 
FKGAS(KPTR3384)JAA(11384)P(NPTRI384) 

FKCAS(KPTRI384) FKGAS(KPTR;384)/XI(11384) 

IF(L.AM.EQ.91 GO TO 15 


C AA*FTEMP(8 (K.I.1.1 (K,2,j).1(K.3.JJ)TNI 

AA(13384)sBI(K3.JJ*TNSC(1 384) 

Xl(1384).E(K,2.JJ)*TN(1;384)

AAfl1384)AA(1;38,).X1(11304) 
AA(j1384)3AA(113843.8I(K.14.J) 

FKGAS2(KPTkt384).AA(11384)tP(NPTR384) 


C 8BsFTEMP(R2fK.1JJ),B2(K,2 )JJ,2K,3.JJ).TN) 
B(l1384582(K,3.,4j)TN0CI384) 
XfI38438Z (K,2.JJ)tTN(1138,) 

8B(1;384)t%88(1384).xl(A138A) 

38811384).88(1334).82(KlJJ) 


C CC.PEP(031KC,,J)83(K,2,JJ),B3(K.3.JJ).TN) 

CC(13384).B3(K,3.JJ3.TNSO(13384) 

XI(1f384)8S3(K.2,JJ)eTN(11384) 

CC(j138412CC(1j384).X1(11384) 

CC(1,384).CC(1I384).83(K,.jj) 


C FKGAS2Z()=AA-PN/II.-B88PN--CC) 


X1(13384)SPNPTR$384)**CC(11384) 
X1(13384)SX(11384)e8(!i384) 

X131138*)sX1l13 8)43. 


FKGAS2(KPTRI384)1AA(1;384)tP(NPTR33841 

FKGAS(KPTR73845FKGAS2(PTR38)/XlXII384) 
GO TO 161 


is GO TO (t3.23.171)K 

C23 AA.FTEIP(C1CK.1)vC1(K.2),CI(K,3),TN) 

23 AA(11384)sC1(KC3)-TNSG(13384)


Xl(1138)3C1 (K,2)*TN(13384) 

AA(j1384).AA(;39)Al.Al(11384) 

AA(1t384)UAA(1|384)2CI(K,) 


0008198LNKNO 380
 
0008199LINKNO 381
 
O0O8200LNKHO 382
 
008201LINKNO 383
 
0008202L1INHO 384
 
0008203LINKO 385
 
000S204L!NKHO 386
 
0008205LINXHO 387
 
0008206L1NKHO 388
 
0008207L1INKHO 389
 
0008208LINKMO 390
 
0008209LINKHO 391
 
000821OLINHO 392
 
0008211INKHO 393
 
0008212LINKHO 394
 
0008213LINKHO 395
 
0008214L!NKNO 396
 
0008215LINKM0 397
 
O008216LINKHO 398
 
000S217LINKMO 399
 
0008218L!NKHO 400
 
0008219L1NKHO401
 
0008220LINKHO 402
 
0008221LINKHO 403
 
0008222LINXHO 404
 
0008223!NKHO 405
 
0008224LINKMO 406
 
000825$(INKHO 407
 
O000226LINKHO 408
 
0008227L1NKNO 409
 
O000228LINKKO 410
 
0008229L1NKHO 411
 
0008230LINKNO 412
 
0008231LINKMO 413
 
'0008232LNKHO 414
 
0008233LINKNO 415
 
00OA234LINKHO 416
 
000235LINKO 117
 
0008236LINKNO 418
 
O00O237LNK$O 419
 
O008238LNKNO 420
 
0008239LINK1O 421
 
0008240LNKO 422
 
0008241LINKHO 423
 
0008242LINNO 424
 
0008243LNKNHO 425
 
0008244L1NKNO 426
 
000824LINKHO 427
 
0008246LINKHO 428
 
O00827LfNKH 429
 
0008248LNKHO 430
 

O008249LNKHO 431
 
000825OLINKHO 432
 
0008251LINKHO 433
 

OO08252LINK$O 434
 
O008253LINKO 435
 
0008254LINXHO 436
 
0001255LINKO 43?
 
0008256LINKHO 438
 
O0082SLNcKO 439
 
O0082SSLINKMO 440
 
O00O259LINkHO 441
 
O00826OLINKNO 442
 

4-B-7
 

http:CC(1,384).CC(1I384).83(K,.jj
http:CC.PEP(031KC,,J)83(K,2,JJ),B3(K.3.JJ).TN
http:JJ,2K,3.JJ).TN
http:IF(L.AM.EQ.91


C 	 B8SFTEMPtC2IKil),C2(K,2),C2(K,3),TN) 

B98I1384)-C2(K,3)-TNSc138)

XItI1384).C2(K.2)*TN(I1384) 

B8(1 I38')-88(I3a4)'Xli38.) 

B8(I384)-B8(I;384).C2(K.I)


C 	 FKGAS2(K)SAA*PN/(I..88.PN) 

FKGAS2(KPTR;3B.).AA(|;384)-P(NPTR;38) 

Xl(1;384).88(1;384)*P(NPTRI384) 

Xl(l384)tXj(11384) '1.

FKGAS2(KPTR;384).FKGAS2(KPTR384)/XI(11384)

#0 TO 	161 


C17 AA=24.0109-27.9638*TN.l3.757.TNTN 

17 AA(11384).13.757.TNSQ(1;384) 


Xj(I(384).27.9638TN(I1384) 

AA(lI384)uAA(lI138)-Xlu(I384) 
AA(1;384)UAA(11384).24.0109 

C 8890.17160.O66g9TN-0.02572TNTN 
C FOR CONVENIENCE, COMPUTE -88 

88(11384)=.02572*TNSQ(I;384)
)
Al(11384)..06669.TN(1383


88(11384)-88(1384)-XI(:384) 

99(11384)28(11384) -.1716 


C FKGASZ(K)=AAPN*(68) 

X2(11384)uP(NPTR384) *R8 13843 

FKGASZIKPTR$384)SAA(l;384)*X2(11384)


C16 TAUN(N.K)(FKGAS(K)NUN.TAU.FKGAS2(K)UN TAU1)/(TAUT1.EO) 

161 FKGAS(KPTR384)FKGAS(KpTRI384).UNH20(NTRI384) 


FKGAS(KPTRf38L)UFKGAS(KPTRI384).TAU(1138) 

FKGAS2tKPTR;3B4).FKGAS2(KPTRI3841)UN(1384) 


X1(I1384J-TAUT(lI;384f.).E-40 

TAUN(NKPTRI384)*FKGAS(KPTR$384).FKGAS2(KPTR;384) 


KPTR.(K-I)e38k.1 

AA(I1384)SA(11384)-A3(LAMKI 


FKGAS2(KPTR384).FKGAS2(KPTRt384).TAUt li384) 


16 TAUN(NKPTR;384)TAUN(NKPTRI384)/XI(t;384)

14 CONTINUE 


GO TO 13 

3 00 10 K.1.3 


88(1;3841-AAA(I;3 4) A4LAM.K)

CIO FKGAS(K)UAA*PM/(j.0&-89PN) 


FKGAS(XPTRI38).AA(1;381*PCNPTR;3841 

Xl(j1384x138(j|384)*P(NPTRl384) 

XtII3843]Al (I384).1. 

FKGAS(KP1384)-FKGAS(xPTR;384)/X(1;384) 


10 CONTINUE 

00 12 K.1,3 

KPTR.K-*1)38 I 

NKPTR*(K-1)*4608.NPTR 


12 TAUN(NKPTR1384)SFKGAS(KPTR;384)*UNH20(NPTR384) 

13 CONTINUE 


GO TO (I.1.27,27.1,22.22,22,22.22,t,1),LAM 


C XKZFTEMPWKt IU I),WKIJJ.2),WK(JJ,3,TN) 

XA 1)38.)SWKCJJ,3JeTNSQ(11384) 

Xl(I;384)SWK(J.J,2)eTN(I1384) 


C.* WATER VAPOR CONTINUUM ABSORPTION 

22 JUSLAM-5 


X2(I1384)aX2(I1384).XI(I384 

X2jI1384)aX211384).WK(JJI) 


C WKI.0O5*XKZ 

Xl(I1384)..005*X2(1384)

GO TO 29 


XAl 1384).WK20(JJ. ) 

27 .JJLA$.2 


0008261L1NKHO 443
 
O00826ZLINKMO 444
 
O00R263LINKMO 445
 
0008264LINKHO 446
 
0008265tINKHO 447
 
0008266L1NkHO 448
 
0008267L1NKHO 449
 
0008268LINKHO 450
 
0008269L1NKHO 451

0008270LINKHO 452

000A271LINkNO 453
 

0008272LINKH0 4S4
 
O00OR23LINKHO 455
 
0008274LINKHO 456
 
O00027SLINKHO 457
 
0009276LINKHO 458
 

0008277LINKHO 459
 
0008278LINKHO 460
 
O008279LINKHO 461
 
0008280LINKHO 462
 
0008281LINKHO 463
 
0008282LINXKO 464
 
O008203LINKHO 465
 
0008284LINKO 466
 
0008285LNKHO 467
 
0008286LINKHO 468
 
0008287LINKHO 469
 
0008288LINXHO 470
 
0008289LINKHO 471
 
0008290LINXHO 472
 
O008291LINKHO 473
 
0008292LINKHO 474
 
0008293LINKHO 475
 
0008294L1NKHO 476
 
0008295LINKHO 477
 
0008296LINKHO 478
 
0008297L1NKHO 479
 
0008298LINKHO 480
 
0008299LINKHO 481
 
O008300LINKHO 482
 
0008301LINKHO 483
 
0008302LNKHO 484
 
008303LIN1KHO 48S
 
00OR304LINKHO 486
 
000830SLINKMO 487
 
0008306LINKMO 488
 
0008307LINKNO 489
 
0008308LINKHO 490
 
0008309LINXHO 491
 
O00831OLINKMO 492
 
O008311LINKHO 493
 
0008312LINKHO 494
 
0008313LINKHO 495
 
0008314LINKMO 496
 
O00OS315LINNO 497
 
0008316LINKMO 498
 
0008317"LNKHO 499
 
0008318LINKHO 500
 
0008319LINKMO 501
 
o008320LINKNO 502
 
O008321LINKHO 503
 
O008322LINKHO 504
 
0008323LINKXHO 505
 

4-B-8
 

http:TAU1)/(TAUT1.EO
http:FKGAS2(K)SAA*PN/(I..88


X2(I;364)*WK2O(JJ,2 

29 	 CONTINUE 


E (

C 	 XK-XKILPN.XK2- N) 


Xl(;384).Xfl384)-P(NPTRI384) 

X2(I1384) X2Il1364E(NPTR;384) 

X21(1384lB2 fl384)-X1(11384 

X2tl384)3X2(11384)3UNH2O(NPTR$3R4 

DO 16 	K.1.3 
NKPTR.(K1I)*4608.NPTR 


18 TAUN(NKPTR1384)STAUNINKPTRI384)*XZ(1;3843 

1 CONTINUE 

28 	 CONTINUE 

00 11 K.1,3 
KPTRS(K.))3S84*1 

NKPTRS(K-I)*4608.NPTR 

TAUN(NKPTRI384).TAUN(NKPTR;384) TA(LAMN) 


11 	 CONTINUE 

2 	 CONTINUE 

COO.. COMPUTE PLANCK FUNCTION AT EACH LAYER 


DO 9S NuL.NG1 

NPTR-(N-I)e384I 

XI(138)-PF2(LAN] 

Xt1lI384)WX1I(U38*)/TE(NPTRI384)" 

X1(l;384).VEXP(XIl138S4IXl{II384)) 

Xl(I1384)3X1(1;384)-I. 

STOP(NPTR9384I-PFI(LAM)


95 	 gTOP(NpTRI334)sBTOP(NPTRI384)/Xl1(384) 


00 I00 K-I.3 

C.... AODING LOOP 


4

C *-e COEFFICIENT IN SUMMATION OF HEATING OVER MAGNITUDES AND BANOS 

CKLAM-COEKiK)*COELAM(LAN) 
C'.. INITIALIZE CUMULATIVE OPTICAL DEPTH 

TAU(1384)tO. 
Ct**. FLAG FOR CLOUDS 

CLOFLG(l1384)aCLOFLGif13843.XOR.CLDFLG(11383) 
FLAG FOR AEROSOLS (OR CLOUDS TREATED AS AEROSOLS)
C... 
 4

)
AERFLG(138ItAERFLG(1384).XOR.AERFLG(1138
 
C... CUMULATIVE UPWARDS EMISSION FOR TOP COMPOSITE REGION 


C EUPCNS0. 

Ce... CUMULATIVE DOWNWARDS EMISSION FOR TOP COMPOSITE REGION 


EONCN(1i384)30. 

C... COMPOSITE TRANSMISSION 


TDFCN(iS84)S1. 

C .. COMPOSITE DOWNWARDS REFLECTION 


RONCN(1;384)aO. 

Ce... 

C... 
CUMULATIVE QUANTITIES ARE COMPUTED IN EONCN/TOFCN/RDNCN BUT 


CO** PERIOOICALLY STOREO INTO EUPCEONCTOFC.ETC* BY LAYER POSITION 

C.... 


00 101 NSINLAYRS 

NPTRU(N- I 384k1 

NKPTRSIK.1)e4608*NPTR


COO.
e 

C'-f* SINGLE LAYER COMPUTATION 

C.... EUP.UPWAROS EMISSION 

C*nn* EDNsOOWNWAROS EMISSION 

C.... TOF.TRANSMISSION 

C ... REF.REFLECTION
CO... 


TAUCIR(1;384).CIREXTILAM) 

TAUCIRtIU386).TAUCIR(1;384)-CTAUS5 

TAUCIRI1;384)=TAUCIRtZI384)*NCLOUD(NPTRI3S) 

TAUN(NKPTR384)STAUN(NKPTRI384).TAUCR(R13384) 


0008324LINKHO 506
 
000832SLINKHO 507
 
O008326LINKMO 508
 
O00832TLINNO 509
 
0008328L!NKHO 510
 
0008329LNKHO 511
 
O008330LINKMO 512
 
O008331LINXHO 513
 
0008332LINKHO 514
 
O008333LINKHO 515
 
0008334LINKHO 516
 
000833SLINKHO 517
 
0008336LINKHO 518
 
0008337LINKHO 519
 
000833BLINXHO 520
 
0008339LINKHO 521
 
000S4OLNKHO 522
 
0008341LINKHO 523
 
0008342LINKHO 524
 
00084S3LINKHO 525
 
00O834ALINXHO 526
 
O00834SLINKHO 527
 
0008346L1NKHO 528
 
D008347LINKHO 529
 
O00834SLINKMO 530
 
0008349LINKHO 531
 
00083SOLINKHO 532
 

0008351LINKHO 533
 
0008352LINKHO 534
 
0008353LNKHO 535
 
0008354LINKHO 536
 
000835SLINKHO 537
 
00083S6LINKHO 538
 
0008357LINKHO 539
 
00083S8LINKHO 540
 
00A35I9L!NKHO 541
 
00083OLINKHO 542
 
0008361LINKHO 543
 
0008362LNKHO 544
 
000R363LINKHO 545
 
0008364LINKMO 546
 
O00836SLINKHO 547
 
0008366LINKSO 548
 
0008367LINKMO 549
 
0008168LINKHO 550
 
000836OLINKHO 551
 
000837OLINKHO 552
 
000R371LINKHO 553
 
0008372LIN(HO 554
 
0008373LINKHO 555
 
0083T74LINKHO 556
 
0008375LINKHO 557
 
0003TSLINKHO 558
 
000R37TLINKHO SS9
 
0003TLINKHO 560
 
0008179LINKKO 561
 
000S8OLINKHO 562
 
0008381LINKHO 563
 
0O08382LINKHO 564
 
0008383LINKN0 565
 
0008384LINMHO 566
 
000R38S5LINKHO 567
 
0008386LINKHO 568
 

4-B-9
 



O ..e008387LINKO 569
 
C SET PIO TO ZERO FOR DARK CLOUDS 000838SLINKNO 570
 
C... ......... *.................*.O.OOS3. L.00N839LINXO 571
 

Xl(1384)STAUN(NKPTRI384) l.E-4O 000839OLINKNO 572
 

C....................................O....*........... ...


X2(11384).TAUCIR(1;384).PICIRO(LAM, 00039ILINkO 573
 

X2(1I384)-X2(1I384)PIZ(LAMNl 0008392LINKHO 574
 
PIO(1I384jXA2(1I384)/X1(fl384) 0008393LINKHO 575
 
IF(N.LE.33 TN(II;384]TSTR(NPTR;384)/273. 0008394LINK8O 576
 
IF(N.GE.4) TN(lI384).TL((N-4)e384.I;384)/273. O00839SLINKHO 577
 

c IFITN.GE..85348.AND.NCLOUO(N).GT.0)P1O1O. O008396LNKXO 578
 
LI(1;38,IITN(I1384).GE..SS348 O008397LINKHO 579
 
L2(11384)UNCLOUD(NPTR;38R .GT.O 0008396LINKHO 580
 
LI(11384)tL1(1i384).AND.LE(11384) O008399LINKHO 580
 

PIOC1I384It8VCTRLCZERO(I;384),Ll(1384);POtl;384)) D0040OOL!NKHO 582
 
C... EMISSION CALCULATIONS FOR MAZE LAYER. 0004ROILINXHO 583
 
C EXACT IN 7ME SENSE OF ISOTROPIC SCATTERING O008402LINKHO 584
 
C ... EXACT SOLUTIONSTWU-STREAM SOLUTION-FORGE FACTOR(PIOTAUO) 00084O3LINKHO 585
 

LI(I;384)-P!O(384) .GT.1.E-4 0008O0LINKHO 586
 
LOUT.QSCNT(LI(l384)) 000O0SLINKHO 587
 
IF (LOUT.EO.O) GO TO 165 O000BO6LINKXO 588
 
PIOC(IILOUT).QEVCMPRSCP!O(1I384),Ll(11384)IPIOCl;LOUT)) 0008407LINKHO 589
 
TAUNC(1;LOUTI*QOVCHPRSCTAUN(NKPTRI384I.LI(I;384) TAUNC(IILOUTI) OOO0040LINKXO 590
 
STOPNCI;LOUT,.QSVCMPRSCBTOP(NPTR$384),LI(1384);BTOPN(ltLOUTl 0008A09LINKMO 591
 
GTOPNP(ULOUT).GSVCMPRS(STOP(NPTR38384).LI(11384)1 0008410LINKHO 592
 
BTOPNP(ItLOUT)) 000811ILINKHO 593
 

AERI(I1LOUT)UONE(I;LOUT).PIOC{I;LOUT) 000RI2LINXHO 594
 
XI(1ILOUT)SPIOC(IILCUT)-C8(LARNI 0008413LINKMO 595
 
AER2(1;LOUT).ONE(IILOUT)X1I(1lLOUT) O0084I4LINKHO 596
 
XI(1ILOUT)tAERI(IILCUT)/AER2(IILOUT) O008A1SLINKHO 597
 
AERA(1ILOUT).VSQRTtXI(ILOUT)HAERA(I)LOUT)) 0008416LINKO S98
 
AERUISLOUT)SONE(ILOUTI.AERA(1;LOUT) 0008417LINXHO 599
 
AERU(11LOUT).AERU(1ILOUT)/2. 0008418LINKKO 600
 
AERV(IILOUT).ONE(IILOUT).AEA(lLOUT) 0008419LINXHO 601
 
AERV(;lLOUT)SAERV(1lLOUT)/2.O 0008420LINKMO 602
 
ACRC(ISOUT)3.O*AER1I LOUT) 0008ZLINKHO 603
 
AERC(ILQOUT).AERC(IILOUT)*AERE(1ILOUT) 0008422L1NKHO 604
 
AERCIILOUT)SVSORTCAERCILOUT);AERC(IILOUT)) O000823LINKMO 605
 
XI(IILOUT).AERCtIILOUT).TAUNCCI(LOUT) 0008424LINKHO 606
 
XM(ILOUT) XM(ILOUT) 000842SLINKHO 601
 
EXI(CILOUTSVEXP(XIILOUT)EXI(I;LOUT)I 0008426LINKH0 608
 

Co.... TEMPORARY TRAP FOR UNDERFLOWS (AS IN SCALAR CODE) O0Oa427LINKHO 609
 
TSTEXP(tLOUT) * Xi(ILOUT) .LT. -180.218 0008428LINKMO 610
 
EXI(1ILOUT) . Q8VCTRL(ZERO(ISLOUT),TSTEXP(1ILOUTHIEXC11LOUT)) O008429LINKKO 611
 
TSTEXP(I;LOUT) - EXICLJLOUT) *LT. I.E-30 O00843OLINKHO 612
 
EXI(1|LOUT) - Q8VCTRL(ZERO(ILOUT),TSTEXP(1LOUT)IEXltlULOUT)) O008431LINKHO 613
 
EX2E1;LOUT2EXI1;LOUT)EXI(ILOUT) 0008432LINKHO 614
 

C.... FORGE FACTOR FOR ISOTROPIC SCATTERING 0008433LINKHO 615
 
XI(IILOUT) AERV(CiLOUT)*AERV(I;LOUT) 0008434LINKHO 616
 
X2(IILOUT)IAERU(IILOUT).,ERU(1(LOUT) 0008435LINKMO 617
 
X)(IILOUT) X2(1(LOUT) EX2(I$LOUT) 0008436LINKXO 618
 
OENO(I;ILOUT)UXI(IILOUT).X2CIILOUT) O000437LINXHO 619
 
ONMO(IhLOUT) STOPN(ILOUT)-STOPNP(ILOUT) O0084A3LINKHO 820
 
ONMO(I|LOUT]ONMO1ILOUT)/TAUNC1ILOUT) 0008439L!NKNO 621
 
ONRO{ICLOUT)ONMO(IILOUT)/AERC(IILOUT) 000R4OLINKHO 622
 

X2(ILOUT).AERU(1;LOUT).EX2(1 LOUT) 0008441LINKMO 623
 
X1(1;LOUTI.AERV(IILOUT)-X2(IILOUT) 0008442LINKNO 624
 
XaCIILOUT).AERA(41LOUT).EX1(1LOUT 0008443LINKHO 625
 
XI(1;LOUTIXI(IILOUT)-X2fl(LOUT) 0008444LINXNO 626
 
ONMO(:LOUTaDNMO(1;LOUTIeXI(IILOUT) 000844SLINKHO 62T
 
XI{1(LOUT)SAERU(IILOUT)*EXZSIILOUT 0008446LINKO 628
 
ONNI(ILOUT)*AERV(1LOUT) XI(ILOUT) 0008447LINX8O 629
 

-

C EUPCN).S(TOPCN)-ONMI-ONMO.BTOP(N.I4)EXI)/DENOFTWO AERA 000044SLINKHO 630
 
C~*40 USE TAUNC FOR TEMPORARY STORAGE O008449LINKHO 631
 

4-B-i 0 

http:LI(1;38,IITN(I1384).GE
http:IF(N.LE.33


XI(ILOUT3.STOPNIIILOUT,)ONMI(IILOUT) 

XI(IILOUT).XI(1ILOUT)-ONMO(IILOUT) 

X2(%ILOUTSBTDPNP(1LOUT}EXI(1ILOUT) 

TAUNCtIILOUT)*XIIILOUT).X(1;LOUT 

TAUNC(1;LOUT).TAUNCCI;LOUT)/OENOfI;LOUT) 

TAUNC(I;LOUT)MTAUNCC1;LOUT)AERA(IILOUT) 

EUP(NPTR1384).QSVAPN(TAUNCtl$LOUT),L111384)EUP(NPTR3S4)) 


C EDN(N)s(HTOP(N.I)*nN$I1ONO-STO(N)eEXl)/OENO-FTWOARA 

TAUNCII;LOUT).STOPNPt1ILOUT).ONNI(IILOUT) 

TAUNC(ILOUT)sTAUNC(1;LOUT).DNMO(ILOUT) 

Xl ClLOUT)SBTOPNCIILOUT)tEXI(1:LOUT) 

TAUNC(I;LOUT).TAUNCClILOUT).XICIlLOUT -


TAUNC(U|LOUT)TAUNCCI;LOUT)/DENO(ILOUT) 

TAUNCCILOUT)=TAUNC(IILOUT)eAERA(ILOUT) 

EDN(NPTRI3B4)SQSVAPNO(TAUNCt1:384).LI(113343;EDN(NPTRI3S4)) 


C.. * REFiN).TDFIN) BASED ON TWO STREAM SOLUTION 

C REF(N).AERUfAERV*(.-EX2)/DENO 


TAUNC(IsLOUT)-AERU(ILOUT)eAERV(1|LOUT) 

X1(ILOUTJ.ONEII;LOUT)-EX2UIILOUT)

TAUNC(lILOUT).TAUNC(IlLoUTI.XI(1;LOUT) 

TAUNO(ILOUT).TAUNCCI;LOUT/DENO(1;LOUT) 

REF(NPTR;384)=QSVAPND(TAUNCtIILOUT L1I(I384)IREFNPTRI384)) 


C TDF(N)s(AERV-AERU)/OENOEXl 

TAUNC{iiLOUT).AERV(IILOUT)-AERUCIILOUT) 

TAUNCCIILOUT).TAUNC(I;LOUT)/DENO(ItLOUT) 

TAUNC(IILOUT)UTAUNC(lILOUT).EXI(I;LOUT) 

TDF(NPTRI384U)QSVAPNDITAUNC(I;LUUT),LII138)ITDF(NPTR;384)) 


165 CONTINUE 

C.. 

C ... DARK CLOUDS 

C....00O8AOLINXMO 

C NEXT TEST ON CLOUDS 

C BUT FIRST TEST EXCLUDES ALL OTHERS 


LiClI1384t.NOT.LI(11384) 

L3(13384)SNCLOUO(NPTR;384).GT.0 


C L2-SECONO TESTS.NOT.FIRST.AND.SECOND 

L2C13384).Ll( 384).ANO.L3(1384) 

C l-.NOT.FIRST.ANO..NOT.SECNO 
L3(j;384)r.NOT.L2 1*384) 
Ll(113R,)SL1(138

4 
).AND.L3(11384) 


TOF(NPTRI384)SOBVCTRL(ZEROIII38A),L2fl384) ITDF(NPTRI384)) 

REF(NPTRI384).QSVCTRLIZERO(1384),L2(13384)IREF(NPTRU384R) 

EDN(NPTRI384).QSVCTRL(BTOPCNPTR-384$384),LE(l384)tEON(NPTRI384) 

.EUPNPTRI384).QBVCTRLIBTOP(NPTR384))L2(11384)IEUP(NPTRI38)) 


Ce...
 
C.e THICK LAYER 

C ...
 

L211)38,J)TAUN(NKPTR|SA).GT.15. 

L2(11384)2L2C11384).AND.LICI384)

TDF(NPTRI384).QSVCTRL(ZERO(I;384),L21138)ITDF(NPTR;384)) 

EXTAU(1;384).QSVCTRL(ZERO(1384)L2C1I384fEXTAU13384)) 


C... 

C.. . TRANSPARENT LAYER 
C.*.
 

LZ(l;384)STAUN(NKPTRI384).LT.1.E-4 

L2(l;384J.La{lS34).ANO.LlIl(384)

TDF(NPTRIS4SO)QSVCTRL(ONE(11384).LZC(U342ITDFtNPTRIS3B)) 

REFINPTRI384) SOVCTRL(ZERO(1I384htL2(1384)IREF(NPTR3S34) 

EXTAU(NPTR;384)QUVCTRL(ZEROII3B84),L21I384);EXTAUCNPTRI384)) 

EUPNPTR38).QBVCTRL(ZEROLI|3B4).LZ(]138.)IEUP(NPTR3843) 

EON(NPTRI384SQ)VCTRLCZEROII;384),L2(1338)IEON(NTRS384f)


C.... 

C... INTERMEDIATE RANGE 


OOR4SOLINKHO 632
 
0008451LINKO 633
 
O0008SELINKO 634
 
00084S3LINKHO 635
 
'OO0845ALINKHO 636
 
O008SSLINKHO 637
 
0008S6LINKMO 638
 
OOO8457LINKHO 639
 
0008AS8LINKHO 640
 
O00OS59LINKHO 641
 
OOOS6OLINKHO 642
 
00086ILINKMO.643
 
0008462LNKO 644
 
0008463LINKHO 645
 
0008464LINKHO 646
 
O00846SLINKNO 647
 
0008466LINKNO 648
 
O00s467LINKMO 649
 
OOO46SLINKMO 650
 
O00S469LINKHO 6S1
 
000847OLINKHO 652
 
0008471LINKHO 653
 
OOORB472LINKHO 6954
 
0008473LINKMO 655
 
0008474L1NKHO 656
 
000847SLINKHO 657
 
0008476LINKHO 658
 
00OA477L!NKHO 659
 
0008478LINK0 660
 
OOOA479LINKHO 661
 

662
 
O00A481LINKHO 663
 
OOB2LTNKHO 664
 
000483L!NKNO 665
 
ODO8484LTNkHO 666
 
OOOS84SLINKHO 667
 
O008486LINKHO 668
 
00OA487LINKHO 669
 
OAOR48SL!NK$O 670
 

0008489LINXNO 671
 
0008490LINXH8 672
 
O000491LINXHO 673
 
OOOR492LINKO 674
 
0008493LNKHO 675
 
0008494L'NKHO 676
 
O00089SLINKHO 677
 
0008496L1NKHO 678
 
000849 LINKHO 679
 
0008498LINKHO 680
 
0008499LINKxO 681
 
OOOSSOOLINKHO 682
 

5OOORSO1LINKHO
683
 
OOO8SO2LINKHO 6R4
 
0008SO3LINKHO 685
 

OOORSOLINKHO 686
 
0OO850SLINKHO 687
 
O00OAS6LINKHO 688
 
O000507LINKNO 689
 
O00SSOLINKHO 690
 
0OOSSO9LNKHO 691
 
OO08S1OLINKKO 692
 
OOOSSIILINKHO 693
 
0008S2tINXHO 694
 

4-B-1 1
 

http:L211)38,J)TAUN(NKPTR|SA).GT.15
http:L3(j;384)r.NOT.L2
http:L2C13384).Ll


C.... 

L2(1I384)sTAUN(NKPTRI384,.LE.15. 

L3111384)ZTAUNCNKPTRI384).GE.I.E.4 

L21113843.L2(1i384).AN.L31;384) 

L211I3843sL2C1134).ANO.LI(1384) 

Xl111384).-TAUN(NKPTRI384) 

EXTAU(1;384).VEXPCXI(1;I843IEXTAU(1384
 )) 


TY 11384}.20.-TAUN(NKPTR;384) 

C.... PREVENT TABLE OVERFLOW BY STORING 11S IN LOOK-UP VECTOR 


ITY(11384).l 

I1(l;394)-TY(11384).l.0
RITY(138t)IZOVCTHL(R!1II38),LZ(I1as,;RITY(;38,)) 

X1(1i3S43fQSVATHR(TE3(11O1),ITY(1;38

4 ;Xl(l1sa841) 

ITY(II384)X!TY(j13943.1 

X2(l1384)2Q8V6ATHR(TEI(l;501().TYcI138,;X2(1;38), 


C TDF(N)sX2-X1 

X3(1;384)A2(11384).Xl(1;384 

X2(I1384)-TY(II384)-ITY(I1384) 

X2(11384).X21(1384).2. 


C 	 TOF(N).TOFiN)sX2 

X3(l1384).X3(1;3843-X2(1;384,) 


C 	 TOFCN)UTOF(N).X 

X3(1138.)3X3cI1384)3.l ;38, 


C 	 CONTROLLEO STORE INTO TOF(N) 
TDF(NPTR;384)%08VCTRL(X3(19384)tL2(1I38)ITDF(NTRt38)) 

CO** CALCULATIONS COMMON TO INTERMEDIATE ANO HIGH RANGE 

C.... 


L2(1;384)*L3(1;384).AND.L11384) 

REF(NPTR3384).Q8VCTRLIZEROI(1384 ,L2(1;384)IREF(NPTRI3841)


C 	 OFBa(8TOP(N)-TOP(N)1o6.666E-01 

XI(1;384SSTOP(NPTRt3843.BTOPINPTR-38a;384) 

Xl(I13843*Xl(I1384)36.6667E.01 


C FGRAO=DFS.((1.0-EXTAU)/X-TOF(UN3 

X2(1I384).ONE(1:3$4).EXTAU(1;38) 

X2tIE384)X2il;384)/TAUNINKPTRi384) 


X2(11384)tX2dIl384)-TDFCNPTRI34) 

XZ(I1384).X2(1;384).Xl(l;38 )


C ANS.1.O.TDFN) 4
 

XI(1l384)M0NE11384)-TDF1NPTRI384) 

C EDN(N).BTOPtN.13*ANS*FGRA


X3(1I384)IsTOP(NPTR3843843.XclII384 

X3(l13843X3(11384).X(l;384 ) 

EDN(NPTR;384).QEVCTRL(X3(11384,L2(1i3a,)EON(NPTR;3841 


C EUP(N).ITOP(N)*ANS-FGRAO 
 tS8 )
X3(1:38).BTOP(NPTRr3a4),Xl{c
1 

X3(11384).X3(11384)-X2c11384) 

EUP(NPTR:384).QBVCTRL(X3(1138,),LZ(1;38,)IEUPCNPTR;38,) 


Ce.... 

C... FORM TOP COMPOSITE LAYER fADDITION) 

Ce...B 

C109 DENO.l.0-PONCNREF(N) 


109 XI(1:384)URONCNilI38).REF(NPTR;38 

OENO(CI384)3ONE(1384.:XI(II38) 


C EUPCN.EUPCN.(EUP(N].EDNCNREF(N).TOFC(N)/OENO 

C EONCNSEDN(N3*(EDNCN-EUP(N)*RDNCN)tTOF(N/DENO


XI(11384).EUP(NPTRI38).RONCN(1138) 

EONCN(1;384).EDNCN(138)-XI.Xn1384) 

EONCN(1;384).EDNCN(1;38.l*TOF(NPTRI38.l 

EONCN(11384).EONCN(13ec4/DENO(1;384 

EONCN113843)EONCNI;3843.EDN(NPTR38) 


C 	 IF(NCL0UD(N3.GT.0o CLDFLGS.TRUE. 

LI(1I384)SNCLOUD(NPTRI38 .GT.0 


00R513LINKHO 695
 
OOCSI4LINK$O 696
 
0008S51SLINKHO 697
 
000RSI6LINKHO 6Q8
 
O008517LNXHO 609
 
0O08S18LIN(HO 700
000619L!NKHO 701
 

0O0SS2OLINKHO 702
 
00CAS21LINKMO 703
 
00aRS22LINKNO 704
 

0009523LINK8O 704

OOQ0S24LINKHO 706
 
0008S25L1NKH0 707
 
000AS26LINKHO 70
 
0008527LINKHO 709
 
000S28LINKHO 710
 
0008SE29LINKHO 711
 
000AS30LINKHO 712
 
0008S31LNKHO 713
 
0008532LINKH0 714
 
00RS33LINKHO 715
 
0008534LINKHO 716
 
0008535LINKHO 717
 
O00536LINKMO 718
 
OO0R537LINKHO 719
 

OO0RS38LINKHO 720
 
00RSSQL.INKO 721
 
0008540LINKN 722
O 

000RS4ILINKHO 723
 
0008S42LINHO 724
 
000543LINKHO 725
 
0008544L!NXHO 726
 
000RSSLINXO 727
 
000AS46LNXK 728
O 

0008547L!NKHO 729
 
0008548LINKHO 730
 

OORS49LINKHO 731
 
000RSSOLINKMO 732
 
00ORS51LINKHO 733
 
0008S52LINKHO 734
 
00083SSLINXH0 735
 
00ORSSAL!NKHO 736
 
000RS55LINKMO 737.
 
008SS6LINKHO 738
 
000857LINKHO 739
 
000858LINKNO 740
 
00OBS59LINKO 741
 
0008560LINKHO 742
 
00086ILINKHO 743
 
000862LINkHO 744
 
0008563LINKHO 745
 
0008564LNXHO 746
 
000856SLINKHO 747
 
00085S6LNKHO 748
 
0008567LINKHO 749
 
00056SLINKHO 750
 
0008569LINKMO 751
 
000SS7OLINKIO 752
 
0008S71LINKHO 7S3
 
0008572L!NKHO 754
 
0008573L1NKHO 755
 
0008574LINKHO 756
 
000357SLINKHO 757
 

4-B-I 2
 

http:IF(NCL0UD(N3.GT.0o
http:Xl(I13843*Xl(I1384)36.6667E.01
http:L2(1I384)sTAUN(NKPTRI384,.LE.15


CLDFLGU;1384)CLDFLG(Iaai).OR.L(L1384) 

£.... SET AEROSOL FLAG IF CIRRUS CLOUOS (HIGH ALBEOO) 

C IF(CLOFLG.AND.PIO.GE.1.E-4) AERFLO.TRUE. 


Ll(1384)WPIO(fl384),GE..E.4 

LI(1138435LI(11|83).ANO.CLOFLGI(1384) 

AERFLO(11384)SAERFLG(I8384).OR.LI(II3841 


C... TRANSMISSION COHPtTo DIFFERENTLY FOR 3 CASES 

C 	 IF (CLOFLG.OR.AERFLG 0 TO 125 


Ll(1;384)s.NOT.CLOFLG1II384).ANO..NOT.AERFLGI11384 

C ... 	 CASE 1. ATMOSPHERE HAS NO AEROSOLS OR CLOUDS THRU HERE 

C ... 	 USE EXPONENTIAL INTEGRAL APPROXIMATION 

X3(1;38U).TAU(II;384TAUN(NKPTRI384) 
TAU(11384 - QOSVCTPLCX3(1f84).LI(1384,$TAU(11384)) 

C IF (TAU.GT.IS.) GO TO 124 / TOFCNSO. 

L2tl;384)sX3(11384).GT,15. 

L2tlI384)sL2(11384).ANO.L(1;384) 


TDFCN(I;3843.G8VCTRL(ZERO(1)384),L2(11384);TOFCN(1fS84)) 

LI(13a8.)LI(llt38.)-XOR.LZ(18384) 


LOUT.SQ8SCNT(Ll(18384)) 

TY(l;LOUT)9Q8VC4RSIX3(1;384).LI(1t38A);TY(IILOUT)) 

TY(1;LOUTJ.20.*TY(I LOUT) 

TY(I;LOUT).TY(lILOUT).j. 

ITY IILOUTI)TY(IILOUT) 


C TDFCNCTEJ(ITYI(TYITY.)e(TE3(ITY.I)-TE3(ITY)) 

X2C1ILOUT)IQSVGAT$R(TE3(1r301),ITY(IILOUT);X2(IJLOUT)) 

ITYtI;LOUTI CTY{( LCUT)-. 

XI(I;LOUT)RQ8VGATHR(TE3(1$3O1),ITY(IILOUTI)XI(IILOUT)) 

XI(IILOUT)tXI(I;LOUT)-X(18LOUT) 

X3(1LOUT) TY(lILOUT)-ITY(ISLOUT) 

X3(IjLOUT)tX3(1ILOUT)'2. 

X3(IILOUT)*X3(IILOUT)-XI C1LOUT) 

A3(1;IOUT)3 X3(ULUUT) X2(1SLOUT) 

Xl(18384.)GSVXPNO(X3(1;LOUT)3LI(11384)IX1fl384) 

TDFCN(1;384)8=GVCTRL(XI(t|38).LI(1138);TDFCN(13R4)) 


..... (IF AERFLG)
CASE 2. SIGNIFICANT ABSORPTION, 

C 	 RONCNSREF(N).TOFIN)-RONCNTOFCN)/OENO 


X3(11384)RDNCN(338 J5TOF(NPTRP3S4) 

X3(41384).X3111384).TOFNPTRI38) 

X31Ll384)-X3Q138l)/OENO(13843) 

X3(13tR)I.X3(1I38,).REF(NPTR;384 

RONCN(1;384).QOVCTRL(X3(I;384),AERFLGI1;3S4MPONCNCI384)) 


C TOFCNSTOFCN'TDF(NJ/OENO 

X3(138).T0FCNC11384)*TOF(NPTRS38AI 

X3(1;384).X3(1fl84)/OENO(1)384 

TDFCN(1;284)SQBVCTRL(X3(1;384).AERFLG(1;384)ITOFCN(1I384)) 


C130 IF CNCLOUO(N).EQ.0.OR.PIO.OE.I.E.A) GO TO 140 


130 LlCI;38,).NCLOUO(NPTRI384),GT.O 

L2C1I384)PIO(13d&l.LT.1.E-. 

L(IQ1384)L1I I384h)ANO.LZ1384) 


C.... CASE 3. HEAVY CLOUD COVER 

TDFCN(I;384).Q8VCTRLCZERO(1,384hLI(1l384)STOFCN(1U38)I 

RDNCN(1;3843).SVCTRL(ZERO(11384),LICI384);RONCN(1u384)) 

TAUCI;384).QSVCTRL(ZERO(1;38,),LI(1I38.);TAUII384)) 


140 CONTINUE 

C.... SAVE PARTIAL SUMS 


C EUPC(N)EUPCN 

EDNCCNPTRt384)CEDNCN(18384) 

TOFCtNPTRI384A)TOFCN(11384) 

RONC(NPTRI3B4).RDNCN(I1 38) 


10 CONTINUE 

C.... AOODING GROUNO LAYER 


RUPCN(1;384 )AGRNO 

C EUPCNX(I.O-RUPCN)OBTOP(NOI) 


OOO81LINKHO 758
 
0008577L1NKHO 759
 
O00857SLINKNO 760
 
0008579LINKXO 761
 
O008SOLINKHO 762
 
OOOBSG1LINKHO 763
 
00OSS82LINKHO 764
 
O008S83L1NKHO 765
 
00O8S84LINXHO 766
 
000885LINKHO 767
 
OOORS86LINKNO 768
 
O00RS8ILINKHO 769
 
O00O588SINKHO 770
 
O008S89LINKHO 771
 
O008SQOLINXHO 772
 
O00891LINXHO 773
 

OOORS92LINKNO 774
 
OOORS9LINKHO 775
 
OOO89LINKHO 776
 
000859SLINKHO 777
 
O008S96LINKHO 778
 
O008S9LINKHO 779
 
O008S98LINKHO 780
 
OOOS99LINKHO 781
 
O008600LINKHO 782
 
OOO8601LINKHO 783
 
0008602LINKSNO 784
 
OO86OSLINKHO 785
 
O00860LINKHO 786
 
0008605LINKHO 787
 
O008606.INKHO 788
 
O00086OLINKHO 189
 
O0008608LINKHO 790
 
0008609LINKHO 791
 

OO08616LINKHO 792
 
O008611LINKHO 793
 

0008612LNKHO 794
 
0008613L1NKHO 795
 
0008614L1NKHO 796
 
000861SLINKHO 797
 
O008616LINKHO 798
 
O008611LINKHO 7q9
 
O000618LINKHO 800
 
O00S619LINKHO 801
 
OOOS62OLYNKHO 802
 
O008621LINKMO 803
 

0008622LINKHO 804
 
0008623LINKHO 805
 
0008624LINKHO 806
 
000862SLINKHO 807
 
0008626LINKHO 808
 
0O0R62TLINKHO 809
 
0008628LINKHO 810
 
OOO8629LNKHO 811
 
OOO863OLINKHO 812
 

O008S631LINKHO 813
 
0008632L1INKQO 814
 
O00OR633LINKHO 815
 

0008634L1NKXO 816
 
O00863SLINKHO 817
 
OOO8636LINKHO 818
 
0008637LTNKHO 819
 
000838LNKHO 820
 

4-B-1 3
 

http:TAU.GT.IS


EUPCN(1;384).ONE(C1384)-RUPCN(1;3841 

EUPCNtIR3A4,aEUPCN(1;384)uBTOP(NGj381;384) 


C 	 OENO.1.8.RUPCN*RONCN 

Xlli138)2RLUPCN(1;384}.RONCN(1384, 


OENO(1;3841=ONECI'1384-XI{(13841 

C 	 PEFUP(EUPCNaEDNCN*RUPCN)/DENO 


X1(I$384).DNCNI1;384).RUPCN(1138) 

PEFUP({1384)nEUPCN(II384).1(c1384) 

PEFUP(j;384)RPEFUPt1,38o/DENO(1;384) 


C 	 PEFON CEONCNEUPCN-RONCN)/DENO 

X1(1;384)sEUPCN(1I384)tRDNCN(l384) 

PEFONCII384).EDNCN(1;384.Xl(11384) 

PEFON(I1384)PEFON(11384)/DENO(1338) 


C FLAONGSFLX0NGCKLAM-PEF0N 

XIlI1384)sCKLAMPEFON(l$3841 

FLADN9(11384)FXDNG(;384).x111384) 


C 	 FE(NG)SFE(fNG)CKLA$-(PEFUP-PEFON) 

XI(1;394)sPEFU2(i;384)-pEFDN(ls384) 

Xlf11384)XI(1138*)*CKLAH 

FEI(NG.)-384.1384).FE((NG-1)-38*1I384)XI(1I381


C** 


C4*00 FORM BOTTOM COMPOSITE LAYER (ADOITION) 

C.... 


00 118 N-sNG 

NUNG.N* 
MPTR*(M-I) 384* 1 

XAI1;384)aRUPCN(1;3841.REF(MPTRI384) 

DENO(1'1384)-ONE(11384I-XI(11384) 


C EUPCN.EtP(M).(EUPCN.EDNtM)-RUPCN)*TOF(M)/DENO 

X1(£13s4)UEON(MPTH;384).RUPCN1384: 


XI(j;384)1X1(1138.ieEUPCN(11384) 

XA(1t134).X1(11384)STOFF(PTR1384) 

X1(1;384)3X111384)/OQENO(I13841 

EUPCN(1;384)EUPPTRI3841)X(11384I 

IF (M.0E.1) GO TO 119 

LeN-I 

LPTRs1PR-384 


C 	 RUPCNREF(M)*TDF(M)eTOF(tJtRUPCN/OENO 

Xl(1138M)TOF(MPTRI384)eTOFMPTR;384) 

XI(11384)-.IXI384)tRUPCN(l384) 

XI(I13S6)aX1(I1384)/DENO(11384) 

RUPCN(11384)iREF(MPTR384)*XIII384) 


C 	 OENO.1OI.RONC(L)*HUPC 

X1(1384)SRONC(LPTRI384).RUPCN(1;384) 

DENO(11384)ONE(11384).XI(11384) 


C PEFUPmlEURCN.FONC(L)-RUPCN)/ENO 


XhlI384)EDNC(LPTR384)-RUCN(1l384) 

PEFUP111384)2EUPCN(41384)*XII(1;384) 

PEFUP(l84I)PEFUP1;3841/ENO(384) 


C 	 PCFONU(EONCIL).EUPCN*RONC(L))/OENO 

Xl[tl1384)aEUPCN(1U3840*RONC(LPTRI38k) 

PtFON(2;384)VEDNC(LPTRI384).XI(13841 

PEFDN(1f;841*PEPON(11384)/OENO1384) 


'GO TO 120 

119 PEFUP(11384)sEUPCN41;384) 


PEFON(11384)-O. 

C.... 


C120 pEIN.FE(M).CKLAMt(PEFUP-EFNI 

1kO XI(l1384).PEFUP(11384).PEFON(11384) 


XA(jiJs4)sCXLAM-XI(1;384) 

FECNPTRI384)SFE(MPTRS384) Xl (1384) 

C... 


118 CONTINUE 


100 CONTINUE 

200 CONTINUE 

C.... SAVE STRATOSPHERIC FLUXES 


RESTRA( 11152I FE(1|1152) 

REtI£3840).FEiIl53£3840 

RETURN 

END 


0008639LNKHO 821
 
0O00864OLiNKo 822
 
O008641LINKMO 823
 
O00&42LINKHO 824
 

0008643LINKNO 825
 
0008644LINKHO 826
 
000864SLINKHO 827
 
0008646LINKMO 828
 
O008647LINKHO 829
 
OoOa6.8LINKHO 630
 
0008649L!NKHO 831
 
00086SOLINKhO 832
 
0008651L!NK$O 833
 
000R652LNKHO 834
 
0008653LNKHO 835
 

O008654LINKNO 836
 
O00S65SLINK O 837
 
0008656LNKO 838
 
O00R657LINKMO 839
 
O008658L1NXKO 840
 
00OO6SNLINMHO 841
 
0008660L1NKMO 842
 
0008661L1NKNO 843
 
O008662LINKMO 8.4
 
0008663L1NKHO 845
 
0008664LNKNHO 846
 
000865LNKMO 847
 
0008666LINKMO 848
 
O00R667LINKHO 819
 
0008668L1NKXHO 80
 

0008669LINKNO 851-

O008670LINKMO 052
 
0008671LINKHO 853
 

O00R672LINKO 54
 
O008673L1NKHO 855
 
0008674LINKNO 856
 
0008675LINKHO 857
 
O008676LINKXO 858
 

0008677L1NXKO 859
 
O00867SLINKHO 860
 
0008679LINKNO 861
 
000868LNKO 862
 
0008681L!NKHO 863
 
0008682L1K$O 864
 
OOR683LINKMO 865
 
0008684L!NKHO 866
 

0008685L1NKNO 867
 
O008686LINKHO 868
 
O0008687LINKMO 869
 
O000888LNKHO 870
 
O000889LINKNO 871
 
0008690LNKHO 872
 

O008691LINKHO 873
 
000A692LNKO 874
 
0008693L!NKKO 875
 
0008694LINKHO 876
 
O00869SLINKHO 877
 
0008696LNKHO 878
 
0008697LINKHO 879
 
O00869LINKHO-880
 
0008699LINKMO 881
 
O000O70OLINKNO 882
 
0008701LINCHO 883
 

0008702LINKHO 884
 
0000703LNKHO 885
 
O008704LINKMO 886
 
OOO7OSLINKHO 887
 
O00O8706LINKHO 888
 
O0007LINKHO 889
 
OG0g708LINKHO 890
 

4-B-I 4
 



APPENDIX C
 

.SINGLE, SIMPLE LOOPS OF SPECTRAL MODEL
 

SUBROUTINE AIGENR
 
DOUBLE PRECISION VDERIVXDERIVWDXO3DT
 
COMMON /CONSTS/ INDEXNRLRINStINSZKINTILEVl,ILEV29NVERT,
 
I NRTP.LkTP.NTYPENVECTNVREALNVZON,NCYCOTtYRLAGtTIME
 
COMMON /QJBLK/ NZJLO3
 
COMMON /DERIV/ VDERIV(2366),XDERIV(2366),W(2366)
 
COMMON /GENER/ DX03uT(2366)
 
IL=(LIO3-1)*NVREAL*.
 
IHCNZJ*NVREAL
 
DO 200 I=IL.IH
 

200 	 XDERIV(I)=uDERIVCI)*OX030T(I)

RETURN
 
END
 

SUBROUTINE OXT03,(II12)
 
DOUBLE PRECISION PvL#Z1,TZ29X3
 
COMMON P(2366)IZ(2366)tZI(2366)tT(2366),Z2(2366)hX3(2366)
 
COMMON/03OX/ 03XFAC(;400)9,O3XCON(2400)
 
COMMON/SPECIE/X3GRD(6240)
 
COMMON/FTCST/NLON.NLATNGRID
 
COMMON/CONSTS/LC13),NVREAL
 
DIMENSION DATAIM(2400)
 
NLEV=I2"Ii1+
 
ILSPC2(I1-1)SNVREAL*1
 
ILGRDU(11-1)*NGRID*1
 
CALL SPCGDO1X3(ILSPC),X3GR0(ILGRO),DATAIM,NLEV)
 
N*2I*NGRID
 
DO 100 .JuILGRDON
 

100 X3GRO(J)J(X3GR0(J)-03XCON(J)2/O3XFAC(J)
 
CALL GOSP I(X3(ILSPC),X3GRO(ILGRD)tnATAIM.NLEV)
 
RETURN
 
END
 

4-C-I 



APPENDIX D
 

PARTIALLY RECODED SUBROUTINES OF SPECTRAL MODEL
 

SUBROUTINE CORFOR 	 .
 

DOUBLE PRECISION PZ9Zl.TZ2CFXL
 
COMMON P(2366),Z(23e6)tZl(2366),T(2366) ,Z2(2366)
 
COMMON /CONSTS/ INDEXNRLRtINS.INSZKINTILEVIILEV2.NVERTt
 
I 	 NRTP,LRTPtNTYPEINVECToNVREALNVZONNCYCOT
 
COMMON /CGBLK/ KD(43)tCG(433,NCOMP(12)tLWAVE(12),NV(43),LV(43)
 
COMMON /DERIV/ CF(2366)
 
DIMENSION DUM(43)
 
DATA 	NW /0/
 
NZINVZONt1
 
P0 300 JJCNZ19NVECT
 
Jz2*JJ.NVREALC(ILEV1-2)-NZl
 
XL=LVJj)

00 200 ISILEVIILEV2
 
J=J*NVREAL
 
JlsJ.1
 
CF(J)uXL*PtJ1)
 
CF(J1)=-AL*P(J)
 

200 CONTINUE
 
300 CONTINUE
 

IF (NW.EO.0) RETURN
 
ILEVs(ILEV2-ILEV)/2*1

JMP*NVREAL*(ILEV-1)
 
WRITE (691000) ILEV
 

LOCO 	 FORMAT (1Ot10XotTEST CORFOR ENERGY CONSERVATION FOR LEVEL 't.3/)
 
00 510 U=1.NVZON
 
JL=r*JMP
 

blO 	 DUM(J)=-.5*P(JL)*CF(L)
 
00 530 U=NZINVECT
 
JR=2*J-NZI*JMP
 
JI=JR*.
 

530 DUM(J)=.P(JR)*CF(JM) P(JI)*CF(JI)
 
SUM;10,
 
00 540 J.1,NVECT
 

540 SUM=SUM*DUM(j)
 
WRITE (6.1010)
 

1010 FORMAT (1H0,10aXPsI(I),CF(I),OKE(I) =0/)
 
DO 50 I.=1NVZON
 
J4.JMP
 
WRITE 	(6.1015) IP(J),CF(J)hDUM(I)
 

1015 	 FORMAT (cXI5,E1S.6.lSXE15o6.1SXPE15.6)
 
550 	 CONTINUE
 

K=NVZON
 
00 600 I=NZNVREAL,2
 
II.I*JMP
 

X=K I
 
WRITE. (6.1020) IP(11)*P(J)#CF('II)oCF(J),oUM(K)
 

1020 FORMAT (5X9155GEl5*6)
 
600 CONTINUE
 

WRITE (6,1030) SUM
 
1030 FORMAT (1M0I,1OXoTOTAL DKE '.E15.6)
 

RETURN
 
END
 

4-D-1
 



SUBROUTINE VCORFOR
 

JSNVZON.1
 
DO 300 JJuNZ1,NVECT
 
4.4.2
 
XLmLV(JJ)
 
DO 200 I=ILEVIILEV2
 
CF(J,3)XL*P(J1,I)
 
CF(j*1-,)s-XL*P(JI)
 

200 CONTINUE
 
300 CONTINUE
 

RETURN
 

ENTRY CORFORO
 
NZINVZON 1
 
RETURN
 
END
 

4-D-2
 



SUBROUTINE FRICTN
 
DOUSLE PRECISION,PtZFJ,CF
 
COMMON P(2366) ,Z(23r.6)
 
COMMON /CONSTSY INOEXNRLR,,INSgINSZKINT-ILEVIYLEV2,NVERT.t

1 NRTP'LRTPNTYPENVECTtNVREAL.NVZONNCYCDT
 
COMMON /CGALK/ KD(43),CG(43')tNCOMP(12),LWAVE( 12),NV(43).LV(.43).
 
COMMON /VRTBLK/ ZVAL(26) ,PVALC26),VWT(26) DZRV
 
COMMON /DERIV/ CF(2366)
 
COMMON /BARBLK/ TBAR(26)1SIGMA(26) XIBAR'(26).aDIFFM(26),DIFFX(26)
 
DIMENSION FJ(26)
 
R2sRV-1.
 
R2=le/2R
 
R1SRV'R2
 
ILXP1=ILEY.l1
 
IL2PlSILEV2*1
 
FJ()=ODO
 
DO 300 U21,NVREAL
 
JJw(CLEVl-l)*NVREAL4.
 
J18JJ
 
00 loo IfILlPIiILEV2
 
'2%Jl
 
JlJl+NVREAL
 

100 	 FJC)sOIFFM(I)*(ZtJl)-Z(J2)) 
FJ(flPl)SCDIFFM(IL2P1)*Z( ) "-
JJm,)JwNVREAL
 
00 200 I=ILEVIILEV2
 
J.mJJ4NVREAL
 

200 CF('JJ)=CF(JJ)*Rl*FJ(I.1-R2'FJ(c)
 
300 CONTINUE
 

RETURN
 
ENO
 

4-D-3
 

http:ILXP1=ILEY.l1
http:12),NV(43).LV(.43


SUBROUTINE VFRICTN
 

FJ (1)=0.
 
- DO 300 J=1.NVREAL
 

DO 100 I=ILP1,ILEV2

P4J(I)=DIFFM C )((, 1)-2 CJ9 1-1) 

100 CONTINUE
 
FJ(IL2P1)=-DIFFM(IL2P1)*Z(JPILEV2)
 
DO 200 I=ILEV1,ILEVZ
 
CF(JsDlsCFJI)I*RI*FJ(I41)-R2*Fr(Ii
 

ZOO CONTINUE
 
-300 'CONTINUE
 

RETURN
 

ENTRY FRICTNO
 
R2=RV-1.
 
R2=1,/R2
 

RIRVOR2
 
ILIPI1ILEVI 1
 
IL2P1zILEV2#1
 
-RETURN
 
EN1.
 

4-D-4
 



SUBROUTINE MJAB (PtToDER

DOUBLE PRECISION PtTA&'C.F1RpF1tCINOFR,FIFlAF1BFICF-D
 
DOUBLE PRECISION DER
 
COMMON /COFBLK/ C(3Oh800)rS(1S00)
 
COMMON /CONSTS/ INDEX.NRLRINSoINSZKINTPXLEV,!LEV2NVERTo
 
1' NRTPLRTP9NTYPEtNVECTgNVREALNVZONNCYCDT
 

- COMMONPKBLK/NSNIINZN3N4#LSLlL2L3,L4
 
COMMON OWORKBK/ A(2366)
 
DIMENSION P(1),T'(1QDER(1)
 
DIMENSION FR(26)vFI(26)
 
CALL DZERO" (A)
 
INDEXmO
 
KLOW(ILEVI1e)*KINT
 
INSZI*INSZ*1
 
O0 400 KulINSZ
 
LSIS(K)'
 
CALL UPACK
 
NAIUNINI-NR-1
 
NARmNAI.1
 
NBI.N2*N2-NR-1
 
NBRmNBI~l
 
KiUKLOW
 
DO 5 %JILEV1tILEV2
 
NARsNARfKl
 
NAI=NAI.K1
 
NBRaNBRKL
 
NUIaNBIK1
 

FR('J) P(NAR)2T(NBI)-P(NAI)0 T'(NBR) P(NR)*T(NAI).P(NBI)*T(hNR)
 
KIUKINT
 

S CONTINUE
 
DO 100 IsN3,N4,2
 
INDEX=INDEX*1
 
CIND=C(INDEX)
 
K1UKLOw
 
00 75 JxILEV1,ILEV2
 
A(I.K1).A( I+K1) FR(J)*CIND
 
K1S ,KINT
 

75 CONTINUE
 
100 CONTINUE
 
400 CONTINUE
 

DO 500 K=INSZ,INS
 
LS=IS(K)
 
-CALL UPACK
 
K =KLOW
 
IF (NI.LE.NR*1) GO TO 4a0
 
IF (N2.LE.NR*1) GO TO 50 

NALNI*NI-NR-1
 
NAR=NAI.1
 
NBI=N24NZ-NR-1
 
NBARNB-I-1
 
00 35 J=ILEV1,ILEV2
 
NAR=NAR*K1
 
NAIsNAI,*Ki
 
NBRmNBRNK1-

NBIaNBIKI.
 
F-4AsP(NAR)*T(NB'I,-P(NBI),oTCNAR
 
F1B-P(NAI)'T(NBR)-P(NBR)*T(NAI)
 
F1C=CPNARI*T'(NBR).P(NBR)*T(NARI,
 
Fl~aP(NAI)*T(NBI)-P(NBI)OT
'NAI
 

4-D-5
 

http:NAI=NAI.K1


IF (NS-1) 10,20.30
 
10 F1Rn-F1A-F1B
 

F1I=F1C-F1D
 
GO TO 33
 

20 FIRs-F1A*F1B
 
FlIsF1C*F1D
 
O0 TO 33
 

30 F1RaFIA-F1B
 
PIF1C.F1D
 

60 TO 33
 
-33 CONTINUE
 

FRCJ)=F1R

• 	 FI(J)xFll

,K=KINT -. 

35 	 CONTINUE
 
G0 TO 160
 

40 	 NBIsN2tN2-NR-1
 
NBR*NBI-1
 
NAIZN1
 
NARwN1
 
GO TO 60
 

50 NAR=NIN1-NR-1
 
NAI=NAR-1
 
NBRsN2
 
NBIN2
 
O0 TO 60
 

,60 	CONTINUE
 
DO 150 J=ILEV1,ILEV2
 
NARxNARKl
 
NAINAI*K1
 
NBR=NBR.K1
 
NBIwNBI*K1
 
FIR-P (NAR) T(NBI)*P(NBI) T(NAR)

FI1P(NAI)'T(NBR)-P(NBR)*TANAI)
 
-60 TO 80
 

'80 CONTINUE
 
FR(J)uF1R

FI(J)wFII
 
KISKINT"
 

150 	 CONTINUE
 
160 	 CONTINUE
 

NGIUNS*N3-NR-1
 
00 200 lXN3,N492
 
NGRsNGI-1
 
INDEX=INDEX*1
 
CINDSC(INDEX)
 
KI=KLOW
 
DO 175 JsILEVhI"*LEV2
 
A(NGR.K1)RA(NGRK)*FR(j)*CIND

A(NGI.Kl)A(NGI.Kp),*FI(J)OCIND
 
K1 K 1.KINT
 

175 	 CONTINUE
 
NGIuNGI*4
 

200 CONTINUE
 
500 CONTINUE
 

IL=(ILEVI-1)*NVREAL,1
 
IHmILEVB.NVREAL
 
DO 600 jxILIH
 

-600 	DER(I)*DER(I)*A(I) 
RETURN
 
END
 

4-D-6 

http:NBR=NBR.K1
http:10,20.30


SUBROUTINE VMJAB(PTDER)
 
C 

CALL 	OZERO (A) 

INDEXuO
 
00 400 ulIsINSZ
 
LSNIS(K)
 

CALL 	UPACK
 

00 5 .mJILEV1ILEV2
 
FR(J)uP(NARIJ) T(NBIJ)-P(NAIeJ)*T(NBRoJ)
 

*PlNBRJ)T(NAXtJ)-pcNBIj)*T(NARJ)
 
S 	CONTINUE
 

00 10 IaN3,N4,2
 
INDEX*INOEX*4
 
DO 7 JsILEV1,ILEVZ
 
A(ItJ)wA(I,,J)*FR(J *C(INOEX)
 

75 CONTINUE
 
00 CONTINUE
 
400 	 CONTINUE
 

D 500 KINSZ1.INS
 
LS=IS(K)
 

CALL 	UPACK
 

00 35 JuILEV1,ILEVZ
 
FIA(J)WPCNARJ)*T(NBInJ-P(NEIJ)*T(NARJ)
 
7IB(J)=P(NAJ)*TCNBRtJ)P(NBRJ)T(NAI,J)
 
F1C(J)=P(NAR.J)*T(NBRJU-P(NBRtJ)*T(NARJ)

FIO(J)CP(NAIJ)*T(NBI9J)-P(NBIJ)* T(NAInJ)
 

10 CONTINUE
 
FR(J4) FIA()-FB(J)

FI(J)=FIc(J}-FlIO J)
 

35 CONTINUE
 
NGIxNGIo
 

- 00 200 I=N3tN4,2
 
"NGR*NGI-1
 
INOEXsINOEX*1
 
DO 175 J=ILEVLILEV2
 
A(NGR,J)uA(NGRoJ).FP(J)*C(INOEX)
 
A(NGI, )SA(NGItJ) FI(J)*C(INDEX)
 

175 CONTINUE
 
NGING.I*4
 

200 CONTINUE


7500, CONTINUE00 600 
Is1.NVREAL
 
00 	600 J2LEV,1LEY2
 
DER(I,J)sDER(IJ)*4(I4J)
 

600 CONTINUE-

RETURN
 

ENTRY MJABO
 
INSZI=LNSZ*1
 
NAIxN1*NI-NR-1
 
NAR=NAIDI
 
NBI=N2$N2-NR-I
 
NBRsNBI.I
 
NG~L~N3+N3-NR-1
 
RETURN U-

END
 

4-D-7 



50 


75 


100 

110 


125 

150 


175 

200 


SUBROUTINE RGAMMA (N)
 

DOULE PRECISION PPZETA,ZXT,Z2,DGEGDGCGEGCG

DOUBLE PRECISION EVECT.Xt.IVETEVAL,VDERIVTDERIV.RAG
 
DOUBLE PRECISION A
 
COMMON P(2366)-ZETA(2366)Zl'(2366),T(2366}_,Z2(366)
 
,COMMON /CONSTS/ INDE-X-,NR.LRINSINSZKINTILEVXILEV2,NVERTi
 
-1 NRTPLRTP.NTYPE.NVECT.NVREALtNVZON.NCYCDT
 
COMMON /CGBLK/ KD(43)PCG(43)*NCONP(12)tLWAVF(12,),NV(43)tLV(43)
 
COMMON /DERLK/ DG(43) EG(43) DGCG(43)-*EGCG(43).
 
COMMON /.VRTBLK/ ZVAL(26)oPVAL(26),VWT(2 ),DZ,'RV

COMMON /LERIV/ VOERrV52366)oTDERIV(2366}rW(366)
 
COMMON ./WORKBK/ R(c366),AG(2366).

* DATA NW /0/

,A=-(N-.DO)/(NCYC*DT)
 
RVMIuRV-1.
 

* IH=ILEV2*NVREAL
 

1La(ILEVI-I)*NVREAL.1
 
"IF (N.3T..I) 60 TO 75
 
DO 50 "I=IL.IH
 
JII-NVREAL
 
AG(I)=VDEHIV(J)-VDERIIV(I}
 
R(I)r-TDERI.V ()*2DZ
 
CONTINUE
 
GO TO 110
 
CONTINUE
 
'DO 100 IxILtIH
 
J=I-NVREAL
 
1AG(I)=VDERTV-(J)-VOERIV(I)*A*(Z1(J)-Zl(I))
 
RCI)u-(TDERV(I)+A*Z2(I) )DZ
 
CONTINUE
 
CONTINUE
 
NVZI=NVZON1I
 
DO ZOO jJsZNVZON
 
JSVnJJ*NVREAL*(ILEV1-2)
 
IF (JJEQ.2) GO TO 150 "
 
Fm-DGCG(JJ)/CG(JJ)

J=JSV
 

DO 125 1UxILEVIvILEV2
 
JEJ.NVREAL 
JlmJ-1
 
-R(J)sR(J) F*AG(J)
 
CONTINUE
 
CONTINUE
 
IF (JJEQNVZON) GO TO 200

dsJSV 

"F=EGCG(JU)/CG-(JJ)
 
Do 175 IarLEVllILEV2
 
JutJNVREAL
 

R(J)aR(J)F*AG(JI)
 
CONTINUE
 
CONTINUE
 

4-D-8
 



JJuNVZON
 
00 500 LUlLR
 

NCONCOMP(L*1)

IF (NCeLE.O) GO TO 500
 
DO 450 NNUlNC
 

JSVW2*JJ*NVREAL*(-ILEV1-a ).NVZON-1
 
IF (NN.EQ.1) GO TO 300
 
Fs-DGC((JJ)/CG(JJ)
 
JRsJSV
 
00 250 ISILEVIILEV2
 
JRJRNVREAL
 
JI=JR-2

J1RUJR=2
 

JllJ1R*l
 
R(JR)uR(JR)F*AG(J1R)
 
R(JI)=R(JI)*F*AG(JI)
 

250 CONTINUE
 
300 CONTINUE
 

IF (NN.EG.NC) O0 TO 500
 
JRSJSV
 
F=EGCG(JJ)/CG(JJ)
 
O0 400 I=ILEVI#ILEV2
 
JR=JRNVREAL
 
JIuJR.1
 
J1RUJR*2-

JlIxJIR*1
 
R(JR).R(JR)F*AG(J1R)
 
R(,JI)=R (I) +F*AG(JII)
 

400 CONTINUE
 
4SO CONTINUE
 
500 CONTINUE
 

00 600 I'ILIH
 
R(I)wRVM1OR(I)
 

600 	 CONTINUE
 
IF CNW.EQO01 RETURN
 
WRITE (6,-1000) ILEVltILEV2
 

1000 	 FORMAT (1H0 10XFI * RV(,I2," ) , R(l,2,') *9/) 
J1=NVREALt (ILEVI-1i
J3-NVREAL(ILEVa-i)
 
D 700 I=1NVZON

Jl=Jl$1
 

J3uJ3*1
 
WRITE (6.1.010) 1, H(Jj).R(J3)


1010' FORMAT (11I10,020.10920X9020.10)
 
700 CONTINUE
 

NZIwNVZONOI
 
O0 800 ISNZINVREAL,2
 
jlaul,'
 
J2=Jl l
 
J~u.J3. 1
 
J4=J3+1
 
WRITE (6,1020) I,#R(J1),R(j2).R(J3),R(J4)


1020' FORMAT (1X,I10 4020.10)
 
~J1aj1.1
 
J3wJ3*1

800 CONTINUE-

RETURN
 
END
 

4-D-9
 

http:10,020.10920X9020.10
http:NN.EG.NC


SUBROUTINE VRGAMMA(N)
 

IF (N.GT•l) GO TO 75
 
00 50 JulNVREAL
 
DO 50 I=ILEVIILEV2
 
-AG(JI-)sVOERIV(JI-1),-VDERIV .(JI)
 
R(Jo,)=-TDERIV(JI)*DZ
 

-,50 	CONTINUE '
 
GO TO 110
 

75 	-CONTINUE'
 
00 O00 JalNVREAL
 
DO lO IwILEV1,ILEVZ -AGCJ,'I)=VDERIVCJ*I-1)-,VDERIV(Jtl)oA(N)O(ZI(jol-1).ZI(jg1)
 

,R(JIS)C-(TDERIV(JIv-*A(N)*ZZ(JoI))DZ
 
100 CONTINUE
 
110 	 CONTINUE
 

DO 200 JJ=2,NVZON
 
DO 165 I=ILEVIILEV2


S 	 R(JJ*I)=R(JJ91)*FtJJ}*AG(J-1I)
 

165 CONTINUE
 
-200 CONTINUE
 

DO 500 Jj=NZ1,NVECT

J=2 .JJ-NZ 1
 

DO 350 I.ILEV1,ILEV2
 
R(Jtil)R(J.I)1F(JJ)AG(J-2I)

R(J+1,I)=R(J*Iqj}*F{JJ)eAG(,J°Itl)
 

350 CONTINUE
 
500 CNMSImTE
 

- DO 600 I=IL.IH
 
R(I) R(I)*RVMI
 

600 	 CONTINUE
 
RETURN
 

ENTRY RGAMMAO
 
NZlaNVZON.1
 
F(2).EGCG(2)/CG(2)
 
DO 1 JJ=39NVZON-1
 
FCJJ)=(EGCGJJ)DGCG(JJ))/CG(JJ)
 
CONTINUE
 
F(NVZON)a-DGCG(NVZON)/CG(NVZON)
 
JJwNVZON
 
DO 3 L 1,LR
 
jjuj.l1
 
F(JJ)=EGC0(CJ)/CG(JJ)
 
00 2 	NNzatNC-1

dJdJx*l
 

'F(JJ)=(EGCG(JJ)-DGCG(JJ))/CG(JJ)
 
2 CONTINUE
 

jjsjJ*l
 
F(JJ)=fGCG({JJ)/CG(4J)
 

3 CONTINUE
 
DO" 4 I:1,NCYC
 
A(I)=(1.-I)/(NCYC*DT)
 
CONTINUE
 
RVMI=RV-1.
 
IH=iLEV2*NVREAL
 
ILz(ILEVl-l)*NVREAL*1
 
NC=NCOMP(2)
 
RETURN
 
END
 

4-D-1 0 

4 



SUBROUTINE WFIELD
 
DOUBLE PRECISION DGEGDGCGEGCGtWPWTERMElE2F1F2,F3,F,
 
DOUBLE PRECISION VOERIVTDERIV'
 
COMMON /CONSTS/ INOEX.NRLRINS,-INSZKINTtILEVIILEV2tNVERTt
 
I NRTPLRTPNTYPENVECT.NVREALNVZONNCYC0T
 
COMMON /CGBLK/ KO(43)-CG(43).NCOMP-AI2),LWAVE12),NV(43),oLV(43)
 
COMMON /DEULKJ DG(43).EG(43) DGCG(43) EGCG(43)

COMMON /VRTBLK/ ZVAL(26),PVAL(26)9VWTC26),DZRV
 
COMMON /fERIV/ VOENIV(2366)tTDERIV(2366),W(2366)
 
COMMON /wORKBK/ WTERM(2366),
 
CALL DZERO (WTERM)

E2.1oOi(RV-I*DO)
 
E1"RV'E2
 
NVZINVZON*1
 
DO 200 .Jm2NVZON
 
JSVUJJ*NVREAL'(ILEVI-2)
 
IF (JJ.E0.2) GO TO 100
 
FluE2*OGCG(JJ)

F20EIeDGCG(%IJ)
 

JvJSV
 
00 50 I.ILEV1,ILEV2
 
JJNVREAL
 
tJl -1
 
J2sJI1NVREAL 
WTERM(J).FI*W(J1)-F2.W(J2)
 

50 CONTINUE
 
100 CONTINUE
 

IF (JJdEQNVZON) 60 TO 200
 
J=JSV
 
Fl=E2*EGCG(JJ)
 
FruEl*EGCG(Ju
 
DO 150 Is!LEV1,ILEV2


"J=J+NVREAL
 
dl=J*l
 

J2uJl1NVREAL
 
WTERM(CJ)WTERM(J)-rl*WCJ1I *F2*W(J2)
 

150 	 CONTINUE
 
200 	 CONTINUE
 

JJ=NVZON
 
00 500 L=ILR
 
NINCOMP(L-I)
 
IF (N.LEO) GO TO 500
 
00 450 NN.lN
 

JSVS2SJJ*NVREAL*(ILEV1-2).NVZoN=1
 
IF (NNoEQl) GO TO 300
 
FlE2*OGCG(J)
 
F2=EI*DGCGJJ)
 
JRmJSV
 
DO-250 II=LEVIILEV2
 
JREJR*NVREAL
 
JI=JR.1
 
JIR!JR-2'
 
JI.aJ4R I
 
J2RzPJ1RNVREAL 

-,321JaR.1 

WTERM(JR)=F1*W(JIR)-F2*W(JZR)
 

-
WTERM(JI)uFI*W(JlI)-F2*W(J21

250 CONTINUE
 
300 	 CONTINUE
 

4-D-1 1
 



IF (NN.EQ.N) GO TO 500
 
JR=JSV
 
FI=E2EGCGIJJ)
 
F2=EI*EGCGCJJ)
 
00 400 ISILEV1,ILEV2
 
JRuJR*NVREAL
 
JI=JR+1
 
J1R=JR+2
 
JIUJ1R* 
J2RWJIR.NVREAL 
.d2Xzd2R - -
WTERM(JR)=WTERM(jR) -FI*WfJCR)(F2eN4J2R)
WTERM(JI)SWTERM(JI)-F*WJII) F2*WCJ2!)
 

400 -CONTINUE
 
450 CONTINUE
 
500 CONTINUE
 

IL=(ILEVI-1)*NVREAL*1
 
IH=ILEV2*NVREAL-

DO 600 IxILtIH
 

600 VDERIVCI)SVDERIV(I)4WTERM(I)
 
RETURN
 
END
 

A-D-1 2
 



SUBROUTINE VWFIELD
 

00'200 JJ=2,NVZON
 
D0 165 ImILEVI,ILEV2
 
WTERM(Jjl)=FI(JJ)0W(JJ-II)-F2(JJ)*W(J-olI.91)
 

165 CONTINUE
 
"200 	 CONTINUE
 

DO 500 JJ=NVZltNVECT
 
0J2eJJ-NVZ1
 
DO 360 I=iLEVIILEV2
 
WTERM(J,I)UF1(JJ)OW(J-2.I)-F2(JJ)4w(J,.2,I,)

WTERMCJ*itl)=F(JJ)*W(J1d1)-F2(JJ)CW(Jd.I4fl
 

360 CONTINUE
 
500 CONTINUE
 

DO 600 	I.ILIH
 
VOERIV(I)=VDERIV-(I).WTERN(I)
 

600 CONTINUE
 
RETURN
 

ENTRY WFIELDO-

NVZI=NVZON*1
 
E21./(RV-i.)
 
E1*RV'E2
 
FI(2)x3E2*EGCG(2)
 
Fr(2)aUlEE63CG(2)
 
DO 1 Jz3,NVZON.1
 
FI(d)mE2*(0GCG'(J)-EGCG(J))
 
F2(J).E1*(DGCG(J)-EGCG(J))
 

I 	CONTINUE
 
FI(NVZON)3E200GCG(NVZON)
 
F2(NVZON)*E1*DGCG(NVZON)
 
JJNVZON
 
DO 3 LSlLR
 
JdzjJ*l
 
Fi(JU)u-E2*EGCGCJj)
 
F2(JJ)x-EIEGCG(JJ)
 
DO 2 NNm2N-1
 

FP(,JJ)E2*(OGCG(JJ)aE6C6UJU))
 
F2(JJ)mE1*(DGCG(Ji)-EGGiJjJ))
 

2 	CONTINUE
 
JduJdo 1
 
FICJJ)sE2*DtCO(JJ)
 
F2(JJ)EI1*DGCG(JJ)
 

3 CONTINUE
 
ILs(ILEVI-I)*NVREAL
 
IMHILEV2*NVREAL
 
RETURN
 
END
 

4-D-1 3
 

http:WTERM(Jjl)=FI(JJ)0W(JJ-II)-F2(JJ)*W(J-olI.91


100 

200 


300 


SUBROUTINE STABLE
 
DOUBLE PRECISION WqTABWFtVDERIV#TDERIV
 
COMMON /CONSTS/ INDEXNR.LRINStINSZKINTtILEV1.ILEV2NVERTt
 
I NRTPLRTPiNTYPE.NVECToNVREALtNVZONNCYCSDT
 
COMMON /VRTBLK/ ZVAL(26),PVAL(26),VWT(26),DZRV
 
COMMON /dARBLK/ TBARC26),SIGMA(26).XIBAR(26)
 
COMMON /DERI,V/ VDERIV(2366),tTDERIV(2366)1W(2366)
 
COMMON /WORKBK/ STABW(2366)
 
DO 200 IzILEVI*ILEV2
 
$1.(I-I *NVREAL
 
:F-SIGMA(I)
 
.DO 100' J=1,NVREAL -


KuJJ*J I
 
STABW(K)uF*W(K)
 
CONTINUE
 
CONTINUE
 
IL=(ILEVI-1)*NVREAL*.
 
IH=ILEV2ONVREAL
 
DO 300 ISILIH
 
TDERIV(I)uTDERIV(I).STABWCI)
 
'RETURN,
 
END
 

SUBROUTINE VSTABLE
 

DO 300 IwILEVlILEVE
 
FP-SIGMA(I)
 
'DO 300 isl1NVREAL
 
STABW(Jt)FiW(Joj)
 
TDERIV(JI)sTDERIVJoI) STABW(JdI)
 

300 CONTINUE
 
RETURN
 
END
 

4-D-1 4
 



SUBROUTINE DIFFXI
 
DOUBLE PRECISION P9Z,*ZITZ2,x3,Z3
 
DOUBLE PRECISION VOERIVXDER!VvWG4
 
DOUBLE PRECISION DUN
 
COMMON P(2366)gZ(2366),ZT2366)rc2366),z2c2366)oX3(236),Z3(236 6)
 
COMMON /;ONSTS/ INbFXNRtLRoINSoINSZ9KINTPILEVI LEV2,NVERT,
 
I NRTP9LRTPPNTYPEPNVECTNVAEALPNVZONNCYC.DT
 
COMMON /BARBLK/ TBAR(26)SIGMA(26),XIBAR26)eDxFrM(26),DFFX(26)
 
COMMON /OERIV/ VOERIV(2366.XOERIV(2366),W(2366)
 
COMMON /VRTBLK/ ZVAL(26),PVAL(26),VWT(26 ,OZRV
 
COMMON /QJBLK/ NZJPL103
 
DIMENSION GJ(26)

R2=RV-1,

R2=ls/R2
 

RlzRV*R2
 
L103MlL103-1
 
IF (LIO3MI.LE.0) LLO3Ml.1
 
DO 100 I1.LI03
 

100 GJ(I)O.Do0
 
DO 300 JsINVREAL
 
JdR(LIO3MI-I)*NVREAL4J
 
.J2mdJ
 
00 200 ILI03MItILEV2
 
JlJ2#NVREAL
 
GJ(I).OIFFX(I)*(X3(J).X3(J2),
 
J2*J1
 

200 	 CONTINUE
 
JJ31103-2)*NVREAL*J
 
DO 250 1sLI03ILEV2
 
JJs.JJNVREAL
 
DUMuRl*GJ(I)-RZ*GJ(I-)
 
XOERIV(JJ)SXDERIV(JJ)*DUM
 

250 CONTINUE
 
300 	 CONTINUE
 

RETURN
 
END
 

SUBROUTINE VDIFFXI
 

DO 100 Ic=1LI03
GJ(I)cO,
 

100 	 CONTINUE
 
DO 300 Ji1,NVREAL
 
DO 200 InLIO3MI1,ILEV2
 
6J(C)nOIFFX(I)*(X3(JtI.flX3(JI.)
 

200 	 CONTINUE
 
DO 250 I=L103,ILEVZ
- XDERIV(Lj.I)xXDERIV(JI).R10 GJ(I)eR2*GJ(!.1)
 

250 CONTINUE
 
300 CONTINUE
 

RETURN
 

ENTRY DIFFXIO
 

R231./R2
 
Rl=RV*R2
 
L103MI*Ll,03-1
 

IF (L1O3MLE.O) L1O3Mli 
RETURN
 
END
 

4-D-1 5 

http:NRTP9LRTPPNTYPEPNVECTNVAEALPNVZONNCYC.DT


SUBROUTINE'WADVXI
 
DOUBLE PRECISION P#ZtZlTZ2.X3,Z3
 
DOUBLE PRECISION VDERIVXDERIV,WWDX3DZWXJBAR
 
COMMON P(2366)tZ(2366).Zl(2366),T(2366),22(2366),X3(2366)tZ3(2366)
 
COMMON /CONSTS/ INDEXNRLRINSINSZ,KINTgILEV1,ILEV2tNVERT
 
I 	 NRTP,LRTPNTYPEoNVECTNVREALtNVZON.NCYCDT
 
-COMMON /DERIV/ VDERIV(2366)tXDERIV(2366),W(2366)"
 
COMMON /VRTBLK/ ZVAL(26),PVAL(26).VWT(26) )ZRV
 
COMMON /QJBLK/ NZJoLIO3
 
COMMON /WORKBK/ WD3OZ(2366)
 
DIMENSION WXJBAR(26)
 
DZ2*u2.DZ
 
R2=RV-1.
 
RE.!./R2
 
RI=RVOR2
 
DO 200 I=LI03,ILEV2
 
JJ(I-i)*NVREAL
 
IL=JJ-NVREAL*1
 
IHUJJ*NVREAL$1
 
Fs(X3(IH)-X3(IL))/DZ2
 
DO 100 J2NVREAL
 
KsJJ*J
 
WDX3DZ(K)=FOW(K)
 

100 CONTINUE
 
200 CONTINUE
 

NZ1:NVZON.1
 
IL2PIILEV2*1
 
DO 250 I~llIL2P1
 

250 	 WXJBAR(I)=O.DO
 
IL2M1.ILEV2?1
 
DO 400 I=LIO3ILEV2
 
JJ(I-i)ONVREAL
 
DO 300 ju29NVZON
 
KaJJ.J
 

300 	 WXJBAR(I)UWXJBAR(I).W(K)*X3(K)
 
DO 350 JNZ1,NVREAL,2
 
K.JJ$J
 

,WXJBAR(I)sWXJBAR(I).2.*(W(K)*X3(K)*W(K1).X3(K))
 
350 CONTINUE
 
400 CONTINUE
 

-ILBPImILEV2*I
 
CALL XDERSP (WXJBARqL103oIL2P1)
 
DO 500 1aL1039ILEV2
 
4JJ(I-I)*NVREAL.1
 
WDX3DZ(Jj).WXJBAR( )
 

500 	CONTINUE
 
ILa(LIO3-1)*NVREAL*1
 
IMILEV2'NVREAL
 
DO-600 I!IL9IH
 

600 	XDERIV(I).XDERIVCI)+WDX30Z(I)
 
RETURN
 
END
 

4-D-1 6
 

http:WXJBAR(I)=O.DO
http:DZ2*u2.DZ


SUBROUTINt VWADVI
 

00 200 IvL1O3ILEVZ
 

00 100 Ja.2NVREAL
 
WOX3DZ(j) sPF(Jl)
 

100 CONTINUE
 
a00 CONTINUE
 

aDO 	250 1ls1ILIPl
 
WXJBARCI)RO. 

250 	 CONTINUE
 
00 400 ?.L103,ILEVa
 
00 300 usZNVZON
 
WXBARCI)UWXJBAR(t) W(J,)'X3(JU11
 

300 	 CONTINUE
 
00 350 JsNZLNVREAL.2
 
WXJBAR(I)mWXJSARCZ)62.*(W{t,)i$X3(J,Z)*W(,JoltI)*X3(J+1,1)]
 

390 	CONTINUE
 
400 	 CONTINUE
 

CALL. XOERSP(WXJSARFL1O3.IL2P1)
 
00 SOO IsLlO3sILEV2
 
WDX3DZ(II)WXJBARtT)
 

500 	 CONTINUE
 
00 600 IuILYIH
 
XDERIV(I)xXOERIV(I).WDX3OZt1)
 

600 	 CONTINUE
 
RETURN
 

ENTRY WADVXIO
 
BZ2%n.*oz
 
EZa*l./DZ2
 
R2RV-I.
 
R2*1,/R2
 

RI=RVOR2
 
NZINVZON$1
 
IL2P.IlLEV2.1
 
IL2MI=ILEV2-1
 
IL(Ll03-1)*NVREAL*l
 
IHaILEV2QNVREAL
 
RETURN
 
END,
 

4-D-17
 



100 


100 


100 


SUBROUTINE 03SURF
 
DOUBLE PRECISION PZZl,.T,Z2,X3oZ3
 
COMMON P(2366),Z(2366),Z1(2366),TC2366),Z2(2366)hX3(2366)]Z32366)
 
COMMON / ONSTS/ INOEXNRALRtINSINSZKINTILEVZILEV2tNVERT4
 
I NRTPLRTPNTYPE9NVECTNVREALNVZONNCYCDT
 
COMMON /BARBLK/ TBAR(26),SIGMA(26)tXIBAR(26),DIFFM(26).DIFFX(26)
 
DSURF=DIFFXENVERT)
 
JJm(NVERT-1)*NVREAL
 
IIZJJ-NVREAL
 
DO 100 I.1.NVREAL
 
JjuJ+1
 
11211.1
 
X3(JJ)=DSURF*X3(II)
 
RETURN
 
END
 

SUBROUTINE VO3SURF
 

DO 100 1INVREAL
 
X3(I.NVERT)-=DSURF*X(ItNVERT-1)
 
CONTINUE
 
RETURN
 

ENTRY 03SURFO
 
DSURF=DIFFXCNVERT)
 
RETURN
 
END
 

SUBROUTINE STREAM (N)
 
DOUBLE PRECISION Z.P.X
 
COMMON P(2366),Z(2366)
 
COMMON / GBLK/ KD(43),CG(43),NCOMPC12).LWAVEC12).NV(43),LV(43)
 
COMMON /CONSTS/ INDEXNRLR.INSINSZKINT.ILEV1.ILEV2,NVERT
 
I NRTPLRTPNTYPENVECTNVREALtNVZONNCYCoDT
 
DATA NW /0/
 
NVZI=NVZON.
 
DO 200 jJw2,NVZON
 
XE-i.DO/CG(JJ)
 
J=JJ-NVREAL
 
DO 100 I=ILEV1,'ILEV2
 
JaJ+NVREAL
 
P(J)uX*Z(J)
 
CONTINUE
 

4-D-18 



200 	 CONTINUE
 
DO 400, JJ=NVZ1,NVECT
 
X=-I.DO/CG(JJ)
 
Jd2*JJ.NVREAL.(ILEV1-2)-NVZON-1
 
00 300 IsILEVltILEV2
 

- JsJ 	NVREAtL 

P(J1)MXZ(4J1)
 

300 CONTINUE
 
400 CONTINUE
 

NW=O
 
IF '(N.EQ.1)"NWl
 
IF (NWEQO.0) RETURN.
 
00 600 J=1.92
 
GO TO (450.460)3J,
 

450 WRITE (691000) ILEVi
 
1000' 	FORMAT (1H09l0XKfLEVEL ',I3/11X.'1'9 VORT(I) 


JJNVREAL*(ILEV1-I)
 
GO TO 470
 

460-	 WRITE (6t1000) ILEV2
 
JJuNVREALO(ILEV2-1)
 
GO TO 470
 

4TO CONTINUE
 
DO 500 I31tNVZON
 
IR-IoJJ
 

WRITE (6,1010) IZ(1R.p'(TR)
 
1010 FORMAT (lXqI.0,020*. 0'20X,020.10)
 
500 CONTINUE
 

00 550 I.NVZ1,NVREALP2

IRs! .44
II=IR.1
 

WRITE (6#1020) I.Z(IR)9Z(II),P(IR),P(II)

1020 FORMAT (IX,I10,4020.10)
 
550 CONTINUE
 
600 CONTINUE
 

RETURN
 
END
 

SUBROUTINE VSTREAM
 

DO 401 l=ILEVI#ILEV2
J2NVREAL

00 401 
- P(Jgl)=X(J)*Z-(Jtl|
 

401 CONTINUE
 
RETURN
 

ENTRY STREAMO
 
00 200 Jf=r2NVZON
 
.X(Jj)sM-./CG(JJ) 

200. 	CONTINUE
 
- NVZI=NV-ZON*l
 

DO 400 JJNNVZINVECT
 
4u2*JJ-NVZ1
 
X(Jlul./CG(JJ)
 
X(J*)ea-,/CG(JJ)


400" 	CONTINUE
 
RETURN
 
END
 

4-D-19 

v PSI(I) at/)
 

http:IX,I10,4020.10
http:0'20X,020.10


SUBROUTINE THWXND
 
DOUBLE PRECISION PuZETAZ1,TvZ2,DGEG
 
COMMON P(2366)tZETA(2366),Zl(2366),T(2366)oZ2(23661
 
COMMON / ONSTS/ INDEXNRLRINStINSZ.KINTILEV1.!LEV2,NVERT
 
I NRTPLRTPNTYPENVECTNVREAL.NVZONNCYCDT
 
COMMON /CGBLK/ KD(43).CG(43),NCOMP(12),LWAVE(12)tNV(43),LV(43)
 
COMMON /DEBLK/ DG(43)tEG(43)
 
COMMON /VRTBLK/ ZVAL(26) ,pVAL(E),VWT(26),OZRV
 
-COMMON /BARBLK/ TBAR(26),SIGMA(26)tXIBAR(26)
 
NWzO
 
IF (ILEVIEQO) NWuI
 
ILEV1sE
 
:ILEV2ENVERT-1.
 

•C
 

C MEAN T COMPUTATION.
 
C
 

J=(ILEV-2)*NVREAL*V
 
DO 25 ImILEVi.ILEV2
 
J4J+NVREAL '
 

25 lT().TBAR(I)
 
C
 
C T FROM THERMAL-WIND COMPONENTS.
 
C
 

NaNCOMP(C)

JBwl
 

IF (NLT,2) GO TO 250
 
DO 200 uJX2.N
 
JBZJB I
 

J=JB*(ILEV1-2)*NVREAL
 
DUMuDZ*CG(JJ)
 
XI=DG(4J)/flUM
 
XZBEG(Jj)/DUM
 
D0 100 I=ILEVlILEV2
 
J3J*NVREAL
 
TCJ)=OfOO
 
-IF (JJ.GE.N) 60 TO 50
 
J23Jdl
 
JI=J2-NVREAL
 
T(J)zX2*(P(l)-P(J2))
 

50 CONTINUE
 
J aj-l
 

Jl1J2-NVREAL
 
TCJ)=T()-Xl(P(J1)-P(J2))
 

100 CONTINUE
 
200 	 CONTINUE
 
250 	CONTINUE
 

JJN- --

4B548-l
 
DO 500 LUILR
 

-NUNCOMP(LI) 

IF (N.LT.1) GO TO SOO
 
DO400 4J4slN
 
JdJuj*l
 
JBuJB$2
 

JRsJB(ILEVI-2)*NVREAL
 
DUMaDZ*CG(JJ)
 
,XIDG(Jj)/DUM
 
X2=EG(JJ)/DUm
 
DO 300 IUILEV1tILEV2
 
JRR*NVREAL
 
JISJR.1
 
T(JR)30.DO
 
T(JI)=ODO
 

IF (JJ.GE.N) 'GO TO -260-


J41J2-NVREAL
 
4-D-20 

http:T(JR)30.DO


T(JR)X2*(P(J1)-P(J2) 
J2u 2*l
 

T(JI4sA2*(P(-JI)-P(42) 
260 	CONTINUE
 

IF (JJJEG.1) GO TO 280
J26JR-Z
 

JIJ2-NVREAL
 
T(JR)cT(JR)-X1O(P(J).p(J 2 )) 
J2ud2*l
 

T(-JI)ST(JI)-Xl*(PC 1eP(-j2) 
280 CONTINUE
 
300, CONTINUE
 
400. 	CONTINUE
 
500 	 CONTINUE
 

IF (NW.EQsO) RETURN
 
WRITE (6*1000) ILEV1,LEV2


1000 	 FORMAT (IHO01OX01 TT('.!2,') *T(C'12,) at/)
 
JI1NVREALO(ILEVII)

J3=NVREAL*(ILEV2-1)
 
00 600 119NVZON
 
J1IJ141
 

WRITE (691010) ItT(J1),T(U3)

1010 FORMAT (l*'Il0,O2O0oox.0X20,1O)
 
600 CONTINUE
 

NZIaNVZON.1
 
DO-700 12NZlNVREALt2
 
JIuJ1,1


J2md l. 
J3&J3.1
 
J4=j 3.1
 
WRITE (6,1020) ItT(CJ)T(j2),T(j3),T(J4)
 

1020- FORMAT (1X914020.10)
 
JIaJ1.1
 
J3xJ3. 1
 

700 	 CONTINUE
 
RETURN
 
END
 

4-D-21
 

http:1X914020.10


5 25 


200 


400 


500 


SUBROUTINE VTHWIND
 

DO25 IsILEV1,ILEV2
 
T(,9)UTBAR()
 
CONTINUE
0D0 501 JtaNvREAL
 

DO 501 I!ILEV1.ILEV2
 

CONTINYE-


ENTRY THWINO0
 
ILEVIa2
 
ILEV2=NVERT-1
 
N=NCOMP(l)
 
00 200 JJm2.N
 
DUM=DZ*CG(JJ)
 
OUMI ./oUM
 
Xl(JJ)2De(dJ)oDUM
 
X2(JJ)=E(JJ)*DUM
 
CONTINUE
 
JJMN
 
XZ(N)=O.
 
JR=N-1
 

0 500 Lc1,LR
 
DO400 JJJJ19NCOMP(L*1)

.JJmJJ. 1
 

JRuJR*2
 
JI=JR.
 
DUMSDZ*CG(Jj)
 
DUMul./DUM

XI(JR)=XI(JI)=DG(JJ)*DUM

X2(JR)3X2(JI)sEGCJ.)*OUM
 
CONTINUE
 
XE(JR)aX2(JI)sO.
 
CONTINUE
 
RETURN
 
END
 

4-D-22
 



SUBROUTINE DBHEAT
 

DOUBLE PRECISION PSI.ZETAZ1.TZ2Q
 

DOUBLE PRECISION VOERIV,TOERIVW
 
DOUBLE PRECISION TOPOQSV
 
COMMON PSI(2366).ZETA(2366)tZl(2366)gT(2366)0Z2(2366)
 
COMMON /CONSTS/ INDEANRLRINS.INSZKINTPILEVIILEV2,NVERT"
 

1 NRTPLRTP',NTYPEgNVECTNVREAL.NVZON9NCYCOTtYRLAGTIME 
COMMON /CGBLK/ Kf(43)CG(43),NCOMP(12),LWAVE(12)gNV(43)hLV(43) 
COMMON /HEATBK/ H(26)tTSZON(1OA),TSEDDY(16)41TSZI2TSZI1TSW9 
1 I2TSwMERGE1,MEPOE2,ZWT CS),ZWT2(5) 03WR(S9 

COMMON /UERIV/ V0E81V(2366) TDERIV(2366)*W(2366) 
COMMON /WORKB*K/ G(2366) -


COMMON /OROGRA/ TOPOC9I),QSV(COS)HTSVE(2366)
 
COMMON /TEMPBK/ AOVSVI(182)
 
DIMENSION X(7)
 
DATA NW /0/
 
DATA- IPHASE /0/
 

C
 
C-----------------------
 METHOD I -


C
 
C 1o HEAT DUE TO 03 ABSORPTION OF SWe
 
C 

MGMa.MERGE2 -


IF (MERGE2.EQ.0) MGM2=IlTSZ-1
 
CALL 03HEAT (ILEV19MGM2)
 
IF (MGM2.LT.MERGE2) MERGEa2MGM2
 

C
 

C Z, ADD HEATING DUE TO NEWTONIAN COOLING (ABOVE Z 4.5).
 
C
 

MGMI=MERGEI
 
IF (MERGE1.EQ.O) MGMII1TSZ-I
 
00 loo ILEVzILEVIMGM1
 
Kt(ILEV.1)*NVREAL+I
 

Y=H(ILEV)
 

00 75 I=2.NVREAL
 

o(K)=Q(K)-Y*T{K)
 
75 CONTINUE 

100 CONTINUE 
C 
C----------------------- METHOD II ------------------------------------
C 

COMPUTE EMPIRICALLY DERIVED TROPOSPHERIC AND LOWER STRATOSPHERIC
C 

C HEATING (BELOW Z x 4.5).
 
C
 

IF (IPHASE.GT.O) GO TO 200
 
C" 

C 1, COMPUTE SEASONAL PHASE VELOCITY'
 
C
 

ANGVEL1 ,/720,
 
PIm4S.ATAN(.)
 

C
 
C TROPOSPHERIC HEATING TIME DIFFERENCE (IN DAYS).
 

C 
TROPLGa30.
 

C
 
C TROPLG (NON.OIMENSIONAL)k
 
C
 

TROPLG4..*PITROPLG
 
IPHASE010
 

200 CONTINUE
 

4-D-23 



PHASESANGVEL'(TIME*YRLAG.TROPLOI
 
PHASE-SINCPHASE)
 
TXMEsTIME4DT
 

C
 
C 2. DETERMINE HEATING IN ZONAL COMPONENTS.
 
C
 

ILUMERGEB*1
 
IF (MERGE2.EQ.0) ILWI1TSZ
 
II12TSZ
 
DO,230 XlTt2
 

230 X(I)s1.
 
'00240 "a2,7,2
 

240 	X(I)xPHASE
 
N=NCOMP(1)
 
NH&S
 
IF (NH.GT.N) NHWN
 
DO 300 ILEVnIL9IH
 
YCH(ILEV)
 
I(ILEV-)SNVREAL
 
DO 260 Jw2,NH
 
JJu(J-2).26*ILEV 

260 	Q(IJ)Y*(Xt4)TSZON(CJ)-T(I*J))
 
IF CNH.G *N) GO 'TO 280
 
NH1aNHil 
D0.270 JuNHIN
 

270 0(X*j)-Y*TCI*J)
 
280 CONTINUE
 
300 CONTINUE
 

C
 
C 3, DETERMINE NONZONAL HEATING.
 
C
 

ILCMERGE2*1
 
IH3I1TSW-1
 
IF (zITSWLT.MERGE2) IH=NVERT-1
 
DO 330 ILEV=ILOIH
 
NZI=NVZON*1
 
Y=H(ILEV
 
KK(ILEV-1)*NVREAL*NVZON"
 
DO 330 UCNZ1,NVREAL
 
KK=KK*1
 

330 GCKK)r-Y*T(KK)
 
IL=I1TSW

IHwI2TSW
 

IF (I1TSWEQ.O)" 60 TO'BOo
 
DO 450 ILEV=ILSIH
 
Y.H(ILEV)
 
KK=(ILEV.1)*NVREAL*NCOMP(l)
 
1j4O
 
DO-400 LLulLR
 
NuNCOMP(LL .)
 
IF (N.EQOO) GO TO 400
 
NH=O
 
IF (LL.GT.'2) 60 TO 360
 
NH=4
 
.IF (NH*GT.N) NHN
 

4-D-24
 



00 350 JaltNH
 
KKaKK.1
 
IJuIJ41
 
Q(KK)rY*(X(J)*TSEDDY(1J -T(KK)
 
KKuKKol 

350 	OfKK)SY*(X(J)*TSEDDY(IJ)TCKK))
 
IF (NH.GE.N) O0 TO LOG
 

360 	 NHlNH*
 
00 370 JUNH1.,N
 
KK=KK.l
 
O(KK)u-Y*T(KK)
 

KKuKK.
 
370 OCKK)u-Y*T(KK)
 
400 CONTINUE
 
450 CONTINUE
 
SO0 CONTINUE
 

C-
C--	 OVERLAP a-----------------------------------

C 
C DETERMINE HEATING IN OVERLAP AREA BY LINEARLY WEIGHTED 
C COMBINATION OF METHOD I AND METHOD II. 
C
 

IF (MERGEIEQ.O) GO TO 610
 
N.NCOMP(l)
 
NHw5 
IF CNH.OT.N) NH.N 
I JsQ
 

00 600 ILEVSMERGE1,MERGEZ
 
IJ.IJ,1
 
KC(ILEV-I)0 NVREAL
 
YmH{ILEV)
 
DO 530 Ja2vNH
 
JJU(J-2)*26*ILEV
 
Q(K.J)SZWT1(IJ)*(Q(K*J).Y*T(K+J)) 4ZWT2(IJ)'Y*(X(J)*TSZON(JJ)
 

1 	 -T(K*J))
 
530 	 CONTINUE
 

IF (NH.GE.N) GO TO 550
 
NHIUNH$1
 
DO 540 JENHiwN
 
O(KJ)UZWTI(IJ)(Q(K.J)-Y.T(K*J))-ZWT2(IJI*Y*T(K.J)
 

540 CONTINUE
 
550 CONTINUE
 

IF (N.LT,3) GO TO 555
 
Q(K.3)UO(K.3)*ZWTi(I)*Q3WRCIJ)
 

555 	CONTINUE
 

DO 590 LLu1,LR
 
NNUNCOMP LL.1)
 
IF (NN.EO.O) 60 TO 590
 
00 560 JlNN
 
K=K$1
 
Q(K)aZWTI(ZJ))e(Q(K)-Y*T(K))-ZwT2(IJ)*y*T(K)
 

Q(K)uZWTI(IJ)*(Q(K)-Y*T(K))-ZWT2(IJ)4Y*T(K)
 

560' CONTINUE
 
590 CONTINUE
 
600 CONTINUE
 
610 CONTINUE
 

4-D-25
 



ILC(ILEVI-I)*NVREAL.1
 
IHSILEV2*NVREAL
 
DO 630 jILoIM
 

630 TDERIV(I)WTDERIV(I)*Q(I)
 
C
 
C SAVE HEATING COEFFICIENTS IN HTSVE FOR OUTPUT.
 
C 

DO 640 I!IL4IH
 
640 HTSVE(I)uQ(I)
 

IF (NW.EQO) RETURN
 
ILluILEV1
 
IL2wMERGE1
 
IL3uMERGEZ
 
IL4.ILEV2
 
IF (IL2,GT.IL1)-GO'TO 650
 
IL2a(ILIIL4)/2
 
IL3sIL2.1
 

650 	CONTINUE
 
WRITE (6,1000) 1LIIL2,IL3.IL4
 

1000 	 FORMAT (IHOLOXtDIABATIC HEATING AT LEVELS '.415)

Kls(ILI1)*NVREAL
 
K2=(IL2-1)'NVREAL
 
K3(IL3-1)*NVREAL
 
K4=(IL4-1)*NVREAL
 
NaNCOMP(l)
 
DO 700 I1IN
 
KIKI.1
 
K2uK2+1
 
K3zK3.1 

K~mK41 
WRITE (691010) I.Q(K1),O(K2),Q(K3)Q(K4) 

,1010 FORMAT (2XtI5,E15.7t15XE15.7,1SXE15.7.IX.EIS,? 
700 CONTINUE 

KwN
 
DO 800 LLt1,LR
 
NuNCOMP(LLI)
 
IF (N.EQ.O) 60 TO 800
 
DO 750 1=19N
 

KlwKl+2
 
K2zK2+2
 
K3mK3*2
 
K4xK4#2
 
KlRuKl-l
 
K2RUK2-1
 
K3RmK3-j
 
K4RuK4-1
 
WRITE (6,1020) KtG(KIR),D[Kl)tQ(K2R)#G(K2)#GCK3R),QCK3)tQ(K4R)o
 
I 	 O[K4)
 

1020 FORMAT (2XvIS98E1S.7)
 
750 CONTINUE
 
800 CONTINOE
 

RETURN
 
END 

4-D-26
 



SUBROUTINE VOBMEAT
 

CALL 03NEAT
 

o0 100 ILEVSILEV1,MGM'
 
DO 75 I=2iNVREAL
 
O(I*ILEV)=Q(I#ILEV)-H(ILEV)*T(ILEV|
 

75 CONTINUE
 
100 CONTINUE
 

PHASEUSIN(ANGVEL(TIME*YRLAG TROPLG))
 
TIMEuTIM+EOT
 
DO 230 i.lt7t2
 
x (1) W.
 

230 CONTINUE
 
DO 240 T72,T,2
 
X(I)mPHASE
 

240 	 CONTINUE
 
00 300 ILEVzMERGE2*1,12TSZ
 
00 260 j2,5

O(JtILEV|=H(ILEV)*(X(J)*TSZON(ILEVoJ-21-T(J*ILEV))
 

260 CONTINUE
 
DO 270 J6NCOMPC1)
 
Q(J.ILEV)a-H(ILEV)*T(JILEV)


270 CONTINUE
 
300 CONTINUE
 

-
DO 330 ILEVUMERGE2flI1TSW 1
 
DO 330 JUNZ1,NVREAL
 
Q(JILEV)aM(ILEV)*TJILEV)
 

330 CONTINUE
 
O0 450 ILEVUI1TSWI2TSW
 

DO 400 LLSXt2
 
DO 350 Ju1,4
JJU2*J-NZ1
 
0(J.oILEV)wM(ILEV)*(X(J)@TSEooY(IJ 3-T(JJILEV))

Q(JJ#1ILEV)wH(ILEv)*(XCJ)fTSEDOY(IU*1 )-T(J.*1ILEV))
 

350 	 CONTINUE
 
00 370 Ju5,NCOMP(LL'1)
 
JJ'2'JUNZ1
 
Q(JJ,ILEV)H (ILEV)-T(JJ.ILEV)

Q(J J.ILEV).H(ILEV)*TCJJ*41ILEV)
 

370- CONTINUE
 
400 CONTINUE
 

DO 401 LLU3,LR
 
DO 401 JslNCOMPCLL*1)
 
Jd02.fNZ1
 
Q(JJILE uViH(ILEV)'TjJILEV)
 
Q(JJ*19ILEV) =H.(ILEV)'T jJ19ILEV)
 

401 CONTINUE
 
4SO' CONTINUE'
 

4-D-27

mailto:0(J.oILEV)wM(ILEV)*(X(J)@TSEooY(IJ


W.oo
 
DO 600 ILEVUMERGE1,NERGE

I.JuI4" 

2
 

DO 530 j.2.5

Q(J.IUEVISZWTICd1W*(WCJILV;C!LEV).T(J,?LEV))
 

- 50
1COTINE4ZWT2CIlfl*HCILEV)4CXA(J)*TSZONU-ILEVJ..a);T(J,ILEVJ)
 

DO' 5i40 J.e.NCOMP (1)

C (4,ILEV) tZWT1(I1W (Q(4, XLEVh.H(ILEV) 4 T(JILEV))


-ZWTaCIJ)*HCILEV)*T(JILEV)
 
540 CONINr
 

0(3'*ILEVEuQ(3ILEV)ZWTXCIJ).oaWRrxa,
 
DO 590 LLu1,LR
 
D0 S60 J.1.NCOMPCLL.1)

J.Ia2*J-NZ1 
Q(JJtILEV)uZWT1(IJ)*CQ(JJILEV))-HIILEV)oycaoILEV,,

*ZWT2IJ)*I4CILEV)OT(JJ.ILEV)
O(JJtl9ILEV)cZWT(IJ)*(Qcaa+1,xLEv).HILEV)T(JJIl!LEV,) 

-ZWT2(1J)*H(ILEV)*TCJ.1,-ILEV)
560 CONTINUE 
690' CONTINUE 
600 CONTINUE
 

DO 630 IaIL9IM 
TDERIVCI)ETDERIVCI) ,Qcl)
HTS yE I) xO CII 

630 CONTINUE
 
,RETURN 

ENTRY ORHEATO
 
NZ aN VZON. 1
 
MGM1*MERGE1.wl
 
ANGVELtI ./720. 

-PI.&.*ATAN (-1.)
TROPLGR..30 *04,*P 
IL-C ILEVll )0 NVREAL.I 
ILEVEONVREAL 
RETURN 
END 

~4-D-28
 

http:MGM1*MERGE1.wl


SUBROUTINE 03HEAT (11I,2)
 
DOUBLE PRECISION PlZZ1tTZ2,x3,Z3
 
DOUBLE PRECISION XOX
 
DOUBLE PRECISION TOPOQSV,GTSPACEOXO3DT
 
COMMON P(2366)tZ(2366),Z1(2366),T(2366)tZ2(2366),X32366)tZ3(2366)
 
COMMON / ONSTS/ INOEXgNRLR.INSINSZtKINTILEV1,ILEV29NVERT

I NRTPgLRTPNTYPENVECTNVREALNVZONvNCYCOTvYRLAGTIME
 
COMMON /OROGRA/ TOPO(1),QSV(105)
 
COMMON /SPECIE/ X3GRD(6240) CNO3(6240)oXN02(330)
 
COMMON/QJBLK/NZJL1O3,COLO3(26) LEVPCMLEVDYN
 
COMMON /WORKBK/ QT(2366)tSPACE(5554)
 
COMMON /CHEM/ XNEUT(26)tTEMP(6240)

COMMON /FTCST/ NLONONLAT,.NGRID
 
COMMON /BARBLK/ TBAR(26) SIGMAC26) DNDTBR(26)oOIFFM(26).DIFFX(26)
 
COMMON /GENER/ DX030T(2366)
 
DIMENSION DATAIM(6240)gDX36RD(1) QTGRD(l)
 

DIMENSION XOX(1)
 
EQUIVALENCE(TEMP(1)#XOX(1))
 
EQUIVALENCE(QT(I),OX3GRD(I)) (SPACE(2915) ,TGRD(1))
 
ILISVaILEV1
 
IL2SVSILEV2
 

C
 
C T # X3 SPECTRAL FIELDS FOR LEVELS L103 THRU NZJ TO GRID FIELDS
 
C, TEMP # X3GRD,
 
C
 

ILEViLi03
 
ILEV2uNZJ
 
NLEV=NZJ.L103*1
 
ILSPCU(L1O3-1)*NVREAL,1
 
ILGROu(LI03-1)NGRID*4
 
CALL SPCGD1 (T(ILSPC),TEMP(ILGRO),OATAIMNLEV)

CALL SPCGD (X3(ILSPC),X36RD(ILGRO)tDATAIM,NLEV)
 
IHGROmILGRD-I*NLEV*NGRID
 
00 50 IuILGRDeIHGRO
 
IF(X3GRo(I)*LT.O,) X3GRD(t)sO.
 

SO CONTINUE
 

4-D-29
 



CALL DX3CHM 
C 
C DX3GRD * QTGRD GRID FIELDS FOR LEVELS L103 THRU NZJ (DX3GRD) AND 
C LEVELS L103 THRU 12 (QTGRD) TO SPECTRAL FIELDS DX03DT 0, 
C 

IF (C-2GT.NZJ) I2=NZJ
 
ILEV2=NZJ
 
NLEV*NZJ-Ll03*1
 
CALL GDSPC1(DXO3DT(ILSPC),DX3GRDCLGRD),DATAIMNLEV)
 
-NLEVWx+LEVPCM-LI03
 
,CALL GDSPCI(XOX(ILSPC) ,X3GRD(ILGRD)tDATATM.NLEV).
 
ILEVamI2
 
,NLEVaI2-LlO3*1
 
CALL GDSPC1 (QT(ILSPC).OTGRD(ILGRD),DATAIM.NLEV)
 

C
 
C ADD-CONSTANT ZONAL HEATING FOR TOP LEVELS.
 
C
 

ILEV1mIL1SV
 
ILEV2=ILZSV
 
NZI=NVZON+1
 
K=(ILEVj-1}*NVREAL
 
KK=(+ILEVI-I) NVZON
 
LEV2=L03-1
 
IF (LEV2.LTILEV1) GO TO 300
 
ANGVEL=I,/T20,
 
PHASEWANGVEL'(TIME+YRLAG)
 
PHASExSIN(PHASE)
 
DO 2oo LEV=ILEVILEV2
 
K=(LEV-1)'NVREAL
 
KKtLEV-.1)NVZON
 
DO lo0 J=NVZON,2
 
K2=KK*J
 
KI=K.J
 

100 OT(KI)aOSV(K2)

DO 125 =2.NVZON.2
 
K2zKK*d
 
K1zK+J
 

125 OT(K11tPHASE*QSVK2)
 
DO 150 J=NZ19NVREAL
 
KI=K+J
 

150 oT(K1)0O.DO
 
00 CONTINUE
 

300 CONTINUE-

C
 
C PLACE MEAN (1/XN)*(DN/DT) VALUES AT EACH LEVEL IN DNDTBR(LEV)
 
C FOR OUTPUT.
 
C 

DO 400 JL103.NZJ
 
KU(J-1)ONVREAL.1
 

400 	 DNDTBR(J)=DXO3DT(K)
 
RETURN
 
END
 

4-D-30
 

http:oT(K1)0O.DO


SUBROUTINE VO3HEAT
 

COMMON /HEATBK/ * v. *MERGE2e . . 

CALL 	SPCGDI(TCILSPC)tTEMP (ILGRO),9OATAIMNLEV)
 

qALL 	SPCGDO(X3(ILSPC),X36RO(ILGRO),DATAIMNLEV.)
 

DO 50 IsILGROIHGRD
 
IF (X3GRD(I).LTO.) X3GRD(C)uO.
50 CONTINUE
 

ILISVsILEV1
 
ILZSV.ILEV2
 
ILEV=L103
 
ILEV2sNZJ
 

CALL 	DX3CHM
 

CALL 	GOSPCI(DXO3DT(ILSPC) .DX3GRD(ILGRD),DATAIMNLEV)
 

CALL 	GDOSPCI(XOX(ILSPC) X3GRO(ILGRO) DATAIMNLEVPC)
 

CALL 	GDSPCICQT(ILSPC),QTGRD(ILGRD),OATAIMtNLEVMGM2)
 

ILEV1ZIL1SV
 
ILEV2mIL2SV
 
PHASESSIN(ANOVEL*(TIME*YRLAG)
 
DO 200 LEVEILEVILEV2
 
DO 100 JslNVZON,2
 
QT(J*LEV)SQSV(JOLEV),
 

100 	 CONTINUE
 
DO 125-Jm2,NVZON,2
 
QT(JtLEV)sQSV(JLEV)PHASE
 

125 CONTINUE
 
DO 150 JuNZ1,NVREAL
 
QT(JLEV)=O.
 

150 CONTINUE
 
200 CONTINUE
 

00 400 JaL1039NZJ
 
DNDTBR(J).DXO3DT(1,J)
 

400 CONTINUE
 
RETURN.
 

ENTRY O3HEATO
 
NLEVuNZJ-Lt03*1
 
ILSPCW
 
IL6RO. .
 
IHORO. *
 
NLEVPCMaLEVPCM-Ll0361
 
NLEVMGM2.MERGE2-LI03*1
 
NZ lNVZON4
 
LEV2ULE03-1
 
ANGVELS1 ,/720.s
 
'IF (LEY2.LT*ILEV-)"CALL SOS
 
RETURN
 
END
 

4-D-31
 



SUBROUTINE 03COL
 
C
 
C COMPUTATION OF OZONE COLUMN DENSITY IN
 
C CHE2(1 CM CDLS2.68elO*t19CM2)
 
C
 

COMMON /CONSTS/ "INDEXNRLR91INSINSZKINTILEVX.ILEV2NVERT
 
1 NRTPLRTP.NTYPE.NVECTNVREALNVZONNCYCDT
 
COMMON/ VRTBLK/ ZVAL(26),PVAL(26),PPC26).DZ.RV
 
COMMON/ SPECIE,/ X03c62401.CNO3(S24O)
 

-COMMON/ FTCST/ NLON.NLATNGRIDAR(30),eR3)
 
DIMENSION CP(3) 

C 
C - -ESTIMATE COLUMN DENSITY ABOVE HIGHEST LEVEL 'ASSUMING'AN 
C EXPONENTIAL DECAY WITH HEIGHT-WITH A SCALE HEIGHT BASED ON THE
 
C ZONAL AVERAGE OZONE CONCENTRATION.
 
C
 

IF(ILEVI.2) 10,20t30
 
10 CP()N12,*PP(1)/DZ
 

1=O
 
-AX031=0.
 
AX032=O. 
DO 300 LAT=INLAT
 
DO 100 LON-1,NLON
 
'I-'.'
 
AXO31=XO3(1)*AX03I
 
AX032.XO3(NGRID+I)*AX032
 

100 CONTINUE
 

CHECK.RV*AX03200*95
 
IF(CHECK.LE.AK031) GO 70 200
 
RATIOsAX632/AX031
 
DMSALOG(RATIO)/DZ
 

CONST=CP(1)/(DM,10)
 
I=I-NLON
 
DO 150 LON1.oNLON
 

1.1.1
 
150 CNOS3I)UCONST*XO31)
 

GO 70 299
 
200 I1I-NLON
 

DO 250 LONUINLON
 

CN03(Iwo.0
 
250 PRINT 5,I,XO3(I)
 

5 FORMAT (IOXIOZONE SCALE HEIGHT IS TOo SMALL AT LEVELI595X
 
1 'X03 a ,E10.3)
 

299 CONTINUE
 
300 CONTINUE
 

4-D-32
 

http:ZVAL(26),PVAL(26),PPC26).DZ.RV


c
 
C COMPUTATION OF OZONE COLUMN DENSITY ABOVE OTHER LEVELS USING

C A QUADRATIC CURVE FIT TO THE VERTICAL PROFILE OF OZONE
 

BETWEEN LEVELS,
 
C
 

20 	 IUNGRID
 
CP(1-] 50oPP(2)
 
CP(2)x8,epp(c1)
 
DO 400 LUlNGRID
 

11wL
 
400 CNO3(I).CP(1)*XO3(I)*CP(2) XO3( L).CNO3(I1)
 

IL1=3
 
GO TO 35
 

30 I=NGRIOe(ILEV1-1)
 

IL uILEVI
 
35 00 600 JILI.ILEV2
 

JldJul
 
JZwdl
CP(1)mS.oPP(J)
 
CP(2)=SOPP(J1)
 
CP(3)aPP(J2)
 
DO 500 LxINGRIO
 
Iz'.'
 
IlmI-NGRID
 
r2ait-NGRID
 

500 CNO3(I)CP(I)*XO3(1)4CP(2J*XO3(I1)-CP(3)4X03(r2)+CN03(I)
 
600 CONTINUE
 

RETURN
 
ENO
 

4-D-33
 



SUBROUTINE VO3COL
 

DO 400 KileNLAT
 
DO 400 I9u1NLON
 
CNO3(IK,2)0CPI*XO3(-I:K*2)*CP*XO3(.K,1)CNO3(I.Kl)
 

400 	 CONTINUE
 
00 600 JZ39ILEV2
 
DO 500 KclNLAT
 
DO 500 1s1,NLON
 
CN03(*IgK J)CP(J1) XO3(IKJ)*CP(4,2)*XO3(IKoJ-1)
 

eCP(J*3)*XO3(I.KJ-2)*CNO3(.KtJ-1)
 
500 CONTINUE
 
boo CONTINUE
 

RETURN
 

ENTRY 03COLO
 
DO 601 JzILEVIILEV2
 
CP(Jl)x5.*PP(J)
 
CP(J.2)28-.PP(4-1)
 
CP(J93).PP(J-2)
 

601 CONTINUE
 
CPI=S5.PP(2)
 
CP2=R.*PP(1)
 
RETURN
 
END
 

4-D-34
 

http:CNO3(IK,2)0CPI*XO3(-I:K*2)*CP*XO3(.K,1)CNO3(I.Kl


DIVISION 5
 

TECHNOLOGY SURVEY UPDATE
 



DIVISION 5
 

TECHNOLOGY SURVEY UPDATE
 

INTRODUCTION
 

This segment of the report provides current information as an
 
update of the estimates and prognostications provided in
 
reference 1, on the general subject of circuit technologies,
 
primarily semiconductor. A number of other bodies of
 
technology, which might be called "System Technologies", are
 
also critical to the FMP design, and their significance should
 
not be lost. Their rate of change, however, tends to lie less
 
dramatic and less public; for this reason the following material
 
dwells on circuitry, emphasizifig the changes perceived since the
 
previous report.
 

These can be summarized as follows:
 

* 	In the mainline circuitry (ECL) the scales of integration and
 
possibilities have become more defined. There is, of course,
 
still considerable margin in the time dimension, but the
 
picture is sharper than a year ago.
 

* 	Of the long-shot logic technologies,, Gallium Arsenide (GaAs)
 
is benefitting from increased investment. As such it is
 
worthy of somewhat closer attention. Cryogenic options
 
remain too esoteric to warrant serious concern.
 

* 	Of the potential auxiliary memory technolgies, CCDs are still
 
the most plausible, although their availability for the
 
target time frame has become more questionable. The
 
availability of 64K dynamic RAMs (DRAMs) on the other hand is
 
more ce*rtain, albeit at costs which may be higher than is
 
acceptable.
 

* 	An "intermediate" memory has been postulated for the proposed
 
,FMP,. It-. utd.lze.only established low-cost
4wil 

technologies.
 

Some elaboration on these points follows.
 

CRITICAL CIRCUIT TECHNOLOGIES
 

The previous studies (refs. 1, 2) developed the decision that
 
the FMP schedule is best served by use of high-speed ECL logic
 
such as is now (1979) coming into production. The Fairchild
 
version is called F200K, and the internal CDC designation is
 
LSI-168.
 

As 	this technology matures natural improvements in cost,
 
reliability and speed will evolve. The next most likely major
 
,hange would.,be to a considerably larger scale of integration
 
with some modest initial speed improvement. A change such as
 
this, however, requires a major overhaul of the CAD/CAM
 
(computer aided design/computer-aided manufacture) support
 

5-1
 



system plus a step up in semiconductor technology. To the
 
extent su-ch techniques and circuitry are available for use, they
 
may be invoked in critical areas. However, serious
 
consideration for their use cannot be prudently planned in the
 
time scales proposed for the FMP development. Table 1 collects
 
the LSI products in the high speed (ECL) technology, and
 
projects some estimates of availability of the next most
 
significant steps. The final entry (availability 1985) is quite
 
conjectural at this stage. Semiconductor technologists tend to
 
think in terms of three-year increments, so data gathered from
 
them often shows this sort of expected cycles. In point of fact
 
the technology does not move in sudden jumps, but inches along
 
on a broad front. Enough of these breakthroughs are known to be
 
pending, however, that the progress has reasonable
 
predictability. The time scales have a way of stretching out,
 
however, partic.ularly as reasonably large-scale
 
manufacturability is required.
 

TABLE 1
 
ECL LSI RELATED PRODUCTS
 

STAGE
 
YEAR* EQUIVALENT DELAY
 

PRODUCT INTRODUCED GATES/CHIP (ps) STATUS
 

Amdahl Gate 73 100 750 Custom
 
Array
 

CDC MOT Gate 75 190 900 Discontinued
 
Array
 

CDC/F200K Gate 77 250 650 In proto
 
Array production
 

Siemens FlOOK 77 500 750 Final develop-

Gate Array ment
 

Motorola 10K (79) 750 1200 In development
 
Macro Cell
 
Array
 

FSC 8-Bit Slice (79) 2K-8K 650 Custom set of
 
Set four types (not
 

an array)
 

Next Generation (82) (1.5K-2K) (500) In exploration
 
Gate Array stages at FSC,
 

MOT, NATL.
 

Follow-On Gate (85) (5K-7K) (250) Prediction by
 
Array suppliers
 

*Numbers in parenthesis are anticipated.
 

5-2
 



Suppliers such as Motorola, Fairchild, and National presently
 
see 1000-2000 gate equivalents being practical in preproduction
 
quantities by 1982. Although processing differences exist, all
 
project use of some form of oxide isolated, walled emitter ECL
 
process on a die size of less than 8mm, the current practical
 
limit for projection step and repeat photolithography. All
 
agree that additional advances in photolithography to 1 micron
 
or less and improved metalization processes are required to
 
achieve the 1985 objectives of some 6000 equivalent gates per
 
die.
 

Other forms of logic have demonstrated subnanosecond performance
 
and must be given consideration. One form, Josephson switches,
 
has demonstrated sub-100 ps delays but require a super-cooled
 
(4-5 degrees Kelvin) ambient environment. CDC, to date, has
 
monitored the progress of this technology only via periodical
 
reviews. The feasibility of conducting actual Josephson switch
 
experiments is currently under investigation. A second form of
 
subnanosecond delay technology that has been demonstrated in R&D
 
facilities at Rockwell, Hewlett-Packard, RCA, TRW, Motorola, and
 
others utilizes MOS technology and Gallium Arsenide (GaAs)
 
material. Because of the superior mobility of GaAs, 5-6 times
 
that of silicon, delays in ring counter form of 75-150 ps have
 
been demonstrated. The device operates with low power
 
(microamperes current) and in normal ambient temperatures. GaAs
 
devices, in fact, have superior quality to silicon at high
 
temperatures. Material uniformity difficulties, as well as the
 
difficulty in growing necessary oxide coatings over the wafer
 
surface, have hampered progress in this technology's growth.
 
Recent advances in ion implantation have helped, and densities
 
up to 100 gates/die are considered achievable in CY79. Because
 
of the similarities to silicon, the projected superior
 
performance while operating at lower power, the MOS-like circuit
 
packaging densities, and the recent interest shown by major
 
suppliers, efforts to watch this technology more seriously are
 
warranted.
 

2
 
Recent projections for NMOS, CMOS and I L technologies might
 
suggest that these logic families are to be considered
 
legitimate high perfo'rmance c-andidates in the near future.
 
However, they tend to "bottom out" speed-wise in the 1-3 ns
 
range. For applications which demand the ultimate speed, they
 
cannot be seriously considered unless some major breakthroughs
 
occur in architecture which can overcome this handicap. Because
 
the low speed-power product of these technologies enables a
 
remarkable scale of integration, and because of their value in
 
memory products, it is felt prober to spend some time on them 
here. 

2 
The present candidates include: one bipolar prospect (I L),
 
improved NMOS technology in two forms titled HMOS and VMOS, and
 

2 
the CMOS-SOS, or CMOS-SOIS, technologies. I L is in a form of 
inverted transistor technology utilized by several suppliers 

5-3
 



including Signetics in ,ageneral gate array of some 400 gates,
 
and FSC in the 9440 16-bit microprocessor family (over 7-8K
 
gates/chip in production). CDC also manufactures some arrays of
 
this type internally. HMOS is a form of scaled geometry and
 
scaled processing NMOS technology aimed at high performance and
 
high density applications. Intel utilizes this process in their
 
sub-50 ns static RAM (SRAM) products and their 8086 16-bit
 
microprocessor. VMOS is an alternative to HMOS utili-zng the
 
attributes of etching pits into silicon to form fine gate
 
geometries by implantations/diffusions rather than surface
 
geometries as done in HMOS. AMI utilizes this process in SRAM
 
products for high density as well as performance. CMOS refers
 
to complementary MOS. This implies that the circuitry always
 
has one "off" device in the ground-to-power-bus chain. The
 
switches (ignoring minor leakage currents) have power dissipated
 
only during logic switching periods. The device gate-to-gate
 
on-chip capacitance is reduced further by utilizing either
 
sapphire as the insulating substrate (silicon on sapphire) or
 
oxide isolation between switches (siliCon on insulated
 
substrate).
 

2
 
I L and HMOS/VMOS also utilize oxide insulated device separation
 
for reduced capacitance.
 

Conservative projections show 1OK-50K gate equivalents becoming
 
reasonable by the early 80's with moderate improvement in
 
photolithography (1 micron spacings and widths). In addition,
 
stage delays are projected to approach, if not improve below, 1
 
ns. Presently, these technologies in R&D design applications
 
(not perfectly designed ring counters for optimum performance)
 
offer impressive 2-4 ns stage delays.
 

Figures 1 and 2 illustrate the expected trends in two"best-bet"
 

2
 
technologies (ECL and CMOS/I L) plus the possible evolution of
 
what CDC considers to be the best wild-card technology, GaAs.
 

AUXILIARY MEMORY TECHNOLOGIES
 

To-review, the term auxiliary memory technologies has been used
 
to denote the various storage technologies which promise

significant cost improvements relative to RAMs, yet with
 
considerably improved access time vis-a-vis rotating magnetic
 
storage. The candidates have been considered to be charge
 
coupled devices (CCD), magnetic bubbles (MBM), and electron beam
 
storage (EBAM).
 

5-4
 



LSI 
STAGE DELAY PERFORMANCE 

100 -

50- CMQs
 

20-


ECL I 

z 
z 

-GaAs 

(TECHNOLOGY MATURITY) 

76 77 78 79 80 81 82 83 84 85
 

YEAR 

Figure 1. LSI Stage Delay Performance
 

5-5
 



1 K 
1OX -

LSI 
CHIP DENSITY 

SK-

I
z 

I 

I. 

500 

.. 

100

10

76 77 78 79 80 81 

YEAR 

82 83 84 85 

Figure 2. LSI Chip Density 

5-6
 



None of these has kept pace with its protagonists' hopes or
 
projections over the past five years. Commercial products have
 
appeared for both CCDs and MBMs. In both cases the products,
 
while quite capable, have proved to be considerably more limited
 
in application than hoped for. Nevertheless they have found
 
some valuable use, and as such must be judged to have been
 
"born". Table 2 summarizes the known extant examples, as well
 
as some current predictions.
 

It is quite clear that auxiliary memory technologies must
 
achieve enough volume to drive their cost below the DRAM
 
competition, a.classic chicken and egg situation. If .this is
 
accomplished for CCDs they clearly are the best bet for the FMP
 
Backing Store, a memory which is a significant requirement in
 
order for the FMP to achieve its expected system performance.
 
The probability of suitable CCDs being available to build the
 
Backing Store is quite acceptable, although not completely
 
assured; at this point the cost may prove to be a larger
 
hurdle.
 

Magnetic bubble technology is driving increasingly toward lower
 
cost, at the expense of speed. This comes about because of the
 
need to take advantage of MBMs special properties, e.g.,
 
non-volatility, as well as the particular markets these open up.
 
Several semiconductor houses have made significant investments
 
in MBM recently, indicating a growing appreciation for the
 
potential markets. This type of investment is needed to drive
 
the costs down. So in the case of bubbles, the availability and
 
part costs look reasonably promising for the FMP Backing Store;
 
but the speed expectations pretty well rule them out.
 

EBAM's continue to attract some research,investment as a long
 
shot possibility. The DARPA-sponsored interest in this area
 
has, however, been abandoned as of this fiscal year.
 

5-7
 



-----------------------------------------------

--------- -------------------------------------------------

TABLE 2
 

AUXILIARY MEMORY TECHNOLOGY
 

Charge Coupled Devices Magnetic Bubble Devices-


CAPACITY 1 65K 1 256K 1 IM 11 256K 1 M, 4M
 

I--------------------------------------------------------------------------------- --------

lAvailability i i 1! 
Test chips! - 1 2Q79 11981-8211 4Q771 1Q78 1 1981 1 

Prototypes! 2Q771 1Q80 11'983-8411 4Q781 1Q80 !Late 821
 

Production! 197811981-821 11 19811 1982 1 1984 1
 

1
!Volume cost 

jadvantage* !Mid 80 11984-85 11 19801 1982 1 1984 1
 

!Cost ($/M 1 H i1 1
 
1 40 1
!byte)** 800 120 -- 8001 250 

!Access time 1 2.5- 1
 
I(avg) 1 400 us] 400 us! 400 usl 5 ms 15-10 ms15-10 ms;
 

!Data Rate 1 1 1
 
i(Mbits/sec) 1 5 1 5 1 5 11 .1-.21 .1-.2-1 .1-.21
 

!Power - i 1 1 H 1 1 
1 500- 1
!(mw)/packagel 300 1 200 1 200 11 500- 1 500-, 


i iH 1000 1 1000 i 1000 1
 
------- >11<------ Garnet------- >1
Material <------ Silicon 


!Die Size
 
2 H
 

1(mil ) 37K I 35-40KI 35-40K1I 50-60K! 50-60K1 50-60K1
 
3 I I 

IPackaging I<-16 pin DIP-- <-----Non-STD DIP----- >1 

--0.350 x 0.450 CCC->11 I 

Geometries i 
Minimum H 1.0- I 

I 1-2u 11 1.5u 1 1.0u I 1.OuIfeature 6u I 3u 

3 I 

Oxide 1600- 1400- H
 
thickness 1 1000 AI700A 1600A H ..
 

. I 

Nominal [ 
layer H i 
thickness .. .. . 5000A 5000AI 5000AI 

!Volatile ! yes yes I yes LI no no no 

iStart/Stop 1 1 1 1
 
!capability 1 no no 1 no yesl yes! yes
 

*Volume cost advantage occurs after the steep portion of the
 

learning has been,completed.
 
**Cost/price estimates are highly speculative until technology
 

market are established.
 
5-8
 



DIVISION 6
 

NASF RELIABILITY-AVAILABILITY EVALUATION
 



DIVISION 6
 

NASF RELIABILITY-AVAILABILITY EVALUATION -

This evaluation incorporates observed MTBF for standard Control
 
Data computing equipment based upon most recently filed data,
 
and estimates of inherent MTBF for the FMP based upon the most
 
recent reliability evaluation of the CYBER 203 (STAR-IOOA).
 
Several assumptions have been made in the FMP evaluation and the
 
total system evaluation to provide meaningful structure to the
 
reliability models and to simplify the computations. Assumptions
 
always introduce error; however, where assumptions and/or
 
estimates were made, the effort was to bias the decisions
 
toward the worst-case condition which should yield conservative
 
MTBF and availability estimates.
 

FMP Reliability Evaluation
 

The failure rate and MTBF estimates of the FMP and its units are
 
shown in table 1. Two types of failure rates, elemental and
 
functional, are derived since the memory units and a large part
 
of the data transfer paths utilize single-error correction/
 
double-error detection (SECDED) logic. The definitions of these
 
two types of failure rates are given in CDC-STD 1.12.999
 
Glossary of Reliability Availablity and Maintainability Terms
 
(included as appendix A).
 

The FMP logic units are assumed to be similar in structure and
 
logic design to the CYBER 203 and therefore the reliability
 
model uses the same methods as that of the CYBER 203. The CYBER
 
203 reliability prediction is based upon the detailed final
 
equipment configuration. The reliability model is composed of
 
relfability modules of the basic configuration building blocks.
 
These modules are derived- from the CYBER 203 structure in a way
 
which combines the physical entities into a functional module.
 
For example, the LSI device reliability module is composed of
 
the LSI device and its associated capacitors, solder joints,
 
connector and proportionate-nbmber of term-inators. In a like
 
manner, reliability modules are defined for the LSI boards,
 
FlOOK circuits, and so on. The proportionate number of parts,
 
such as terminators, vias, coax connectors, and the like, are
 
allocated on the basis of the average distribution in the CYBER
 
203. Appendix-B defines the reliability modules. The component
 
part failure rates for some of the major parts (e.g. the LSI
 
devide, the storage device, etc.) have changed since the last
 
report and their new failure rates are given in appendix C.
 
Failure rates for other parts are taken from CDC-STD 1.12.020
 
Component/Piece Part Failure Rates (included as appendix D).
 

Appendix E is the derivation of the elemental failure rates of
 
the FMP units utilizing engineering design estimates and the
 
reliablity modules of appendix B. The functional failure rates
 
-of the logic uni:,ts 'are d-erikv-ed -by the method described in
 
appendix F using the SECDED model described in appendix G.
 

6-1
 



----------------------------------------------

Table 1
 
FMP Reliability Summary
 

Unit Failure Rate*
 

Elemental Functional
 

Scalar 

Swap 

Intermediate Map 

Main Map 118.4 \ 

Memory Interchange 424.6 > 

Vector Streaming 154.3 / 

Vector 

Stream Control 

Input/Output 

Main Memory 

Intermediate Memory 

Backing Store (262K device) 


Refrigeration 


Power 


665.5 

70.8 

83.6 

665.5 

16.7 

56.6 

697.3 425.3 

1,848.0 

61.0 

167.1 

14,298.5 

41,666.7 

36,624.6 

409.0 

438.2 

1,848.0 

61.0 

167.1 

1,924.3 

1,518.8 

1,845.6 

409.0 

438.2 

Total FMP failure rate* 97,030.3 9,376.1
 

FMP MTBF 10.3 hrs 106.7 hrs.
 

FMP Reliability with 65K CCD
 

Total with 262K CCD 


Less Backing Store (262K) 


60,405.7 7,528.2
 

Plus Backing Store (65K) 


Total FMP failure rate* 


FMP MTBF 


6 

*Per 10 device hours (10 


97,030.3 9,373.8
 

36,624.6 1,845.6
 

159,185.4 8,576.0
 

219,591.1 16,106.5
 

4.6 hrs. 62.1 hrs.
 

-6
 
failures per device hour).
 

6-2
 



The Main Memory is based on the design of a memory now under
 
development utilizing a 1 x 4096 ECL memory device. Its
 
elemental and functional failure rates and MTBFs are derived in
 
appendix F as are those of the CCD Backing Store. The failure
 
rates for Intermediate Memory (shown in table 1) were provided
 
by the Control Data Division which is currently responsible for
 
memories of that type, on which its design is based.
 

NASF System Reliability Evaluation
 

The NASF system, composed of the FMP and standard system
 
components configured in a redundant manner, is summarized in
 
table 2. Because of the system complexity and redundancy, and
 
because utilization of the sSstem does not always require every
 
computational and data handling function to be available
 
simultaneously, a meaningful overall reliability figure of merit
 

(from a user viewpoint) cannot be stated. However, the
 
availability and reliability, as may be seen by a user, can be
 
derived if the required resources and period of use are known.
 
An example is used to provide an estimate of what might be
 
expected. The detail assumptions ,and derivations are presented
 
in appendix H; a summary of the assumptions and results are
 
presented here.
 

Assumptions
 

1) 	A remote user uses the following resources for a two-hour
 
period:
 

2551 Communications Controller
 
CYBER 175 Computer
 
PDCs for system interconnection
 
FMD 	Disk Subsystem
 
ECS 	Subsystem
 
819 	Disk Subsystem
 
FMP
 

2) 	The FMD Disk Subsystem uses three of the four disk units.
 

3) 	The four 819 disk units assigned to the user, for practical
 
-purposes, have no immediate back-up. 


Results
 

1) 	User availability (the probability that the resources are
 
available on demand) is 98.89%
 

2) 	 User reliability (the probability of completing the task in
 
two hours) is 98.24%
 

Other performance characteristics of the system are:
 

1) 	The operating system critical components (the FMP, the ECS,
 
and 	the CYBER 175s) may cause a system interruption on the
 
average of once every three to four weeks. In these cases
 
the 	operating system must be reloaded and all users will
 
have to reinitiate their jobs or tasks. (See operating
 
system critical MTBF derivation in appendix H.)
 

6-3
 



2) 	Something in the system fails approximately every six hours
 
but because more than 50% are correctable, an operator or
 
user may be inconvenienced every thirteen hours.
 

3) 	Assuming the example (appendix H) represents a typical use
 
of the system, the applicable failure rate apparent to a
 
user or class of users is 8804 failures per million hours or
 
113.6 hours MTBI. Stated another way, once every four or
 
five days a given user may be required to restart or
 
reinitiate the job or task being performed. Eighty-two
 
percent of these failures are local with respect to the
 
system, meaning only specific users are affected. The other
 
eighteen percent are a result of a system failure affecting
 
all current users.
 

6-4
 



---------------------------------------------------------

Table 2
 
NASF Reliabily Summary
 

Elemental
 
Failure Functional
 

System Component Qty. MTBF Rate tMTTR*
 

CDC FMP 1 10.3 97030.3 1.5
 

CYBER 175 2 367 2725.0 1.7
 

CYBER 18 1 362 2762.0 2.4
 

(2551) Network Processor 2 1846 541.7 1.6
 

Programmable Device Controller 16 10000 100.0 1.5
 

7030 ECS 1 630 1587.3 1.8
 

677 Tape Unit 2 1022 978.5 1.6
 

679 Tape Unit 2 1022 978.5 2.2
 

7021 Tape Controller 1 3200 312.5 1.8
 

885 FMD Disk 4 5000 200.0 2.0
 

7155 FMD Controller 2 8000 125.0 3.0
 

7881 Cartridge Storage Unit 8 1730 578.0 1.5
 

7882 Mass Storage Transport 16 960 1041.7 1.0
 

7880 Mass Storage Controller 3 1970 507.6 4.0
 

819 Disk Drive 16 2800 357.1 2.2
 

7639 Disk Controller 4 5000 200.0 1.2
 

580 Train Printer 4 442 2262.0 2.2
 

405 Card Reader 2 1091' 981.4 1.5
 

3447 Card Reader Controller 2 24000 41.7 4.0
 

415 Card Punch 1 1091 981.4 3.4
 

3446 Card Punch Controller 1 14400 69.4 2.9
 

8271 Transfer Switch 2 72000 13.9 0.5
 

3270 Switch Controller 1 12000 83.3 2.0
 

NASF Totals 6.39 156393.2
 

*Because of -system redundancy, the MTTR should not, except in
 
the case of the FMP, be taken to be the time that the system is
 
down when the associated equipment fails. Even in event of an
 
FMP failure, if the failure is in a vector pipeline or in I/O
 
(about 20% of the time) the system can be back up in minutes.
 

6-5
 



Appendix A
 

GLOSSARY OF RELIABILITY,
 

AVAILABILITY, AND MAINTAINABILITY TERMS-


REV A 
CONTROL DATA 	 DATE Auqust 1978

CORPOR ON 	 - dA NI= 1AI=::2 PAGE 1 of 9 

GLOSSARY OF RELIABILITY. AVAILABILITY AND 

MAINTAINABILITY TERMS 

1.0 	 SCOPE
 

1.1 	 Purpose - This Standard delineates a list of terms and their definition as used in
 
CDC on the subjects of Reliability, Availability and Maintainability (RAM). These
 
definitions are intended to reduce inconsistancies and confusion in nomenclature.
 

1.2 	 Applicability - This standard applies to other standards in the CDC-ST 1.12.000
 
.,series.
 

1.3 	 Effectivity - This standard is effective immediately upon release.
 

1.4 	Authorztv - The enforcement of this standard is in accordance with CDC-Policy 10:04:00. 
waivers from this standard are only granted via the controlling documeht. See CDC-Policy 
10:04:30. The interpreting authority for this standard is the General Manager of CDC
 
Technical Standards.
 

2.o 	APPLICABLE DOCUMENTS 
2.1 	 Referenced Documents 

CDC-Policy 10:04:00 CDC Technical Standards 
CDC-Policy 10:04:30 Deviations or Waivers from CDC Technical Standards 
CDC-STD 1.12.000-Reliability, Maintainability and Availability Standards 

2.2 	 Related Documents
 
None
 

3.0 	GLOSSARY
 
Not Applicable
 

4.0 REQUIREMENTS 
Many 	of the terms are composed of two or more words. These terms appear with the
 
noun first followed by a coma and all modifiers. Thus, "software installation
 
aids" would appear as "aids, software installation" and would be found with the term
 
starting with the letter "a".
 

action, repair -

A single maintenance procedure or step designed to completely correct a failure.
 
Examples of repair actions are "replace module at Location B13" or "perform Procedure
 
54 to re-align the read head".
 

availability -
The probability that an item will perform its specified operation under stated 
conditions at any given time. 

availability, basic -

The fraction of time that a system or product is notbeing repaired. It is also
 
called intrinsic availability and inherent availability. Basic Availability in
 
fractional notation is:
 

Measurement Interval - Active repair time
 
Basic Availability (Ab) =
 

Measurement Interval
 

Approved by 4/ i A 
D. 	 L. nickel, Vice PresidentOperations Services, Computer Group
 

6-A-i
 



- STD 1.12.999
s'r ' T - IREV A 

CONTROL DATA sDATE August 1978 
COPOR TION I PAGE 2 

availability, net -
The fraction of a system's designed and expected (potential-I throughout achievable
 
on demand during a given calendar time period. Potential throughput is that which
 
can be achieved in the absence of interruptions and scheduled maintenance. Net
 
availability is reduced by all lost time, both system down and degraded, during
 
scheduled operating time and scheduled maintenance time.
 

Calendar time - lost time - scheduled maintenance time
 
Net Availability (An) C
Calendar time 

availability, user -
The fraction of a system's designed and expected'(potential) throughput achievable 
on demand during scheduled operating time. Potential throughput is that which can 
be achieved in the absence of interruptions. User avaiJability is similar to net
 
availability except that only events occurring durinq scheduled operating time are
 
counted. User availability is reduced by all lost time, both system down and
 
degraded, during scheduled operating time caused by an interruption.
 

Scheduled Operating Time - Lost Time
 
User Availability (Au) = 

Scheduled Operating Time
 

average, running -


Current month running average =
 
Current month average +'twice the previous month's running average


3
 

where the running average of the first 3 months is defined as the average for the
 
months being measured. This is .done so as not to overemhasize the first month
 
data. In cases where the current month's value is very large compared to the
 
previous month's running average (e.g., no failures for the month) the following
 
equation should be used:
 

Current month running average-=
 
3 

I/current month average + 2/previous monta's running average
 

call, service -
The response to a request for remedial maintenance that is attended to at the user 
location by one or more persons from the maintenance organization. A service call
 
is normally occasioned by one or more incidents such as failures, misuse, or media
 
caused failures. Service call-backs are included. Activities such as oreventive
 
maintenance and installation of modifications are excluded.
 

configuration, target -

The configuration which approaches the predicted tyDical field application of the
 
Product.
 

controlwarc -
A processor program for a particular processing unit integral to a product that 
provides the product a set of functional operating characteristics. Controlware is 
supplied as part of a product in accordance with applicable Control Data nolicies 
and procedures and is necessary for proper product operation. The programs are 
considered as programmed functions which may be analogous to hardware logic and are 
documented, maintained and supported in a similar manner.
 

deadstart -
The initial action taken to start a computer system when no software is resident or 
czi-e in that system. Deadstart normally occurs after a totol system shutdown or 

an unrecoverable system error and causes system initialization and opcration
 
initiation.
 

6-A-2 



STD 1.12.999 
CONTROL DATA DATE August 1978 

CORPOR ION !N5- 7A. NJ = F PAGE 3 

degradation, graceful -
The automatic and/or orderly removal of some of a system's capabilities due to a 
failure. This is accomplished in a manner which allows continued system operation, 
but with reduced capability. 

detection, data error -

The process (whether by software and/or by hardware means) of recognizing that one
 
or more bits are incorrectly transferred, stored, read or manipulated.
 

diagram, reliability block -

A pictorial arrangement of parts (functional blocks) which describes the separably
 
identifiable functions of a product, equipment or system and their reliability
 
relationships.
 

DPSR - Diagnostic Programming System Report -
A form, AA 4329, used by CDC maintenance software users to report maintenance software 
failures. The DPSR applies to released products. DPSRs are classified the same as 
PSR (for classification definition see PSR).
 

effectiveness, maintenance software -

Used with maintenance software as a specification of performance which indicates
 
the degree with which maintenance software produces its desired result of detecting
 
and isolating failures.
 

error -
The difference between an observed or calculated value and a true value, as in data 
error; something produced by mistake, as in design error. 

error, system recovered -

The encountering of a failure or error which is detected and recovered from without
 
1) manual intervention, 2) loss of any system resources, 3) producing incorrect
 
results, and 4) termination of any application abnormally. The encountering of a
 
failure which does not result in a system down or-degraded interruption.
 

factor, degradation -

The average percentage throughput capability lost with the specific class of
 
failures or interruptions.
 

factor, duty -
The duty factor is the percentage of time an item is used. That is:
 

Actual Usage Time
 
Duty Factor
 

Scheduled Operating Time
 

failure -

A state of inability of an item to perform its intended function. *The cause may be
 
breakage or deterioration beyond specifled limits or design errors. A failure may
 
be a data error rate which has deteriorated beyond specified limits. Multiple
 
encounters of the same fault/failure are a single failure. (See Interruption.)
 

failure, elemental -

A component failure requiring replacement or ad3ustment within a unit whether or not
 
the unit ceases performing. For example a single bit failure in a single error
 
correcting double error detecting (SECDED) memory.
 

failure, functional -
Any failure or combination of failures which causes a system, product or equipment
 
to cease performing a.specified function.
 

failure, maintenance software -

Each of the following are maintenance software failures:
 

- The inability to complete testing due to an error in the maintenance software
 
program itself.
 

6-A-3
 



STD 1.12.999 
S -5 STrN I REV A 

CONTROL DATA IDATE August 1976 
CORPORATON IAPTAANCEAI:ED 

The report of a hardware fault when no fault exists
 

The incorrect identification of a hardware fault even though another fault is
 
present in the hardware
 

The inability to perform an auxiliary function due to a design error in the
 
maintenance software
 

fault -

The cause of failure.
 

FCO -

Field Change Order. The directive to install changes to equipment after the normal
 
manufacturing process in order that the equipment will perform to its written or
 
implied specification.
 

firmware -
A physical electronic component in which a program resides that is incorporated in
 
a product to provide a programmable mode of operation defining the product's
 
functional characteristics. Firmware is not self-modifiable, and is .subject
 
to change or modification only by physical modification or replacement.
 

incident, failure -

An occurrence requiring remedial maintenance to correct a single failure.
 

installability -

A characteristic of design and environment which expresses an item's ability to be
 
configured into a system in the manner specified by a customer on his location.
 

interruption -

The cessation of productive processing due to the encountering of a failure. An
 
interruption is not ended until it is followed by 15 minutes or longer of productive
 
processing.
 

interruption, systen degraded -

The encountering of a failure which does not result in a system down interruption
 
or a system recovered error. A-system degraded interruption 1) results in an
 
application program terminating abnormally or producing an incorrect result, or
 
2) requires some manual intervention or the downing of some system capability to
 
allow recovery.
 

interruption, system down -

The encountering of a failure which results in none of the user applications being
 
correctly processed. This can be recognized by a deadstart or manual intervention
 
being required to return the system from a down state to a productive state.
 

isolation, error/failure -


The process by either software and/or hardware means of localizing an error or
 
failure to a specified level.
 

K-factor -

A translation modifier which relates various reliability parameters. For example:
 
(failures) (K-factor) = interruptions and (inherent MTBF) (K-faCtor) = observed MTBF.
 
Specific K-factors require that the parameters being related be identified.
 

life 	-

The actual use time before a product will be scrapped or require a major refurbish
ment.
 

mainframe -
An organized collection of directly connected hardware products, equipments, parts 
and accessories consisting of a single central memory, one or more central processors, 
peripheral processors, channels and control consoles. 

6-A-4 



STD 1.12.999
 
Sr) mSTS A REV A
 

CONTROL DATA DATE August 1978
 
CORPORAION - PAGE s
 

maintainability -
A characteristic of design and environment which is expressed as the probability 
that an item will be retained in or restored to a specified condition within a given 
period of time, when the maintenance is performed in accordance with prescribed 
procedures and resources. 

maintenance -
Any activity to repair a product or correct supporting documentation in order to 
eliminate or prevent errors or failures in a post-release product. 

maintenance, preventive -

A procedure of periodically checking and/or re-conditioning a system or unit to
 
prevent or reduce the probability of failure or deterioration while in service.
 

maintenance, remedial -

Those activities where a technician is working on a unit or system on a customer
 
installation to make the unit or system operational except those activities that are
 
considered preventive maintenance, associated repair or check-out.
 

management, reconfiguration -

A procedure that manipulates the organization of system resources such that the
 
system can continue to perform useful work when one or more system elements are
 
unavailable to the user.
 

margin selection, maintenance software -

The capability within maintenance software to run with hardware margins selected
 
either manually or under control of the maintenance software. .
 

MLT - Mean Lost Time -

The average lost time per interruption or class of interruption over the time
 
period being measured.
 

modularity, spares -

Packaging replaceable hardware sub-assemblies in a manner that minimizes the sum of
 
per unit manufacturing cost plus field replacement costs.
 

modularity, system -

The organization of system elements such that logical functions with specified
 
interfaces can be easily distinguished and, when necessary, logically and physically
 
isolated from one another.
 

MTBF - Mean Time Between Failures -
The average time from the start of one fault or failure to the start of the next. 
The specific time-base used is to be indicated in the context of the MTBF usage. 

MTBF is Mean Time Before Failure in some reliability prediction equations. In
 
this usage MTBF is t--heaverage time from the end of-a failure to the beginning of
 
the next failure. This meaning of mTBF is not used in the RAM standards. When
 
non-operable time is only a few percent or less of the total time, then the two uses of
 
MTBF are approximately equal.
 

MTBF, inherent -

An MTBF number derived from component failure rates (anticipated stress levels
 
should he considered). No considerations are made for possible poor design or
 
poor manufacturing or inadequate service.
 

MTBI - Mean Time Between Interruptions -
The average time from the start of one interruption to the start of the next. The 
specific time base used is to be indicated in the context of the MTBI usage. 

6-A-5 



STD 1.L2.999 
ONO DATA 	 REVDA'I A 

CONTPOL DATA DATE August 1975 
CORPOATION STA N AI C PAGE 6 

MTBSC - Mean Time Between Service Call -
The average time between service calls initiated by customer request (i.e., system 
failures, service call backs, misuse, media caused failures, etc., excluding P.M. 
and installation of modifications); obtained by dividing total time by the number 
of service calls. 

MTTR 	- Mean Time to Repair -

The overall average time it takes to diagnose a machine fault, repair it, and
 
adequately verify the operation after repair; obtained by dividing the total
 
unscheduled repair time by the number of repair incidents. This calculation
 
average does not include associated repair, travel time or wait time.
 

product -
A hardware, software, or supply item that is saleable to a customer. 

product set -

The complement of software (excluding the Operating System) supplied by the vendor
 
for use by the customer in writing application programs, storing and manipulating
 
data, e.g., language processors, SORT/MERGE, Data Management.
 

program, application -

Software written by a user or supplied by a vendor to solve a particular problem
 
related to the users business, e.g., payroll, lineat programming package.
 

program, maintenance software -

A software program that detects and/or isolates, that facilitates repair, that 
aids in adjustment, or that confirms repair of a hardware failure. 

PSR - Program System Report -

A report used by CDC software users to report software failures and errors. PSRS
 
are classified into categories of criticality. They are critical, urgent, serious,
 
minor, and informational. (Similar to TAR for Hardware, firmware and controlware).
 

PSR, critical -

A PSR category where the reported failure results in frequent (1 or more per day)
 
system downs and/or a major project stalled through software problems.
 

PSR, informational -

A PSR category in which errors in comments, coding techniques, or documentation are
 
reported. Code change is not required.
 

PSR, minor -

A PSR category where reported failures result in inconsistencies or irregularities
 
that require a code correction. (The category refers only to the urgency of the
 
need for software maintenance). Items of inconvenience or of minor or local
 
consequence should preferably be in this category.
 

PSR, serious -

Problems that definitely need to be fixed at once, but for some reason are below
 
urgent or critical. For example, a PSR belongs in this category if the problem can
 
be circumvented, if a local or temporary fix is available, or if it is an urgent
 
problem that only occurs rarely or under unusual circumstances.
 

PSR, urgent -
Regular system crashes (more than 1 per week); substantial user difficulties. High 
-probability of serious problems (such as bugs in error recoveries, etc.). 

RAM-

Reliability, Availability and Maintainability.
 

6-A-6 



STO 1.12.999 
IY ITIN CI REV ACO ROL DAA DATE August 1978COTPaON eTA N A PAGE
 

recovery, data error -
The process of amending or repeating a data transfer, store, read or manipulation, 
which resulted in a data error, to produce the correct result. 

release, field -

A term used in the RAM standards to indicate the point in an item's life when it
 
has been certified.
 

reliability -

The characteristics of an item expressed as the probability that it will perform a
 
required function under stated conditions for a stated period of time.
 

repair, associated -

The repair of a replaceable module, subassembly, or product after it has been
 
replaced by a like module in the user's system. Example, the action of repairing
 
spare parts after the product has been returned to service.
 

software, fail-soft maintenance -

Maintenance software which is an integral part of the operating system software and
 
other system software and which provides failure management capabilities; i.e.,
 
dynamic hardware failure detection, error logging or recovery activities.
 

software, hardware checkout -

Software designed for and used only during the engineering or manufacturing check
out of various hardware devices. It may be required when the checkout requirements
 
cahnot be satisfied by Hardware Design Verification Software.
 

software, hardware design verification -

Software designed for and used in the process of hardware or microcode design

verification testing. It may be required where design verification requirements
 
cannot be met by Off-line Maintenance Software.
 

software, in-line maintenance -

Maintenance software designed for use in field maintenance of hardware which operates
 
within a subsystem independent of the operating system and which may be used con
currently with customer use of the subsystem.
 

software, maintenance -

Any computer program code and associated documentation, used for maintenance of
 
released products, that detects and/or isolates failures, facilitates repair, aids
 
in adjustment, and confirms normal operation of hardware.
 

software, off-line maintenance -

Maintenance software designed for use in the field maintenance of hardware and which
 
does not operate concurrent with customer operations.
 

software, on-line maintenance -

Maintenance software designed for use in field maintenance of hardware and which
 
operates under control of the operating system concurrent with customer operations.
 

subsystem -
An organized collection of hardware together with any necessary software, controlware, 
and/or firmware components operating within a system and performing functions 
assigned to it by the system. For example, a collection of tape devices, controller,

controlware, and software de$ices is a magnetic tape subsystem. A processor and
 
memory without the coded instructions necessary to process data would not be a sub
system.
 

system, computer -
An organized collection of interrelated software and hardware products, accessories 
and parts that are directly interconnected and contain only one mainframe under 
control of a single copy of an operating system and is designed to perform data
 
processing functions.
 

systems, network of -

An organized connection of computer systems, software and hardware products,

accessories and parts interconnected or interrelated in such a manner as to perform'
 
data processing functions.
 

6-A-7 



STD 1.12.999
9 Y -rE REV A. 

CONTROL DATA DATE August 1978
 
CORPOr*TION STAD N . PAGE
CAI:::PD 8 

system, operating -
Software which guides a processing system in the performance of its tasks by controlling 
the execution of computer programs and by providing support services to programs 
and programmers, e.g., scheduling, debugging, input-output control, etc. 

TAR - Technical Action Request -

A report used by CDC hardware, firmware, and controlware users to report product
 
design failures and .errors. (Similar to PER for software).
 

test, margin -

Test performed to provide information relative to a system's (unit's) ability to
 
operate under the full range of design parameters. Normally accomplished by varying
 
voltages and/or frequency.
 

test, product verification -

A test of a product or equipment in its operating (system) environment to determine
 
that its operation, maintainability, and reliability meet the design criteria. The
 
test includes the use of operating system and application programs, the use of
 
maintenance procedures and diagnostic programs and operation over a prolonged
 
period of time. The product verification test is generally performed on a prepro
duction or production unit.
 

testers, maintenance -

Equipment external to the system that initiates and performs fault detection and
 
isolation and facilitates repair and adjustment.
 

time, active repair -

The interval during which activities occur at the user's location that are associated
 
with implementing corrective or avoidance actions. Only-those activities required
 
to return the system or products to an operational state following the failure are
 
included. Sometimes referred to as unscheduled repair time. For software this
 
includes such things as dumping files, analysis, PSR documentation, installing
 
corrective code, etc. The deferred installation of corrective code or PSR is
 
considered scheduled maintenance.
 

time, actual usage -

The interval or accumulation of intervals during which an item is performing one
 
or more of its intended functions.
 

time, administrative and logistic wait -

The interval during which support personnel or materials are not available.
 

time, calendar -

Calendar time is the elapsed interval of time during the measurement period, expressed
 
in hours, day or months, as appropriate.
 

time, down -
The sum of active repair time, analysis time and administrative-and logistic wait 
time which takes the system down during scheduled operating time. The interval 
during scheduled operating time when the item is inoperative.' 

time, analysis -

The interval the user spends determining that maintenance service is required.
 

time, lost -

The effective time that a system is in a totally unacceptable state for productive
 
work as a result of interruptions. Lost time is the actual time lost to the user
 
due to total or partial loss of system processing capability plus compensatory time
 
for any reprocessing necessitated by interruptions. The following times, if
 
present shall be included in the lost time calculation.
 

- analysis time
 
- administrative and logistics wait time
 
- active repair time
 
- reprocessing time 

6-A-8 



STO 1.12.999 
(srm) ! Y S T r./i REV A 
CONTOL DATA DATE August 1978 

-
COR,'ORATION N M.41.F m ' PAGE 9 

Under degraded conditions, elapsed time does not represent lost time since some
 
useful work was processed during this interval. Lost time due to degradation
 
is the product of the degradation factor and the time the system was in that
 
degraded condition -- i.e., the time between the detection of an interruption and
 
the point in time the users work has been restored to the state it would have
 
been, had the interruption not occurred, NOTE: time in a degraded condition need
 
not be contiguous -- e.g., te-run may be delayed resulting in a fully acceptable
 
oroductive state between the interruption and the commencing of re-run.
 

The interval that service personnel are not allowed access to the item needing
 
service is not included in the lost time calculation. The effect of system recovered
 
errors on system thruput is not included in lost time.
 

time, reprocessing -
The sum of restoration time and rerun time. 

time, rerun -

The amount of tima required to return work in process to the state that it should
 
have been in when the failure which caused the interruption or erroneous result
 
was detected.
 

time, restoration -
The amount of time required to restore the operating system, and auxiliary sub
systems, because of an interruption or erroneous result. The following activities, 
if present, shall be included in restoration time. 

- restoration of remote devices
 
- system reinitialization
 

time, scheduled maintenance -

The dedicated system time to perform preventive and remedial maintenance and to 
install corrective PSRs and FCOs: Where this scheduled maintenance activity is 
performed concurrent, it is handled like degraded lost time with the use of a 
degradation factor. The installation of new features or products is not considered 
scheduled maintenance time. 

time, scheduled operating -

The interval allocated in advance for the system to be operational for the user.
 

unit, accounting 
-A single item in which the resources used by a job or required for a terminal 
session are combined including memory field length, CPU time, mass storage usage, 
magnetic tape usage, permanent file usage and unit record usage. The accounting 
unit of the NOS operating system is the System Resource Unit (SRU) and its specific 
definition is contained in CDC document 60435700 "NOS Installation Handbook". 

6-A-9
 



Appendix B
 

Reliability Module Failure Rates
 

I. LSI Device Module 
Qty. 

LSI Array 
Terminators 
Ceramic Capacitors 
LSI Connector (52 pin) 
Solder Joints 

1 
9 
2 
1 
4 

II. LSI Half Pack Module 

Half Pack 1 
Terminators 3 
Ceramic Capacitor 1 
Half Pack Connector (26 pin) 1 
Solder Joints 2 

III. LSI Board Module 

Coax Connections 
Vias 
Ceramic Capacitors 
Solder Joints 

1,260 
18,500 

330 
660 

IV. FIO0K Module 

FlO0K Device 
Terminators 
Vias 
Solder Joints 

1 
3 

30 
24 

V. Average Auxiliary Board Module 

Edge Connectors 338 
Ceramic Capacitors 150 
Solder Joints 300 
F100K/Board (weighted avg.) 45 

6-B-I
 

Failure Rate Total 
-6 -6 

(xlO ) xlO ) 

0.087 *0.087
 
0.001 0.009
 
0.002 0.004
 
0.104 0.104
 
0.0003 0.0012
 

TOTAL -->0.205
 

0.0412 0.0412
 
0.001 0.003
 
0.002 0.002
 
0.048 0.048
 
0.0003 0.0006
 

TOTAL -->0.0948
 

0.0028 3.528
 
0.00005 0.925
 
0.002 0.660
 
0.0003 0.198
 

TOTAL -->5.311
 

0.0240 0.024
 
0.001 0.003
 
0.00005 0.0015
 
0.0003 0.0072
 

TOTAL -->0.0357
 

0.002 0.676
 
0.002 0.30
 
0.0003 0.09
 
0.0357 1.607
 

TOTAL -->2.673
 



Qty. 

Failure Rate 
-6 

(xlO ) 

Total 
-6 

(x10 

VI. Bus Board Assembly 

Tantalum Capacitors 
-So-l-der Joints 

15-
300 

0.-4 
0.0003 

2.10 
0.09 

TOTAL -->2.19 

VII. RAM Module (4096-bit ECL) 

RAM Device 
Solder Joints 
Vias 
Connector Pins 

1 
18 
22 

0.94 

0.07 
0.0003 
0.00005 
0.002 

0.07 
0.0054 
0.0011 
0.0019 

TOTAL -->0.0784 

6-B-2
 



----------------------------------------

------------------------------------------

Appendix C
 

Component Elemental Failure Rates
 

Used in FMP Evaluation
 

6
 
Semiconductors Failures per 10 hrs.
 

LSI Array 0.087
 

FlOOK Array 0.024
 

ECL RAM 0.07
 

MOS RAM (65K) 0.463*
 

CCD Array 0.926**
 

TTL SSI 0.02
 

Other Components
 

Ceramic Capacitor 0.002
 

Tantulum Capacitor 0.014
 

Terminators 0.001
 

Vias (Printed Wiring Boards) 0.00005
 

Solder Joints 0.0003
 

LSI Connector 0.104
 

Edge Board Connection 0.002/pin
 

Zero Insertion Force Connector 0.113
 

Coaxial Connector 0.0028
 

* MOS failure rate is based upon MIL-HDBK-217B and CDC 
experience. ** Since no reliability information is yet
 
available for CCD -storage circuits, the failure rate is
 
estimated to be twice that of the MOS RAM devices.
 

6-C-1
 



Appendix D
 

COMPONENT PIECE PART FAILURE RATES
 

Q D STD .12.020 
REV A 

CONTrOL DATA August 1978IDATE 

COR,'OR11ON ST'Ah N A ::2 IPAGE I of 12 

PREDICTING
RELIABILITY, AVAILABILITY AND MAINTAINABILITY
 
PARAMETER VALUES INHARDWARE AND SOFTWARE
 

i.o 	 SCOPE 

1.1 	 Purpose - This standard defines methods of establishing Reliability, Availability
 
and Maintainability (RAM) parameter values required by CDC Std 1.12.006 - Specifying
 
and Measuring PAVl, by using reliability prediction techniques. The use of the types

of predictions described will provide a consistency and commonality for evaluating
 
the predicted RAN performance of a product during its evolution. Use of the rates
 
and factors contained in Appendices A and B will provide a common base of design
 
information for performing M4TBF predictions.
 

1.2 	 Aplicability - This standard applies to all products intended to be offered for sale
 
or lease by CDC unless specifically excluded by customer contractual conditions. The 
use of "products" in this document refers to modules, equipments-, software, products, 
subsystems and systems. 

1.3 	Effectivit - This standard is effective immediately upon its release. This standard
 
supersedes Standard Bulletin 0003.
 

1.4 	 Authority - The enforcement of this standard is in accordance with CDC Policy 10:04:00. 
The interpreting authority for this standard is the General Manager, CDC Technical 
Standards.
 

2.0 	 APPLICABLE DOCUMENTS 

2.1 	Referenced Documents
 

CDC-POLICY 10:04:00 - CDC Technical Standards
 
CDC-STD 1.12.006 - Specifying and Measuring RA14 (Not yet released)
 
CDC-STD 1.12.999 - Glossary of RAM Terms (Not yet released)

MIL-HDBK-217B - Reliability Prediction of Electronic Equipment
 
MIL-STD 756A - Reliability Prediction
 
CDC-Tech Memo 19 - Reliability Growth Prediction Procedure
 
Proceedings of 1968 Symposium on Reliability
 

2.2 	 Related Documents
 

CDC-Tech Memo 6 - Reliability Goals
 
MEL-HDBK-472 - Maintainability Prediction
 
CDC Pub-60435200 - Investment Decision Model
 

3.0 	 GLOSSARY
 

Refer to CDC-STD 1.12.999 - Glossary of RAM Terms.
 

4.0 	 REQUIREMENTS 
Expected RAM parameter values, when specified in the following controlling documents,

shall be determined (predicted) using the types of predictions and failure xates 
established by this standard (See Figure 1). Also, where predictions are required 
as a part of a design evaluation or system evaluation, the types established by 
this standard shall be used so consistency is maintained in comparative situations. 
Note: Design and Release predictions are only applicable to hardware MTBF pre
dictions. (See Expository Remarks no. 2 and no. 3) 

Approved by ,/ a 
D.L. Bickel, Vice President
 
Operations Services, Computer Group
 

6-D-1
 

C -N 



STU 1.12.020 

*REV A 
CONTPOL DATA DATE August 1978

COVO*TON sTA N c)A.:c PAGE 2 

/strategy Documents or equivalent 

--Makt Riee ntsDouetscquv 
n 

/ 

r 

Design Objectives Docuent or equivalent 

Design Requirements Documents or equivalent 
Engineering Specifications or equivalent 

Ce t 
f 

tonor 
Equi 

valent 

Controlling 

Document 

X X X 

X 

x 

x 

I 

X 

X 

X 

Market Analysis 

Extrapolated 

Allocated 

Design 

Release 

Type of 

RAM 

Prediction 

Figure 1 - TYPES OF RAM PREDICTION ASSOCIATED WITH VARIOUS CONTROLLING DOCUMENTS 

6-D-2
 



STD 1.12.020IREV A 
DATE 	 August 1972CONTROL DATA 

A 	 I PAGE 3CORPO*TION 

4.1 	 Strategy and Marketing Documents - Reliability parameters to be specified in Strategy

and Marketing Requirement Documents shall be based on a Market Analysis. (See 6.1)
 

4.2 	 Design Objectives Documents - Reliability parameters to be specified in Design Objectives
 
Documents shall be based on a tradeoff between capabilities of the design and the
 
market needs as expressed in the strategies and marketing requirements. The RAM
 
values specified in Design Objective documents will give priority to market needs
 
versus 	capabilities of design. (See 6.1, 6.2, and 6.3)
 

4.3 	 Design ReLuirements Documents - RAM parameters to be specified in Design Require
ments Documents shall be based on the design and/or extrapolated predictions (see

6.2 and 6.4).
 

4.4 	 Engineering Specifications Documents - RAM parameters to be specified in Engineering

Specification documents shall be design or release predictions. Should the design
 
or release RAM parameter values not meet the Design Requirement values (see 6.2 and
 
6.4), a decision must be made to either hold the manufacturing release and continue
 
the design activity or change the Design Requirement values to agree with the release
 
values by formal DR revision and approval.
 

4.5 	 Certification - MTBF predictions used for validating hardware for release shall be
 

Release Predictions. (See 6.5)
 

s*n 	 RESPONSIBILITIES 
As with other standards, responsibility for implementation and enforcement rests
 
with division management. Responsibility for updating failure rates and application
 
factors is defined in the last paragraph of the Preface to Appendix A.
 

6.0 	 PROCEDURE
 

6.1 	 Market Analysis - The market analysis approach of establishing a RAM requirement is
 
based on an ana ysis of market need and competition. Analysis of CDC and competitive
 
RAM performance trends and expected technological advancements are also to be used
 
in this prediction.
 

6.2 	 Extrapolated Predictions - Extrapolated predictions are projections based on histori
cal data on similar Control Data and competitive products. Known RAM data on
 
similar or predecessor products and the growth characteristic of such data are used
 
to extrapolate or "predict" the RAM values for the proposed product. The extra
polated prediction is not based on a compilation of component/part failure or
 
repair rates.
 

6.3 	 Allocated Predictions - Allocated predictions are RAM requirements assigned to
 
individual products to attain a desired overall system RAM. These types of pre
dictions are suitable where the overall system RAM and some product RAM requirements
 
are specified and the remaining product RAM requirements are to be determined.
 

6.4 	 Design Predictions - (Applicable only to hardware MTBF predictions) Design predic
tions are based upon a design strategy as represented by a reliability block diagram.

Design predictions produce inherent MTBF values which must be translated into
 
expected observed predictions by use of K factors. The specific K factor used and
 
the rationale for its selection should be documented as part of the prediction.
 
(See Expository Remark 1) The procedure, using MIL-STD 756A - Reliability Prediction,
 
as a guideline for preparing a design prediction is as follows:
 

6.4.1 	Product Definition - The product for which the prediction is being made is defined
 
in terms of:
 

- functional and physical boundaries
 
- conditions which constitute failures
 
- conditions under which the product is to operate
 
- required maintenance conditions
 

6.4.2 	 Reliability Block Diagram and Reliability Model - From the descriptions of the
 
product definition, above, a reliability block diagram is constructed. Each block
 
of the diagram is identified and any assumptions and simplifications are clearly

stated. A mathematical equation (model) is derived based upon the relationships

described by the block diagram. (see 6.4.4 for applicable assumptions)
 

6-D-3
 



STD 1.12.020
09) 	 REV A 
CONTROL DATA 	 DATE August 1978 
COPPOPlTON STA N A IPAGE 4 

6.4,3 	 Computed MTBF - An estimate of the quantity of parts comprising each functional
 
block of the Reliability Block Diagram is derived. Based upon the Component/Parts

Failure Rate Table (Appendix A), an evaluation of the failure rate for each block
 
is made. These functional block failure rates are used in the mathematical equa
tion 	to compute the design prediction of the sub3ect product.
 

6.4.4 	Prediction Assumptions - For the purposes of this standard, failure rates of
 
individual blocks or components/parts within a block are assumed to be constant 
with respect to tine so that mean time between failure (MTSF) is the reciprocal of 
mean failure rate. By this assumption, infant mortality and wear out are 
excluded.
 

Unless 	ctherwise stated in specific reliability predictions, mean failure rates
 
of components/parts and their application environments are those identified in 
Appendices A and B of this standard.
 

Each 	device denoted by a block in a reliability block diagram is assumed to be

independent from all other blocks with regards to probability of failure.
 

The inherent predictions assume the design, manufacturing and service is perfect
and in 	accordance to all applicable standards and/or guidelines unless specifi
cally stated otherwise.
 

6.5 	 Release Predictions - (Applicable only to hardware MTBF predictions) Release pre
dictions are based upon the completed design. A release prediction is the most 
accurate prediction because it includes information from detailed schematics,
detailed environmental data, firm parts selection, and detailed application data. 
Release predictions produce inherent MTBF values which must be translated into 
expected observed predictions by use of K factors. The specific K factor used and
 
the rationale for its selection should be documented as part of the release pre
diction. (See Expository Remark 1)
 

The procedure using MIL-STD 756A - Reliability Prediction, as a guideline, for developing
 
a release prediction is the same as for a design prediction (see 6.4) with the following

additional considerations.
 

6.5.1 	Product Definition - This definition will represent the actual configuration and
include the conditions of manufacturing, shipping and handling, and maintenance and 
operating procedures.
 

6.5.2 	 Reliability Block Diagram and Reliability Model - The assumptions, constraints
 
and simplications of the block diagram and mathematical model are based upon the
 
detailed schematics and the conditions in the product definition. (See 6.4.4 for
 
applicable assumptions)
 

6.5.3 	 Computed MTBF - The types and quantities of parts comprising each block are derived 
from the detailed parts list of the product. Failure rates for the components are 
listed in the Component/Parts Failure Rate Table (Appendix A). State the failure
 
rates used when the component/parts are not listed in Appendix A or where stress
 
factors other than the nominal stress environment (Appendix B) exist for particular
 
components. 

6-D-4
 



STD 1.12.020 

GE)r~N REV A
DATE August 1978CONTROL DATA 

CO0RORATION STA NICAIFIO IPAGE 5 

APPENDIX A 

COMPONENT/PIECE PART FAILURE RATES 

PREFACE 

The failure rates listed in the following table reflect current capabilities of the 
individual components/piece parts under nominal stress levels. These failure rates are
 
to be used in predictions as required and discussed in the prediction standard to which
 
this appendix is attached. Prior to the use of the following tables, it is strongly
 
recommended that the preface be read in full in order to obtain a clear understanding of
 
the basis and underlying assumptions to the failure rate data.
 

Failure Definition/Units
 

When using the enclosed failure rates, note that the term "failure" is defined as an open, 
short, or parameter change greater than specified tolerance. These rates are based primarily 
on solid failures and do not necessarily include the effect of intermittents and transients. 
Tihe failure rates are inherent failure rates for each generic part type. The term "inherent" 
is defined to mean the reliability that will be observed on a mature component in a mature 
application. Both the component and the application have had sufficient power-on time
 
to have passed "infant mortality". When calculating observed failure rates to compare
 
to these inherent numbers, the calculation should be done to a 60% confidence level.
 

The units of measurement for failure rate is "failures per million hrs."
 

Stress Levels
 

The inherent failure rates are defined for nominal stress conditions. Assumptions include
 
a junction temperature of 45-C and unless otherwise specified all semiconductor packages
 
are hermetically sealed. All components are assumed to be in a ground benign environment
 
which is defined by nearly zero environmental stress with optimum engineering operation and
 
maintenance.
 

Source of Data
 

The failure rate source codes are A-CDC data; B-Other Manufacturer's data; C-Component
 
Industry data; D-Defense (HIL-HDBK-217B)/NASA; and E-Engineering judgment. They are
 
listed in their order of precedence. The most accurate data applicable to the types of
 
components and equipment that CDC uses and produces Ls, naturally, data from existing CDC
 
equipment. Military data, generally being compiled from environments and equipment
 
different from those of CDC and manufacturers of equipment similar to CDC's carries
 
somewhat less weight. When no data exists to support an inherent failure rate for a
 
component, an engineering judgment must be made. It is based on a reliability comparison
 
with a component which has a known failure rate. Factors which influence this comparison
 
include electrical complexity, power dissipation, technology employed with its associated
 
strengths and weaknesses, and materials.
 

Updating Responsibilities
 

As a result of manufacturers continuously improving their products (components/piece
 
parts) and users becoming more sophisticated in the application of those products, a
 
continual change in the failure rates of those components/piece parts can be expected.
 
In order to stay abreast of these changes, it's necessary to implement a mechanism for
 
providing periodic updates to this appendix. The primary input for this mechanism will
 
be the users of the data contained herein. All such users are strongly urged to submit
 
recom ended changes which they believe would improve the validity of the tables contents.
 
Such change should be sent to CDC Technical Standards in care of J. E. Mikkonen, HQWIlH,
 
with a discussion of the recommended changes and supportive data on the change. No more
 
frequent than quarterly, all such changes will be reviewed by Reliability Engineers from
 
various CDC divisions. At the completion of a successful review process, an updated
 
failure rate table will be published and distributed.
 

6-D-5
 



TROL DAA 
CORPn o N 

Component/Part 


Description 


Section 1 Microcircuits
 

ECL 10K SSI 


ECL 10K MSI 


ECL 10K Transmitters/ 


Receivers/
 
Interface
 
Circuits
 

ECL 10K
 
10101 

10102 

10105 

10107 

10109 


10110 

10114 


10117 

10121 


10124 

10125 

10129 

10130 


10131 

10133 
10135 

10136 

10141 

10145 


10160 


10161 

10164 

10165 

10166 


10173 

10176 

101-79 

10181 

10192 


10800 Micro Processor 

10803 Interface Memory 


ECL 10K RAMS
 
256 bits 

1024 bits 


Srs-rpNA 

s A N-C.A. I. 

COMPONENT/PART FAILURE RATES 

Failures 

Per Million Hours 


.01 


.01 


.02 


.0094 


.0094 


.0080 


.0080 


.0065 


.0065 


.0090 


.0094 


.0094 


.0094 


.0094 


.03 


.012 


.013 


.019 


.02 


.035 


.032 

.01 


.01 


.017 


.017 


.03 


.023 


.021 


.018 


.017 


.04 

.03 


.is 

.83 


.035 


.07 


Source 

Code 


A/C 


A/C 


A/C 


D 

D 

D 

D 

D 


D 

D 

D 


D 


D 

D 


D 


D 

D 

D 

D 

D 

D 


D 


D 

D 

D 


D 


D 

D 

D 

D 

D 


D/E 
D/E 


C/D 

C/D 


STO -1.12.020 
DATE August 1978REV A 

IPAGE 6 

Change
 
Date
 

1/3/77
 

1/3/77
 

1/3/77
 

3/7/77

3/7/77
 
3/7/77
 
3/7/77
 
3/7/77
 

3/7/77
 
3/7/77
 
3/7/77
 

3/7/77
 

3/7/77
 
3/7/773/7/77
 
3/7/77
 

3/7/77
 
3/7/77
 
3/7/77
 
3/7/77
 
3/7/77
 
3/15/78
 

3/7/77
 

3/7/77
 
3/7/77
 
3/7/77
 

5/15/78
 

3/7/77
 
5/15/78

3/7/77
3/7/77
 
3/7/77
 

11/10/77
 
11/10/77
 

1/3/77
 
1/3/77
 

6-D-6
 



CS)~FDAA
CO0LDATA 

Component/Part 

Description 


ECL LOOK
100101 

100102 

100107 

100112 

100114 


100117 
100130 

100150 

100151 


100155 

100160 

100170 

100171 


100181 


TTL SSI
 
Ceramic 

Movolac Plastic 

lIon-Novolac Plastic 


TTL MSI

Ceramic 

Movolac Plastic 

Non-Novolac Plastic 


TTL Transmitters/
 
Receivers/
 
Interface Circuits


Ceramic 

Novolac Plastic 

Non-Uovolac Plastic 


TTL RAMS

256 bit 

1024 bit 


TCS
Ceramic 

Non-Novolac Plastic 


DTL
 
Ceramic 

Non-NOvolac Plastic 


MOS RAMS
256 bit 

1024 bit 

4096 bit 

15394 hit 

LINEAR
 
Op Amps 

Sense Amps 

Simple NPN Darlington
 
AMP
Voltage Regulators 


Digit Drivers 


Nr!B-E=r1
SnTA N4 A 

STD 
REV
DATEPAGE 

1.12.020 
A 
August 19787 

Failures 
Per Million Hours 

Source 
Code 

Change 
Date 

.0080 

.012 

.012 

.010 

.012 

.015 

.029 

.040 

.040 

.038 

.038 

.030 

.022 

.089 

D
D 
D 
D 
D 

0 
D 
D 
0 

D 
D 
D 
D 

D 

3/7/713/7/77 
3/7/77 
3/7/77 
3/7/77 

3/7/77 
3/7/77 
3/7/77 
3/7/77 

3/7/77 
3/7/77 
3/7/77 
3/7/77 

3/7/77 

.02 

.04 

.07 

A/C
C 
D/C 

1/3/77 
1/3/77 

.03 

.105 

A/cA06C 
C 

1/3/7 
1/3/77 

.03 

.06 

.105 

D 
C 
C 

1/3/77
1/3/77 
1/3/77 

.035 

.07 
C/D 
C/D 

1/3/77 
1/3/77 

.01 

.2 
A 
A 

4/12/76 
4/12/76 

.01 

.3 
C 
C 

.035 

.07 

.2 

.444 

.05 

.05 

C/D 
A/c
C/D 

A/D 

E 

1/3/77 
1/3/77
1/3/77 

5/15/78 

.075.07 

.05 

6-D-7
 



STD- 1.12.020 

SCONTROL DATA
CO'ROLDTr0 N ACORJ'ORA< N-MA:On 

Component/Part Failures 

Description Per Million Hours 


ROMS
 
256 bit .02 

1024 bit .047 


Section 2 Discrete Semiconductors
 

Silicon Transistors
 
Logic NPN .006 


PNP .009 

Memory NPN .04 

PNP .06 

Power NPN .1 

PNP .15 

Dual Logic NEN .01 


Darlington .08 


Quad Memory NPN
 
Novolac Plastic .32 

Ceramic .16 


u-T Au-Al White Cap .006 


u-T Au-Au Black Cap .0015 


u-T Au-Al Red Cap .0015 

u-T Au-Al Yellow Cap .0015 

u-T Au-AI Blue Cap .0026 

u-T Au-Al Green Cap .0043 


Germanium Transistors
 
Logic NPN .025 


PNP .009 

Memory NPN .2 


PNP .07 

Power NPN .8 


PNP .3 


PET .076 


Silicon Diode
 
Logic .00024 


Germanium Diodes
 
Logic .0024 


Silicon Power
 

Rectifier .2 


Sener Diode .027 


SCR .04 


Thyristor .023 


Thermistor .01 


LED plastic .2 


Source 

Code 


D 
D 

A 

A/D 

A 
A/D 

C 

A/D 

E 

D 


C 

A 


A 


A 


A 


A 


A 

A 


A/D 

A/D 

A/D 

C 

A/D 

C 


D 


A
 

A
 

C
 

0 

C
 

D 


C
 

C 


REV
DATE August 1978IPAGE 

Change
 
Date
 

1/3/77
 
1/3/77
 

4/12/76
 
1/3/77
 
4/12/76
 
1/3/77
 
4/12/76
 
1/3/77
 
4/12/76
 
12/1/77
 

1/3/77

1/3/77
 

4/12/76
 

1/3/77
 

4/12/76
 

4/12/76
 

4/12/76
 

4/12/76
 

1/3/77
 
1/3/77
 
1/3/77
 
4/12/76
 
1/3/7-7
 
4/12/76
 

4/12/76
 

4/12/76
 

4/12/76
 

4/12/76
 

6-D-8
 



STD 1.12.020 
GREV .A 

CONTROL DATA 
COR"NOR*,I ON E 

DATE 
PAGE 

August 1978 

9 

Component/Part -Failures Source Change 

Description Per Million Hours Code Date 

Section 3 Resistors 

carbon Comp 1/8 w 
1/4 w 
1/2 w 
1 w 

.00045 

.00002 

.0008 

.0008 

A/D 
A 
C/E 
C/E 

4/12/76 

2 w .004 C/E 
3 w .004 C/E 

Wire Wound 1 w .01 C/E 
2 w .01 C/E 
3 w .02 C/E 
5 w .02 C/E 

Variable 1/2 w 
Wire Wound 1 w 

.02 

.02 
C/E 
C/E 

2 w .02 C/E 
3 w .04 C/E 
5 w .1 C/S 

Metal Film 1/8 w 
1/4 w 
1/2 w 
1 w 

.002 

.002 

.004 

.008 

C/S 
C/E 
C/E 
C/E 

Terminators 
Thin/Thick 
Film 

SIP-6 Resistors + .017 D 4/12/76 
I Capacitor 

DIP-12 Resistors + .022 A 4/12/76 
2 Capacitors 

(TE2 & TE7 Type) 

DIP-12 Resistors + .014 A/D 4/12/76 
2 Capacitors 

(R100 & R500 Type) 

Section 4 Capacitors 

Ceramic .002 A 4/12/76 
Electrolytic, Aluminum 
Electrolytic, Paper 
Mica dipped 
Mica molded 

.02 

.1 

.0003 

.003 

A 
A 
D 
D 

4/12/76 
4/12/76 

Mica button .12 D 4/12/76 
Mylar 
Paper/Plastic 
Paper/Plastic 
Tantalum 

.001 

.0002 

.0002 

.014 

D 
D 
D 
A 

4/12/76 
4/12/76 
4/12/76 
4/12/76 

Variable Air .1 D 4/12/76 

Section 5 Inductive Devices 

Inductors/Chokes .018 A 4/12/76 

6-D-9
 



CONTROL PATA
CORJO <TON SmdA N C 

Component/Part Failures 

Description Per Million Hours 


Pulse Transformers
 
Discrete 01 

Encapsulated .005/core

Hybrid (TRO Type) .02 


Power Transformers .0075 

RF Transformers .0096 

Contactors .11 

Relays, General Purpose .13 

Motors 
 1.0 


Section 6 Connectors/Connections
 

Edgeboard Connector
 
Mainframe Environment .002 per pin 

Peripheral Environment .006 per pin 


PC board conn. (3500 style) .0036 per pin

PC board conn. (6000 style) .002 per pin

PC board conn. (7000 style) .0017 per pin 

Conn. Pins, cable Connector .00013 per pin 

Coax Connector (includes inner and
 

outer contact) .0014 


Power Connector .002 per pin 

DIP Sockets, gold


single contact .003 per pin

dual contact .002 per pin

Multiple contact .001 per pin 


Solder Joints
 
Plated thru hole .00015 

Surface/lap .0003 

Non-plated thru hole .00044 

Other hand solder .0044 


Taper Pins .00017 

Wire Wraps .0000037 

Crimp Joints .000132
 

Section 7 Refrigeration and.Cooling 

Regulator, Hot Gas Bypass 2,650 

Valve, Water Regulating 2.650 

Valve, Expansion .589 

Valve, Angle, Refrigeration

Valve, Solenoid (MB1452) 1.990 

Valve, Solenoid (MB952) 1.990 

Condenser 
 2.550 

Compressor, 2-Ton 1.330 

Filter, Drier .300 

Pitting, Fusible Half-Union 2.550 

Gauge, Pressure 1.300 

Control, Dual Pressure .320 

Eliminator, vibration .039 

Joints, Flare .040 

Joints, Threaded .040 

Quick Disconnect .800 


STD - 1.12.020 
REV A . 
DATE 
PAGE 

August 1978 
O0 

Source Change 
Code Date 

A 
A 
D 

4/12/76 
4/12/76 
4/12/76 

D 
D 

4/12/76 
4/12/76 

A/E 
D 
D 

5/15/78 
4/12/76 
4/12/76 

A 1/3/77 
A 1/3/77 

A 
A 
E 

1/3/77 
1/3/77 
1/3/77 

A 

C/E 1/3/77 

E 1/3/77 

E 
A/E 
E 

1/3/77 
1/3/77 
1/3/77 

A/D 
A 
D 

1/3/77 
1/3/77 
1/3/77 

D 
A 
D 

1/3/77 
1/3/77 
1/3/77 

A/E 
A/E 

5/15/78 
5/15/78 

A/E 5/15/78 

A/E 5/15/78 
A/E 
A/E 

"A/E 
C 

5/15/78 
5/15/78 
5/15/78 
5/15/78 

A/E 
A/E 

5/15/78 
5/15/78 

C 
C 

5/15/78 
5/15/78 

C 
C 
C 

6-D-1 0
 



STD 1.12.020G SC rSrp NA REV' ACONTROL DATA DATE August 1978 
CORIOPATION SIrA.A IA- PAGE 11 

Component/Part

Description 


Thermostat 

Thermistor 
Distributor 
Condensing Unit (2-Ton) 
Condensing Unit (3-Ton) 
Condensing Unit (5-Ton) 
Blower Assembly 
Muffin Pan 

Section 8 Miscellaneous
 

Circuit Breakers 


Delay Lines 


Fuses 


Lamps, Neon 


Lamps, Incandescent 


Ilemory Cores 


Switches, Rotary 


Switches, Toggle 


Quartz Crystals 


Wire Jumpers 


Printed Wiring Boards
 
Multilayer 


Two sided 


Multiwire (thin) 


Multiwire (thick) 


Failures 

Per Million Hours 


.250 


.600 


.140 

20.200 

20.200 

20.200 

6.0 

2.4 


.16 


.054 


.1 


.2 


1.0 


.0000014 


.42 


.17 


.2 


.00013 


.00005 per plated 

thru hole
 
.000006 per plated 

thru hole
 

.0018 per hole 


.0107 per hole 


Source Change
Code Date
 

C
 
C
 
C
 
C/A/E
 
C/A/E
 
C/A/E
 
D 4/12/76
 
E 4/12/76
 

C 4/12/76-


A
 

B 4/12/76
 

D 4/12/76
 

C/D 4/12/76
 

A 4/12/76
 

D 4/12/76
 

D 4/12/76
 

D 4/12/76
 

A
 

A 1/3/77 

D 1/3/77 

12/1/77
 

12/1/77
 

6-D-1 1
 



-STD 1.12.020 

(CTQD TAe A REV ACONROeLfDTA DATE' August 1978 
CO R6 ON A-PAGE 12 

APPENDIX B
 

COMPONENT APPLICATION FACTORS
 

The standard component failure rates in Appendix A are established in consideration of
 
standard application environments. Application in either a more relaxed or more severe
 
operating environment normally will affect the failure rate. The presentation of this
 
data is that the ma3ority of components in any given equipment will be operated at or
 
below these conditions. New input to keep this data current with the state of the art is
 
solicited for consideration in future revisions.
 

General - Cooling Air Temperature: 250 C 

semiconductors 

Integrated Circuits 

Operating Junction Temperature 45-C 
Operating Voltage - Digital Circuits +5% of mfg. nominal 

- Linear Circuits 75% of maximum rating 

Transistors, Silicon 

Operating Junction Temperature 250 C below maximum rating 
Voltage and Current Ratings 75% of maximum rating 

Diodes & Rectifiers, Silicon 

Operating Junction Temperature 250 C below maximum rating 
Voltage and Current Ratings 75% of maximum rating 

Resistors 

Carbon Composition; Carbon Film; Metal Film; and Wire Wound, Power 

Power Dissipation 50% of maximum rating 
Operating Voltage 75% of maximum rating 

Capacitors 

Ceramic, Glass, Paper, Mylar, Mica 

Operating Voltage 75% of maximum rating 

Electrolytic 

Operating Voltage 90% of working voltage 
Ripple Current Effect maximum temperature rise of 15-C 

above ambient 

Tantalum 

Operating Voltage 75% of working voltage 

Transformers & Inductors 

Operating Temperature 150C below maximum insulation rating 
Voltage Rating 75% of working dielectric rating 

Fuses 

Operating Current 75% of nominal rating 

Switches & Relay Contacts (other than dry circuit conditions) 

75% of nominal rating 

6-D-1 2
 



Appendix E
 

FMP Logic Unit Elemental Failure Rates
 

I. Scalar 

Modules 
Auxiliary Boards 
LSI Boards. 
LSI Arrays 
Half Packs 
Clock Oscillator 
Bus Board Assemblies 

II. Swap 

Modules 
LSI Boards 
LSI Arrays 
Bus Board Assemblies 

III. Intermediate Map 

Modules 
Auxiliary Boards 
LSI Boards 
LSI Arrays 
Bus Board Assemblies 

IV. Main Map 

Modules 
Auxiliary Board 
LSI Boards 
LSI Arrays 
Bus Board Assemblies 

V. Memory Interchange 

Modules 
LSI Boards 
LSI Arrays 
Bus Board Assemblies 

Quantity 
45 
16 

11967 
170 
1 

16 

Quantity 
2 

272 
2 

Quantity 
10 
2 

204 
2 

Quantity 
10 
3 

304 
3 

TOTAL 

TOTAL 

TOTAL 

TOTAL 

Failure Rate 
121.19 
-84.98 
403.24 
16.12 
4.97 

35.04 

- > 665.54 

Failure Rate 
10.62 
55.76 
4.38 

- > 70.76 

Failure Rate 
26.73 
10.62 
41.82 
4.38 

- > 83.55 

Failure Rate 
26.73 
15.93 
69.70 
6.57 

- > 118.93 

Quantity 
12 

1632 
12 

TOTAL 

Failure Rate 
63.73 
334.56 
26.28 

- > 424.57 

6-E-1
 



VI. Vector Streaming 

Modules 
A-xiliary Boards 
LSI Boards 
LSI Arrays 
Bus Board Assemblies 

VII. Vector 

Modules 
Auxiliary Boards 
LSI Boards 
LSI Arrays 
Bus Board Assemblies 

VIII. Streaming Control 

Modules 
Auxiliary Boards 
LSI Boards 
Bus Board Assembly 

IX. I/O 

Modules 
Auxiliary Boards 
LSI Boards 
LSI Arrays 
Bus Board Assemblies 

Quantity 
10 
4 

476 
4 

TOTAL 

Failure Rate 
26..73 
21.25 
97.58 
8.76 

--> 154.32 

Quantity 
200 
45 

4760 
45 

TOTAL 

Failure Rate 
534.6 
239.00 
975.80 
98.55 

- > 1847.95 

Quantity 
20 
1 
1 

TOTAL 

Failure Rate 
53.46 
5.31 
2.19 

- > 60.96 

Quantity 
20 
4 

408 
4 

TOTAL 

Failure Rate 
53.46 
21.25 
83.64 
8.76 

- > 167.11 

6-E-2
 



Appendix F
 

Unit Functional Failure Rate
 

A unit which has fault correcting capability will have a
 
functional failure rate different from its elemental failure
 
rate (See appendix A, CDC-STD 1.12.999
 
Glossary -of Reliability, Availability, and Maintainability
 
Terms).
 

The functional failure rate for the unit will be the sum of the
 
elemental failure rate of that portion not included within the
 
fault correcting part plus the functional failure rate of the
 
fault correcting part.
 

To determine a unit's functional failure rate, the elemental
 
failure rate is first computed by summing the products of the
 
part type failure rates times the number of parts of each type
 
(see appendix E). From this is subtracted the elemental failure
 
rate of the fault correcting part of the unit. To the remainder
 
is added the functional failure rate of the fault correcting
 
part as determined by the SECDED model. Three examples of these
 
computations are given here. It should be noted that scheduled
 
maintenance is assumed to be once per week for all units except
 
Backing Store, which is assumed to be once per day.
 

Backing Store Unit (262K-bit array)
 

Failure rate
 
Component Quantity Unit Total 

Storage Device 36,864 .926 34,136.06 

Storage Device 
Connector 36,864 .048 1,769.47 

TTL Support 
Circuits 14,400 .02 288.00 

Board Connectors 144 .284 40.90 

Capacitors 11,520 .014 161.28
 

Solder joints 1,107,856 .00015 166.18
 

Vias 1,254,628 .00005 62.73
 

Unit Total Elemental Failure Rate 36,624.62
 

The configuration of the Backing Store is four data bits per
 
replaceable module (board) and it is so arranged that each data
 
bit is in a different SECDED sector. Because of this
 
arrangement, the total failure rate of the board is divided into
 
four parts, each essentially totally corrected by SECDED. The
 
elemental data bit failure rate used in the SECDED model is the
 
total elemental failure rate divided by four times the number
 
of boards (1-44) in the memory. This yields a SECDED sector
 

6
 
elemental data-bit failure rate of 63.58 failures per 10 hours.
 

6-F-I
 

http:36,624.62


The SECDED arrangement of the memory is eight sectors in
 
parallel, each sector having a single rank of 72 data bits. The
 
SECDED model derives a failure rate of 230.7 so the total
 
Backing Store has a functional failure rate of 8 time-s this or
 
1845.6 and a functional MTBF of 541.8 hrs.
 

Main Memory Unit
 
Failure rate
 

Component Quantity Unit Total 

Storage Device 159,744 .078 12,380..2 
FlOOK Device 29,120 .0357 1,039.6 
Memory Interface (I) 302.2 
Cabinet (2) 576.5 

Elemental Failure Rate 14,298.5 

Less Storage Elemental Failure Rate 12,380.2
 

Remainder 1,918.3
 

Storage Functional Failure Rate 	 6.0
 

Main Memory Functional Failure Rate 1924.3
 

Main Memory Functional MTBF 	 51.9.67
 

The Main Memory Unit will utilize the CYBER 203 memory interface
 
with new storage units which are now in development. Therefore
 
all but the storage device elements are estimates based on
 
preliminary design configurations.
 

1) The failure rate for the interface unit is that d'etermined 
-6 

for the CYBER 203 (254 x 10 ) plus the failure rate of 156 
-6 

extra LSI devices (48.2 x 10 ). 

2) 	The failure rate for the cabinet (power connections, filter
 
capabilities, etc.) is 'twice that of the CYBER 203 since the
 
Main Memory will use twice the number of storage devices as
 
for a 1 million word CYBER 203 using 1K chips. (As mentioned
 
before, a new memory chassis is currently being designed,
 
thus the inability to count the expected number of memory
 
chassis for the FMP.)
 

6-F-2
 



Transfer Units (Main Map, Memory Interchange, Vector Streaming)
 

Main Map Unit elemental failure rate 118.3 
Memory Interchange elemental failure rate 42..6 
Vector Streaming Unit elemental failure rate 153.7 

Total elemental failure rate 	 696.6
 

The transfer path elemental failure rate is based upon the
 
following assumptions:
 

1) 	The transfer path is made up of 14 devices in series.
 

2) 	There are 6 parallel data transfer bits per device.
 

3) 	0.8 of a device comprise the transfer paths; the other
 
0.2 	is in control logic (not corrected by SECDED).
 

4) 	There are 16 39-bit SECDED units comprising the total
 
transfer path (512 information-bits).
 

The equivalent failure rate of a transfer bit within a device is
 
one sixth of 0.8 of the LSI device module failure rate plus the
 
proportionate failure rate of coax connections and vias. (See
 
appendix B, LSI Board Module. Use the failure rate of coax and
 
vias divided by 150 -- the number of LSI devices per board.)
 

device bit failure rate = (0.205 + 0.030)0.8/6 = 0.0313
 

The total bit transfer path failure rate is 14 times this value
 
= 0.439. (This value is used in the SECDED model.) There are 39
 
bits in a SECDED sector, and 16 sectors make up the width of the
 
transfer path.
 

Transfer path total elemental failure rate = 0.439 x 39 x 16 = 273.7
 

The functional failure rate of the transfer path is calculated
 
from the SECDED model with one rank (n = 1) and an elemental
 
failure rate of 0.439. This calculation yields a failure rate
 
of 2.73.
 

The 	Transfer Units functional failure rate is:
 

Total elemental failure rate 696.6
 
Less the Transfer Path elemental failure rate - 273.7
 

Remainder 2-2.9
 
Plus the Transfer Path functional failure rate + 2.7
 

Transfer Path functional failure rate 425.3
 

6-F-3
 



In a similar manner, the functional failure rates of the other
 
transfer paths are computed using the following assumptions:
 

1) 	The Swap Unit transfer path is 512 data bits wide and
 
is composed of eight 72-bit (including check bits) wide
 
SECDED units in parallel. The SECDED unit is three LSI
 
devices deep (that is, the transfer path has three
 
devices in series) but for model computation purposes
 
it is treated as a single rank with each device having
 
a failure rate of three times that of a single LSI
 
device.
 

2) 	The Intermediate Map Unit transfer path is 256 data
 
bits wide and is composed of four 72-bit wide SECDED
 
units in parallel. The transfer path has three devices
 
in series but for model computation purposes it is
 
treated as a single rank with each device having a
 
failure rate of three times that of a single LSI
 
device.
 

3) 	A translation from a 72-bit SECDED sector to two 39-bit
 
SECDED sectors, and vice versa, is considered to take
 
place at the interface of the Intermediate Map Unit and
 
the Main Map Unit. The translation is accomplished by
 
check and generation circuits.
 

6-F-4
 



Appendix G
 

The SECDED Model
 

The model for computing the functional failure rate of a SECDED
 
unit is developed from the basic reliability formulas:
 

-Xt
 
1 =R+Q and R=e
 

where R is the probability of success, that is, the probability
 
of no failures; Q is the probability of encountering a failure;X
 
is the failure rate of an element; and t is the time interval in
 
question. The probability of success or failure for a rank of c
 
elements is
 

(c-2) 2 
c c (c-I) c(c-1) R Q c 

(R+Q) RB + cR Q + 2! + .. 

Since the first term is the probability of no failures occurring

and the second term is the probability of exactly one failure
 
occurring (which is correctable and therefore not a functional
 
failure), the probability of no functional failures in the rank
 
of elements within a SECDED sector of c bits is
 

a (c-1)
 
R + cR Q
 

The probability of no functional failures occurring within a
 
SECDED unit of n ranks is
 

a (-1) n
 
P = (R + oR Q)
 

This equation is solved arithmetically with the values forX
 

-Xt 
and t (in the equations R = e and Q = 1 - R) set to the
 

failure rate -of the component and the maintenance interval,
 
respectively.
 

If P is the probability of no failures in a SECDED unit and F is
 
the functional failure rate of the unit,-then
 

-Ft
 
P = e 1 - Ft (for Ft<O.05) and
 

1 - P 
F= t 

(Throughout this study the worst case condition of a whole chip
 
failing has been used for memory failures since the predominant
 
modes of partial chip failure are not conclusively known. If it
 
is desired to consider partial chip failures, the component
 
failure rate should be multiplied by the value of the average or
 
major mode of partial chip failure and the number of ranks
 
divided by that value.)
 

6-G-1
 



Appendix H
 

SYSTEM FUNCTIONAL A-VAILABLITY AND RELIABILITY
 

The functional availablity-reliability of the NASF system can be
 
determined for a user if the following use and system parameters
 
are 	known.
 

1. 	Run or use time of the user program.
 

2. 	The system components required by the user program and
 
the portion of time the program is "lin" each
 
component.
 

3. 	The amount of time of system overhead (e.g. operating
 
system or controlware) for each of the programmable
 
components.
 

4. 	The functional failure rate and mean down time (MDT)
 
for each system component. The MDT for a non-redundant
 
component is its MTTR. The MDT for a redundant
 
component is the switch time (between the redundant
 
components), if the switch time is extremely small
 
compared to the component's MTBF.
 

An example is developed here to show how the above information
 
is reduced to an availability and a reliablity figure for a
 
user. Figure 1 is the reliability configuration for a given
 
user job or task and table 1 shows the values for the components.
 

6-H-I
 



PD PCTR -PD PD- CTR 

IIPC PCFMD I 819 

- __I- I-FMD 81 REO'D 

CY175/PDC I SYSTEM DISK I I 819/PDC
I COMPONENT I COMPONENT I I COMPONENT 
I I ai 

Figure 1. Reliability Model Configuration 



--------------------------------------------------

Table 1
 
System Component Parameters
 

IFunc- 1 1 (AFR) V 
itional 1 i !Applicable! Mean 

System !Failure! User !Over-! Failure Down 
Component 1 Rate 1 Time !head 1 Rate(l) 1 Time 

---------------------- +---------+-------------------------

2551 1 541.7 10.1 1 0.1 1 108 11.6 
---- ---------- ---------- -+------------------------------------i 

CYBER 175 12725 10.3 1 0.251 1500 10.2(3) 1 
--------- +----------+---------+-----------------+-------------I1 

PDC 1 100 10.2(2)1 0.1 1 30(2) 10.1(3) 1 
III I 

i i -- -------------------------I 

i 10.1(2)1 1 20(2) 1
 
---------------------- -+--------+---------------------------

FMD 1 200 10.15 1 0 1 30 10.25(3)1 
----- - ---------- +-----------------------+----------i
 

FMD Controllerl 125 10.15 1 0 i 19 10.1(3) 1 
-I---------+----------+---------+-----------------+------------; 

ECS 11587.3 10.15 1 0 1 238 11.8 
--------------------+----------- -+----------


FMP 19373.8 10.65 1 0.051 6565 11.5 
----- +-------------------------+---------------------------i
 

819 Disk 1 357.1 10.1 i 0 I 36 12.2 i 
- - - ----------+------ -----------------------

819 Controllerl 100(4)10.1. i 0.1 1 10 10.1(3) 1 

NOTES:
 

(1) Applicable failure rate is the system component functional
 
failure rate times the sum of the user time and overhead.
 

(2) PDCs associated with the 175 have a 0.2 user time factor.
 
Those with the 819s have 0.1 user time factor.
 

(3) Mean down time is switch time between redundant
 
components.
 

(4) The total failure rate of the dual controller is divided
 
evenly between the two halves.
 

6-H-3
 



Further assumptions regarding the use of the system are:
 

1. 	Three of the four-FMD's are required for system
 
operation.
 

2. 	The probability of a failure in the tape and system,
 
disk subsystems is negligible (0.0004) during the
 
loading of an alternate system disk required upon a
 
-disk failure- (-a ten minute period of time).
 

3. 	The 819 disks have no back-up (for this particular
 
case).
 

4. 	The PDC networks associated with the 175s and the 819
 
subsystem are simplified (for ease of computation) into
 
the configurations shown in figure 2.
 

5. 	Intuitively, it can be shown that the functional
 
failure rate of redundant components with very short
 
switch times is the same as the failure rate of one of
 
the components. (A rigorous proof exists.)
 

6. 	The user time required is two hours.
 

X= 108 X= 1560 X= 109 X= 238 X= 6565 X= 224 
MDT 	= 1.6 MDT = 0.2 MDT = 0.22 MDT = 1.8 MDT = 1.5 MDT 1.41 

Note: Xis the failure rate for a system component.
 

Figure 2. Simplified Reliability Configuration
 

6-H-4
 



----------- --------------- 

-------------------

The Simplified Reliability Configuration (figure 2) is derived
 
in the following manner:
 

175/PDC Component
 

PDC failure rate = 2 times the applicable failure
 
rate (AFR) = 2x30 = 60
 

PDC MDT = 0.1
 

(for the network of 4 PDC's in figure 1 - see assumption 5)
 

175 PDC Network
 

IAFR=15001 !AFR=60 I 
-MDT:O.2 I- ,MDT=0.11 

175/PDC failure rate = 1500 + 60 = 1560
 

XCAFR)(MDT) 0.2x1500+O.1x60
 
175/PDC MDT = = 0.196
 

ZAFR 1560
 

System Disk Component
 

--- -Ctrl---IDiskl----IDiskI---IDiskI
 

-- ICtr I--

Controller failure rate = 19 
Controller MDT = 0.1 

Disk tailure-rate = 3 times AER 3x30 90 
Disk MDT = 0.25 

System Disk Failure rate = 19 + 90 = 109 
I(AFR)CMDI) 19x0.1+90x0.25 

System Disk MDT --------------------- 0.22 
EAFR 109 

819 Disk Component 

819 failure rate =36 
819 MDT = 2.2 

Controller (1/2) failure rate =10
 

Controller MDT 0.1
 

6-H-5
 

http:19x0.1+90x0.25
http:MDT=0.11


Controller/819 failure rate = 36 + 10 = 46
 
E(AFR)(MDT) 36x2.2+lOxO.1
 

Controller/819 MDT ---------- ------------- 1.74
 
AFR 46
 

Four controller/819 units have failure rate of 4x46=184
 
and MDT =1.74
 

PDC failure rate 2 x AFR = 2 x 20 = 40
 
PDC MDT = 0.1
 

819 Disk failure rate = 184 +40 = 224 
Z(AFR)(MDT) 184x1.74+4OxO.1 

819 Disk MDT =---------- =--------------- = 1.41 
ZAFR 224 

NASF user availability-reliability is derived from the overall
 
failure rate and MDT for the system for the user job

configuration. The pertinent relationships are:
 

1. Failure rate (M) of the system is the sum of component
 
failure rates (see Reduced Reliability Configuration).
 

X=ZAFR (of each component)
 

2. 	System unav.ailability is the sum of each component

unavailability which is the product of each component's
 
failure rate and MDT.
 

XMDT =(AFR)(MDT) (of each component)
 

3. 	System availability is 1 minus the system
 
unavailability.
 

A = 	1 -XMDT (of system)
 

4. 	The system reliablity (for very smallXt) is
 

R = 1 -\t, where t = user required time.
 

For this example:
 

-6
 
Systemx = 8804 x 10 failures per hour (MTBI = 113.6 hrs)
 
System XMDT = 0.0111
 
System Availability = 0.9889 or 98.89%
 
System Reliability = 1 - 0.0088 x 2 = 0.9824 or 98.24%
 

The operating system critical MTBF is derived on the assumption
 
that the operating system works non-concurrently 25% of the time
 
in the 175s and 5% of the time in the FMP, and that ECS must be
 
operable during this time.
 

0.25 x 2725.0 	 = 681.25
 
0.05 x 9373.8 	 = 468.69
 
0.30 x 1587.3 	 = 476.19 
O.S. Critical Failure rate 1626.13
 

O.S. Critical MTBF = 615 hours = 3.7 weeks 

6-H-6
 



DIVISION 7
 

MAINTENANCE STUDY FOR
 

THE NUMERICAL AERODYNAMIC SIMULATION FACILITY
 



DIVISION 7
 

MAINTENANCE STUDY FOR
 

THE NUMERICAL AERODYNAMIC SIMULATION FACILITY
 

STRATEGY ASSUMPTIONS
 

The maintenance strategy for the NASF system is based on the
 
assumption that there are two categories of equipment: system
 
critical and system non-critical. System critical devices are
 
those which must be operational before useful work can be
 
accomplished. They consist of the FMP, the Network Processors
 
(2551-1), and the ECS. System non-critical devices are those
 
redundant equipments that need not all be operational before
 
useful work can be accomplished. They consist of all equipments
 
except those processors listed above.
 

Equipment was designated system critical based on how much the
 
loss of its function would impair the system's usefulness.
 
Without the FMP the system could continue to cue jobs and do
 
support processing activities, however, no jobs could be run and
 
the system's useful output would rapidly diminish. Loss of a
 
network processor in the system would mean half the interactive
 
users could not access their data base. ECS is system critical
 
because standard software for the Support Processing System
 
(SPS) depends on this equipment to coordinate the two SPS
 
processors.
 

System non-critical equipment like the two CYBER-175 processors
 
are each capable of doing the entire SPS task during a temporary
 
interruption in one processor or the other. Mass storage
 
subsystems (disk and cartridge) each have redundant capabilities
 
which eliminate the possibility of a single interruption
 
disabling a significant portion of the system.
 

The operating software developed for the- NASF system has to
 
support this categorization of the hardware configuration to
 
minimize system interruptions. Failsoft and reconfiguration
 
capabilities need to be an integral part of the software in
 
order to take advantage of the hardware system redundancy.
 

These conditions will enhance the operation and maintenance of
 
the system.
 

FIELD ORGANIZATION
 

The Engineering Services field organization will be operating
 
,out of a local service ,center by the time this system is
 
installed. This type of organization allows efficient
 
distribution of mobile service personnel among local
 
installations. The service options under this organization vary
 
from totally on-call, where the customer engineer (CE) is called
 
when needed, to on-site coverage, where CEs are assigned to one
 
installation.
 

7-1
 



Examination of the maintenance activity required for the NASF
 
system indicates that optimum service can be obtained by

assigning CEs to provide immediate response to interruptions
 
which cause the system to be down during the normal work week
 
(24 hours per day, Monday-Friday). This will cover 70% of the
 
system down interruptions. The remaining 30% and all
 
interruptions which do not cause the system to be down can be
 
handled on-call from a local serv-ice -center.
 

Response time for on-call service typically averages two hours
 
or less. All of the PM and scheduled maintenance actions would
 
be handled by the service center.
 

Estimated system maintenance cost for this option is $80,000 per
 
month. Other options are available which would increase the
 
immediate response to interruptions from 70% to 100%. 'This
 
option would increase the cost by approximately 40% to $112,000
 
per month. Another option would decrease the immediate response
 
to interruption capability to 50% and decrease the cost to
 
approximately $70,000 per month. Initial spare parts cost for
 
the total NASF are estimated to be $175,000 including $115,000
 
for initial FMP spare parts.
 

PREVENTIVE MAINTENANCE
 

A program of preventive maintenance (PM) will be implemented to
 
minimize system interruptions. There are two categories of PM:
 
dedicated and concurrent. Dedicated PM implies that a
 
significant portion of the system will be used for this purpose
 
and other useful work is not practical during this period.
 
Concurrent implies that PM will be performed while the rest of
 
the system is doing useful work.
 

Weekly dedicated PM is expected for the FMP. During this period
 
single solid Main Memory failures may be removed and diagnostics
 
will be run with margins on the rest of the CPU. This is
 
expected to take four hours per week.
 

Daily concurrent PM requiring less than an hour is expected for
 
the FMP. This will be required to remove single solid failures
 
from the Intermediate Memory and Backing Store.
 

PM on all other equipment will be performed on a unit basis
 
concurrently with system operation. This requires that the
 
system be reconfigured so it doesn't use the equipment on which
 
PM is being performed. For the CYBER-175 equipment a 3 hour
 
period of concurrent PM will be required weekly for each unit.
 

7-2
 



It is expected that Intermediate Memory and Backing Store solid
 
failures will be repaired concurrently with system operation.
 
This will require reconfiguring the memory so the system doesn't
 
use the portion (512K) being repaired.
 

PM tasks such as periodic replacement of filters and measurement
 
of voltages and waveforms will be performed concurrently without
affecting the operation of the system.
 

COMPUTER AIDED MAINTENANCE
 

All PM will be scheduled with the aid of a Computer Aided
 
Maintenance Scheduler (CAMS) program. CAMS uses system
 
configuration and error log informaton to optimize the PM
 
schedule. This program can be run on any CYBER 170 system.
 

An error log for the FMP, the PDCs and the 819s will be
 
maintained on the Maintenance Control Unit (MCU) disk. The MCU
 
will analyze this log and provide reports on errors that
 
occurred during system operation, as well as diagnostic errors.
 

A similar log for the CYBER-175 systems and the peripherals
 
attached to the SPS will be stored on one of the system FMD disk
 
units. The CYBER-175s will provide error reports similar to the
 
one provided by the MCU.
 

MAINTENANCE SOFTWARE
 

Maintenance software for the FMP, Loosely Coupled Network (LCN),
 
and attached peripherals will reside on a disk in the
 
Maintenance Control Unit.. On-line maintenance software will be
 
available for confidence testing and to support concurrent PM,
 
as well as for emergency maintenance activities. Off-line
 
maintenance software will be available to run margins and to
 
support dedicated PM.
 

Maintenance software for the SPS will reside on magnetic tape
 
and its organization will be -simlar to the -FMP maintenance
 
software.'
 

7-3
 



LOGISTICS
 

Spare parts for the FMP and other system critical equipment will
 
be stocked on site and in Minneapolis. Other high failure rate
 
parts may also be stocked on site. Storage space for these
 
parts and their cabinets is estimated to requine 40 square
 
feet.
 

System non-critical equipment parts will be stocked at one or
 
more of the following locations: local service center, regional
 
warehouse, Minneapolis distribution center. Distribution and
 
quantities will be determined by part density and usage.
 

Emergency parts are generally available from the local service
 
center in less than two hours and in less than 4 hours from the
 
regional warehouse. Emergency orders for parts at the
 
Minneapolis distribution center are filled within four hours,
 
however, actual response is determined by airline schedules.
 

To minimize downtime and achieve the availability goals, the
 
replaceable part will be the pluggable subassembly. To reduce
 
costs, some of these assemblies may be repaired on site or at a
 
local service center. The rest will be returned to a central
 
repair facility in Minneapolis.
 

TECHNICAL SUPPORT
 

Technical support for the FM? will be supplied by the design and
 
manufacturing division. The primary method of support will be
 
through remote technical assistance (RTA). The RTA capability
 
will be implemented through the use of data communication
 
technologies for both on-line and off-line maintenance. Through
 
RTA the supporting engineer will be able to manipulate
 
diagnostics from a remote console. The remote console will be
 
connected via phone lines to the NASF Maintenance Control Unit.
 
All of the maintenance capabilities of the MCU will then be
 
under control of the remote console. In this way problems
 
requiring technical assistance can be analyzed directly by the
 
supporting engineer.
 

Technical support for the SPS will be supplied in a similar
 
manner. A remote console will be connected via phone lines to a
 
multiplexer in the CYBER-175. Through this remote link
 
assistance can be provided to the local customer engineer.
 
Backup support will also be supplied by regional and
 
headquarters support groups.
 

MAINTENANCE, NON-CDC EQUIPMENT
 

Maintenance of non-CDC equipment can also be supplied in most
 
cases. This maintenance is under control of each individual
 
region within Engineering Services. Maintenance for each
 
equipment is subject to local availability.
 

7-4
 



DIVISION 8
 

MAINTENANCE SOFTWARE ALTERNATIVES
 

FOR THE 1980s
 



DIVISION 8
 

MAINTENANCE SOFTWARE ALTERNATIVES
 

FOR THE 1980s
 

1.0 INTRODUCTION
 

Reliability, Availability, Maintainability (RAM) needs for
 
computer systems in the 1980s will focus on a reduction in the
 
number of system interruptions as compared with today's systems
 
and an overall lessening of impact on users when interruptions
 
do occur. A requirement of one interruption per month is
 
frequently stated for systems of the 80s as compared to several
 
interruptions per day-for current systems.
 

It can certainly be debated that it is economically feasible to
 
reach a maximum interruption rate of one per month for medium
 
size computer systems; however, super computer systems, designed
 
for performance, present many more challenging problems. The
 
key element is what the system does to modify/ease the effect on
 
the user when an interruption arises. Suggestions are made to
 
increase hardware/software self-monitoring, expand automatic (no
 
manual intervention) system re-initialization and/or
 
reconfiguration, enhance checkpoint/restart, and decrease
 
dedicated system time needs for hardware and software
 
maintenance.
 

With "a decided trend toward more system time being available to
 
the user and less system time being available for maintenance,
 
it will be necessary to improve reliability through the
 
techniques of fault-tolerant design- such as redundancy and
 
self-diagnosis. These fault-tolerant techniques appear to be
 
the key to the achievement of total on-line hardware and
 
software maintainability so that a system would not need to be
 
down for maintenance of any kind.
 

In short, computer system maintenance in the 1980s will need to 
be performed wi'thout stgnifircan-t1y disrupt'ing the -sys'tem 
activity. It may be acceptable for the system and its users if 
response times degrade, but total unavailability of the system 
will not be acceptable. 

Before discussing future alternatives, existing features of CDC
 
super computer maintenance software will be addressed. The
 
basic architecture includes a super computer, a maintenance
 
station (control unit) as a focal point for all system
 
maintenance, and a loosely coupled network (LCN) for I/O
 
containing Programmable Device Controllers (PDCs).
 

8-1
 



2.0 EXISTING MAINTENANCE SOFTWARE OVERVIEW
 

2.1 General Features
 

The current maintenance software system supports off-line and
 
on-line hardware maintenance. The major components of the
 
maintenance software system are:

* Maintenance Control Unit
 
* CPU (Central Processing Unit) off-line diagnostics
 
* CPU on-line diagnostics
 
* PDC diagnostics
 
* Fault isolation
 
* Error logging and recovery
 

2.1.1 Maintenance Control Unit
 

The MCU (Maintenance Control Unit) which is built around a CYBER
 
18-20 Computer, provides a common user control point for all
 
system maintenance activities. The MCU supports the following
 
on-line and off-line maintenance activities through a local
 
and/or remote terminal.
 

On-line Off-line Activity
 

X X Remote Maintenance
 
X X Display of MCU, PDC, and CPU Memory
 
X X Entry of MCU, PDC, and CPU Memory
 
K X Monitoring and Control of MCU and CPU
 

Maintenance Lines
 
X X Logging of Memory SECDED Errors
 
X Logging of Operating System Detected
 

Errors
 
X X PDC Autoload
 
X System Initialization
 
X System Recovery
 

X Loading, Displaying, and Modifying CPU
 
Microcodes
 

X Control of Off-line CPU Diagnostics
 
X Down-loading of Off-line PDC
 

Diagnostics
 

2.1.2 CPU Off-line Diagnostics
 

The CPU off-line diagnostic system supports manufacturing
 
checkout and field maintenance of the CPU. A structured set of
 
diagnostics are available to provide error detection and
 
analysis. Most CPU diagnostics have a built-in test mode to
 
assist with remedial maintenance.
 

The object code of each diagnostic resides on MCU mass storage.
 
The MCU loads each diagnostic into the CPU, MCU, or PDC memory
 
as needed. Because the CPU diagnostics require a dedicated CPU,
 
only one diagnostic can run at one time.
 

8-2
 



CPU off-line diagnostics consist of two types: fault detection
 
diagnostics and utility diagnostics. The former test
 
instructions and-CPU resources, and form a testing hierarchy of
 
the CPU. The latter support maintenance activities other than
 
fault detection, such as test point simulators and error file
 
analyzers.
 

2.1.3 CPU On-line Diagnostics
 

The CPU on-line diagostic system supports confidence testing of
 
the CPU without shutting down the system. These diagnostics run
 
as normal jobs. On-line diagnostics consist of all CPU based
 
off-line diagnostics which do not execute monitor mode
 
instructions. Also available for on-line use are test point
 
simulators and error file analyzers.
 

2.1.4 PDC Diagnostics
 

The PDC off-line diagnostics test PDC components while the PDC
 
controlware is inactive. The user can load these diagnostics
 
from a portable maintenance console or can down-load them from
 
the MCU to a PDC. Control of the PDC off-line diagnostics can
 
come from the MCU or a portable maintenance console. PDC
 
on-line diagnostics are controlled through the operating system.
 
PDC functions are disabled while on-line testing occurs.
 

2.1.5 Fault Isolation
 

Isolation provides a definite means to reduce checkout time and
 
MTTR. Fault detection is required while fault isolation is
 
optional and depends on cost effectiveness. There are three
 
major categories of isolation applied to diagnostics: physical
 
isolation to the failing component, function isolation to the
 
failing group of components, and unit isolation generally to the
 
failing board.
 

;Fault isolation to 'the -failing memory chip for sing'le solid
 
faults is provided for all memory resources of the CPU. This
 
includes central memory, register file, instruction stack and
 
microcode memories. No isolation is provided for LSI arrays.
 
Unit isolation is provided for critical units while functional
 
isolation has rarely been used. Some unit isolation is provided
 
in the LCN. The structure of the FMP is such as to provide very
 
good unit isolation.
 

8-3
 



2.1.6 Error Logging and Recovery
 

The MCU serves as a local focal point for logging of all system
 
errors. Separate files exist on the MCU for on-line and
off-line errors. Time/date data is included in the on-line
 
error file. Central memory SECDED errors are sent by hardware
 
to the MCU for logging. Microcode memory parity errors are
 
detected at the MCU. All errors other than memory errors are
 
passed -by the operating system to the MCU for logging.
 

Central memory can be degraded and reconfigured, through manual
 
intervention from the MCU, when a solid fatal error occurs. A
 
failing Vector Unit can be idled and replaced by a spare through
 
MCU action. Any other fatal system error must be analyzed and
 
corrected before system activity resumes. There are no
 
provisions for reconfiguration of FMP hardware other than memory
 
and the Vector Units.
 

2.2 Summary
 

In the 1970s the primary emphasis on maintenance software has
 
been toward development of fault detection tests. Increased
 
complexity of computer systems has led to development of the
 
maintenance station, which is a local focal point for all system
 
maintenance activities. With the development of complex LSI
 
circuitry in mainframes and memory, fault isolation has begun to
 
appear.
 

Maintenance software in general, and fault detection, fault
 
isolation, error retry, and system recovery in particular, have
 
been given low priority in design of system hardware and
 
software.
 

In the 1980s hardware, operating systems, and maintenance
 
software must be treated equally if the number of system
 
interruptions is to be reduced. RAM requirements must enter
 
into system design at the earliest stage, sharing the spotlight
 
with cost and performance.
 

8-4
 



3.0 ALTERNATIVES FOR THE 1980s
 

To meet the challenge and requirements of improved RAM for super
 
computers of the 1980s new alternatives must be considered.
 
These alternatives must involve the entire system architecture,
 
hardware, operating system, and maintenance software.
 

Ways must be found to minimize the mean time to detect and
 
diagnose a system malfunction, the mean time to repair a
 
detected malfunction, and the mean time to restart a system. Of
 
high importance will be the abilityto perform maintenance on,
 
and repair of, a portion of the system without shutting down the
 
entire system.
 

3.1 System Recommendations
 

The various levels of software and hardware must be designed
 
with the following system goals in mind to minimize rerun time
 
when system failures occur.
 

e 	Minimize the components required to continue processing
 
-- i.e., minimize system critical hardware and software.
 

* 	Maximize system flexibility. Provide as much
 
redundancy and alternate routes to accomplish the same
 
functions as possible.
 

Minimize the restart/recovery operations. Where
 
possible, utilize the flexibility of a fall-back
 
position by disconnecting system non-critical items and
 
continue processing.
 

Actions taken for system error recovery are shown in Figure 1.
 
Physical recovery is completely hardware dependent. All other
 
actions involve use of on-line or off-line maintenance software,
 
and interaction from a maintenance station to recover from an
 
error. In cases where the system is reconfigured or degraded,
 
concurrent maintenance software will support system repair.
 

8-5
 



--Interruption
 
i 

SYSTEM OPERATION v RESUME SYSTEM OPERATION
 
---/ /---------------------------


RRECVR
 
I 

PHYSICAL RECOVERY. (TRAILSPARET)
 

RETAT FALIOF)I

CALRE Y (FAIL SOFT)I
 

SYSTEM UPPORTE
 

--------- V -------------------------------


AUTOLOAD
 

SYSTEM DEGRADE
 

AUTOLOAD
 

SYSTEM REPAIRI
 

Figure 1. System Error Recovery
 

8-6
 



3.2 Hardware Recommendations
 

In the 1980s computer systems will have incorporated into their
 
designs many of the hardware techniques mentioned beLow. At a
 
minimum, 10% of the system hardware will be devoted to improved
 
RAM.
 

* 	Semiconductor memories will continue to make use of
 
single error correction, double error detection
 
circuitry. Check bits will be carried along with data
 
on all major trunks. Errors will be collected at a
 
maintenance station such that preventive maintenance and
 
degradation or reconfiguration can occur.
 

*, Develop hardware maintenance features for high-level
 
self-checking of semiconductor memories under control of
 
the MCU. Memory testing would be independent of CPU
 
instruction testing. Memory errors would be found
 
faster under hardware control.
 

* 	Microcode control logic will be designed such that it is
 
a useful maintenance tool. Microcode diagnostics will
 
use added hardware features to assist maintenance
 
personnel in isolating failures to the replaceable
 
circuit level as quickly as possible.
 

* 	Major control paths may be encoded in error detecting
 
codes to provide continuous fault diagnosis while
 
executing programs. Error codes would aid development
 
of fault isolation techniques.
 

* 	Transient faults -may be identified by error detecting
 
codes and their effects corrected by rollback. Permanent
 
faults may be corrected by replacement of faulty units.
 
Replacement may be automatic or under operator control
 
from the maintenance console.
 

4 	Fault tolerant hardware involving the use of redundancy,
 
with replication of individual circuits or subsystems,
 
will appear. Fault toler-ant hardware will mask the
 
occurrence of random errors as they occur and provide
 
error-free operation for large periods of time.
 

* 	 Registers and latches in the CPU could be scanned by the 
maintenance station such that fault isolation to the 
chip is possible. 

* 	Hardware maintenance features will appear in logic
 
circuits, as more gates are placed inside circuits. The
 
wafer probe and vendor testing problem will accelerate
 
internal circuit testing needs.
 

8-7
 



3.3 Future Maintenance Software Development
 

The demands of the computer industry are for improved mean time
 
between interruptions and a reduction in lost time. Maintenance
 
software must be treated as a system working in conjunction with
 
hardware and the operating system to meet these demands.
 

To achieve these goals maintenance software development emphasis
 
will be placed in the following areas:
 

* Fault isolation
 
* Operational summation
 
* Loosely coupled network I/O
 
* Application of gate simulation data base
 
* On-line
 
* Error logging
 
* Recovery
 
* Concurrent maintenance
 

3.3.1 Fault Isolation
 

Isolation must be specified as part of the hardware design
 
requirements. Error detection codes, microcode hardware
 
features, multiplexing of registers to the MCU must be
 
considered if fault isolation diagnostics to the function and
 
circuit are to be developed.
 

3.3.2 Operational Summation
 

Without changes in hardware design philosophy, operational
 
summation can go far to improve MTTR. With a status of failing
 
and operational CPU instructions, CPU resources, and I/O
 
resources, maintenance personnel can draw upon their knowledge
 
of the system to localize the fault. Maintenance action would
 
be based on operational summation or decision logic tables.
 

3.3.3 Loosely Coupled Network I/O
 

The MCU must be capable of testing selected PDCs and associated
 
I/O devices concurrently with CPU testing. Communications
 
within the I/O network should also be testable from the MCU. In
 
view of the sophisticated protocol-between PDCs, special
 
maintenance software considerations must be made.
 

8-8
 



3.3.4 Application of Gate Simulation Data Base
 

Hardware modeling and simulation is a requirement for super
 
computer design; therefore, a gate model of the CPU i-s available
 
for maintenance software applications.. The following lists
 
possible applications:
 

* 	Routing/placement information. . . the user could query
 
the model from the MCU display.
 

* 	Simple simulations could be performed by the MCU to
 
generate test point states based on input operands.
 

* 	LSI fault isolation. . . compare the hardware to the 
model. 

3.3.5 On-line
 

The following improvements can be made to existing fault
 
detection diagnostics:
 

* 	Reduce the risk of diagnostics failing in test condition
 
setup, or in result verification by developing standard
 
coding methods.
 

* 	Expand on diagnostic data base concepts where a test
 
condition data base can be controlled from either the
 
CPU or MCU. This method of testing should ultimately
 
replace the existing computer command tests.
 

* Develop a high-level test of the basic housekeeping
 
instructions used to control CPU based diagnostics,
 
including mixed instruction testing. This level of
 
testing should be controlled from the MCU.
 

* 	For the LCN, provide common maintenance software and
 
procedures for the entire network, including super
 
computer, front-end systems and peripherals.
 

* 	Develop common maintenance procedures for all field
 
sites, particularly the procedure to follow when a fatal
 
system error occurs.
 

3.3.6 Error Logging
 

Error messages should be organized as 4 basic types: (1) MCU
 
detected errors (CPU hardware fault detection), (2) CPU errors
 
detected by the operating system, (3) LCN and I/O device errors,
 
and 	(4) logging of software system errors. Common error files
 
should support error logging for multi-CPU systems.
 

8-9
 



3.3.7 Recovery
 

More emphasis should be placed on automatic recovery and error
 
logging for deferred maintenance. Since most system errors are
 
transient or intermittent, recovery with degradation is a viable
 
alternative to increase system availability. System software
 
must be enhanced to promote automatic restart. Only fatal
 
errors in the operating system should force emergency
 
maintenance-.
 

Automatic degradation and reconfiguration should be provided for
 
central memory, I/O, and hardware pipelines. The CPU could be
 
temporarily stopped by the MCU until degradation/reconfiguration
 
takes place. The following degradation alternatives are
 
offered:
 

* 	Page flawing for central memory
 
* 	Central memory degradation by physical sections
 
* 	Dynamic testing/flawing of 819 tracks, particularly
 

on initial file creation
 
* 	Provide a spare pipeline which can be switched to an
 

active pipe by the MCU
 
* 	Spare PDCs between the trunk and central memory
 

3.3.8 Concurrent Maintenance
 

Before concurrent maintenance of CPU units (memory pipelines)
 
can become a reality, hardware must be designed such that
 
maintenance actions can occur on degraded units without
 
affecting operating units.
 

Concurrent maintenance of degraded PDCs interfaced with the CPU
 
from the MCU seems realistic. Concurrent maintenance of
 
critical I/O devices would have the greatest impact but unless 
the system can tolerate downed devices, this alternative is
 
unlikely.
 

8-10
 



4.0 IMPLEMENTATION GOALS AND STRATEGY
 

The following goals and strategies will be pursued to improve
 
super computer RAM in the 1980s.
 

4.1 Goals
 

* 	For system availability, improvements to MTBI are deemed
 
more effective than improvements to MTTR; therefore,
 
super computers will stress improvements to MTBI.
 

* 	MTTR of less than 0.5 hours for all levels of memory.
 

* 	MTTR of less than 1.0 hour for CPU. (excluding memory)
 
and I/O.
 

* 	Achieve a system MTBI of greater than 100 hours.
 

* 	Fault isolation.
 

% of Single Solid Isolation
 
Hardware Faults Isolatable Level
 

Memories 100% Board & Circuit
 
PDC 90% Board
 
LSI Logic 50% 16 or less Circuits
 
LSI Logic 90% Functional Unit
 

* 	Fault detection, on-line.
 
-- 99% of solid hardware faults are detectable by the 

operating system, maintenance software, and-hardware 
self-checking features. 

--	 50% of transient faults are detectable by the 
operating system and hardware self-checking features. 

* 	Fault detection, off-line. 
-- 99.5% of solid faults are detectable by maintenance 

software and- ardware -sei-fchecki-ng-eatures. 
-- 85% of intermittent faults are detectable by 

maintenance software and hardware self-checking
 
features.
 

4.2 Strategy
 

The following strategy will be followed to satisfy the previous
 
goals. New development projects will emphasize, but not be
 
limited to these areas, and efforts must be made to improve
 
existing products in these areas.
 

8-11
 



4.2.1 Hardware Strategy
 

* 	Develop hardware maintenance features for fast, high
level self-testing of large semiconductor memories.
 

* 	Design microcode control such that it is a useful
 
maintenance tool placing emphasis on fault isolation.
 

* 	Develop hardware to multiplex CPU registers to the MCU.
 

* 	Develop fault detection techniques in CPU and LCN
 
hardware modules and all data paths.
 

* 	Configure CPU and LCN hardware modules such that it is
 
possible to remove faulty modules from operation while
 
minimizing impact to the operational system.
 

4.2.2 Operating System Strategy
 

* Improve error detection and error logging techniques.
 

* Improve system error recovery techniques, stressing
 
fail-soft recovery with system reconfiguration.
 

4.2.3 Maintenance Software Strategy
 

* 	Develop fault isolation diagnostics, using added
 
hardware features.
 

* 	Improve on-line maintenance software.
 

* 	Develop concurrent maintenance diagnostics.
 

* 	Improve remote maintenance capabilities.
 

* 	Reduce time required to verify system operation.
 

4.3 Attainability
 

A high priority effort in the design of new hardware systems
 
(including the FMP) is the provision for integral maintenance
 
"hooks" throughout such machines. Cost and design resource
 
factors have taken this feature into account. The degree to
 
which these facilities will be exploited will, however, depend
 
on the resources committed to sophisticated maintenance
 
strategies by the various software developers. The inclusion of
 
features in the various levels of software (from device driver
 
all the way up to applications program instrumentation) is
 
feasible and within the range of known software techniques. The
 
probability that the NASF will possess the maximum of these
 
capabilities rests solely on management commitment by NASA and
 
its contractors to assigning these facilities a high priority in
 
the implementation program.
 

8-12
 



DIVISION 9
 

,INSTALLATION ORGANIZATION/OPERATION 



DIVISION 9
 

INSTALLATION ORGANIZATION/OPERATION
 

The information in this division of the report contains a
 
recommended data center organization for NASA planners to aid in
 
the formulation of an accurate life-cycle model for the NASF
 
installation. Data presented in this division was gathered from
 
the personnel of Control Data's STAR-100 Data Center in Arden
 
Hills, Minnesota, a data center possessing similar
 
characteristics to the proposed NASF facility.
 

In setting up an effective new data center a key point is the
 
pursuit-of extensive research on the users, types and frequency
 
of jobs, and projected increases in work. Once the user base
 
has been established, as well as whether remote stations will be
 
employed, data center personnel can more accurately plan the
 
installation.
 

The following information, which is provided to assist in the
 
planning of NASF Operations, is broken down into manpower,
 
supplies, services, and an overall scenario thit will attempt to
 
show typical considerations in data center management. It is
 
hoped that this information will enable NASA planners to set up
 
a NASF Data Center with an eye for efficiency, reliability, and
 
stability.
 

MANPOWER REQUIREMENTS
 

Based on information obtained from Control Data large system
 
data center activities, it is recommended that NASA adopt an
 
organization similar to the one shown in figure 1. This
 
suggested organization has four managers controlling the
 
operations, system support, techniques support, and
 
administrative and technical support -- all reporting to the
 
-overall NASF center manager.
 

9-1
 



--Secretary
 

OPERATIONS. 	 SUPPORT , SUPPORT SUPPORT GROUP 

Administrative Assistant 	 a Consultant * Technical Consultant 

(4 REQUIRED) (Hardware)r Administrator 
First Second Third Vendor o IMP Analyst 	 a Statistics Clerk 
Shift Shift Shift Analyst (2 REQUIRED) 
- -Support 	 e Possible telecom

* 	 Shift Leader a Shift Leader * Shift Leader a SPS Analyst munications expert12 	 REQUIRED) if many vemotas 
* 	 Computer * Computer * Computer

Operator Operator Operator a Programming 
(3 REQUIRED) (3 REQUIRED) (2 REQUIRED) 	 Aid 

* 	 Production 
Control 
Clark 

* 	 Librarian I Customer 

Services 

e 	 Analyst
 
(4 REQUIRED)
 

Vendor
 
Customer 

Engineering 

Figure 1. Suggested NASF Operations Organization
 



The Operations Manager
 

The operations manager is responsible for ensuring the day-to
day flow of customer jobs through the data center in a timely
 
manner. The main duties of the operations manager are:
 

* 	to set up operating procedures for efficient data center
 
operation;
 

e 	to schedule addition of local modifications or Field
 

Change 'Orders with customer engineering staff;
 

* 	customer or user support scheduling;
 

* 	customer service dealing with customer problems related
 
to operations;
 

* 	to monitor daily operations attempting to foresee both
 

hardware and software problems;
 

* 	to deal with vendor customer engineers.
 

Within the operations organization, the manager must provide
 
leadership to the following subordinates.
 

Shift Leader -- The shift leaders (3 in the organization chart)
 
are the most experienced computer operators on the shift. They
 
are usually higher pay-grade levels than the other operators on
 
the shift and could act as assistant operations manager because
 
of the amount of experience they have.
 

A good shift leader's experience would allow him/her to be
 
familiar with all aspects of the various jobs run in the center
 
and he/she should have extensive training on the center's
 
equipment.
 

Computer Operator -- The operators (eight in the organization 
chart) should be trained on the NASF and be able to complete the 
tasks related to efficient customer job throughput. 

Process Control Clerk -- The process control clerk is
 
responsible for keeping track of the input and output of
 
customers' jobs within the data center. Often times the process
 
control clerk, in addition to scheduling duties, will function
 
as the requisitioner of supplies needed within the data center
 
for its day-to-day operations, i.e., tab-cards, line printer
 
paper, office supplies, etc.
 

Librarian -- The librarian for the data center sets up and
 
maintains a filing system for magnetic tapes, disk files, and
 
card decks that are often used', thus freeing user time normally
 
spent in this function.
 

9-3
 



Customer Service Analyst -- Two to four analysts should be
 
available to troubleshoot problems that customers may have in
 
getting their jobs successfully completed. The number of
 
analysts employed at the data center will be determined by
 
whether or not-several remote sites are used and whether the
 
major part of the customer input will be at the data center
 
itself.
 

The customer service analyst is the first person in the data
 
center the customer should contact if problems arise. These
 
analysts should be of several grade levels so that more complex
 
problems can be addressed by more senior, experienced analysts.
 

The Systems Support Manager
 

The systems support manager oversees high-level analyst support
 
of the system and, along with his systems analysts, gets the
 
system operational and solves problems the customer may have
 
that go beyond those encountered in operation.
 

Responsibilities of the systems support manager include:
 

* 	building and maintaining the operating system, or
 
systems, used in both the FMP and SPS sections of the
 
system;
 

* 	ensuring that Program Trouble Reports (PTRs) have been
 
properly resolved;
 

* 	 isolating problems in the system so that Customer
 

Engineering or an analyst can correct it;
 

* 	providing vendor analyst support if needed.
 

In order to effectively deal with the analysts reporting to
 
him/her, the systems support manager should be software
 
knowledgeable.
 

The systems support manager must supervise the activities of:
 

FMP Analyst -- These analysts should be familiar with the total
 
system but should be most familiar with the FMP. They would
 
deal with customer job problems of an intermediate nature that
 
have been localized in the FMP. They would also build and
 
maintain the FM? operating system and be familiar with the SPS
 
operating system as backup.
 

SPS Analyst -- These analysts should be familiar with the total
 
system but should be most familiar with the SPS. They would
 
deal with customer job problems of an intermediate nature that
 
have been localized in the SPS. They would also'build and
 
maintain the SPS operating system and be familiar with the FMP
 
operating system as backup.
 

Programming Aide -- The programming aide assists the analysts in
 
the successful completion of their jobs.
 

9-4
 



Techniques Support Manager
 

The techniques support manager should be a high-level analyst
 
fully capable of solving the most complex problems the customer
 
could have. Likewise, his crew of consultants should be
 
top-notch people of the highest level.
 

The techniques group is responsible for:
 

* 	working with customers on setting up their basic
 
software;
 

* 	acting in a quality assurance function for customer's
 
software to make it more efficient if necessary;
 

" 	providing education so that customers may make efficient
 

use of the system;
 

" 	 setting up benchmarks for vendors;
 

* 	generating an algorithm base.
 

Consultants -- Reporting to the techniques manager are four
 
consultants who should be experts in at least one area-of
 
responsibility of the techniques group, e.g., physics,
 
aerodynamics, structures, meteorology. Generally, the
 
techniques consultants provide direct support to the user
 
groups.
 

Administrative, Technical Support Manager
 

The administrative and technical support manager is basically
 
the business manager for the data center. Functions that fall
 
into this area of responsibility include:
 

* 	 initial configuration and revision of existing
 
configurations;
 

* 	reports and statistics needed for various management
 
reports;
 

* 	billing and other transactions with accounting
 
personnel;
 

* 	 technical support -- primarily for evaluation and
 
purchase of new equipment
 

9-5
 



Reporting, to this manager are the following personnel:
 

Technical Consultant (Hardware) -- This consultant must be
 
familiar with all facets of hardware so as to be the hardware
 
resource person for data center management. The ability to
 
configure and reconfigure a wide variety of hardware is
 
important, especially at the time of the initial data center
 
setup. If it is expected that the data center will be static as
 
far as new equipment is concerned, this function may be
 
eliminated. However, if several remote locations are to be tied
 

into the data center, this technical expert perhaps should at
 
least be familiar with telecommunications, which will become
 
increasingly more important as the amount and sophistication of
 
the remote equipment grows. In addition, this consultant should
 
be able to develop both short- and long-range budgets, and deal
 
with the technical aspects of moves in the data center.
 

Administrator -- The administrator would probably have direct
 
responsibility for ensuring that reports., billing, and other
 
tasks get completed. This person is often the interface between
 
the data center and other supporting departments such as plant
 
maintenance or accounting.
 

Statistics Clerk -- This person would generate reports based on
 
data furnished by others within the data center.
 

The job functions previously discussed are not meant to be only
 
as described. The exact functions should be flexible enough so
 
that they overlap. Al data center personnel should complement
 
each other to assure a smoothly functioning organization.
 

The cost of personnel to adequately staff a data center of the
 
size proposed to NASA will be dependent on NASA's pay
 
structures. A recent study of the data processing industry has
 
shown that personnel costs are as high as 50 percent of a data
 
center operating budget.
 

Increases to personnel wages are constrained by U.S. Government
 
wage guidelines, hardware costs are decreasingi and increasing
 
shortages of good, high-quality people will make accurate
 
forecasting difficult or impossible for the near future.
 

DATA CENTER SUPPLIES
 

Any discussion of supply usage will, of course, depend on the
 
way the data center is used and placed among its users. If it
 
is to be in or near the greatest number of users, more supplies
 
such as printer paper, punched cards, and magnetic tapes will be
 
used. If the center will be separated from the bulk of users,
 
more remote stations will be utilized thus reducing supply
 
expenditures at the center itself.
 

9-6
 



In general, Control Data recommends stocking an initial amount
 
of magnetic tapes. After the data center is functioning
 
efficiently, CDC's data center staff estimates that a monthly
 
tape replacement of about 10-15 tapes would be likely.
 

Control Data's Mass Storage Sytem (MSS) is recommended for the
 
NASF installation. Use of the MSS results in:
 

* decreased use of disk space,
 
* decreased operator time or possibly requirements,
 
* decreased.tape expenditure.
 

The MSS concept is relatively new and CDC has not yet-compiled

enough information on its data center utilization to accurately

predict cartridge replacement frequency; as with magnetic tape,
 
an initial supply should be stocked.
 

The other big supplies expenditures would be in line printer
 
paper, printer ribbons, and punch cards. The following chart
 
lists NASF installation projected monthly usage of supplies for
 
both a center without many remote stations and a typical remote
 
station that orders its own stock of supplies.
 

Data Center Remote Station
 
Item Use/Month Use/Month
 

Printer Ribbons 25 7
 

Printer Paper 225 boxes 50 boxes
 

Punch Cards 120 boxes 30 boxes
 
(5 boxes per case) (5 boxes per case)
 

Magnetic Tapes 10 to 15 N/A
 

Mass Storage Data not available Data not available
 
Cartridge
 

The other major expenditure for a functioning data center would 
-be in capitol equi'pment replacement and purchase. This will 
include the purchases of new updated equipment to make the data
 
center more efficient, as well as replacement of the often-used
 
old equipment.
 

9-7
 



SERVICES
 

Other projected needs of the users that may be provided by the
 
data center include:
 

* user communications newsletter
 
* keypunching, tnterpreting, etc.
 
* monitoring of remote sites
 
* 	special delivery services to include:
 

- personal delivery to the airport
 
- packaging for shipment
 
- interfacing with shippers
 

* listing, binding, collating, and bursting
* microfilm/replication services 

DATA 	CENTER SCENARIO
 

The planning of the data center staff must include a mix of
 
position levels, as indicated previously, to allow growth from
 
within the organization. Also, a good mix of low-level to high
level technical content positions give room for personal
 
growth.
 

One can expect impact on the daily functioning of the data
 
center due to vacation, sickness, tardiness, etc. A backup
 
strategy can be accomplished in one of two ways.
 

1) 	Staff "lean-and-thin" which will require overtime by
 
others during times of personnel shortages.
 

2) 	Over-staff so that absence of a couple people will not
 
noticeably impact schedules.
 

In place of distinct eight-hour shifts, it is possible to define
 
a variety of shifts, allowing the data center to attract
 
computer operators who prefer to work unusual hours. This
 
method also provides better transition of data center operators
 
throughout the day. Refer to figure 2 for an example.
 

14 AM 18 AM INOON 14 PM 18 AM !MIDNIGHT

Al 

1< ->
 
B I 

1<------>--------->1 	 1
 
i CCi i i
 

< ------------------- F->
 
D 	 > Operators 

< ----------------->
 
I E


< -------------. ---- > 
I I 	 +-F 

I 	 I 

III
 

Figure 2. Data Center Operator's Schedules
 

9-8
 



By use of overlapping shifts, operators are more flexible and
 
the data center can be more efficiently run with less difficulty
 
adjusting Par absences. Also, the overlapping of computer
 
operator hours allows for more communications between. the
 
operators than does a static eight-hour shift.
 

Computer operators at such a center should be considered as
 
professional or semiprofessional -- not as blue collar
 
automation. Thus the level of system responsibility and
 
understanding is higher.
 

Reliability and stability data must be provided via the
operating system software. Since this will be an ongoing
 
concern, this should be addressed immediately upon startup of
 
the installation.
 

The design of the NASF center with regard to storage and office
 
space will have to be considered in terms of NASA policies. CDC
 
recommends an operator's desk be in the center and that one desk
 
be 	supplied for every two operators on a shift. Care must be
 
taken in designing adequate, well-lighted space for visitors to
 
work on their jobs as well.
 

Controlled storage space, preferably within the range of the
 
computer room air-conditioning, should also be provided.
 
Supplies, especially paper products, need to be stored in a
 
constant temperature, low humidity environment.
 

Other considerations for space allocations that CDC believes are
 
important are:
 

* 	Limited- or controlled-access storage for cards, tapes,
 
etc.
 

* 	 Room for several users to lay out their work and use 
terminals. 

* 	Adequate counter space for several users to discuss jobs
 

with center personnel.
 

* 	Keypunches for quick "fixes" of user jobs.
 

* 	 Offices for the support or customer services analysts
 
with offices that open into the center itself.
 

* 	Local terminal capabilities so that users may be able to
 
make minor modifications to their work.
 

More definitive information on floor layouts and environmental
 
considerations will be found in Division 10.
 

9-9
 



SUMMATION
 

In addition to the data already presented here, the following
 
points should also be considered by NASA.
 

1) 	A hardware calendar clock is recommended by CDC. This
 
is an aid in reducing purged files caused by an
 
operator mistakenly typing in the wrong date. Several
 
large Government Data Centers have this clock installed
 
in their systems.
 

2) 	Because of the complexity of the NASF system,
 
short-term, part-time operators are discouraged. The
 
return on the training effort is most often poor.
 
Part-time operators that are employed should be long
 
term ones for this reason. Part-time operators do,
 
however, lend a good deal of flexibility to manpower
 
scheduling in the data center.
 

These points, plus the other information in this division,
 
should enable NASA planners to begin to visualize the structure
 
of the NASF facility. As the NASF plan further materializes,
 
more specific recommendations and estimates can be made by
 
Control Data.
 

9-10
 



DIVISION 10
 

NASF PHYSICAL REQUIREMENTS UPDATE
 



DIVISION 10
 

NASF PHYSICAL REQUIREMENTS UPDATE
 

The report for the first study of this project (ref. 1)
 
presented size, power, and cooling requirements for the NASF.
 
This report provides an update of those requirements; it
 
consists primarily of'two tables. Table 1 shows a detailed
 
listing of all the elements that make up the SPS, the disk
 
station, and the MCU, including all the anticipated peripheral
 
equipment. All the equipment shown are products today. Table 2
 
includes all the separate parts that make up the FMP computer
 
system. The motor-generator sets and the condensing units exist
 
today but the numbers for the parts of the FMP -- computer bay,
 
Main Memory, Intermediate Memory, and Backing Store -- are
 
today's best estimates since these items have yet to be built.
 

All the numbers in the tables are subject to change as design
 
proceeds and details of the FMP, as well as the system, become
 
more clearly defined.
 

10-1
 



Table 1. 
Standard Product Physical Requirements
 

CONTROL DATA CORPORATION 

COMPUTER FACIITY PL4A*NI AND CONSTRUCTION
DOCUMENT NO. 


RUN DATF 03/22/79 PAGE I
MACHINF UNIT gPFCIFICATTAN

CUSTOMEPt NASA AMES 
 TOTAl SYSTEMS
 

UNIT 
CIRCUIT -REAKER REOUIREENTS
 -------- PHYSICAL PROPERTIES-------
 UNIT 
 T (n2) r
'NIT INIT UNIT UNIT UNIT HEAT 	 C
 
CABINET NAME 	 P 400NZ 50/6011Z 0 50SON67n
QTY WIDTH DEPTH 	AREA 
 HEIGHT WEIGHT nTSSrP 
 --- INIT KVA---
MODULE/MODULES PRODUCT (IN.) (IN.) (SO FT) (IN.) 

W POSV.3P PA8V.IP N 11SV.1o N 
(LRS) (RTU/9R) 400HZ S0/SOH7 R AMPERES A4PEQ S N AMDEQES M 

,CENT COMPUTER BAY 	I
 
175-I16 
 2 Q3.70 35.00 	 45.S 79.80 4500 1660 10.8 
 - 90CENT COMPUTER BAY 	2
 
17-116 2 101.90 35.00 49.53 79.80 3A00 
 5860 17.3  70
 

175-116 2 32.50 47.00 


CONSOLE
 

CONDENSINO UNIT 	 2).22 40.50 390 303A 0.9 0.3 Is 
 15(00) (01)

S) ()
 

TAPF CONTROI 1AG
175-116 2 	72.00 ?6.00 26.00 
48.00 1490 114000(03)  14.4 TOn.) (0?) :
 
7021-32 I 29.30 30.00 6.10 60.00 ?40 P754 
 0.6 0.2 15 
 IS(OR] (01)


REMOTE PROCESSOP CAB
 
MAD TA7F TRANSPORT

T
021-32 
 1 29.30 30.00 	 6.10 60.00 30 ?750 0.6 0.2 15 1(01B) (0?) 
677-4 2 30.50 30.00 12.71 63.50 40o 7?n 
 - 2.9 154A.) (03) ±MAO TAPE T4ANSPCIRT 
679-7 2 	 30.50 30.00 12.71 43.50 900 7q20 
 - ?.9 1(01 (01) ± 

FTENDED CORE STORAGF 
PERIPHERAL CONTOOLLFR 4CAB 

7030-104t I 42.00 20.5O S.08 S6.90 619 3oo n.9 	 0.4STORAGF CABINET I is IS 0np) 

7030-104C I 70.00 40.80 19.81 M.50 100 1440n(121 7.? 3.6 30POP CONTROLLER	 PO to?)
 

PO ECR CONFIG. 7030-104r 1 29.00 25.00 
 5.03 66.00 400 1401 0.3 
 0.1 is 
 19 In')
CHANNEL CONVERTER
(3000) 
 10315-
 4 -

CHANNEL CONVERTFR
 

(3000) I0115t2 4
 

TRANSFP4 SW CONT
 
IRANSFFP SWITCH: 	 3270A I 22.90 po.9o 3.26 46.0 IS0 2000 - n.6 R I (n?) 
IN 32704/8 027).. 2  -- 0.6 4 PQ ro M 1270NETWORC PROCESSOR
 

CAOPjCI 2SSI-I 2 24.00 14.50 33.50 15.00 700 64910  1.4 	 ?fl (0?)
250 CPO 
 41S I 	 '1.50 39.40 5.90 45.60 SAG 3000on 
 I- ("3
PERIPHFOAL CONTROL
 

3446-P 1 42.00 
 20.50 5.90 96.90 
 A-0 7On 	 A.7 n.1 q IS 
 IS (A?)

CARD READER/CONTR1.LER 	 I

1200 CPU 40S 2 57.00 33.04 	 26.13 46.00 12nO 9000 3.4 R is 401)


CARD READER CONY 
IN 409 3447-2 2 -  - - - R P F 409 CO

LINE2000PRINIEO/COMT(PNM 94O-200 4 	62.00 11.5n 54.25 91.0 190no ioo - .? Q 10(n.) In?)
MOTOR CENLRATOR 4 no KVA '(I)690S-IKC 1 32.00 
 V2.00 7.11 60.30 1019 
 47RO(1II 
 I4OUT-UT CTNm Tn 
'G CO'T
 



Table 1. Standard Product Physical Requirements (Continued) 

DOCUMENT NO. 

CABINET NAM 
hODIJLE/MODULES PRODUCT 

nT 

--
-

PHYqICAL PROPEPTTFS------- IJIT 
ABNTN AENIT UNIT UNIT UNIT HAT 
ITI4 DFPTH ARFA HFIrHI WEIflHT 'ISSIP 
(IN.) (IN.) (SO FT) [IN.) (LRS) 4 T(J/HR) 

--- 1-IT NVt---
40,11Z 50/0H7 

JjIT CIRCUIT "'EAKER REOIITE'4FT 
T (02) C r 
p '40oH7 9n/60., Z I S0/6OH7 0 
W ?A8V.3P ,RV.,P " IIqV.Io .j
Q AMPERES ALPEOFS N AMOFQES NJ 

-. 

o 

MG CONTROL CABINET I 
65045-IKC 

TERMINATOR DOdFP (WALL MOtUNT? 
|I1P8O1 

DEW POINT RECORD (WALL MOUNT)
53370000 

TEMP MON/PWR CONT(WALL MDUNT)
P0 CY170 53369no 

FMERGENCY OFF (WALL MOIIN[I83369800 

CENTRAl PHOCESSOR 
IA-20 

NOS MAIN MEORY 
IR92-32 

STORAGE DRIVE IMTPF 
1833-1 

CARD R/LINE PR CONT 
1828-I 

COMM LINE ADAPIER 
tR43-1MAO TAOF SURSy8 

VAG TAPE SPORT1060-1 

MAG rAPF TRANSPORTI 

1 

I 

I 

I 

I 

2 

1 

I 

56.00 

24.00 

15.50 

5.00 

PIoo 

61.00 

-

-

-
?2 0 

23.00 

6.O 

7.O 

7On 

7.90 

31.00 

-

- -

---

-
32.00 

A,04 74,00 

1.13 I.OO 

0.81 36.00 

,IRP 16.00 

3.18 12.11 

11.11 29.00 

- -

-

- -I-

5.00 68.00 

3OO 

_f 

R0 

40 

3s 

475 

-

4 P5 

-

-

-

-

1R20 

-

1640 

(II) -

-

-

-

-

-

-

-

-

-

-

3.1 

n.6 

Is 

SITF F"R IPloHo3Ka MOTI 

iJ(0O) (0p) 

pQTMAP ply GOP OR EM OFF 

IqIo() OP) 

38 4) 

T- r'' 

YNCP( 

I 

15 (841 

STALLATIOV 
(09)1860-92 

KiT 1060-O I 
I 19.00 

22.5O 
I.o 

?9.50 

2.38 24.00 

4.61 68.00 
"9 

100 

40 

-

-

-

(1.6 

- 19041 

(.' 

(041 

MAG TAPE TRANSPORT 
679-7 I 30.50 30.0 6.35 63.50 4(0 7920 2.9 1510") (01) 1 

CARD READER 

P., 
rDIPA 

LINE PRINTER IA29-60 

IA27-60 
OISPLAY TERMINAl 

EMN IIL-2 

DISK STORAGE UNIT 
819-21 

MASS STORAGE CONT 
7639-?2 

TDG 0O. RIVR67-20STORAGF DRIVE CONT 

1 14,?0 

I 340 

I 21.60 

16 P7.00 

4 P4.00 

2i.B00 

19.0O 

P6.50 

P0.40 

4-.00 

25.00 

36.01 

1.87 36.50 

6.2A 44.50 

3.06 15.20 

135.00 45.0 

20.14 66.00 

11.00 36.20 

88 

ion 

8) 

A10 

450 

?18 

231-

3278-

430 

5120 

2840 

P35q 

. .5 

0.5 

1.2 

0.1 

].5 

0.7 

9* 

is 

70 (03) 

S (04) 

1506) (04) 

15 004) 

15(Ot (0") 

15 4141 

IN FIRST DIVFNON-NUMERIC DATA IR33-3IN DATA BASE 
895B-12 

I 

4 

17.70 

33.30 

24.00 

42.30 

2.95 12.00 

38.8, &44.40 

q) 

1040O 

1030(1)) -

Io)6 

03 

2.2 15 15(0') (10) 

5 (0)1 4 

('"l) 



Table 1. Standard Product Physical Requirements (Continued)
 

DOCUMENT NO.
 

P A F 3 

-------- PHYSICAL PROPERTIES------- TUIT 	 T CIpctr 'PEA'ER REOUIRFE'ITI

CABINET NAME UNIT UNIT UNIT
CABINET NlE 	 LIMIT HFAT 

HODULF/MQDULES ATY WIDTH DEPTH AREA HFIGHT WETIHT rgSyP ---LIMIT KVa--- P 4001H7 51/647 0 50/60HH7PRODIICT (IN.) (IN.) (SO FT) (IN.) (L-q) RTU/HR) 400HZ SO/MN? W 248V.3P ?v.,P q II5vvI hIP AMPEES3I &pE*rS AMOEOFS
 

FND CONTROLLER
 
7155-1
MASS STORE 404Pr 2 ?9.00 25.00 10.07 66.00 35O 31n 0.9 J . B 154) In,,l q ~ . 7080-1MASS STORAGE COUPLER 3 q3.80 j).oo 34.75 71.00 Sn 

-o.0oo
 

708O-I 	 ?9.20 25.00 
A loin I l) J.0


15.21 66.00 R00 

CARTRIDGE 	STORE UNIT 0. 1) ("A )


7AR-I 


3 	 1435 0.3 0.3 

8 128.00 1,On 
 )4q.31 76.80 
 2030 6000
CARTRIDGF TRANSPORT 
 1.7

0 7882-1 16 	 P6.60 31.00 
 92.31 71.00 
 700 10600-
 31 	 51')('

4= 

OTA. 4REAIFOUbO OMlKY = AT.5 q1qT
'OTAI WEIGHT = 91.66' LRS 
TOTA HEAT OISSTOATIDN = 113.1n0 ITJ/-,J
rOTAI KVA(400N) = 7.P 

TerMI WV4(SO/6O.)?) 2()?1. 

OTF - ABOry TOTAL, FXCLUF ANY ADOITTOIAI DATA
rHAT 4AY ACCOtPANY THIS 'PFCTFIC'TInm IRF RiLOAL 



Table 1. Standard Product Physical Requirements (Continued)
 

nOCUMENT NO. .4GF 4 
NOTES: 
- ALL SPECIFICATIONS APF OM A PFP AN;rTRASI
 
- WITH FXCEPTION OF UNIT APEA(RFFLECTS TOTAI. UNIT AREA)
 
(A) INTFPNAL TERMINATOR POWER C.JvPLY
 
(A) EXTERNAL TERMINATOR POWFR SJOPLY
 " 
(01) 	 MAYTMU M CAPACITY SHOWN, ACITAL IOA-) AY RE IESS. (12) WATER r,,OLEI-90 PERCENT OF HFAT REjrCTF Tn WATFR. 

(02) 	TEOMINAL STIP. 10 PERCENT OF "FAT RF IFCTFn TO ROOM.
 

(03) 	LOCKING CONNECTOP.
 
.......
**...... .... 4**4*~****4*'(04) 	STANDARD 60H7 PI UG. 4*~ 

os) 3Rnv-3PI. Frn 5HZ VrPSIOM. * YNLFT TEMP - FLOMI 
4

PATE 	- HFA', Ln05g*
 

(06) 	22AV - IPH. FOR 90 H7 VERSIl'. - EG F DEC, Co 1PM L/VTN PSI KPA * 
(07) 	38O/ IV - 3 PHASE . N FOP SOH7 nPFRATION WATER RPOUTrEMENTS An 27 * 4.P 16.n - 5.7 11 * 

P 

(O0) 22O/240V - 1 PHASE * N FOR 501H7 nPFQATION Pr, RAY * 7A 2) * I.0 11.q * .6 In . 

IAn) RACK MiOONTAPLF EQUIPMENT * 60 IA * '.0 0.0 * I. In . 

(10) 	 CUSTOMER StiPPLIFo CONNECTOaC......0. 
(11) 	 INnICATED FOUIPMENT IS NOT INClU.IIED IN MIS quMMARY TOT41 S HEAD LOSS DROP FIR OPFN COHDFNSOo ON Y. 

FOP ARE AHEAT AND POWER MINIMUM OPERATTNG PRFCSUQF PhFFF FNTII 
AT IIT kTEo CONNEFCT IS In PSI/A" KD . 

MAXI4UM dATED PPqSiJOC no Psi/ o,, <0.'. 

C
 
1 	 (131 WATER C,"OLPO-1-I6|00O qTu/HP (4711OW) RE ICTO Tn WATER,

13000 PTU'HQ (I00') o;JECTFO TO R0AM,UL 


- TNLFT TEMP * F'LO RATF * HFA) Lr)qS'


. 4FA "Dfc. C- PPM L/wI* Pc I KPA . 

IA TOMI * go 27 -). 46.1, 0.5 6q 
CONOEm ING UNIT 4 76 21 * 0.1 35.3 - 6.3 43 . 

0 60 16, * 7.6 28.A - 4.3 30 I 
* so In * 4.2 ?3.5 * 3.4 23* 

NVAO LOSS DRoP Flo ooCN rONOFICOD ON 
k4MNIU11k nPERATINs PRFcSU;E OIcrFEDF4TI'i 
AT U-IfT OATEP CO'IMECT IS 15 PSy/I/3K-'. 
MAX ,041 WATER PREqSIPr 30 P I I',) <K

c'
A. 

ADDITIONAL DATA



Table 2. FMP Physical Requirements
 

Unit Dimensions Unit
 
inches Dissipated
 
(cm) Unit Heat
 

------------------- kVA BTU/hr
 

Qty Cabinet Name Width Depth Height 60 Hz (kcal/hr) Notes
 

1 	 FMP Computer 146 102 76 331K (1)
 
Bay (370) (259) (193) (83K)
 

1 	 FMP Main 111 63 76 (I)
 
Memory (282) (160) (193) 576K
 

(145K)
 

FMP Interme- 200 130 76 140K (1)
 
diate Memory (508) (330) (193) (35K)
 
-- 32M words
 
(65k 	DRAM)
 

2 	 FMP Backing 65 29 76 26.8K (1)
 
Store (165) (74) (193) (6.8K)
 
65M words
 
256k CCD
 

22 	 Prog. Device 18 13 18 1.2K
 
Controller (46) (33) (46) (0.3K)
 

5 	 Condensing 90 34 48 40 290K (2,3)
 
Unit 30 ton (229) (86) (122) (73K)
 

4 Condensing 7 55K (2,3)
 
(13K)
Unit 	5 ton 


43 160 133K
 
250 KVA (236) (104) (109) (34K)
 

3 	 Motor-Gen 93 41 


3 	 MG Control 56 20 78
 
(142) (51) (198)
 

Notes for Table 2
 

1) The Freon-cooled units all dissipate about 10-15% of
 
their total power into the room ambient. The balance
 
is dissipated into the Freon refrigerant. The portion
 
dissipated into the Freon is included in the total for
 
the condensing units.
 

2) 	The condensing units dissipate about 5% to the room
 
ambient and the balance to water. The total heat
 
dissipated includes internal losses as well as heat
 
taken from the Freon system.
 

3) 	The condensing units are normally in a separate room.
 
The maximum length refrigerant lines are 100 ft (30
 
m).
 

10-6
 



NASF Physical Requirements Summary
 

* Total input power of approximately 1000 kVA.
 

- Total floor space requirements of approximately: 
- 6250 square feet for Computer Room. 
- 450 square feet for Compressor Room. 
- 400 square feet for Motor-Generator Room. 

* 	Totai heat dissipation of approiimately:
 
- 715,000 BTU/hr (180,000 kcal/hr) to Computer
 

Room ambient air.
 
- 115,000 BTU/hr (29,000 kcal/hr) to Compressor
 

Room ambient air. 
- 445,000 BTU/hr (112,000 kcal/hr) to 

Motor-Generator Room ambient air. 
- 1,775,000 BTU/hr (447,000 kcal/hr) to water. 

10-7
 



DIVISION 11
 

SYSTEM SIMULATOR
 

SUMMARY AND RESULTS
 



DIVISION 1-1
 

SYSTEM SIMULATOR
 

SUMMARY AND RESULTS
 

1.0 DEFINITION OF SYSTEM TO BE SIMULATED
 

The Numerical Aerodynamic Simulation Facility (NASF) as studied
 
by CDC is a set of five (5) stations tied together by a
 
communications trunk system called a Loosely Coupled Network
 
(LCN). Figure 1 shows the generalized system.
 

FMP SRF 

... g00 

LCN 

i Iooe 

DSK I MCU, 
, IL----

Figure 1. Generalized NASF
 

One constraint has guided the design of the proposed NASF
 
system: to meet the user's computational need a computing
 
engine (FMP) should be dedicated to executing flow code at a
 
sustained rate of 1 billion floating-point operations per
 
second (gigaflop). Thus it seems obvious that significant
 
portio,ns of the ,problem need to be carried out elsewhere.
 
Typical job runs have been dissected to find basic functions
 
lending themselves to modularization. With the job types so
 

specialized and similar, such modularization can result directly
 

11-1 



in corresponding modular hardware. Jobs may now run "in
 
parallel". When a job occupies a given module, say the FMP, the
 
other modules are busy working on other jobs (i.e., setup and
 
post-processing tasks). With proper balancing of module tasks
 
the FMP execution can "hide" all other station functions. If
 
this is true, the FMP would be 100% utilized. Job throughput
 
would equal FMP throughput (neglecting the system's startup to
 
steady state).
 

Now in addition to improved throughput, the distributed module
 
concept allows designers to make some or all of the stations
 
particularly useful entities on their own. In other words,
 
aside from increasing processing efficiency and bandwidth,
 
modules can provide storage capability, workstation processing,
 
and/or significant CPU power, etc.
 

Though these principles were formed on the assumption of a 

specialized job, the hardware modules can match an apparently 
general job. For example, the following run 

a) 	 job set up
 

1) input setup
 
2) code compilation
 
3) pre-processing manipulation of data to generalized
 

coordinate space
 
4) transfer load module to computing engine
 

b) 	 execution of code and storage of memory snapshots
 

c) 	 post-execution functions
 

1) store temporary results
 
2) store long term results
 
3) process result files for analysis
 
4) produce graphical-files
 

can 	be satisfied by a very versatile set of stations.
 

These hardware modules have been assigned the following rather
 
canonical functions:
 

a) 	The SPS is the system controlling processor. It
 
interfaces with the user community as a timesharing
 
device with a powerful processing unit, and sets up
 
and post-processes jobs for the FMP. It is expected
 
that such a device will require the capability of
 
between one and two times that of a CDC 7600.
 

b) 	The DSK serves as the data transfer pipe between
 
stations. These disks serve as temporary storage and
 
large buffer for the FMP engine.
 

11-2
 



c) The FMP is the computation engine for flow code or other
 
lengthy set of calculations that- the SPS cannot
 
reasonably handle. Code compilation and data
 
manipulation may also occur here.
 

d) The GRF is the display station for user interaction.
 
Bothgraphical input and output are manipulated here.
 
Limited processing power is available locally, plus a
 
tie to the system network.
 

The actual hardware contents of these modules depends upon many
 
things: job sizes, turnaround needs, storage requirements, etc.
 
Simulation then becomes a powerful design tool: a workload is
 
outlined from a job scenario, the parameterized system,model
 
then simulates the job. Simulatibn results may then be used to
 
determine improvements to the hardware or software. Hopefully
 
such a process converges to a reliable design.
 

1.1 Stations
 

A station, or deyice,class, is a set of hardware (processors,
 
disks, memory, etc.) which acts as a functionally unique unit
 
within the system. The classes are:
 

1) Support Processor System (SPS)
 
2) Flow Model Processor (FMP)
 
-3) Remote Storage Disks- (DSK)
 
4) High Speed .Graphics (GRF)
 
5) Maintenance Control Unit (MCU)
 

Details of the stations as presently proposed follow.
 

Note: The MCU is not included in the simulation, and will not be
 
referenced again in this simulator discussion.
 

1.1.1 The SPS
 

The -SPS repr-esents .the gener-al -purpos,emanag'er -f the system.
 
Composed of two CDC CYBER 175/116 computers and supporting an
 
extended set of peripheral devices (local disks, communication
 
controllers, mass storage system, etc.), it controls the flow of
 
jobs among all stations. Basic responsibilities assigned to the
 
SPS are:
 

1) Contr6l and execute NASF operating system.
 
2) Compile FMP code.
 
3) Massage grid and configuration data for the FMP.
 
4) Process result files for display output.
 
5) Supply intermediate and long term storage.
 
6) Control all LCN file transmissions.
 
7) Timeshare local users.
 
8) Interface remote users to NASF.
 

11-3
 



One CDC CYBER device acts as the leader, holding and managing
 
the mass storage directories. Otherwise each mainframe acts as
 
a stand-alone processor working on its private job load. The
 
CDC CYBER devices must contend for shared local hardware.
 
Specifications for the proposed SPS are summarized below. Note
 
that word sizes (in the SPS) are 60 bits.
 

1) 	Two mainframe processors, each with 262K words of
 

central memory, 20 PPUs, 24 I/O channels, and 3-MFLOP
 
sustained computation rate.
 

2) 	 Four FMD disks--0.5 billion words total, 6-Mbit/sec
 
transfer rate sustained. Each disk cabinet contains
 
two disk spindles.
 

3) 	ECS--0.5 million words.
 

4) 	MSS--8 cartridge storage units, each with two
 
cartridge tape transports, holding a total of 16
 
billion words active, cartridges removeable, seconds
 
access time, 16-Mbit/sec transfer rate.
 

5) 	 12-Mbit/sec effective channel rate to LCN.
 

The main responsibility of the SPS station is to keep the FMP
 

well fed with new jobs. All computations done in the SPS, e.g.;
 
code compilation, coordinate space transformations (grid and
 
patch data), post-processing, are done with the intent that the
 
FMP need not be weighted down with extra work. In addition
 
each job can spend a large part of its processing or active life
 
"near" the user. This is important for the interactive user
 
both during code and input debugging, and post-processing
 
analysis.
 

1.1.2 The FMP
 

The huge computational load of the fluid dynamics problem (or
 
other numerical tasks which lend themselves to vectorization)
 
is assigned to the FMP. With an estimated computation rate of 1
 
gigaflop sustained, keeping the FMP waiting for other stations
 
is expensive. Up to 14 I/O channels (each 50 Mbit/sec) may be
 
connected to the LCN. The FMP acts as a slave to the SPS and
 
has no system responsiblities other than:
 

1) receiving files from DSK,
 
2) job computation,
 
3) 	 sending results back to the DSK station.
 

The 	FMP might also have the capability to compile source code
 
and do complicated pre-flow-code processing tasks. For example,
 
some grid generation computations are too lengthy to assign to
 
the SPS. In fact, simulation may show that the FMP has time for
 
considerable non-flow-code processing, if the SPS is too heavily
 
loaded.
 

11-4
 



1.1.3 The DSK
 

-The DSK acts 
as a storage buffer available to all-system
 
stations. The sixteen 819-21 disks presently proposed provide 1
 
billion words of storage, or a total of about one day's worth of
 
input/output for the FMP. Thus as a relatively large, fast
 

-access, fast transfer storage station, the DSK's
 
responsibilities are to:
 

1) act as a backup queue to the FMP;
 
2) hold snapshots of intermediate solutions of large
 

problems;
 
3) hold runs for possible same day restart;
 
4) transfer files to/from all other stations;
 
5) relieve other stations of current jobs' data bases.
 

The 819 disks are assigned to a number of dual-headed disk
 
controllers (two channels per controller). Each half of a
 
controller acts independently (with interlocks) allowing for
 
increased bandwidth.
 

1.1.4 The GRF
 

The GRF station allows visual setup and solution assessment at a
 
sophisticated graphics terminal. These terminals are tied into
 
individual minicomputers with processing capability. Several of
 
these terminals are concentrated together by a higher bandwidth
 
computer. Each concentrator is a GRF device with one channel
 
interfacing the LCN. The GRF responsibilities are to
 

1) allow user construction of configurations
 
(aeronautical test vehicles or parts thereof);
 

2) allow user to specify and construct flow fields;
 
3) analyze post-execution graphics frames;
 
4) be used interactively in the system;
 
5) transfer data to/from SPS and DSK.
 

Because this class of computer is much smaller than that of the
 
FMP or SPS, data is sen;t in .quar.ter,-.b,-ock-s using less-of its
 
central memory instead of full, 32K-word-blocks (64-bit words).
 
This station is intended mainly for the interactive aspect of
 
the aerodynamics input preparation/result analysis

11-5
 



1.2 The Loosely Coupled Network
 

The Loosely Coupled Network (LCN) is a communications scheme
 
which allows both large data bandpass and versatile station to
 
station connectability. The LCN centers on a number of bit
serial data trunks each with 50 Mbits/sec transfer capability.
 
Programmable Device Controllers (PDCs) communicate with each
 
other via the trunk system. Each PDC can connect with up to
 
four trunks. (each connection to a trunk by a PDC is called a
 
drop.) Each PDC connects to one device (via the PDC's backend).
 
In this way a geometry configuration can be set up to suit
 
nearly any designer's system philosophy. Figure 2 summarizes
 
the hardware involved.
 

The responsibility of the LCN is straightforward, i.e., to
 
handle all the communications load within NASF. For the job
 
load involved, this is a major task. The usage scenerio
 
dictates typical runs of very large data base jobs originating
 
away from the computational engine (the FMP). In many cases
 
significant portions of a job are passed between the GRF and
 
SPS for setup or post-execution analysis. Long-term storage
 
also resides far from the FMP in keeping with the FMP
 
philisophy. Thus, to meet turnaround requirements and to keep
 
the FMP "well fed", the LCN must be somewhat robust. For a
 
detailed.description of the LCN hardware please refer to
 
Division 4 of Volume II.
 

11-6
 



FMP CHANNELS SPS CHANNELS GRF CHANNELS 

PDCs 

TRUNKS : 

DROPS
 

PDCs
 

DSK CHANNELS
 

NOTE:
 

ONE TO FOUR DROPS PER PDC
 

A MAXIMUM OF 16 DROPS PER TRUNK
 

Figure 2. NASF Loosely Coupled Network
 



1.3 System Philosophy, Principles, and Groundrules
 

The NASF is a distributed system with major functional
 
capability in 4 discrete stations. The basic principle of
 
using this design effectively is to perform parallel operations
 
in these stations, i.e., simultaneous use of large amounts of
 
hardware.
 

Processing may be done simultaneously in the FMP, SPS, and
 
numerous stand-alone workstations. Parallel data transfers can
 
potentially include
 

FMP <---> DSK 
SPS <---> DSK 
GRF <---> SPS 
GRF <---> DSK 

such that from 1 to 12 (if the LCN has 12 trunks) transfers can
 
be moving on the LCN at the same time; six transfers at a time,
 

8 
for an effective bandpass of about 1.2 x 10 bits/see, would not
 
be unusual during peak demand. It should be noted that data is
 
organized into large blocks, matching the block structure of the
 
FMP Backing Store. Presently, such blocks are envisioned to
 
have 32,768 64-bit words (plus SECDED).
 

A simple groundrule which allows this effectiveness is the lack
 
of a central.supervisor or controller on whose word everything
 
awaits. Instead, each station governs its own action via its
 
private "operating system". There is no need for one station to
 
know what is happening in any other station. Data transfers
 
between stations are preceded by short request messages. The
 
FMP relies on messages from the SPS as to file locations and
 
destinations but the operations are asynchronous and
 
independent. Therefore devices, designed to be independent, see
 
only their respective PDC channels and the messages which go
 
through them.
 

System control, which resides in the leading SPS device,
 
assigns and schedules jobs as they enter the NASF. After this
 
point the job flows from one station to the next when the job

is ready to proceed and the receiver permits it. The control
 
is clearly not centralized. A system such as this, with much
 
concurrency and capability, can still be overloaded by huge
 
data base problems all crashing in the FMR, or mean loads whose
 
data transfer characteristics change suddenly. In principle
 
the system can be configured to handle nearly any workload as
 
long as the usage is reasonably understood and generally

predictable. In practice it would be enviable to have a
 
workload which has an assortment of data transfer-processing
 
time characteristics spread out uniformly through the day (i.e.,
 

the prime shift). In any case, the more accurate the usage
 
model, the more appropriate a resulting system configuration is
 
likely to be; and, the more simulation at different workloads,
 
the more reliable a system design.
 

11-8
 



System reliability against breakdown is the last basic
 
groundrule for the NASF, though not the least important. With
 
significant amounts of hardware in each station and the vitality
 
of each to the whole system, hardware redundancy is required.
 
Except for the FMP, each station necessary for system operation
 
has redundant devices, e.g., 2 CDC CYBER 175s, 4 disk
 
controllers, etc. LCN breakdown must not be fatal to the system.
 
Redundancy of device-to-device connections through the LCN can
 
easily be three deep.- The connection geometry must be designed
 
to cover any single hardware failure (device, trunk, PDC, drop),
 
and will, in fact, usually cover several multiple-breakdown
 
conditions.
 

The loss of one support processor, 2 disks, and a PDC, for
 
example, should not exclude the use of a healthy FMP. A good
 
system design must continue to servide the users, though perhaps
 
at a diminished effectiveness., under such conditions.
 

11-9
 



2.0 SIMULATOR CHARACTERISTICS
 

The system simulators (SYS82 and SYS83) are written in a
 
traffic-oriented simulation language, General Purpose.Simulation
 
System V (GPSS), in which transactions are serviced by the
 
functional blocks through-which they pass. Statistics may travel
 
with the individual transactions; they may be compiled within
 
each block; and/or they may apply to the whole system varying
 
only with the flow of time. GPSS- is appropriate here because 1)
 
the programs can be developed to nearly any desired degree of
 
detail and 2) the language is a standard simulation tool that
 
can be used by Ames or nearly anyone with a CDC6600 class
 
computer. Simulation is non-continuous at time resolutions near
 
1 clock period or less. For system simulation, a clock unit of
 
10 microseconds is used. This simulation should appear very
 
smooth and continuous to the user, accustomed to experiencing
 
the passage of time in seconds. Details of how to use the
 
simulators are found in Volume IV, Division 1 and 2 (Simulator
 
User Manuals); examples of using them as an analysis tool are
 
shown in sections 3 and 4 below.
 

2.1 Code Structure
 

2.1.1 Central Theme - LCN Mechanics
 

The GPSS source code is centered on the operations of the LCN.
 
The code is generalized so that the number of trunks, PDCs, and
 
drops per each PDC, and the network connection scheme are all
 
parameterized. These parameters are initialized at the
 
beginning of the run and cannot be changed during simulation.
 

A message transfer begins by entering the sending PDC if
 
available. The PDC, probably one of many on a given trunk,
 
waits its turn and then seizes the trunk. While the trunk is
 
taken, no other PDC can use it. After the message is sent on
 
the trunk, the trunk is released. Before the trunk is dropped
 
the receiving PDC answers "message received", "busy", or
 
nothing. No reply is sent if the PDC is out of operation or if
 
there was an error in the message transmission. Messages
 
receiving busy responses are retried next time around unless
 
preempted by a higher priority message in the sending PDC.
 
Transmissions that receive no reply are tried several times and
 
if still unsuccessful the system is notified of a perceived
 
hardware breakdown. This should not occur in sinulation, though
 
statistically it could.
 

Heavy loads may create a queue of messages for a given sending
 
PDC. This queue is ordered according to message priority, and
 
is first-in, first-out within a given priority. GPSS "keeps the
 
books" for the queues, and of hardware contention; no accuracy
 
is lost as the run becomes complicated (though CPU time can
 
grow).
 

11-10
 



PDC clocks are simulated at 10-microsecond increments. This
 
represents the typical time increment for the internal PDC
 
pointer that counts whose turn it is to t-ake the trunk. If a
 
particular trunk goes inactive, the appropriate clocks are
 
turned off until needed-, saving GPSS a lot of needless
 
simulation effort.
 

2.1.-2 Code Modules for Device Classes
 

Each device class is coded as a module. The modules contain a
 
library of functions and capabilities, which define the internal.
 
workings of a class. This includes reactions of a class to the
 
requests of other classes.
 

The DSK, FMP, and GRF modules are single, or nearly single,
 
function stations.
 

The DSK stores and transfers data. The simulation module allows
 
for one to eight dual-head disk controllers, each with a
 
stipulated number of attached disks. Disk specifications are
 
initialized at the beginning of the code. Each disk must be
 
reserved for a specific transfer and then will allow only that
 
data transfer. Other requests will receive "function busy"
 
responses until the awaited disk transfer is completed.
 
Contention for the disks can get quite complicated for heavy
 
loads. The "disk access time" graph and table (see appendix A,
 
pages 123 and 131 respectively, for examples) are sensitive
 
indicators of the level of contention.
 

The FMP receives jobs, processes them, and returns them to the
 
DSK. Limited communications between the FMP and SPS are also
 
carried -out. This module sets up the parallel transfers to/from
 
the DSK. Maximum parallelism is exercised. This means if there
 
are three I/O channels between the FMP and DSK, file transfers'
 
are split up into three groups. The FMP processor facility is
 
monitored automatically by GPSS. A queue buffers jobs awaiting
 
processing, i.e., a backing store. Only one job is processed at
 
a time.
 

The GRF acts very nearly like the FMP. It transfers files and
 
can be seized for processing. The GRF can transfer files to/
 
from the SPS in addition to the DSK. In processing mode it can
 
timeshare among users. The main difference is that a block
 
transfer is done in pieces instead of all at once. This is
 
simply because a 16-bit GRF concentrator most likely cannot hold
 
an entire data block in its memory. The size of the transfers
 
are stipulated and appropriate transfer tiaes calculated. There
 
can be from 1 toA4 GRF concentrators.
 

The SPS code is not nearly so modular. The SPS functions mingle
 
with the system's operating system, and so characteristically
 
the respective code fills the spaces between the LCN code and
 
the stations' code. The basic functions are modularized:
 
,seizing a-pe-rcentage of a mainframe processor and setting up
 
data transfers to the GRF or DSK. The details of
 

11-11
 



the data transfers are carried out in the "driven" devices, the
 
GRF and' DSK. Control responsibilities which permeate the entire
 
source code include all look up directories (e.g., message path
 
connections, disk allocation directory, etc.) and assignment of
 
jobs to specific hardware devices.
 

2.2 Macroscopic Assumptions: Special Notes Conqerning the SPS
 

Contention for shared hardware within the SPS is not modeled.
 
Such a model is a separate project that eventually needs to be
 
done. In the meantime the results of such a simulation has been
 
estimated (carefully guessed), and used for input to the general
 
system. These are called macroscopic assumptions. A four
 
parameter family then becomes the performance capability of the
 
SPS 	station.
 

1) Flop (computation) rate--This is the effective
 
a
computation speed of each processor. For CYBER 175s 


rate of 3 Mfl-ops is assumed. Compilation speed is also
 
included here. An accepted speed is 100,000 lines per
 
minute.
 

2) 	Effective channel rate--The PPUs have well known data
 
rates, but under a scheme of shared local disks, ECS,
 
and MSS, determining the effective channel rate for
 
large data blocks is not an easy problem. The
 
contention scheme is comparable in principle to the
 
total system contention scheme modelled in the LCN and
 
DSK. The PPU I/O rate is assumed to be the effective
 
channel rate; thus it is assumed that most of the
 
overhead will be hidden.
 

3) Program or task load--Each SPS processor is a time
 
sharing device. The order of task servicing is a
 
complicated question. Jobs get rolled in and out
 
depending on job memory and processing needs and a list
 
of other state-of-the-system (SPS) factors. The
 
macroscopic assumption is vastly simplified.
 
Parameterized separately is the continuous load due to
 
timesharing (workshop) users, load due to a data block
 
transfer, and load due to program compilation or
 
execution. These loads are percentages of each
 
mainframe's capability. For example, the simulations
 
in section 4 assign 20% for continuous workshop and
 
operating system load, 10% for data block transfer load
 
when such transfers occur, and from 15% to 70% for the
 
various compilation and execution loads. Demand on
 
memory is the main factor used in estimating these
 
loads.
 

11-12
 



4) SPS response time--this represents the time it. takes
 
the SPS as a system to respond to internal device
 
-requests, and to communicate the external requests to
 
its internal hardware. Thus, it is a macroscopic
 
representation of SPS overhead time to requests and
 
commands. It has not been determined if-such overhead
 
is of a significant time span and has been assumed to
 
be zero.
 

Clearly the simulation results rest heavily on these
 
assumptions. If later, more detailed SPS simulation shows
 
estimates to be incorrect it is reasonable to expect that
 
changes could be made in the SPS design to compensate.
 

11-13
 



3.0 THE SIMULATOR AS A TOOL
 

This section describes the different levels at which the
 
simulator can analyze a system configuration alternative.
 

3.1 Simulator Input
 

Three sets of data can be manipulated.
 

1) 	The system hardware, via a deck of card images, as
 
described in the User Manual (Volume IV)--this deck
 
allows the user to describe communications between
 
stations, network versatility, and hardware
 
duplication.
 

2) 	A set of input commands, another card deck, which
 
represents a job workload--each system job is
 
constructed from the following commands:
 

a) Transfer a file of blocks.
 
b) Send a very short message (=20 usec).
 
c) Send a random length message (0 to 1000 usec).
 
d) Seize FMP for processing.
 
e) Seize a percentage of SPS or GRF device for
 

processing.
 
f) Change priority of input which follows.
 
g) Assign arrival time for the next job of the same
 

class.
 

Typically from 10 to 20 input commands describe each
 
job. Up to 99 jobs can be input in one simulation
 
run.
 

3) 	A set of system parameters found at the beginning of
 
the GPSS source code:
 

a) Hardware parameters - DSK specifications, channel
 
rates, buffer sizes within the PDCs, and guidelines
 
for hardware duplication.
 

b) Software and firmware assumptions - block size,
 
interstation block transfer time statistics,
 
workshop load on SPS and GRF devices, load demanded
 
from SPS and GRF for block transfers.
 

Data sets 1) and 3) represent a system design to be tested. The
user should be careful to understand that the simulated results
 
represent the input designs and assumptions made in these data
 
sets. Thus a large responsibility rests with the user: to
 
understand and note the assumptions made, and to acknowledge the
 
inherent shortcomings and analytical shortcuts that result. For
 
example assigning one number, say 10%, to represent the load put
 
upon an SPS processor to transfer a 32K-word data block is an
 
oversimplification. The sensativity of the results to such a
 
macroscopic parameter should be understood. Extrapolation of
 
results can only be suggested after several similar
 
simulations.
 

11-14
 



3.2 Two Simulators
 

There are two levels of simulation detail (see Volume IV).
 
Source code SYS83 is a general purpose simulator whic.h studies
 
the whole system. In this code, system functions are modeled
 
macroscopically: block transfers, seizing processors for
 
seconds, contention by several/many jobs of the various system
 
resources. Functional detail in the SPS, FMP, and GRF is no
 
better than tenths of seconds. Detail in the DSK station is at
 
the millesecond level (seek times, rotation rates).
 

Source code SYS82 models message transfers in much greater
 
detail. Block transfers are done at a higher level of detail,
 
i.e., each sector is modeled. Buffering of sectors in the PDCs
 
is performed when station channel rates do not match, e.g.,
 
CYBER 175 and 819 disks. Thus the detail of the transfers is
 
nearly at the 10-microsecond level within the LCN. This
 
simulator yields accurate macroscopic specifications used in
 
SYS83 for block transfer times. In addition disk assignment
 
algorithms within the DSK can be compared.
 

Thus though the two simulators are used in tandem, the
 
responsibility of system analysis rests within SYS83.
 

3.3 Simulation Techniques
 

3.3.1 Full Run - Truncated Run
 

Simulation runs are performed in two modes.
 

Mode A: Simulation to completion of all jobs. This acts as a
 
full master listing-of an entire simulation. The system is
 
potentially seen under several conditions: start up, smooth
 
throughput, backed up, and clearing out at the end. Because of
 
the random nature of job arrivals, the end of such a run can be
 
greatly extended by a few jobs which arrived late. This
 
situation distorts the mean statistics of the simulation -- in
 
-some case quite badly (20%.). Yet such -an -o.vervsiew o~f the run is 
a good start.
 

Mode B: Simulating until an initially stipulated number of GPSS
 
transactions have been sent. This allows the user to stop the
 
simulation while the system is in a specific condition. For
 
example, with the help of the first master run (a Mode A
 
simulation), the user can stop the simulation at virtually the
 
minute chosen -- perhaps after 85% of the jobs have run and
 
another 10% are at various stages of completion. In this case,
 
the mean statistics are more valid. See User's Manual (Volume
 
IV, Division 1) for implementation.
 

11-15
 



In some cases, there may be an anomaly in stopping the system in
 
full flight in that some "facility" output may be incorrect,
 
i.e., "average utilization" and "average time per transaction"
 
for the FMP and SPSs may be wrong. In this case a simple hand
 
calculation from the individual job histories should yield both
 
the average sieze time per transaction (A) and the number of
 
transacations (N). Then, with the simulator stop time (S) from
 
the chronological history, the facility utilization is easily
 
Adeterm-ined.
 

Average utilization = (A*N)/S
 

A scan of the simulation history should make clear whether this
 
correction is needed.
 

3.3.2 Light Load - Heavy Load
 

Experience has shown that the first step in an analysis of a
 
given NASF design should be a set of simple problems. A general
 
analysis involves an understanding of a complicated set of
 
coupled resources and is simply not possible without first
 

understanding some of the basic principles that come out of each
 
system design. The light load - heavy load technique isolates
 
the interconnection design. It assesses the potential of the
 
trunk system and the conflicts therein.
 

A) Light Load
 

A light load is defined as a set of data transfers
 
which take- less time than the mean time between
 
transfer requests. This can occur either because of a
 
generally light workload, or because the workload is
 
dominated by processing time. -In these cases disk
 
conflicts., PDC busy replies, and trunk busy replies are
 
rare. The user sees the network reaction in best case
 
mode.
 

The relative interstation bandwidths, trunk loads, and
 
PDC loads show clearly. Communications balancing
 
problems should then become evident.
 

Appropriate data for these runs are parts of the
 
workload to be modeled later, e.g., Model #1 of the
 
Ames Usage Model, alone. These runs can also be used
 
to debug the workload data.
 

11-16
 



B) Heavy Load
 

A heavy load is a workload dominated by data transfers
 
numerous enough to saturate at least part of. the LCN
 
hardware. For example take the above light load input

and decrease all the job interarrival times.
 
Communications hardware with average utilizations of
 
70% or more are usually considered saturated or
 
partially saturated. If potential bottlenecks in the
 
LCN were not apparent before, they surely show here.
 
More importantly though, the system shows just how
 
heavy a load it can stand. The user- should note
 
decreased communication efficiency through a range of
 
loads.
 

At this point system reconfiguration may be deemed
 
necessary. If so, the light load - heavy load
 
technique is begun again. By the time this process is
 
complete the user should have a good understanding of a
 
proposed system.
 

3.3.3 Key Diagnostics
 

A completed simulation yields a history of all the jobs
 
executed. File transfers,, processing times, start job and end
 
job annotations are listed. A wealth of information is provided

in these listings. These provide a feeling for how the system
 
progresses through its various states. This running time
 
history helps the designer isolate particular resource demand
 
problems. System wide software algorithms, e.g., job priority
 
assignments, can be assessed. When all the information is
 
digested,the simulation can be a powerful tool.
 

The general simulation results are summarized by a few key
 
statistics. These can be scanned and digested easily.
 

a) FMP and SPS utilizations. Hopefully the utilization of 
the FMP is quite high which, as noted in section 4, is 

'the- -who-e- 4dea .o,f the NASF sys.tem.. On the other hand, 
the SPS should not be over-saturated. Overhead time
 
due to job conflicts would slow down the feeding and
 
finishing of jobs; .system throughput would diminish.
 

b) FMP and SPS queues. The FMP may build up a significant

job queue depth as long as the depth is not
 
monotonically increasing in time. A steady state FMP
 
queue will not slow down throughput. This is not true
 
of the SPS queues. Such a queue represents an
 
inability for the SPSs to keep up with the system

demands; thus slower system startup, finish,
 
turnaround, and throughput.
 

11-17
 



c) Trunk utilization. This should show if the LCN had any
 
trouble keeping up with the message and data traffic
 
workload.
 

d) Disk access time. The greater the number of cylinder
 
seeks required, the more the data transfer overhead,
 
i.e., the less efficient the DSK station. Such seeks
 
are due to file request conflicts to the disks, a
 
characteristic of a heavy communications load.
 

e) Mean block transfer time. Again this shows overhead due
 
to heavy data transfer loads. In this case transfer
 
time increases as a block awaits an open line on the
 
network. File transfer times also show backups in
 
extreme cases.
 

f) Throughput statistics. This is the bottom line of
 
performance to every simulation. Did the system finish
 
jobs as quickly as it gets them?
 

3.4 Trial Runs on Three Different LCNs
 

Three different NASF configurations, all with the same device
 
class hardware, have been tested. Figures 3, 4, and 5 show the
 
respective connection schemes for LCN1, LCN2, and LCN3
 
respectively. Trunks 1 through 4 are dedicated to FMP <--> DSK
 
transfers (if 4 are used). This bandwidth is a response to the
 
principle that a pipe to/from the FMP always be clear. This
 
includes the peak loads of checkpoint dumps, typically millions
 
of words. Trunk 5 is for the high priority SPS <--> FMP
 
messages and SPS <--> GRF data transfers (relatively rare).
 
Trunks 6 and 7 (when used) are for SPS <--> DSK and GRF <--> DSK
 
data transfers. Clearly not all the network hardware is used in
 
all three cases. The differences are simple: LCN2 has twice the
 
SPS <--> DSK and GRF <--> DSK bandwidth of LCNI. LCN3 has the
 
same SPS <--> DSK and GRF <--> DSK improvement, but half the FMP
 
<--> DSK bandwidth.
 

11-18
 



FMP SPS1 SPS2 2R 1R 

01 02 04 05 06 07 13 14 17 18 38 37 TRUNK 

1,-

1 23 

-
-

123 1 1 1 

12 112 

22 43, 2 

1 

_ 

1 

121 

26 27 

1 1 

;3 

_ 

_5 

12 

28 

1 

29 

1 

-
-----'-
-a 
-0 

--
-l i ° 

NO. 

I 1 FMP - DISK 
2 FMP - DISK 

3 FMP - DISK 
4 FMP - DISK 

s MESSAGES/BACKUP 

I 6 SPS - DISK 

F DISK
CONTROL L. 

DISK 
CONTROL 2 

DISK 
CONTROL 3 

DISK 
CONTROL 4 

Figure 3. LCN1
 



FMP SPS1 	 SPS2 G
 
'1: 2 1
 

01 02 04 06 06 '07 13 14 17 18 .38 37 TRUNK
 

- . 1 FMP - DISK 

"- 2 FMP - DISK 

-a 3 FMP - DISK 
-- 4 PMP - DISK 

-- 43 5 MESSAGES/BACKUP 
13~---1 6 SPSI - DISK 

D1-I7 SPS2 - DISK1 2
i 12 

22 2 24 125 2 121 8 2
 

D ISK  DISK DISK DISK 
CONTROL 1 CONTROL 2 CONTROL 3 CONTROL 4
 

Figure 4. LCN2
 



MOE piSPS2 GRFF RF 
1 2
 

01 02 03 04 '13 14 17 1378
 

1O 2 12 23 2 41 2 5 28 27 28 29 12
 

DISKDISKDISKDISK 
CTROLLER CTROLR OmOLR(CONTROLLER, 

*Fjig~ur..e 5. LCN3 

11-21
 



Simulation assumptions:
 

Block size: 64 sectors (each 512 words),
 
i.e., 32K words (64-bit)
 

CYBER PP rate: 12 Mbits/sec
 
Disk (819> transfer rate (sustained): 21 Mbits/sec
 
Trunk rate: 50 Mbits/sec
 
GRF channel rate: 2 Mbltstsec
 
-PDO buffer size for data transfers: 3 sectors
 
% load on SPS d-evice for data transfers: 10%
 
% load on GRF device for data transfers: 80%
 

LCNI
 
8
 

Under relatively light loads (input = 1.4 x 10 words/hr) it
 

was immediately obvious that the SPS <--> DSK bandwidth is not
 
balanced with that of the FMP <--> DSK which is 5 times faster.
 
Utilization of PDCs 14 and 18, the SPS's prime channels to DSK,
 
is about twice that of all other PDCs. PDCs 1-7 and 21-29 and
 
trunks 1-4 all have very comparable utilization averages.
 

Under heavier loads the SPS <--> DSK imbalance relative to the
 
FMP <--> DSK grows, until trunk 6 begins to saturate at around
 
70%. At this stage the SPSs are utilized 19% and 14%
 
respectively. With mean block transfer times doubled, the SPS
 

8 
station is clealy I/O bound by trunk 6. At 4.8 x 10 word/hr
 
all LCN hardware is less than 50% utilized except trunk 6 (71%).
 
This data load exceeds the needs stated in the Ames Usage Model.
 
Though trunk 6 is almost saturated the effective transfer rate
 
is well within data throughput goals.
 

LCN2
 

Now trunk 6 and 7 share the SPS <--0 DSK and GRF <--> DSK Load 
originally on trunk 6. Now SPS <--> DSK is only 2.5 times 
slower then FMP <--> DSK. This alleviates much of the excessive 
load seen on trunk 6 of LCN1. Otherwise system 

8
 
balance is identical to LCN1. At an input load of 4.3 x 10
 

words/hr (output = 1% of input; FMP processing times = 60
 
see/job Usage Model-Model#2), no part of the network has begun
 
to saturate! Trunk 6 is about 5-% utilized; trunk 7 is about
 
30-35% utilized. SPS utilizations have dropped to 7% and 3%
 
respectively. Job throughput and turnaround times improve by
 
about 10% for heavy workloads.
 

LCN3
 

Cutting the FMP <--> DSK bandwidth in half (otherwise identical
 
to LCN2) does not degrade system throughput or job turnaround at
 
all. The LCN hardware now looks well balanced with the FMP and
 
SPS having comparable bandpasses into the DSK. Even so, extra
 
system reliability, versatility, and the possibility of larger
 
checkpoint dumps prbmpt a preference for LCN2 over LCN3 though
 
at slight extra cost.
 

11-22
 



4.0 	 RESULTS FROM SIMULATING THE "NASF USAGE MODEL"
 

Two to three hour slices of the NASF Usage Model (version
 
79.001, from NASA-Ames) have been simulated on the three
 
proposed systems described in section 3.4. The multi-job, high
level simulator, SYS83 has been used.
 

Below, one example is presented in detail to show how simulation
 
analysis may proceed. Several other examples are referenced in
 
passing to help clarify basic points. It is important, though,
 
to understand that these represent first passes at using
 
simulation tools for the NASF. Much time and effort will be
 
required for a complete analysis.
 

4.1 	 Translation of Usage Model into Workload Input for
 
Simulator
 

The Usage Model translates fairly easily into simulation input.

Model guidelines are followed as closely as possible with one
 
exception. Model 4, "Complex Design Simulation"., jobs are
 
assigned entirely to the prime shift instead of 1/2 prime, 1/2
 
night. This choice is made with the intent of loading toward
 
worst-case simulation.
 

Fifty-nine Model #1, twenty-three Model #2, six Model #3, and
 
eight Model #4 jobs were simulated. This represents the average
 
job load of 2 hours during the prime-time shift. Specifications
 
are summarized below. Within each class of jobs the major
 
commands that represent that class are listed with letter
 
headings. For some letter headings job scenarios branch out into
 
one or more variations. Such branching is represented by a
 
multi-level number sequence added onto that letter (similar to
 
section or paragraph heading numbers).
 

The letters represent major steps in a job flow. The first
 
digit, if present after a letter, represents a branch or split
 
of jobs in that class. The second digit, if present, indicates
 
a sequence within the leg of the branch represented by the first
 
digit.
 

The flow of a job through the system is actually very similar
 
for all jobs. The variation is in the number and sizes of the
 
files involved, and the processing time required. Figure 6
 
summarizes the basic scenario.
 

11-23
 



FMP 	 S GRF 
(6) 	 ( ) (9) (10b 

I (2a)I 

000 	 1 1 -00 

Notes:
 

(I) 	 "Job execute" request enters NASE through SFS or GRE.
 
C(a) GRF files may go to 	SPS.
 

(2) SF3 compiles source 	code and/or preprocesses input data.
 
(2a) Continue to (3).
 
C3) SF3 and/or GRE files transfer to DSK.
 

('4) 	 DSK stores input files; load moule and input data.
 
(5) 	 Input files sent from DSK to FMP.
 
(6) 	 FM? executes job.
 
(3) 	 Result files sent from FM? to DSK.
 

(8) 	 DSK stores result files.
 
(9) 	 Some/all result files transfer from DSK to the SPS and/or
 

GRF.
 
(10) SPS post-processes result files for user analysis.
 
(10a) Post-processing results may go to GRF for display/
 

analysis.
 
(10b) Continue to (11).
 
(11) 	 Job returns to user at workstation; further analysis may
 

proceed on graphics hardware, a local processor, or the
 
SPS.
 

Figure 6. Typical Job Flow through NASF.
 

11-24
 



Model #1 Method Development (59 jobs). These jobs have small
 
processor demands (both SPS and FMP) but relatively large data
 
bases. Typically this is a three million word job which runs in
 
the FMP for 10 seconds, followed by the- retrieval of a dump file
 
or diagnostics.
 

a) 	 Job execution request arrives; interarrival mean
 
of' 120 sec.
 

b) 	 SPS compiles prepared source code. 30% of one
 
cYBER mainframe seized for 1 sec; then
 

c.1) 	 No wait - go to step d) (1-4 of 49 jobs).
 

c.2.1) 	 Wait 10 minutes ("think time") due to compilation
 
error and recompile as in b) (for 45 of the 59
 
jobs); then
 

c.2.2) 	No further wait - go to step d) (30 of 45 jobs);
 
wait 5 minutes ("think time") due to recompilation
 
error and recompile as in b) (for 15 of the 45
 
jobs); then
 

d) 	 Send Filel (load module - 1 block) to DSK; then
 

e) Send Filel from DSK to FMP, and
 

f) Send File2 (configuration - I block) from GRF to
 

DSK; then
 

g) 	 Send File2 from DSK to FMP, then,
 

h) 	 Request FMP for execution. The FMP checks for
 
arrival of files 1 and 2 and processes them for
 
10 sec as soon as allowable.
 

i.1.1) 	 Send File9 (debug dump file - 90 blocks) to DSK
 

(for 20 	of the 59 jobs), then
 

i.1.2) 	Send File9 Srom DSX to. SPS .(,same 2D jobs-) 

i.2.1) 	 Send File8 (edited results file - 2 blocks) to
 
DSK (remaining 39 of the 59 jobs), then
 

i.2.2) 	Send File8 from DSK to SPS (same 39 jobs).
 

i.2.3) 	 Request SPS processor for output/pictorial post
processing. Seize 25% for 40 sec (same 39 jobs).
 

j) 	 End job.
 

11-25
 



Model #2 Code Development (23 jobs). Similar to Model #1, but
 
the processor demand and data base is larger. Half of the jobs
 
require post-processing for graphics use. Typically an eight
 
million 	word job which may run in the FM? for 60 seconds.
 

a) 	 Job execution request arrives; interarrival mean of
 
300 sec.
 

b) 	 SFS compiles prepared source code. 50% of one
 
CYBER mainframe seized for 1 second; then
 

c.1) 	 No wait - go to step d) (6 of 23 jobs).
 

c.2.1) 	 Wait 10 minutes ("think time") due to the
 
compilation error and recompile as in b) (for 17 of
 
the 23 jobs); then
 

c.2.2) 	No further wait - go to step d) (11 of 17 jobs);
 
wait 5 minut'es ("think time") due to recompilation
 
error and recompile as in b) (for 6 of the 17
 
jobs).
 

d) 	 Send Filel (load file - 2 blocks) to DSK; then
 

e) 	 Send Filel from DSK to FMP, and
 

f.1.1) 	 Send File2 (configuration data - 2 blocks) from GRF
 
to DSK (19 of 23 jobs), then
 

f.1.2) 	 Send File2 from DSK to FMP (same 19 jobs)
 

f.2.1) 	 Send File2 from GRF to SPS (4 of 23 jobs), then
 

f.2.2) Request SPS device for configuration manipulation.
 
Seize 30% of one CYBER for 70 seconds; then
 

f.2.3) Send File2 (resulting transformed configuration
 
data - 2 blocks to DSK; then
 

f.2.4) Send File2 from DSK to FMP (same 4 jobs).
 

g) Send File3 (grid data - 19 blocks) from SPS to DSK,
 
then
 

h) Send File3 from DSK to FMP.
 

i) 	 Request FMP for execution; FMP checks for arrival
 
of files 1, 2, and 3 and processes them for 60
 
sec., as soon as possible.
 

11-26
 



j.1-.I) Send File9 (debug dump - 125 blocks) from FMP to
 

DSK (for B of 23 jobs), then
 

j.1.2), Send Fileg from DSK to SPS, and
 

j.1.3) Send the rest of File9 (125 
to DSK (same-8 jobs), and 

blocks more) from FMP 

j.1.4) Send this part of File9 from DSK to SPS. 

j.2.1) Send File8 (edited result files - 6 blocks) from 

FMP to DSK (12 jobs of 23), then 

j.2.2) Send File8 from DSK to SPS (same 12 jobs). 

j.2.3) Request SPS for output/pictorial post-processing. 
Seize 70% of one CYBER for 120 sec. (same 12 
jobs); 

j.2.4) Send File7 (output file - 4 blocks) from SPS to 
GRF (same 12 jobs); 

j.3.1) Send File8 (edited result files - 12 blocks) from 

FMP to DSK (remaining 3 of 23 jobs), then 

j.3.2) Send file from DSK to SPS (same 3 jobs). 

j.3.3) Request SPS for output/pictorial post-processing. 
Seize. 70% of one CYBER for 240 seconds (same 3 
jobs), then 

j.3.4) Send File7 (output file 
GRF (same 3 jobs). 

- 8 blocks) from SPS to 

k) End job. 

1127
 



Model #3 Simple Design Simulation (6 jobs). Engineer's
 
simulation job. 20% of the jobs have full blown configuration
 
and grid files. Some pre-processing short FMP run-60 seconds.
 
20% restart. Heavy post-processing for graphical use..
 

a) Job execution request arrives; interarrival mean
 of 24 minutes.
 

b.1) Proceed to- step c) (5 of' & jobs).
 

b.2) SPS compiles prepared source code. 70% of one
 
CYBER seized for 2 seconds (1 of 6 jobs).
 

C) Send Filel (Load file - 4 blocks) to DSK, then
 

d) Send Filel from DSK to FMP.
 

e.1.1) Send File2 (configuration patch - 4 blocks) from
 
the GRF to the SPS, (3 of 6 jobs).
 

e.l.2) Request SPS for configuration and grid
 
manipulation. Seize 70% for 240 sec (same 3 jobs),
 
then
 

e.1.3) Send File3 (transferred patch and grid data - 92
 
blocks) from SPS to DSK (same 3 jobs); then
 

e.T.4) Send File3 from DSK to FMP.
 

e.2.1) Send File2 (patch and grid setup - 4 blocks) from
 
SPS to DSK (3 of 6 jobs); then
 

e.2..2) Send File2 from DSK to FMP (same 3 jobs); then
 

e.2.3) Request FMP processing of patch and grid
 
manipulation. Seize FMP for 10 seconds (same 3
 
jobs).
 

f) Request FMP processing for flow code for 60
 
seconds.
 

g.1) No File9, go to step h) (3 of 6 jobs).
 

g.2) Send File9 (restart file - 220 blocks) to DSK for
 
temporary storage (1 job of 6)
 

g.3.1) Send File9 (raw results - 150 blocks) to DSK (2 of
 
6 jobs), then
 

g.3.2) File9 from DSK to SPS (1 of 6 jobs).
 

11-28
 



h) Send File8 (edited results file - 3 blocks) to DSK, 

then 

i) Send File8 from DSK to SPS. 

j) Request SPS processing of file 8 for pictorial 
results. Seize 60% of one CYBER for 200 sec. 

k) Null - reserved for Model #4. 

1) Send File7 (display file 
GRF for graphics study. 

- 2 blocks) from SPS to 

m) End job. 

11-29
 



Model #4 Complex Simulation Design (7 jobs). Engineer's
 
simulation jobs requiring significant processing time -- 10
 
minutes in the FMP, several minubes in the SPS for
 
pre-processing or post-processing or both. This model has the
 
heaviest total demand of time on the FMP (6.5 hrs/day).
 

Steps are identical to Model #3 except as noted below.
 

a) Mean job interarrival time: 15 min. (900 see.)
 
f) Request FMP processing flow code for 600 seconds.
 
g.2) Restart file - 310 blocks.
 
h) Edited results file - 8 blocks.
 
j) Seize 60% of one CYBER for 240 see.
 
k) Seize 60% of one CYBER for 240 sec. again.
 
1) Display file - 10 blocks.
 

The above represents two simulated hours of input during prime
 
shift. Mean job interarrival times are based on the assumption
 
that the prime shift is 10 hours long. Estimates for SPS
 
processing times have been made for code compilation, pre- and
 
post-processing tasks. The main difficulty is counting the
 
number of calculations required. An estimate of compilation
 
rates from past experience with CYBER 170 family is 100,000
 
lines of code/min. For grid and/or patch generation/
 

10 6
 
transformation, 10 calculations per 10 points is assumed
 
(quoted from Ames' Usage Model). For post-processing of result
 

7 
files 6 x 10 calculations per 4000 point contour plot (i.e., one
 
frame) is assumed (again from Ames' Usage Model). Each CYBER 175
 

6
 
is estimated to run at 3 x 10 calculation/sec when the entire
 
job is in its central memory. A 50% reduction in speed is
 
assumed if only 1/2 the job is in the central memory at a given

time.
 

At several junctures of the input design, estimates were
 
assigned. Examples are 20% continuous load on each SPS
 
mainframe for workshop timesharing, high estimates for SPS
 
computation times, and more restart and raw result files than
 
expected on average (by 60%). Thus, it appears likely that a
 
heavier than average primeshift workload, is being simulated,
 
though not an unlikely load.
 

4.2 An Example Simulation
 

A truncated run (Mode B), lasting 7650 seconds, is described
 
here as a typical example of a system evaluation via simulation.
 
LCN2 was used as the baseline configuration. The run follows
 
all specifications listed in section 3.4 and section 4.1 with
 
one exception: SPS compiling and processing times have been
 
lengthened by 50% as a tradeoff for demanding half as great a
 
processor resource load. For example, a 120 second job requiring
 
70% of an SPS processor is converted to a 180 second job
 
requiring 35% of the processor. This allows much greater
 
processing versatility within the SPS, but at the same time
 

11-30
 



implies a much greater SPS computation power. Specifically,
 
instead of a pair of 3-megaflop/sec machines as described in
 
section 1.1.1, now a pair of 4.5 to 5-megaflop/sec machines are
 
being modeled. This SPS "horsepower" parameter is varied
 
throughout the family of simulations from this-high rate down to
 
a minimum of 2 -megaflops/sec.
 

This simulation took approximately 700 CPU seconds on a Cyber
 
175. For a full listing of the results see appendix A. The
 
amount of information contained in a run like this is quite
 
large, though not unmanageable. With time it is reasonably
 
digestible, as hopefully the reader will see in the following
 
presentation.
 

4.2.1 Characteristics of the Run
 

4.2.1.1 Job Arrivals
 

Though job arrival specifications are-quoted in the usage model, 
actual job arrival times have a random nature. Thus for a given 
run these-arrival times are unique. Figure 7 shows the job 
arrival rate distribution throughout the 2 hour simulation. This 
distribution is plotted by taking mean arrival rates each 15 
minutes. The mean of 20.2 jobs per 30 minutes is 16% less than 
the 24 jobs expected; but by far the most demanding job class, 
Model #4 "Complex Design Siculation", was fully represented. 
Perhaps a more characteristic number is the actual load demand 
for the FMP versus-the expected demand: 93%. This is not to be 
confused with the FMP utilization. Arrivals of these demanding 
and important Model #4 jobs are marked by arrows in figure 7. 
Note - 1) the close arrival of two of these jobs near clock time 
1100 seconds, and 2) the arrival of three of these jobs within 
10 minutes of each other at 1 hour wall clock time. 

304 

w 

20. 

10.
 
O MEAN = 20.2 JOBS/30 MINUTES
 

0 - I . I - I I I 

0 1000 2000 3000 4000 5000 6000 7000 8000 

WALL CLOCK TIME (SECONDS) 

Figure 7. Job Arrival Rate 

11-31
 



4.2.1.2 SPS Utilization
 

Figures 8 and 9 summarize the utlization of the SPS.resources
 
due to program compilation and execution. Three characteristics
 
of interest are clear:
 

1) 	The spacings in time of general loads shows the results
 
of the job to device assignment al-gorithm. This
 
algorithm is quite simple: When a job enters the NASF
 
it is assigned to the SPS device whose central
 
processor and memory are least loaded. Under equal
 
loads SPS1 wins the honor. So, in general, without
 
deference to looking ahead, the SPSs ping-pong the
 
responsibility back and forth. In this run the SPSs
 
complement each other well.
 

2) 	The sharp upward spikes seen, especially in the SPS1
 
utilization graph, show the quick response it has to
 
demands. The general lack of broad blocks along the
 
time axis for large loads represents very good CPU
 
availability. Arrows point to times when a job enters
 
the 	processor after having been blocked out. They are
 
rare and short lived.
 

The 	continuous block of time at 20% represents the
 
timesharing load.
 

3) 	The required load assumed for block data transfers,
 
when they occur, is 10%. The near absence of SPS
 
utilization greater than 90% shows that file transfers
 
are rarely held up by the CPUs.
 

11-32
 



100 7 

80 

2c. 70

60
50 

2 40 
LU 
L,
 

w 30
 

20 

10 

0- - I I I I - i 

0 1000 2000 3000 4000 5000 6000 7000 8000
 

WALL CLOCK TIME (SECONDS) 

Figure 8. Utilization of SPS1.
 

Arrows represent jobs which were originally blocked out of the
 
processor.
 u 

100 


90 4,
so -_
80 

70
 

60
 

50 

z 40
"a 

Z 30

20 

10-


0-I I I I tI 

0 1000 2000 3000 4000 5000 6000 7000 8000 

WALL CLOCK TIME (SECONDS) 

Figure 9. Utilization of SPS2.
 

Arrows repr-esent jobs which were originally blocked out of the
 

processor.
 

11-33
 



4.2.1.3 The FMP Execution Queue
 

The driving philosophy for a well-used NASF is to keep the FMP
 
busy. A view of the FMP execution queue is a good diagnostic
 
for seeing if the workload is going to adhere to this point.
 
Figure 10 shows the queue for this run. In general, the queue
 
is well fed with a mean depth of 5.33 jobs.
 

The graph shows that, on this job mix, the FMP can keep up with
 
.the job load by emptying the job queue several times.
 

The driving force in building up the FMP queue is undoubtedly
 
the beginning of an FMP execution on a Model #4 job. Arrows in
 
figure 10 show these execution start times. The executions are
 
10 minutes long, and can easily cause the queue to grow by 10
 
jobs. Notice also how these Model 4 jobs have now spread out
 
from one another in time This is inevitable, though the actual
 
spacings can be considerably widened or partially thinned by
 
using the job priority cards mentioned in section 3.1.2.
 

4.2.1.4 FMP Utilization
 

As the reader should be able to predict from seeing the FMP
 
queue results, utilization of the FMP processor should be
 
relatively high. Utilization is, in fact, a healthy 86%. Please
 
note figure 11. Startup time accounts for 5% of the unused
 
resource; this overhead need not occur again during the day, Of
 
the FMP time not used, 7% is due to the less than expected
 
demand caused by the job arrival statistics (93%). Thus at
 
"simulation stop" the FMP is about 7% behind. Such a number is
 
somewhat sensitive to stop time; at 7000 seconds the number is
 
about 4%. Only durins the period from 5400 to 67f00 seconds does 
the FMP load get "seriously" behind.
 

The reader should note that in appendix A (page 120) the FMP
 
utilization statistic has been corrected by hand. This
 
simulation run stopped in "full flight" (i.e., a truncated run)
 
and thus the 46% FMP utilization printed seemed suspect. After
 
checking individual job histories as described in section 3.3.1,
 
this utilization was appropriately corrected. Under such
 
circumstances other facility statistics must also be checked for
 
consistency. In the case cited only the FMP utilization
 
statistic was spurious.
 

4.2.1.5 Throughput and Turnaround Statistics
 

Figure 12, showing the throughput graph, reflects the results of
 
the previous 5 graphs. In addition, it shows vividly the one
 
discouraging point in this example: job turnaround times are
 
neither consistent nor very fast. With the throughput rates
 
varying as they do here, it must seem at times as though the
 
system has gone to sleep. The fact is that at these lull times
 
in the throughput (clock time from 4000 to 6000 seconds), the
 

11-34
 



0 

0 

20 

4~1544444 {4 

w 10 

w 

o 

01 
0 1000 2000 3000 4000 5000 6000 7000 8000 

WALL CLOCK TIME (SECONDS) 

Figure 10. FMP Execution Queue. Arrows Mark the Beginning
 
of FMP Execution on a Model 4 Job.
 

FMP 
IN 
USE
 

FMP 
NOT IN-) 

USE 0 1000 2000 3000 4000 5000 6000 7000 8000 

WALL CLOCK TIME (SECONDS) 

40 Figure 11. FMP Utilization 

30 

20 

10
 

1000 2000 3000 4000 5000 6000 7000 8000 

WALL CLOCK TIME (SECONDS) 

Figure 12. Job Throughput. Arrows Mark the Completion of
 
Model 4 Jobs.
 

11-35 

0 



FMP, as shown in FMP queue, is very effectively running at full
 
tilt. Throughput has slowed because three Model #4 jobs, 1800
 
FMP seconds, are being processed. This blocks out many jobs, as
 
manifested by the growing queue. -Near clock time 300.0 and 7000
 
seconds notice how quickly the system finishes jobs after the
 
FMP has stopped queuing them. This shows the rapid response of
 
the communications network, DSK and SPS, and is very
 
encouraging.
 

Arrows in figure 12 denote job completion times for the Model 4
 
jobs. Comparison with figure 7 shows the turnaround time for
 
these jobs: 34.3 + 8.0 minutes. This time includes 10 minutes
 
of FMP processing and 13 minutes of SPS pre- and post
processing. Such an impressive turnaround statistic is dearly
 
paid for by the turnaround rate of the other three job classes.
 
Note table 1 below.
 

Table 1. Turnaround Statistics
 

Turnaround time CPU time 
Job + sample standard required 
Class deviation (FM? and SPS) 

Model 1 18.5 + 8.7 min 51 + 1 see
 

Model 2 23.8 + 10.8 min 3.9 +-2 min
 

Model 3 29.7 + 11.1 min 8.0 + 2 min
 

Model 4 34..3 + 8.0 min 23 + 2 min
 

The final throughput mean for the run, 16.5 jobs/30 min (or 33 
job/hr; see last page of listing in appendix A) is somewhat 
misleading for two rather coupled reasons. First, some ten jobs 
are well into the system and are partially completed. They are 
not included in this statistic, nor in the last point on the 
throughput graph. Second, a Model #4 job finished FMP exetn 
at clock time 7533 seconds, 2 minutes before "simulation stop",
 
and has left a building FMP execute queue behind. Thus, just as
 
an FMP blocking condition was showing its bad side, i.e.,
 
diminished system throughput, the simulator stopped.
 

4.2.2 General System Response
 

During 2 hours of simulation forty-four Model 1, fifteen Model
 
2, four Model 3, and seven Model 4 jobs were begun and
 
completed. An additional fourteen jobs had begun of which 10
 
were well on their way to completion. A total of approximately
 

8
 
1.5 x 10 64-bit words traveled within the LCN; in most cases
 

12
 
they traveled twice - both to and from the DSK. Over 6 x 10
 
floating-point operations were performed in the FMP and another
 

10
 
5 x 10 floating-point operations within the SPS. These
 
numbers, according to the Ames' Usage Model, represent a typical
 
load during a two-hour period.
 

11-36
 



Aside from the FMP, no syst-em hardware is backed up. The SPS
 
mean utilizations are 47% for SPS1, and 45% for SPS2. GRF
 
utilization is entirely due to workshop usage. The bit-serial
 
data trunks are in no case more-than 10%utilized. PDCs ranged
 
from .2%-to 9% usage. The majority of disk seeks are sector
 
selects or minimum cylinder selects. In short, there were no
 
traffic complications due to data transfers. Files of up to 10
 
million words were transferred in 14 seconds (e.g., Job #97; FMP
 
--> DSK). The longest time for a file transfer was 100 seconds
 
for 5 million words from the DSK to SPS (Job #96).
 

4.2.3 Variations on the Example
 

4.2.3.1 Different Arrival Statistics
 

Simulations were run with a different set of actual arrival
 
times; all interarrival mean times were left unchanged. Though
 
basic results were the same, one point was greatly clarified.
 
The arrival profile of Model 4 jobs is the driving force in the
 
system utilization. When these jobs are sparse, the FMP
 
utilization drops to a value necessary to meet needs. For
 
example, in one case an arrival rate for Model 4 jobs, 3.0
 
jobs/hr (compared to 4.0/hr in the above example), resulted in
 
an FMP utilization of only 70%. In that case the FMP queue
 
averaged only 2.3 jobs, and the system never had trouble keeping
 
up - nor should it have.
 

4.2.3.2 Different 'CN Geometry
 

Comparable, in some cases identical, workloads and arrival tines
 
were run through LCN1 and LCN3. Since the LCN is so lightly
 
utilized, no appreciable difference on system response is
 
expected (see light-load/heavy-load description in sections 3.3
 
and 3.4). LCN 3 showed no difference in general system
 
utilization. Throughput turnaround, and processor utilization
 
were virtually identical. Utilization of Trunks 1 and 2 doubled
 
to 4% along with the utilization of PDCs 4 and 5. LCN1 showed
 
slight degradation in throughput, and file transport times
 
between the SP and DSK. These transfer times were increased
 
because Trunk 6 has to service both SPS1 and SPS2 paths to the
 
DSK. Trunk 6 utilization went up to 17%. General system
 
response was still very similar.
 

11-37
 



4.2.3.3 Effect of Change in SPS Performance and Load
 

The SPS processing load was arbitrarily decreased by 50%. This
 
lead. to an interesting result: The only differences in system
 
response were:
 

1) SPS utilization diminshed by the appropriate 
amount, 

2) turnaround times were slightly decreased. 

Throughput, FMP utilization, and the FMP queue profile were
 
essentially unchanged. This shows that the SPS setup and
 
post-processing work is entirely hidden by the FMP workload.
 
Support work done elsewhere in the NASF does not degrade the
 
efficiency of the system, except during system startup. Thus,
 
in this case, system efficiency is synonymous with FMP
 
utilization.
 

SPS performance was then degraded by varying amounts: 2 devices
 
of 3-megaflop/sec computation rates each, then computation rates
 
of 2.5 megaflops/sec each and 2.0 megaflops/sec each. Though
 
the demands on the SPS devices increased, the SPS did not
 
saturate. For 2.0-megaflops/sec devices the utilization bulged
 
to 71% for the lead SPS device and 66% for the backup. The
 
average depth of the SPS execution queues were 1.1 and 0.7 jobs,

respectively. The job throughput and FMP utilization were
 
essentially unchanged. Average turnaround per job was longer
 
due to the slower pre- and post-processing times, as expected.
 
The interesting point is that no added system overhead was
 
injected. The SPS work is still almost entirely hidden under
 
the-FMP work. As the SPS computational horsepower falls below 2
 
megaflops/sec this will no longer be true, for at that point
 
saturation is about to set in.
 

4.2.3.4 Effect of Changing the Priority of a Job Class
 

One simulation was done with Model #4 jobs given lowest priority

relative to the other prime-shift users. Two obvious results
 
were noticed. Total job throughput went up by some 30% at the
 
expense of Model #4 throughput which decreased by about 20%.
 
Turnaround times for jobs of models #1, #2, and #3 were also
 
improved significantly at the expense of Model #4 jobs. Demands
 
on the SPS data trunks, PDCs, and disks were unchanged. But the
 
FMP utilization, and thus the use of the system, decreased to
 
75% (down from 86%). Whether this trend is general or is a
 
statistical fluctuation that would disappear with several runs
 
is simply not clear at this time. The tradeoffs between the
 
Model #4 jobs and the other jobs is clear, though more runs
 
should yield more accurate performance tradeof s. In any case,
 
such hypotheses are easily tested via liberal use of the
 
simulator.
 

11-38
 



4.2.3.5 Simulation of the Night Shift Workload
 

A two-hour simulation of the night shift (Usage Model job
 
classes 5, 6, and.7) has also been done. All data transfers
 
were modeled (e.g. 75 million-word restart files). Post
processing of the Model #6 and Model #7 "contour movies" was
 
left out. A simple calculation shows that during a 10-hour
 
night shift, the movie processing demand on the SPS is simply
 
too great: 

7 
movie flops 

night 
= 7500 frames x 

night 
10,000 pts x 6 x 10 flops 

frame 4,000 pts. 
x _ 

10 hr 

12 
= 1.125 x 10 flops/10 hr or 31.3 megaflops/sec. 

Obviously this user demand causes concern for it ottbalances any 
other SPS demand stated by the Usage Model. by at least an order 
of:magnitude. A system that meets this demand outside of the 
FMP will have excessive horsepower for the remainder of the day. 
And it is not clear at this time that such a task does not
 

belong in the FMP.
 

With this one point aside, the system had no problem with the
 
traffic flow problem.
 

FMP Utilization 87%
 
SPS1 Utilization 12%\ No workshop usage.
 
SPS2 Utilization 2%/
 
Trunk 6 Utilization 11%
 
All other-trunks 1%
 

In other words the- system was wide open and the FMP was well
 
stocked with work.
 

4.3 Conclusions
 

This family of examples addresses only the first pass of system
 
evaluation. The results pose new questions. For example at
 
what cost can turnaround times for the more numerous "simple"
 
problems be shortened? Can throughput be more consistent in
 
time? How heavily utilized can the SPSs be before system
 
efficiency is significantly diminished? Clearly, the system
 
designers could simulate for years playing with job priority
 
algorithms, workload arrival scenarios, keeping the number of
 
jobs executed unchanged. At some juncture the tradeoffs
 
demanded by the needs of different job classes will be assessed,
 
invariably yielding some new questions and tradeoffs.
 

Some truths have come from this first pass simulation which are
 
maxims to the Ames concept of the task to be done and the
 
machine that is to do them.
 

-11-39
 



1) 	The NASF as proposed in this paper has no system
 
bottlenecks other than the FMP. Job functions
 
peripheral to the FMP processing are entirely
 
hidden by the FMP operations so long as. the
 
workload is sufficiently heavy to keep it busy.
 
Thus, for the present Usage Model, system
 
efficiency is the FMP utilization.
 

2) 	Twenty hours of FMP computations cannot, in
 
practice, be done in twenty hours. Aside from
 
system start-up and wind-down time, aside from
 
breakdown possibilities, if the FMP ever goes idle
 
during the running day that time is lost, never to
 
be recaptured. According to the present Usage
 
Model a certain random nature in job arrivals
 

seems evident. This simply implies a high
 
probability that at some time(s) during the day
 
the job arrival profile and the load within the
 
system will not keep the FMP busy.
 

3) 	To obtain high throughput the FMP must be highly
 
utilized. In practicality this requires
 
substantial qdeuing activity for the FMP, i.e., a
 
healthy FMP execute queue. Thus for a system
 
workload which demands high FMP utilization, there 
is a tradeoff between throughput and job 
turnaround. Simulation shows that the greater the 
extent to which the FMP queue is kept non-empty, 
the greater the system throughput. Such queuing 
clearly cuts down on job turnaround. 

A particular class of jobs may occupy the queue
 
for relatively long periods of time (a good 
possbility) or the general user community 
(average) job may occupy it for a somewhat shorter 
period. Unfortunately, high throughput for one
 
class of jobs may create long turnaround for jobs
 
of another class. Conversely, large volume of
 
short turnaround jobs decrease FMP utlization and
 
throughput.
 

This simulation has also identified some possible system
 
difficulties. Though the system concept seems very encouraging,
 
playing the devil's advocate is always fun: two thorns are
 
foreseeable. First, results to date are based on a very sketchy
 
understanding of the capabilities of the SPS system and the load
 
it must carry. Assumptions and guesses have been clearly stated
 
in sections 2, 3, and 4, but it is conceivable that they are not
 
better than 50% accurate and perhaps worse. Second, what if one
 
SPS device should break down? This is certain to occur on
 
occasion. According to present simulation runs, one SPS could
 
not handle the entire load. It could, however, do a reasonable
 
job if the workload were diminished somewhat. Simulation of such
 
a situation remains to be done.
 

11-40
 

C-7
 



$S$S$5 $55$55 S$SS$$S 5 $ $5 55 $sS$S$$5 $ $ 
$s S$ St S$ 5$ $s $s $s $S S$ is 

$5 5$ s $5S$$ S$ 
$5 $$$S$ 5$ $$S$$$$$ $ 

$5 
5$ 

5 
555555$ 

S$S S$$ 
$5S$$$5S 

$5 55 55 $55 $5 S 
is s$ s $5 $5 5$i$ 

$5 55 
5 

55 1 St$ 
5s ss 

$s SS $5 5s i$ ss $ $ S 5s 5s 

$5$S$$ $*$$$S 555555$S is s $ SS55 SSS5$ St $s 

SUMMARY OF SYSTEM CONFIGUHATION INPUT DATA 

1. 01.14.1,23,1,6,1 FEI/UISKI 
2. 01.13,2,23.2,7.2 
3. D1.13,.,22,2,b,3
4. OZ.14.1,25,10bt1 FEI/OISK 2 

5. 02.13.2,25,2,7.2 In 
6. 02,13.1,24,2,b,3 
7. 03.14.I,27.1,6.1 FEI/OISK 3 
8. 03.13.2,27.2,7.2 H
9. 03.13.1,26,2,S.3 
10. 04.14,1,29.1,6.1 FE1t/ISK 4 s 
11. 04.13.29.2,7.2 
12. 04,13.1,28,2.6,3 rJ3 
13. 01.18.1.23,2.,1 FE2/OISK i 1-I 
14. 01.17,2,23,1,b,2 S 
1S. 01,17.,.22.2,b.3a
16. 02F18,h25.2,7.1 VE2/DISK 2 t-' 
17. 02.17,2,25.1,6,2 . '0 
18. 02.17,1,24,?,5,3 H '0 
19. 03,18.I027,231.1 FE2/DISK 3 o (D 
20. 03.17,2,27,1,2 O 
21. 03.17.1,26.2,5.3 0. 
22. 04,I8.,29,2,7t1 VE2/LD1SK 40 I
23. 04,17,2.29,1,6,2 a x 
24. 04.17.1,28,2,53 H 
25. 11.04,1.22.1,1.1 FMP/DISK I t . 

26. l1.02.1,22.2,6.2 
27. 11.02.2.23,2,7.3 H
28. 12.05.1.24.1,201 FPADISK 2 
29. 12,02.1,24.2,5.2 m 
30. 12,02.2,25.2,73 
31. 13,06.1.26.1,3.1 F$P/DISK 3 
32. 13,02.1,26,2,5.2 S 
33. 13,02.2,27,2.73 
34. 14,07,1,26,1,411 FMP/DISK 4 r 
35. 14.02,1.28,2,5.2 m 
36. 14,02,.2,2,7.3 
37. 10.13,1.01,1,5,1 FEI/FMP 
38. 10.13,1,02,1,b,2 
39. 10,14.1,01.2,6,3 
40. l T017,1,01,1,bl FE2/FMP 
41. 10,17.1,02.1,0,2 
42, 10.Id,1,02,2 7.3 
43. 21.37.23.2l.1 GRFI/DISKI 
44. 21.37,.122.2,5,2 
45. 22,37.2,5,2,7.1- GRFI/OISK2 
46. 22,37.I,24,2,b,2 
47. 2337.2,ZTT,2,711 GRFI/01SK3 
48. 23,37,1,26.2,2 
49. 24,37.2,29.2,7,1 GRF/DISK4 



N) 

50. 24.37.h,28,2,b.2
 
51. 21.382,23,1.6.1 GRF2/DISKI
 
52. 21.38i1,22,2b.2
 
53. 22318,2,25.1.611
 
54. 223,3.24,2,5.2
 
55. 23.38,.27.1t.1
 
56. 23.31.1.26,2b12

57. 24,39.2.29.1.6,1
 
58. 24,38.1,20,2.b.2
 
59. 01,*3tlt FEI/GRFI
 

60. 20.13.37.2,712

61. 20.17,1.37,1,501 FE2/GRF1
 

62. 20,18.1.37.2,7.3
 
63. 20.13,1,38.1.511 FEI/GNF2
 
64. 20,14.,38,2,6,3

65. 20.17,1,38.1.b.I FE2/GRF2
 
66. 20.17,2.30.2.,2
 
67. 0.0.0 ,0.00.0
 

SUMARY OF MESSAbE TRAFFIC INPUT DATA
 

1. I0.0.120.2.0. MODEL I-INIEHARRIVAL TIME MEAN IF IPO SiCOOI00
 
2. 10,6111,15.0,600 ISEC A8ORTED SPS COMPIL-N - WAIT I0 WIN. 000110 
3. 10.61.1.15,0,-I SPS COMPILATION OF SOURCE CODE-1 SEC. - 000120 
4. 11.o010,i-i FILEI-LOAD MODULE ISKI SPS -- OSK. 000130 
5. 11,10.O.11.O FILE) DSK (-- FMP. 000140
 

6. 12,21,00,.1,- FILE2-CONFIGArION IOKI GRF <--> USK. n00|50
7. 12,10.1,.1I,-l FILE2 DSK <--> FMP. 000160
 
8. 10.60.10,0,2.-1 FMP FLOW CODE PROCESSING - 10 SFC. o0ol7
 
9. 10t0t0,2- FILEh-HESUtTS FILE 60KI FMP 1.-> riK. 00IOpl0 
10. l8.1.9.l,2-l FILER DSK A-, SPS. 000190
 
11. 10,61.60,12,1-1 SPS PUST-PRUCESSINGIO SEC-Pb% I)An. 000200
 
12. 1O.0D0,0 0 JOB RUN COMPLETE. l00210
 
13. 20.0,l20, .O0 MODEL I-INTERARRIVAL TIME MEAN OF IO SFCOOOP20
 
14. 20.611.15.0,6o00 ISEC ABORTED SPS COPILIN - WAIT 10 M14. 000230
 
15. 20.61.l15.0o-300 ABORTED COMPILATION AGAIN- WAIT 5 MTN. O00P4o
 
16. 20,61,1,15,0,-1 SPS COMPILATION OF SOURCE CODE-I SEC. 000250
 
17, 21..0O.0,1,-l FILEI-LOAD MODULE I5KI SPS 1--> DSK. 000260
 
IU. 2i,0.0l.1.0 FILET DSK <-> FMP. 000270
 
19. 2.21.0,0.1.-I FILE2.CONFIGATION IOKI GAF --. 0SK. 000280
 
20. aetOl.I.-I FILE2 D0K I-,> FMP. 000290
 
21; 20,60.10.0,2, l FMP FLOW CODE PROCESSING - I SEC. 000300
 
22. 2..0.0.0,2,-I FILES-RESULTS FILE 6OK FMP 4-1 DS. 000310
 
23. 28,1.0.I,-1 FILER DSK <--> SPS. 000320
 
24. 20.61,60,12,1--l SPS POST-PROCESSINGI4O SEC-25% LOAD. 000330
 
25. 20.0,0,0,0,0 JOR RUN COMPLETE. 000340
 
26. 30.0,120,,.00 MODEL .- INrERARRIVAL TIME MEAN OF 12O SECO00350
 
27. 30,61,1,15.0.-1 SPS COMPILATION OF SOURCE CODE-I SEC. 000360
 
28. 31.1.0,0,1,-I FILEI-LOAD MODULE ISKI SPS -- > 0SK. 000370 
29. 31.100.1.l.0 FILEI USK <'- FMP. 000380 
30. 32.21,0,0.1,-1 FILE2-CONFIGATION IONS GRF <--i 0SK. 000390 
31. 32.10.0,1.1.-I FILE2 DSK <- FKP. 000400
 
32. 30.60,10.0,2,-1 FMP FLOW CODE PROCESSING - 10 SEC. 000410
 
33. 38,10,0.0,2.-1 FILES-RESULTS FILE 60K3 FMP <--> OSK. 000420
 
34. 38,I0 .l2.-I FILER DSK <--> SPS. 000430
 
35. 30,61,60.122l--l SPS PUST-PROCESSINGI4O SEC-25% LOAD. 000440
 
36. 30,O.0.00, JOB RUN COMPLETE. 000450
 
37. 40.0,120..0.O MODEL 17?NTERARRIVAL TIME MEAN (IF 120 SECOOO460
 
38. 40,61.1,15,0-600 1 SEC ABORTED SPS COMPILIN - WAIT 10 MIN.000470
 

http:30,O.0.00
http:30.0,120,,.00


39. 49,61,1115,01 	 SPS COMPILATION OF SOURCE CODE-I SEC. 000480
 
40. 41,lO.00.11-1 	 FILEI-LOAD MODULE ISKI SPS ¢.-- DSK. 000490
 

41. 41.O1,01.1.0 FILEI DSK <--> FMP. 	 000500
 
42. 42.21.0#0.1.-I 	 FILE2-CONFIGATION 1OKI GRF <- DSK. 000510 
43. 42.10t.1tI.-I FILE2 OSK <--> FMP. 	 000520
 
44. 40,6O.10,0.2.-I 	 FMP FLOW CODE PROCESSING -'10 SEC. 000530
 

n--i 00054045. 49.10.0,0,90.-I 	 FILE9-DEBUG DUMP 3MI FMP ASK. 

46. 49.1.0,1,90.-I FILE9 0SK 4-.-,SM. 	 000550
 
47. 401.60.12,1.-I SPS POST-PROCESSINGS40 SEC-25% LOAD. 000560
 
48. 40,0,0.0.0,0 JOB RUN COMPLETE. 	 000570
 
49. 5O0,0I20.1.0. 	 MODEL I-INTERARRIVAL TIME MEAN OF 120 SECOOO5SO
 
50. 50.6lI.15.0,.600 I SEC ABORTED SPS CONPIL'N - WAI 10 M1000590
 
51. 50.61,1.15,0,-l SPS RECOMPILATION OF SOURCE CODE-I SEC. 000600
 
52. 511.0.Ool,-I 	 FILEI-LOAD MODULE ISKI SPS 4-. DSK. 000610 

53. 51,10.,1.1.O FILEI 1SK .- > FMP 	 000620 
54. 52.21.0,0,1Il 	 FILE2-CONFIGATION 101l GRF -. OSK. 000630 

55. 52,I0,001 -IdiI FILES DSK .-., FMPO 	 000640
 
56. 50,60,IO.,Rl1 FMP FLOW CODE PROCESSING - 10 SEC. 000650
 
57. 58.1O.0O,2,-l FILES-RESULTS FILE 60KI 	FMP c--i OK. 000660 

58. 5SihtI,2.-1 FILES OSK <-.1 SPS. 	 000670
 
59. 50,61.60.12,11-1 SPS POST-PROCESSINGI40 SEC-?S5 LOAD. 000680
 

60. 50,.0,0o,'O JOB RUN COMPLETE. 	 000690
 

61. 60.G.120110.0 	 MODEL I-INTERARRIVAL TIME MEAN OF 120 SECO00700
 
6

00 I SEC ABORTED BPS CO$PILIM - WAIT 10 MIGOTIO
62. 60:6k1.15S.0r
 

63. 60.61,I15S,0.300 ABORTED COMPILIN AGAIN - WAIT 5 MIN. THO00720
 
64. 6O61.115,0.-1 SPS RECOMPILATION OF SOURCE CODE-I SEC. 000730 
65 6lt~OO.0.It- FILEI-LOAO MODULE 15KI SM <--> DSK. 000740 

FILEI DSK ,<--> FMP. 	 000750
66. 61.10.0.lol.O 

67. 62.21.0,0.1,-I 	 FILE2-CONFIGATION 1OK ORF 4--> DSK. 000760
 
68. 62.10.0.1 1.-1 FILES USK d.. FM?. 	 000770
 

69. 	 60,6O.100 2.l FNP FLOW CODE PROCESSING - 10 SEC. 000780 
FMP -- > USK. 000790FILES-RESULTS FILE 60KI
70; 68.1OO,0.2.-I
1 	 FILES DSK <-- ,SPS. 000800
71. 68,I.0.1.?.1 


1 	 72. 60.61.60.12,11-1 SPS PDST-PROCESSINGI4O SEC-25% LOAD. 000810 

. 73. 60,0,0,0,0,0 JOS RUN COMPLETE. 000820 
74. 70.0.120.1.0.0 	 MODEL I-INTERARRIVAL TIME MEAN OF 120 SECO00830
 
75. 10,6II.15,O-1 SPS COMPILATION OF SOURCE CODE-I SEC. 000840
 
76. 71.1,0.0.1,-1 	 FILEI-LOAD MODULE 15K SBPS<--I OSK. 000850
 

FILEI DSK --, FMP. 	 000860
77. T1.100.1.1.0 
78. 721.0,0,1.-1 	 FILE2-CONFIGATION 1OK SRF <--> OSK. 000870
 

FILE2 OSK<-1 FMP. 000880
 
SO. 70.60.10.0. 1 FMP FLOW CODE PROCESSING - 10 SEC. 000890
 
al. 78,10.0.0,2-I FILES-RESULTS FILE 60KI FMP <--. 05K. 000900
 

79. 72.10.0.1,1.-1 


FILES 0SM <--) SPS. 	 00091082. 78.I.0.1.2.-I 

83. 7O,61,60,12,1 -1 SPS POST-PROCESSINGI4O SEC-25% LOAD. 000920
 

84. 7O.0.00*00. JOB RUN COMPLETE. 	 000930
 
85. 80,l l20.1.0,0 	 MODEL I-INTERARRIVAL TIME MEAN OF 120 SEC000940
 

86. 80.61.1.15.0,-
6 
00 I SEC ABORTED SPS COMPILON - WAIT 10 M1000950
 

87. 80.61.IoS0-I SPS RECOMPILATION OF SOURCE CODF-I SEC. 000960 
88. 81.100,0 I.-1 	 FILEI-LOAD MODULE 15KI SPS <--> OSK. 000970
 

FILEI OSK .--> FMP. 	 000980
89. 81,I0,0,I.1.0 

90. 82,21,.0,I-I 	 FILE2-CONFIOATION 1OKI GRF <- DSK. 000990
 

FILE2 USK <--> FMP. 	 001000
91. 62tO.0..1.1 

92. 80.60.10.0,2,-t FMP FLOW CODE PROCESSING - 10 SEC. 001010
 

FMP 4--> USK. 00102093. 89.10,0.0,90,l 	 FILE9-DEBUG DUMP FILE 3M; 

001030
94. 89,1,0,1.90.-I 	 FILE9 OSK <--I SPS. 


95. 80.61.60.12.1.-l SPS POST-PROCESSINGI4O SEC-25% LOAD. 001040
 

96. 80o0.0,0.0.0 JOB RUN COMPLETE. 	 001050
 
97. 90.06120,10.0 	 MODEL I-INTERARRIVAL TIME MEAN OF 120 SECO01060
 

I SEC ABORTED BPS COMPILN - WAIT 10 M100107098. 90,61.1.15,0,-600 

99. 90,61.1.15 .1 SPS RECOMPILATION OF SOURCE CODE-t SEC. 001080 
I00. 91.t.O.0.1t FILEI-LOAD MODULE 151K SPS <--I USK. 001090
 
101. 91,10.0,1.1.0 FILEI DSK -- > FMP. 	 001100 
102, 92.21.0to0l.-I FILE2-CONFIGATION OI 	ORF <--I DSK. 001110
 

http:91.t.O.0.1t
http:90,61.1.15
http:6lt~OO.0.It
http:60:6k1.15S.0r


103. 
104. 

92,10.0,1.1,-l 
90,60.10,0,2.E1 

FILE2 DSK -- > FMP. 001120 
FMP FLOW CODE PROCESSING - [0 SEC. 001130 

105. 
106. 

9810,0.0,2o-I 
98.l.O192,-1l 

FILER-RESULTS FILE 60K8 FMP 1--b DSK. 001140 
FILES DSK 4--> SP5. 001150 

107. 
108. 

90,61.60,12.1.-l 
90,000,00 

SPS POST-PROCESSINGBIO SEC-25% LOAD. 001160 
JOB RUN COMPLETE. 001170 

109. 100,0.120,1,0,0 MODEL I-INTERARRIVAL TIME MEAN OF 120 SEOOIIBO 
110. 100,61,1,15.01-600 1 SEC ABORTED SPS COMPILON - WATT 10 4001190 
111. 
112. 

100,61,1,15,01-300 
100,611.1I5,011 

ABORTED COMPILIN AGAIN - WAIT 5 MIN, T001200 
SPS RECOMPILATION OF SOURCE CODE-I SEC. 001210 

113. 1O1.1.00.,l-1 FILEl-LOAD MODULE 15KI SPS <--> OSK 001220 
114. 
115. 

10,ll[0,0lloO 
I02,21,0,0,r'l 

FILEl DSK <.- FMP. 001230 
FILE2-CONFIOATION 1OKI ORF 4.w> OSK. 001240 

116. 
117. 
118. 
119. 

102,10.0.1,1.-1 
100,60,10,0.2,-I 
108.0*0.0,2,-1 
l0a.1.0.1.2.-1 

FILE2 ASK <.-> FMP. 001250 
FMP FLOW CODE PROCESSING - 10 SEC. 001260 
FILEB-RESULIS FILE 60KI FMP <-.* DSK. 001270 
FILED 05K c--> 5PS. 001260 

120. 10O.61.60,12.1.-1 SPS POST-PROCESSING40 SEC-25% LOAD. 001290 
121. 0060.000O0.0 JOB RUN COMPLETE. 001300 

[22. 1I0.0,120l0,00 MODEL 1-INTERARRIVAL TIME MEAN OF 120 5E001310 

123. 1I.61,1.15,0-I SPS COMPILATION OF SOURCE CODE-I SEC. 001320 

124. 11I.100.01.-1 FILEI.LOAD MODULE 15KI' SPS 4--1 DSK, 001330 
125. 111,10.0.l,1,0 FILET DSK 1--> FP. 001340 
126. 1;2,21.0.0.19-1 FILE2-CONFIOATION OKI GRF 4--b DSK, 001350 

127. I12.10t0o1~1t- FILE2 0SK 4.-> FRP. 001360 

128. 110,60.10.0.21-1 FlP FLOW CODE PROCESSING - 10 SEC. 003370 
129. 1l9,10.0,090-1 FILE9-OESUG DUMP FILE 3M; FMP <--> OSK.001380 

130. 1l9,1.0,1,90.-1 FILE9 OSK <-' SPS. 001390 
131. 110,61,60,12,1.-I SPS POST-PROCESSINGS4O SEC-25t LOAD. 001400 

132. 110.0.0,0,0,0 JOB RUN COMPLETE. 001410 
133. I0,0O120,l,0,0 MODEL I-INTERARRIVAL TIME MEAN OF 120 SE5014O 

134. 
135. 

1o,61.1l15,01600 
120,61,1.15,0,-1 

I SEC ABORTED SPS COMPIL-N - WAIT 10 M001430 
SPS RECOMPILATION OF SOURCE CODE-i SE . 001440 

136. 121,1.0.0,1,-I FILEI-LOAD MODULE ISK; SPS <--> OSK 00140 

137. 12110,0,I1..0 FILEl DSK <.- FiP. 001460 
138. 122,2I.0O0.I FILE2-CONFIOATION IOKI GRF 4.-i DSK. 001470 
139. 122.101,1,1,1l FILE2 DSK <--> FMP. 001480 

140. 120,60#10.211 FMP FLOI'CODE PROCESSING - 10 SEC. 001490 

[41. 129.10.0,0.901-1 FILE-ODEBUG DUMP FILE 3MI FMP <--> ASK.00t500 

[42. 129,1,0,.90.-1 FILE9 DSK X--> SPS., 001510 

[43. 
144. 
145. 

120,61.60.12.l,-l 
120.0 0,0t0t 0 
130,0,120.1.0.0 

SPS POST-PHOCESSING4O SEC-25% LOAD. 001520 
JOB RUN COMPLETE. 001530 
MODEL 1-INTERARRIVAL TIME MEAN OF 120 SEOOIS0 O 

146. 130,61.1.1[5,0,600 I SEC ABORTED SPS COMPIL-N - WAITIO MOOISSO 
17. 130.61.1.15.01-1 SPS RECOMPILATION OF SOURCE CODE-I SEr. 001560 

I48. 1311101.l.-l FILEI-LOAD MODULE 15K, SPS C-'> ASK. 001570 

149. 131.1O0,11 0lO FILEI OSK <-> FMP. 001580 

150. 132.21..0.01.-I FILE2-CONFIGATION IOK ORF <--> USK, 001590 

151. 132,10.0,lel-I FILE2 DSK <--> FRP. 001600 

152. 130.60,10 21-1 FMP FLOW CODE PROCESSING - 10 SEC. 001610 

153. 1308,000.0,2,-1 FILES-RESULTS FILE 60KI FMP 4S..> SK. 001620 

154. 139,lO,1,2,-1 FILES USK <--> SPS. 001630 

155. 130,61,60.12,1-1 SPS POST-PROCESSINGI40 SEC-25S LOAD. 001640 

166. 130,0,0.0.0,0 JOB RUN COMPLETE. 001650 

157. 10O4,120.1.0t0 MODEL I-INTERARRIVAL TIME MEAN OF 120 SE001660 

158. 140.61.1,15.,-600 1 SEC ABORTED SPS COMPILIN - WAIT 10 M001670 

[59: 140.61,1.15,0.;.300 ABURTED COHPILIN AGAIN - WAIT 5 MIN, T0016 0 

160. 140.61l1,15.0.1I SPS RECOMPILATION OF SOURCE CUDE-I SEC. 001690 

161. 141,1.0.0.1.-I FILEI-LOAD MODULE 15K SPS C--> USK. 001700 

162. 141.l0.011.1,0 FILEI DSK <--> FlP. 001710 

163. 142,210,0.-l1 FILE2-CONFIGATION [OK; GRF <--> OSK. 001720 

164. 
165. 

142,10.0.1-1-l 
140.60.1O,0.2--I 

FILE2 DSK <.-> FMP. 001730 
FMP FLOW CODE PROCESSING - 10 SEC. 001740 



166. 

167. 

168. 

169. 

170. 

171; 

172. 

173. 

174. 
175. 

176. 

177. 

178. 

179. 

180. 

191. 

182. 

183. 

I8. 

18b. 

lee. 

187. 

ild. 

189. 

£90. 

191. 

192. 

193. 

194. 

195. 

19.. 

197. 

£99. 
199. 


200.

201. 

202. 

203. 

204. 

205. 

20o. 

207. 

208. 

209. 

210. 

211. 

212. 

213. 

214. 

215. 

216. 

217. 


218. 

219. 

220. 

221. 

222. 

223. 

224. 

225. 

226. 

227. 

228. 

229. 


148,10,0,02,-l 

149,1.3.1.2.-I 

140,61,60,12,1.-1 

140.,0.0.000 

15000.120.10.0 

I5O,61,l.I.O,1 

151,I,0.o.1-1 

I5.10,0.1I,0 

1b2,21,0.0,1,-

15?.00,ltl,1 

150,6O,10.0,21-1 

158,10,0,0,2.-1 

LbS..,l.2.-1 

150.61,b0,12.l,-l 

150,O.00,O.0 

I60.020.1.0.0 

1b0,61,1.15.0.-600 

160.61,1.15.,-

l~l,.,0,l,-l 

1b1,lU.uI.IU 

162.21,0,0.l.-3 

I2.10,0,I,I 

1b0.60.10,0.21-1 

169,10,0,0,90,-1

09t1,O,1,90,1 

lb0,6lbOI2,l,-I 

60,0.U.0,0.0 

170,U.120,1.0,0 

170,61,l,15,0.6o00 

170.6I,1.15,0.-l 

171.1.0,0,.1-1 

I.I.O.1,I.8 


172.21.0,0,1,1 

I?2.10,.O,l,IL 


I70*O0,l0,0.2,.1l

178,10.0,0.2,-

l7B.,0,,2,-I' 

170,bl,60.12.1.-1 

37010;I,00,0 

100,0,120,1.0.0 

ldOb,6,Ilb0o-600 

IbO,,1,l5,0,-300 

180,6l,1.15,0,-1 

18U.,0,0,.-I 

l0l.10.0,lIU 

1B2,0,Ol,-l 

1B2,l0,.1.l 

180,60.10,0.2,-l 

I88.10,0,0.2,.l 

188.1.U,1,2,-I 

180,61.60.12,1.-1 

160,0,0.0.0,0 


190,0.120,1.0,0 

190,61.1,15,0,-1 

191,1,0.0,1.-1 

191,10,0,1,1.0 

192,21.0,0,1,-

192.10.0,1.1.-i 

190,60,10,0,2,-

199,10,0,0,90,-1 

199,1.0.1,90.-1 

190,61t,60,12.1--1 

190,0,0,0,0,0 

200,0.120,1,0,0 


FILE8-RESULTS FILE 60KI FMP <-.> USK. 001750 
FILES DBK I--- SPS. 001760 
SPS POST-PHOCESSING14O SEC-25% LOAD. 001770 
JOB RUN COMPLETE. 601780 
MODEL I-INTERARRIVAL TIME,MEAN OF 120 SE001790 
SPS COMPILATION OF SOURCE COoE-I SEC. 001800 
FILEI-LOAD MODULE 15KI SPS <--, DSK. 001310 
FILEI DK <--b FP. 00020 
FILE2-CONFIGATION 10K; 6RF 4--> BSK. 001830 
FILE2 03K 1--W FHP. 00100 
FMP FLOW CODE PROCESSING - 10 SEC. 001350 
FILEd.RESULTS FILE 60KI FMP <--> USK. 001960 
FILES DSK <--> BPS. 001070 
SP POST-PHOCESSING;40 SEC-25t LOAD. 00180 
JOB UN'COMPLETE. 001890
 
MODEL I-INTERARRIVAL TIME MEAN OF 120 SE001900
 

I SEC AUOQPED SPS COMPILPN - WAIT ID "001910 
SPS NECOMPiIATION 0 SUUNCF COnE-I SFC. 03920 
FILEI-LOAD MODULE 15K; 5PS <--> USK. 001930 
FILEI DSK C--> FMP. 00i940 
FILf2-CUNF~bATION I3K; GR - SK, 001950 
FILE2 0DK 1-.> FNP. 001960 
FMP FLOW CODE PROCESSING - 10 SEC. 001970 
FILL9-DEBUG OUMP FILF 3MI FMP <--> OK.001980
FILE9 OSK'-> bPS. 001990 

SPS POST-POCESSINGI40 SEC-25t LOAD. 002000 
JOB NUN COMPLETE. 002010 
MODEL I-bNTENARRIVAL TIME MEAN OF 120 SE002020 

I SEC AOIIRED SPS CONPILIN - WAIT 10 M002030
 
SPS HECOMPILATION OF SOURCE COnE-I SEr. 002040 
FILEI-LOAO M0OULE 15KI SPS .- DSK. 002050 
FILFt 06K -FH.C.> 001060 
FILF2"CUNFIGATICN 10KI ORF c.-- 35* 002070 
FILF2 SK C..> FHP. 002080 

FMP FL0 CODE PROCESSING - 10 SEC. 002090FILEURLSULTb FILE 'OKI FMP 1-.> USK. 002100 
FILES DSKC.--> SPS. 002110 
SPS POST-PHUCESSINGI40 SEC-25% LOAD. 002120 
JOB NUN COMPLETE. 002130 
MODEL I-INTENARRIVAL TIME MEAN OF 120 SE002140 

I SEC ABORTED SPS COMPILIN - WAIT 10 M002150
 
ARUNTED CONPILIN AGAIN - WAIT 5 MIN. T002160
 

SPS RECOHPILATION OF SOURCE CODE-I SEC. 0O027O
 
FILEI-LOAD.,UDULE 15KI S5 <--> DSK. 002180 
FILEI OSK <--> FMP. 002190 
FILE2-CONFIGATION IOKI GR <--. rSk. 002200 
FILF2 05K ..- > FMP. 002210 
FMP FLOw CODE PROCESSING - 10 SEC. 002220 
FILE8-RESULTS FILE 60K1 FMP c--b DSK. 002230 
FILES 0SK C.;>SPS. 002240 
SPS POST-PMOCESSING;40 SEC!25% LOAD. 002250 
JOB MUN COMPLETE. 002260 
MODEL I-INTERARIVAL TIME MEAN OF 120 5E002270
 
SPS COMPJLATION OF SOURCE CODE-I SEC. 002280 
FILEI-LOAD MODULE 15KI SPS C- DSK. 002290 
FILEI aSK <..> FMP. 002300 
FILE2-CONFIGATION 10KI GRF C--> DSK. 002310 
FILE2 0SK <.-> FMP. 002320 
FMP FLOW CODE PROCESSING - 10 SEC. 002330 
FILE9-DEBUG DUMP FILE 3M FNP C--> OSK.002340 
FILE9 OSK c--> PS. . 002350 

SPS POST-PROCESSINGIAO SEC-25% LOAD. 002360 
JOB OUN COMPLETE. 002370 
MODEL I-INTERARRIVAL TIME MEAN OF 120 5E002380 

http:I70*O0,l0,0.2,.1l
http:1b1,lU.uI.IU
http:160.61,1.15


230. 200O,61.15,0.-600 I SEC ABORTED SPS COMPILIN - WAIT 10 4002390 
231. .00.6t1,15.0-I1 SPS RECOMPILATION OF SOURCE CODE-I SEP. 002400 
232. 201.1,0,0,1.- FILEI-LOAD MODULE I5<; SPS 1--> USX. 002410 
233. 
234. 

201.10.0,l.1.0 
202.21.O,0,1l-

FILEI DSK <--> FMP. 
FILE2-CONFIGATION LOKI GRF 4--- 0EN. 

002420 
002430 

235. 
236. 
237. 

238. 
239. 

202,10'0,1.1.-1 
200,60.l0,o0,-
209, 0o.O0.qo.I 

209.1.0.1.90.-I 
200,61.60,12.l.-1 

FILE2 OSK <--> FHP. 002440 
FMP FLOW CODE PROCESSING - tO SEC. 002450 
FTLESODEHUG DUMP FELE.30f FOP -. OSK.002460 
FILE9 0SK<--b SPS.t 002470 

SPS POST-PROCESSINGI4o SEC-25% LOAD. 002480 
240. 
241. 
242. 
243. 
244. 
245. 
246. 

200,0.O.0,00 
210.0.120.I.0.0 
21O,61,hll5,0.-I 
2lItl,0.0.1.-i 
21111O0.11,0 
212.21,0,OIl,-l 
212,1

0
,0.ll1-

JOB RUN COMPLETE. 002490 
MODEL I'INTERARRIVAL TIME MEAN OF 120 SE002500 
SPS COMPILATION OF SOURCE CODE-! SEC. 002510 
FILEI-LOAD MODULE 15KI SPS 4--> OSK. 002520 
FILEI D0N <-> FOP. 002530 
FILE2-CONFIGATION LOKI GRF <-> OSK. 002540 
FILE2 SK <..> FMP. 002550 

247. 
248. 
249. 

210,60l0,0.21-1 
2l8,10.0.0,2l 
218,1.0.1,2,-I 

FMP FLOW CODE'PROCESSING - 10 SEC. 
FILES-RESULYS FILE 60Il FMP <--> OSK. 
FILES OSK <.-. S5. 

002560 
002570 
0025BO 

250. 
251. 
252. 

210.61.60.12.1,-1 
210,00,0.0,0 
220,0,120.1.0.0 

SPS POSTPROCESSING40 SEC-25% LOAD. 002590 
JOB RUN COMPLETE. 002600 
MODEL I-INTERARMIVAL TIME MEAN OF 120 SEOO2610 

253. 220.61.1.15,0,-1 SFS COMPILATION OF SOURCE CODE-1 SEC. 002620 
254. 
255. 
256. 
257. 
258. 

221.l#0.0.I.-I 
221.10O0.I,.0 
222.21.0.0,1.-I 
222.10,0.1.-1 
2
2
0.6

0
.IOsO,2,-l 

FILEI-LOAD MODULE ISKI SPS 4--> OSK.
FILEI SK 4.., FHP., 
FILE2-CONFIGATION OKI GRF (--> OSK 
FILE? OSK<-- FMP. 
FMP FLOW CODE PROCESSING - 10 SEC. 

002630 
002640 
002650 
002660 
002670 

259. 
260. 

228#10,0,0,2 -l 
220,1.0.1,2,-I 

FILES-RESULTS FILE OKI
FILES DSK -> SPS. 

FMP <--I 05. 002680 
002690 

261.
262. 

220.61.60.12,1,-1
220,0.0,0.0.0 SPS POST-PROCESSING;4O0 SEC-25% LOAD.JOB RUN COMPLETE. 002700

002710 
263. 230,0,120,L.0,0 MODEL I-INTERAPRIVAL TIME MEAN OF 120 SE002720 
264. 
265. 
266. 

230.61,.15.0,-l
231,1.0,0,1.-l 
231,O1,I,1,0 

SFS COMPILATION OF SOURCE CODE-I SEC.
FILEI-LOAD MODULE 1SKI SPS I--> OSK. 
FILEI DSK .. F P. 

002730 
002740 
002750 

267. 
268. 
269. 

232,21,0.0.1.-I 
232,10.0,1r'1 
23060,10,0,2,-1 

FILEB-CONFIGATION IOKI GRE 4-> DSK. 
FILE2 DSK c.-> FMP. 
FMP FLOW CODE PROCESSING - 10 SEC. 

002760 
002770 
002780 

270. 
271. 

238.10.0.0.2.-1 
238.1.0.1t2,-1 

FILES-RESULTS FILE 6OKI 
FILES DSK C--> SPS. 

FMP 0-05K. 002790 
002800 

272. 230,61.60,121,-I SF5 POST-PROCESSINGO14 SEC-25% LOAD. 002810 
273. 230,0.0,0.0.0 JOB RUN COMPLETE. 002820 

C 
274.
275. 
276. 

240,0.120.1,0.0
240,61,1.15,0-1 
24I.IO..IFt 

MODEL I-INTERARRIVAL TIME MEAN OF 120 SE002830
SPS COMPILATION OF SOURCE CODE-1 kEC. '002840 
FILEI-LOAD MODULE 15K6 SPS <--> USK. 002850 

277. 
278. 

241,10,0. .1.0 
242,21,0.0.1.-1 

FILEt OK - , FMP. 
FILE2-CONFIOATION LOKI ORE <--> DSK. 

002860 
002870 

0 
279. 
280. 

242.10,0,1,1.-1
240.60,10.,2-l 

PILE2 DSK <.-> FMP. 
P FLO CODE PROCESSING - I0 SEC. 

002880 
002890 

281.282. 249,10,0,0.90,.l249,1.0.,90.-1 FILE9-DEBUG DUMP 3MIFILE9 OSK <--. SPS. FM? <A-> OSK. 002900002910 

. ) 283. 
284. 
285. 
286, 
287. 

24061,60,12,I1.1 
240,0,0,00,0, 
250,0.120,1,0.0 
250.61,1,15.0,-600 
250.6IIi.OS."-I 

SPS POST-PROCESSINGI4O SEC-259l LOAD. 002920 
JOB RUN COMPLETE. 002930 
MODEL I-INTERARRIVAL TIME MEAN OF 120 SE002940 

SSEC ABORTED SPS COMPILIN - WAIT 10 M002950 
SPS RECOMPILATION OF SOURCE CODE-I SEP. 002960 

288. 251,1.0,0,1,-1 FILEJPLOAD MODULE I51SF5 -'.> DSK. 002970 
289. 25F10.0.I.I.0 EILEI OSK <.. FOP. 002980 
290. 252.21.O.O.l.I FILE2.CONFIOATION 10KI RFR C--> DSK. 002990 
291. 
292. 
293. 

252,l00,1l,-I-l 
250,60,10.0.2.-
258,10,0,0.2.-1 

FILE2 OSK <..- FMP. 
FMP FLOW CODE PROCESSING  10 SEC. 
FILES-RESULTS FILE 60K FMP -. > OSK. 

003000 
003010 
003020 



294. 

295. 

296. 

297. 

298. 

299. 

300. 

301. 

302. 

303. 

304. 

305. 

306. 

307. 

308. 

309. 

310. 

311. 

312. 

313. 

314. 

315. 

316. 

317. 

318. 

319. 

320. 

321. 

322. 

323. 

324. 

325. 

326. 

327. 

328. 

329. 

330. 

331. 

332. 

333. 

334. 

335. 

336. 

337. 

338. 

339. 

340. 

341. 

342. 

343. 

344. 

345. 
346. 

347. 

348. 

349. 

350. 

351. 

352. 

353. 

354. 

355. 

356. 

357. 


258.1.0.1,.-I 

250,61,60.12,1.-1 

250,0,0,0,00 

260,O,120,1,0.0 * 

2606bll,1I.O,600 

260,61.1,I5,0-300 

260.61.1,1S.0,-1 

a6iDlOOl.-1 

261,l0,0.11.O 

262.21.0,0,I.-l 

2§2,10,0,1. 1.-

260,60,10,0,2t-l 

26810.0,0,2,-I 

208lt,2.1 

260.61,60,12.1.-1 

260..0.0,0,0 

270,0,120,1,0,0 

210,611,15,Or-l 

271,1.0#1.-1 

271.10.0.1..Q 

272,21.0.0 1*-

272,10,0,I.1.-I 

270,60,10,0.2-I 

278.10O0.0.,-I 

278,1.O.I.2,-I 

270,61,60.12,1.-1 

270.0,0.0.0,0 

280.0,120.1.00 

20,61.1S1S,0,600 
280.61,1.05,0-

281.1*O.0.1.-

281,10,0.1,1,0 

282.21,0.-I 

282.10,0.11.-1 

2D.60,10,0,2.-I 

289,10.0.90,-I 

289,1.0,1,90,-I 

280a,61,6012,1,-I 

280.0.0.0,0,0 

290.0.120,1.0,0 

290.61.1,15.01-600 

290.61.115.0,-

291,1,0,0.1.-1 

91.10,0,1,0 

292.21,0.0,1,-I 

292.0,,1.-I 

290,60,10.0,21--

298.10.0.0.2.-1 

298,1.,.2.-1 

290.61.60,12.1.-l 
290,0.0,0,0,0 

300.O120.1.0.0 

300.61.I.IS.0-600 

300.61,1,15.0.-300 

300,61.1.15.0.-1 

301,1.0,0.1,-I 
301,10,0.1,1.0 

302.21.0,0.1.-1 

302,10.0.1.I,-I 

30060.O00.21-1 

309.10.0,0.90.-1 

309.1,0,1.90,-I 

300,61.60.12.1.-1 

300,0,0,0,0 


FILED 05K <--i SPS. 003030 
SPS POST-PROCESSINMG40 SEC-25t LOAD. 003040
 
JOB RUN COMPLETE. 003050
 
MODEL I-INTERARRIVAL TIME MEAN OF 120 5E003060
 

I SEC ABORTED SPS COMPILIN - WATT 10 M003070
 
ABORTED CONPIL'N AGAIN - WAIT 5 HIM. T003080
 

SPS RECOMPILATION OF SOURCE CODE-I SEC. 003090 
FILEI-LOAD MODULE I5KI SPS <--> DSK. 003100 
FILEI DSK <--i FP. 003110 
FILE2-CONFIGATION 10KI OF > 003120GP DSK. 
FILE2 DSK <--> FMP. 003130 
FMP FLOW CODE PROCESSING - IO SEC. 003140 
FILES-RESULTS FILE 60KI FMP <--i DSK. 003150 
FILES DSK -> SPS. 003160 
SPS POST-PROCESSINGI40 SEC-25% LOAD. 003170 
JOB RUN COMPLETE. 003180 
MODEL 1-INTERARRIVAL TIME MEAN OF 14 003190
 
SPS COMPILATION OF SOURCE CODE-I SEC 003200
 
FILEI-LOAD MODULE 15KI SAS <--VDS 003210
 
FILEI U5K C--> FMP. 003220
 
FILE2-CONFIGATION IOKI GRF <--> aSK. 003230
 
FILE2 DSK <.-> FMP. 003240
 
FA? FLOW CODE PROCESSING - 10 SEC. 003250
 
FILES-RESULTS FILE 60KI FHP --> DSK. 003260
 
FILES DS <.. SPS. 003270
 
SPS POST-PROCESSINGI40 SEC-25% LOAD. 003280
 
JOB RUN COMPLETE, 003290
 
MODEL I-INTEMARRIVAL TIME MEAN OF 120 SE003300
 

I SEC ABORTED SPS COMPILoN - WAIT 10 M003310 
SPS RECOMPILATION OF SOURCE CODE-I SEr. 003320 
FILEI-LOAD MODULE 15KI GPS 4-- OSK. 003330 
FILEI DSK <--> FMP. 003340 
FILE2-CONFIGATION IO3 ORF <--> OSK. ' 003350 
FILE2 DEK <--> FMP. 003360 
FMP FLOW CODE PROCESSING - 10 SEC. 003370 
FILE9-DEOUG DUMP FILE 3MI FMP 4--> OSK.003380
 
FILE9 0EK C--> SPS. 003390 

SPS POST-PROCESSING640 SEC-25% LOAD. 003400 
JOB RUN COMPLETE. 003410 
MODEL I-INTERARRIVAL TIME MEAN OF 120 SE003420
 

1 SEC ABORTED SPS COMPIL*N - WAIT 10 M003430 
SPS RECOMPILATION OF SOURCE CODE-I SEr. 003440 
FILEI-LOAD MODULE 1SKI SPS.-> 0SK. 003450 
FILEI DSK 1--> FOP. 003460 
FILE2-CONFIGATION IOK GAP C--> OSK. 003470 
FILE2 DSI <--> FOP. 003480 
FMP FLU CODE PROCESSING - 10 SEC. 003490 
FILEB-RESULTS FILE 0OK FP <--> DSK. 003500 
FILES USK 4-1 SPS, 003510 
SPS POST-PROCESSING;40 SEC-25% LOAD. 003520 
JOB HUN COMPLETE. 003530 
MODEL I-INTEHARRIVAL TIME MEAN OF 120 SE003540
 

I SEC ABORTED SPS COMPIL-N - WATT I0 M403O0 
ABORTED CONPILIN AGAIN - WAIT 5 MIN, T003560 

SPS RECOMPILATION OF SOURCE CODE-I SEC. 003570 
FILEI-LUAD MODULE 1SKI SPS C--> 0SK. 003580 
FILEI DSK C.-, PAP. 003590 
FILE2-CONFIGATION 1001GRFG6K.<--> 003600 
FILE2 obg C.-> FMP. 003610 
FMP FLO- CODE PROCESSING - 10 SEC. 003620 
FILE9-DEBUG DUMP FILE 3MI FMP <--> DSK.003630
 
FILE9 DSK <--> SPS. 003640
 
PS POST-PROCESSING|40 SEC-25% LOAD. 003650
 

JOB MUN COMPLETE. 003660
 

http:280.0,120.1.00


J58. 

359. 

360. 

361. 

362. 

363. 

364. 

365. 

366. 

367. 

368. 

369. 

370'. 

371. 

372. 

373. 

374. 

375. 

376. 

377. 

378. 

379. 

380. 

381. 

382. 

383. 

384. 

385. 

386. 

387. 

388. 

389. 

390. 

391. 

392. 

393. 

394. 

395. 

396. 

397. 

398. 

399. 

400. 

401. 

402. 

403. 

404. 

405. 

406. 

407. 

408. 

409. 

410. 

411. 

412. 

413. 

414. 

415. 

416. 

417. 


310,0,120.IO0 

310,O1,i5,01-

3I11..0,,1,-I 

311.10O0,1,.0 

312,21,0,0.1.I 

312,O,OlI.-| 

310,60,10.O,2-I 

3It.0,0.OB2.-I 

318,.0,1I2,-l 

31O.61.6O,12.1,-i 

310,0.0.00.0 

320,0.I20,1,0.0 

320.b6,l|5.0,-600 

320.61.1.15,0.-I 

32l.1,0.0.|.-I 

321.1,0,l,,U 

322.21.0.0.1,-I 

322.10.0,l.I.-l 

320.60,tO,0.2t-

329.10.0,0.90.-I 

329100O1.90,-l 

320.61,60,12.1*-1 

320.0.0,0,0 

330,0,IO0,I,0,0 

330.61,1,15,0.-600 

330,61.1,.SO.-

331.1.0,0,1,-l 

331.10.0..t,0 

332,210,0.1'l 

332,10.0,1.1,'1 

336.601O,0.20-1 

338,10.0,0.2.-

338.1,0,1,2.-1 

330.61.60.12,.-1 

330.0#,0,0,00 

340.0.120..O,0 

340,61,115,0,-600 

340,61,l.1S,0.-300 

340,61,1.15,0-1 

341,1.0,0,1,-1 

341.100 I,1.0 

34221 0.0,1.-I 

342,10,0,1.1.-1 

340,60.10.0,2,-l 

348,10,0.0,2,-l

348,1,0#12,-
340,61,60,12.t.-I 

340#000.0,0.0 
350,0.120,1.0,0 

350,61,1lS.0-

351.1,0,0,1.-1 

351910,0.1,1,0 

352,21,0.0,1,-I 

352,10.0,11#-1 

350,60,10.0,2.-1 

358,lO0,,.2,-1 

358,1,0,1,2,-I 

350,61,60.12,1.-1 

350,0*0.0,0,0 

360,0,120.1.0,0 


MODFL I-INTEHARHIVAL TIME MEAN OF 120 SE003670 
SPS COMPILATION OF SOURCE CODE-I SEC. 003680 
FILEI-LOAD MODULE 15KI SPS <.-> OSK. n03690 
FILEI DK -< FMP. 003700 
FILE2-CONEIGATION 10Kl GRF <--> 0SK. 003710 
FILE2 DSK ..-> FHP. 003720 
FMP FLOW CODE PROCESSING - 10 SEC. 003730 
FILEB-RESULTS FILE OKI FMP <--> DSK. 003740 
FILF8 USK <.-> SPS. 003750 
SPS POST-PHOCESSINGI40 SEC-25% LOAD. 003760 
JOR RUN COMPLETE. 003770 
MODEL 1-INTERAPRIVAL TIME MEAN OF 120 SE003780 

I SEC ABORTED SPS COMPMLON - WAIT 10 M003790 
SPS HECOMPILATION OF SOURCE COnE-I bEt. 003800 
FILF(-LOAD MODULE 1KI SPS D--> 00381OOSK. 

FILF| DSK <-.> FP. 003820 
FILE2-CONFIGATION OK; GMF C.--> I)8. A0630 
FILE2 SK<..., FMP. 003840 
FMP FLOW CODE PROCESSING - 10 SEC. 003850 
FILEO-EBUG DUMP FILE 31I FM? <-- DSK.003860 
FILE0 O58 <--> SPS, 003870 

SPS POST-PUOCESSINGI4O SEC-25% LOAD, 003880 
JOB HUN COMPLETE. 003890 
MODEL I-INTERARRIVAL TIME MEAN OF 120 SE003900 

1 SEC ABORTED SPS COMPIL-N - WAIT 10 M0039t0 
SPS RECOMPILATION OF SOURCE CODE-I SEC. 003920
 
FILEI-LOAD MUOULE ISK; SPS 9--> OSK 003930
 
FILE| OSK -.-> FMP. 003940
 
FILE2-CONFIGATION OKI GRF <--, 08<. 003950
 
FILE2 DSK <.- FMP. 003960
 
FMP FLOW CODE PROCESSING - 1O. SEC. 003970
 
FILES-RESULTS FILE h01 FHP <. 0SK. 003980
 
FILES OS <--> SPS. 003990
 
SPS POST-PROCESS1NGI O SEC-25% LOAD. 004000
 
JOB RUN COMPLETE. 004010
 
MODEL I-INTERARRIVAL TIME MEAN OF 120 SE004020
 

1 SEC ABORTED SPS COMPtLIN I WAIT 10 M004030
 
ABORTED COHPILIN AGAIN - WAIT S MIN. T004040
 

SPS RECOMPILATION OF SOURCE CODE-I SEC. 004050
 
FILEI-LOAD MODULE 1511 SPS <-- OSK. 004060
 
FILE) DSK <..- FMP. 004070
 
FILE2-CONFIGATION OKI ORF C--> 088< 004080
 
FILE2 OSK .. FMP, 004090
 
FMP FLOW CODE PROCESSING - 10 SEC. 004100
 
FILEB-RESULTS FILE DOKI FM? <--b DSK. 004110
FILED DSK <-.. SPS. n04120 
SPS POST-PROCESSINGI4O SEC-25% LOAD. 004130 
JOB RUN COMPLETE. 004140 
MODEL 1-INTEHARRIVAL TIME MEAN OF 120 SE004150 
SPS COMPILATION OF SOURCE CODE-1 SEC. 004160 
FILEI-LOAD NCOULE 151; SPS 4--1 OSK. 004170 
FILE DSK <-..> FMP. 004180 
FILE2-CONFIGATION |OKI OAF C--> OSK 004190 
FILE2 OSK<.-> FMP. 004200 
FMP FLOW CODE PROCESSING - 10 SEC. 004210 
FILES-RESULTS FILE 601IFMP .-- > OSK, 004220 
FILES OSK<--> SPS. 004230
 
SPS POST-PROCESSING140 SEC-25 LOAD, 004240
 
JOB RUN COMPLETE. 004250
 
MODEL 1-INTERARRIVAL TIME MEAN OF 120 SE004260
 

I SEC ABORTED SPS COMPILIN - WAIT tO M004270 
SPS RECOMPILATION OF SOURCE CODE-I SEC. 004280 
FILEt-LOAD MODULE IKI SPS '- DSK. 004290 
FILEt OSK <--> FMP. 004300
 

4186. 360,61,1,15.0.-6O0 

419. 360.61,1.1SO,-1 

420. 361,1.0,0.1-1 

421. 361,10,0,II 0 


http:330.61.60.12
http:330,61.1,.SO
http:320.60,tO,0.2t


422. 

423. 

424. 

425. 

426. 

42?. 

428. 

429. 

430. 

431. 

432. 

433. 


434. 

435. 

436. 

437. 

438. 

439. 

440. 

441. 

442. 

443. 

444. 
448. 

446. 

447. 
448. 

449. 
450. 

451o 

452. 

453. 

454. 

455, 
456, 
457. 

458. 
459. 
460. 

461. 

462. 
463. 

464. 
465. 

466. 

467. 

468. 

469. 

470. 

471. 

472. 

473. 

474. 
475. 

476. 

477. 
470. 
479. 
480. 

481. 

482. 

483. 

484. 
485, 


362.21,0O,1.-l 

362.0O,I.1 

360.60.,0.,2-I 

369,10O,0,90.-1 

369,1,0.1,90,-l 

360.61.60.l2.I.-1 

360.0O,0,0.0 

370.0.12O,1.0,0 

370,61,1,15,01-600 

370.6llolSO-,I 

371,1,0.O.I.-1 

371.10.0I1.D 

372,21#0,0,-ll 

3?210.0.1,lItl 

370,60.10.0,2*fl 

376,10.0.,2.-1 

3781G.0,1,2.-1 

370,61.60.121,-

'370.0.0.0.0.0 

380,Ol120lO.O. 

3S0,61s,1IS.O,-60 0 

380,61,1.16,0,-300 

380.61,1IlSO.I 

31I.0.0O1.-l 

381,10.0.I.1,0 

382.21,0,0.1,-I 

382,10,0.1,1.-I 

380,60,100,2l-1 

388.10O0O,2.-I 

388,1O0.1,2-I 

380,61,60,12,1,.l

380,0.0.0,00 

390,0,120,1,0,0 

390,61.1,15,0.-I 
391,1.0.0,1,-1 

391,10.0,.1.0 

3921,0.0,0,I,'I 
392.1I00.I.Il1 
390.60.0,.2-1

399,10,0.90.-
399,1.0.1,90.-1 

390,6160,I2lI 
390,0.010,0'O 

400,0.120,O, 

400,61,1,ISO,-600 

400,61.1.15,0,-l 

401,1.0,0,.-1 

401.10.0.1,liO 

404,21,090,1,-l 

02.10.06I,10.1 

400,60,10.0,2.l 

409,10,0,0,90.1

409,1.01,90,-1 

40031,60.12.1.-1 

400,0.0.0.0.0 

410.0.120.1,0.0 

410,61.,15.0.-l 

411.1.0.0,1,-I 

411.10,0.11.0 

412,21,0,0,1,-1 

412.1010,1.1.-1 

410.60,10.0.21-1 

418,10,0.0,2,-I 

418,1.0,1,2,-I 


FILE2-CONFIGATION 10I( ORF <.-I DSK. 004310 
FILES DSK '..> FMP. 004320 
FMP FLOW CODE PROCESSING - 10 SEC. 004330 
FILE9-DEBUG DUMP FILE SMI FMP <--> DSK.004340 
FILED DSK I--' SPS. 004350 

SPS POST-PROCESSINI040 SEC-2Sn LOAD. 004360 
JOB RUN COMPLETE. 004370 
MODEL I-INTERARRIVAL TIME MEAN OF 120 SEO43BO
 

I SEC ABORTED SPS COMPIL*N - WAIT 10 M004390
 
SPS RECOMPILATION OF SOURCE CODE-I SEC. 004400
 
FILEI-LOAD MODULE ISK$ SPS <.- DBK 004410
 
FILEI DSK <.- FHP. 004420 

FILE2-CONFIOATION IOKI GRF 4--> OSK. 004430 
FILES DSK 1--. FMP. 004440 
FMP FLOW CODE PROCESSING - 10 SEC. 004450 
FILES-RESULTS FILE 60KI FMP C--> 05K.' 004460 
FILES aSK C--> SPS. 004470 
SPS POST-PROCESSINGIO SEC-25% LOAD. 004480 
JOB RUN COMPLETE. 004490 
MODEL I-INTERARRIVAL TIME MEAN OF 120 SEO04500 

I SEC ABORTED SPS COMPIL'N - WAIT 10 M004510 
ABORTED COMPILIN AGAIN - WAIT S MIN T004520 

SPS RECOMPILATION OF SOURCE COOE-I SEC. 004530 
FILEI-LOAD MODULE ISKI BPS e-> 0SK. 004540 
FILEI DSK .-> FMP. 004550
 
FILE2-CONFIGATION 1OK; GRF <--> DSK. 004560
 
FILE? DSK .- > FHP. 004570
 
FMP FLOW CODE PROCESSING - 10 SEC. 004580 
FILES-RESULTS FILE 60KI FMP C-> OSK. 004590 
FILES DSK C.-> SPS. 004600 
SPS POST-PROCESSING;40 SEC-25t LOAD. 004610
JOB RUN COMPLETE. 004620 
MODEL I-INTERARRIVAL TIME MEAN OF 120 SE004630 
SPS COMPILATION OF SOURCE CODE-I SEC. 004640 
FILEI-LOAD MODULE IBKI SPS C--h DSK. 004650 
FILEI DSK (--> FMP, 004660 
FILE2-CONFIGATION OKI GRF C-.> 06K. 004670 
FILE2 DSK c.-> FmP. 004680 
FHP FLOW CODE PROCESSING - 10 SEC. 004690 
FILE9-DEBUG DUMP FILE 3MI FMP C-->'OSK.004?00
 

FILE9 DSK <--> SPS. 004710
 
SPS POST-PROCESSING4O0 SEC-25% LOAD. 004720
 
JOB RUN COMPLETE. 004730
 
MODEL I-INTERARRIVAL TIME MEAN OF 120 SE004740
 

I SEC ABORTED SPS COMPILIN - WAIT 10 M004750 
SPS RECOMPILATION OF SOURCE CODE-I SEr, 004760 
FILEI-LOAD MODULE 15h1 SPS <-.> DSK. 004770 
FILEI DSK <..> FMP.- 004780 
FILE2-CONFIGATION IOKI GRF 1--> USK. 004790 
FILE? DSK <--> FMP. 004800 
FMP FLOW CODE PROCESSING - 10 SEC. 004810 
FILES-DEBUG DUMP FILE 3MI FMP <--> DSK.00420 
FILE9 05K --> SPS. 004830
 
SPS-POST-PROCESSING4O0 SEC-2S1 LOAD. 004840
 
JOB NUN COMPLETE. 004e50
 
MODEL I-INTERARRIVAL TIME MEAN OF 120 SE004860
 
SPS COMPILATION OF SOURCE CODE-I SEC. 004870 
FILEI-LOAD MODULE I5K; SPS <--> USK. 004880 
FILEI DSK -- > FMP. 004890 
FILE2-CONFIGATIOM IOKI GRF <--> DSK. 004900 
FILE? OSK C.-> FMP. 004910 
FMP FLOW CODE PROCESSING - 10 SEC. 004920 
FILES-RESULTS FILE 60KI FMP .--> DBK. 004930 
FILES 0SK I--> SPS. 004940 

http:399,10,0.90


486. 

487. 

488. 

489. 

490. 

491. 

492. 

493. 

494. 

495. 

496. 

497. 

498. 

499. 

500. 

501. 

502. 

503. 

504. 

505. 

506. 

507. 

508. 

509. 

510. 

51t. 

512. 

514. 

514. 

515. 

516. 

517. 

518. 

519. 

520. 

521. 

522. 

523. 

S24. 

525. 

526. 

521. 

528. 

529. 

530. 

531. 

532. 

533. 

534. 

535. 

536. 

537. 

538. 

539. 


540. 

541. 

542. 

543. 

544. 

545. 

546. 

547. 

548. 

540. 

550. 


410.61.60,12,1,-l 

410.0,0.O,00O 

420,0#120.1.0.0 

420.61.115,0.-1 

421.I.0.0.l,-1 

421.1090,,I.0 

422,210.0.1,-
i 

422,101D0.11-

420,60,1O,02, l 

498,IO.0,0,20.1 

428#1.OI,-1 

420.61.60,1291,-l 

420,0,0.0,00 

430.,120,1,0,0 

430,611.15.0.-1 

431,1.0,0.1,-

431,10,0,1,1,0 

432,21,0o0,I.-1 

4321I0,0.1,1,.l 

430,60,1O,0,2,-I 

439.10,00.90.-l 

439,1.0.1.90,-l 

430.61,60.12,1-I 

430,0.0,0,0,0 

440.O.120.,O,0 

440.61,1,1S.O,-I 

443:1.0.0.1,-1 

441,0, l1. 

442,21,0.0,.-

44Zu100,IO,,-1 

440,60 1O,0,2-1 

449.10.0,0,90.-1

4

4 9.1.0.1090'.t 

440.61.60,12.1.-1 

440,0.0.0,0,0 

450,0.12O,1,0, 

450,6t,1t1,0,t600

450.6t1tS.0.1 

451.1,0,0.1,-l 

451.10,0.1,0 

452,21,.01,.-1 

462.I0,0.1,l,-l 

450,60,10.0,2,-I 

458,10,0,0,Z.-t 

458.1.0.1,2,-I 

450.61.60,12.1,-l 

450.0.0,0.0,0 
460.01120,1,0,0 

466.61t.15,0,-600 

460,61,,15,0,-300 

460,61,115,0,-l 

461.1,0,0,1,-l 

461.IO,0.1.1.0 

462,,0.0,-j 

462,10.0.1,1,-I 

460.60,10,0,2,-t 

468,10,0.0.2,-1 

468.1.0,1,2,-I 

460.61.60.2,Zl.-

460,0.010,0,0 

4700,120.10,0 

47061tI5,Ot 

471,1,0,0,1 -I 

479.IO.0,1.I,0

472.21,0,0.1,-I 


SPS POST-PHOCESSINOI4O SEC-25% LOAD. 004950
 
JOB RUN COMPLETE. 004960
 
MODEL 1-INTERARRIVAL TIME MEAN OF 120 SE004970
 
SPS COMPILATION OF SOURCE CODE-1 SEC. 004980 
FILEI-LOAD MODULE ISKI SPS <--i OSK, 004990 
FILEt OSK <.- FMP, 005000 
FILE2-'CONFIGATION OKI ORF '--i 0SK. OOSOIO 
FILE2 05K --. FMP.
> 005020

FMP FLOW CODE PROCESSING . 10 SEC. 005030 
FILES-RESULTS FILE 60K; FHP <--i 0SK. 005040 
FILED DSK <-> SPS. 005050 
SPS POST-PROCESSINGI40 SEC-25% LOAD. 005060 
JOB RUN COMPLETE. 00?070 
MODEL I-INTERARRIVAL TIME MEAN OF 120 SEQOSOSO 
SPS COMPILATION OF SOURCE CODE-I SEC. 005090
 
FILEEI.LOAO NODULE ISKI SPS <--> 05K. 005100
 
FILEt OSK < MP> 0OSID
FMP. 

FILE2-CONFIGATION IOKI ORF 4--1 DSK. 005120 
FILE2 DSK C--> FMP. 005130 
FMP FLOW CODE PROCESSING - 10 SEC. 005140 
FILE9-DEBUG DUMP FILE aMl FMP <-.> DSK.005150 
FILE9 DSK <--> SPS. 005160 

SPS POST-PROCESSINGI40 SEC-25% LOD. 005170 
JOB RUN COMPLETE. 005160 
MODEL I-INTERARRIVAL TIME MEAN OF 120 5E005190 
SPS COMPILATION OF SOURCE CODE-I SEC, 005200 
FILEt-LOAD MODULE 15KI SPS <--> DSX, 005210 
FILEI OSK <--> FMP. 005220 
FILEE-CONFIGArION IOKI GRF <--> OSK. 005230 
FILE2 05K <--> FMP. 005240 
FMP FLOW CODE PROCESSING - 10 SEC. 00S250
 
FILE9gDEOUG DUMP 3MI FMP <--> OSK. 005260
 
FILE9 DSK '--> SPS. 005270
 

SPS POSt-PHOCESSINGI4O SEC-2tS LOAD. 005280
 
JOB RUN COMPLETE. 005290
 
MODEL I-INTERARRIVAL TIME MEAN OF 120 SEOOS300
 

1 SEC AUORTED SPS COPOLIN WWAIT 10 M005310
 
SPS RECUMPILATION OF SOURCE CODE-I SEC. 005320 
FILEI-LOAO MODULE [SKI, SPS <--> OSK, 005330 
FILEI 05K I--, FMP. 005340 
FILE2-CONFIGATION IOKI GRF <.-> 05K. 005350 
FILE2 OSK 4. FMP. 00S360 
FMP FLOW CODE PROCESSING - 10 SEC. 005370 
FILESgRESULTS FILE 60K iMP <--X OSK. 005380
FILES DSK <--> SPS. 005390 
SPS POST-PMOCESSINGI4O SEC-25% LOAD. 005400 
JOB RUN COMPLETE. 005410 
MODEL IlINTERARRIVAL TIME MEAN OF 120 SE005420 

1 SEC ABORTED SDS COMPILIN - WAIT 10 M005430 
ABORTED COMPIL'N AGAIN - WAIT 5 MINt TO0440 

SPS RECOMPILATION OF SOURCE CODE- SEC. 005450 
FILEI-LOAD MODULE 151K SPS <.-> 0SK. 005460 
FILEI OSK <--> FMP. 005470 
FILE2-CONFIGATION [OK; GRF 1--> 05K. 005480 
FILE2 09K <--> FMP. 005490
 
FMP FLOW CODE PROCESSING - 10 SEC. 005600
 
FILES-RESULTS FILE 40KI FMP 4--l OSK. O051O 
FILES SK <..> SPS. 005520 
SPS POSF-PROCESSING*AO SEC- 5 LOAD. 005530
 
JOB RUN COMPLETE. n05540
 
MODEL I-INTERARRIVAL TIME MEAN OF 120 5E005550
 
SPS COMPILATION OF SOURCE COOE-I SFC. 005560 
FILEt-LOAD MODULE 1SKI SPS <--> 0SK, 005570 
FILEI DGK c--. FMP? 0055.0 
FILE2-CONFIGATION OKS 01F <--> OSK. D0590 

http:422,101D0.11


551. 

552. 

553. 

554. 

555. 

556, 

557. 

558, 

559. 

560. 

561. 

562. 

563, 

564. 

565. 

566. 

567. 

668. 
569. 

570. 

571. 
572. 
573. 
574, 
575. 

576. 

577. 

578.' 
579, 
580. 

581. 

582. 

583. 

584. 

585. 

586. 

587. 

588. 

589. 

590. 

591. 

592. 

'593. 

594. 
595. 

506. 

597. 

598. 

599, 

600. 

601. 
602. 

603. 

604. 

605. 

606. 

607,
608. 
609. 

610. 
611. 

612. 

613. 

614. 
615. 


472.10.0,1,4l 

470.60,I0,0,211 

478.10,0.0.2.-1 

478.0TOk.2.I 

470,61,60.12,1.1 

470.0.0.0,0.0 

480,0.120.l.0.0 

480,61#,1.0*600 

480,61.15.01 -1 

;Slt.1O.1-1 

4ai160.1.1,0 

482,21,0,0.1.-1 

4H2010,I.111 

480sOIO02-I 

489,10.0.0,01.-1 

489,1.011,90,-l 

480.61.60.1,1,11 

480,0.000.0 

'490.0.120,12.i_ 
490.61,.15,0,-600 

490,61.1.15.0t-1 

491,1.0,0.1.-

491.10,0,1l,,0 

492.21.00,1-i 

492.10.0,1.1.-l 

490,60.10,0,21-1 

498,10.0,0,2,-1 

498,1.0,l. 1 

490,6160t12,I, I 

490,0,0.0,0,0 

500,0.120,1,0,0 

500.61.1,15,0,600 

500,61.II5.0:-300 

500.611,15,0.1 

50II.O.0.I.-1 

501,10,0,l1.,0 

502,21.0.0.-14 

502,1000,1.1,'-I 

500.60,100,2E* ; 

508,10.0,0,2,-l 
508,1.0.1,2.-1 
500,61,60,12,1.-1 

500.0,0.0.0,0 
510,0.120,I,000 

SI0,61.165.0-1 

SI..00I.-I 

511f0.0.1.1.0 

512,21.0.0. 1 

5t2.I0,01.4
510,60,10,0,2t;l 
518.10,0,0,.-

5tB.ItO.I.2.-1 
510,61,60,12.1.-1 
510..0,0,0.0 

520,0.120.1.0.0 

520.61#1.15,0-1 

521.1.,00.1,1l
521'.100,1.1.0 
522,21.60.1.-1 
522.10.0.1.1,l 

520.60,10.0.2-1 

528,10,0.0.2.-I 
5F8.0,I,2,-I 
520,61.60.12.1.I1 
5200.0.0.00 

FILE2 OS <-> FMP. 

FMP FLOW CODE PROCESSING * IO SEC. 

FILES-RESULTS FILE AOI FhP <--> DSh. 

FILES 04K .- > SPS. 

SPS POST-PNOCESSINGI40 SEC-25% LOAD. 

JOB RUN COMPLETE. 


O00600
 
n00610
 
005620
 
005630
 
005640
 
009650
 

MODEL I1INTERARRIVAL lItE MEAN OF 120 5E005660
 
1 SEC ABORTED SPS COMPILIN - WAIT 10 MC00670
 

SPS RECOMPILATION OF SOURCE CODE-I SEr. 005680
 
FILEI-LOAD MODULE [KIS5PS t- 0SK) 

FILEI DSK -- FP. 

FILE2"CONFIGATION OK0 Gk

F 
<--> )S

K
.
 

FILE2 05$ <--> FlP. 

FMP FLOW CODE PROCESSING - 10 SEC. 

FILE.9UEUG DUMP FILE 3H; FMP (~) 


FILE9 OSK1 *--> SPS. 

SPS POST-PHOCESSINGI4O SEC-25% LOAD. 

JOB RUN COMPLETE. 


005690 
005700
 
C05710
 
005720
 
005730
 

DSK.005740
 
005750
 
005760
 
005770
 

MODEL I-INTEAARIVAL TIME MEAN OF 140 SF005780 
I SEC ABORTED SPS CONMPIL-N - WAIT 10 M005790 

SPS RECOMPILATION OF SOURCE CODE-I SEr. 005800 
FILEI-LOAD MODULE ISKI SPS 
FILEt DSK <.- FlP. 
FILE2-CONFIOATION IOKi OlF 
FILE2 DSK <--> IMP. 
FMP FLOW CODE PROCESSING -
FILES-RESULTS FILE 60KI FHP 
FILES DSK -.- SPS. 

O-- 005810
55K. 

005820
 

SK> 005830
O. 

005840
 

10 SEC. 005850
 
-1 DSK. 005860
 

005870
 
SPS POST-PROCESSING14O SEC-25S LOAD. 005880
 
JOB RUN COMPLETE. 005890
 
MODEL I-INTERARRIVAL TIME MEAN OF 120 SE005900 

I SEC ABORTED SPS COMPILIN WAIT 10 M005910 
ABORTED COMIIL'N AGAIN - WAIT 5 MIN. 7005920 

S8S RECOMPILATION OF SOURCE CODE-I SEC. 005930
 
FILEI-LOAD NODULE ISKI SPS <-'* DSK. 005940
 
FILE DSK '--> FMP. 005950
 
FILE2-CONFIGATION 1OKI GRF 4.-,1 0SK. 005960
 
FILE2 DSK I--, FiP. 005970
 
FMP FLOW CODE PROCESSING - 10 SEC. 005980
 
FILES-RESULTS FILE 60KI FMP <--I O5K. 005990
 
FILED 0SK <.-> SPS. 006000
 
SPS POST-PROCESSING;4O SEC-25% LOAD. 006010
 
JOB RUN COMPLETE. 006020
 
MODEL I-INTERARRIVAL TIME MEAN OF 120 5E006030
 
SPS COMPILATION OF SOURCE CODE-I SEC. 

FILEt-LOAD MODULE [SKI SPI -- <SK. 

FILE DSK C-.> FNP, 

FILE2-CONFIGATION 10KI 5RF 1--I> SK. 

FILE2 DSK <--> FlP. 

FMP FLOW CODE PROCESSING - IS SEC. 

FILES-RESULTS FILE 60KI FlP 4.-> USK. 

FILES DK I-- SPS. 

SPS POST-PROCESSING140 SEC-25% LOAD. 

JOB RUN COMPLETE. 


006040 
806050
 
006060
 
006070 
006080
 
006090
 
006100
 
006110
 
006120
 
006130
 

MODEL I.INTERARRIVAL TIME MEAN OF 120 5E006140
 
SPS COMPILATION OF SOURCE CODE-I SEC. 

FILE1-LOAD MODULE 15KI SIS C--> DSK. 

FILEI DSK <-> FMP. 

FILE2-CONFIGATION IOK; ORF C--> DEK. 

FILE2 USK C--> FMP. 

FHP FLOW CODE PROCESSING - 10 SEC. 

FILEB-RESULTS FILE AOKI FP 4-.> OSK. 

FILES DSK 4..> SPS. 

SPS POST-PROCESSINGI40 SEC-259 LOAD. 

JOB RUN COMPLETE. 


006150
 
006160
 
006170
 
006180
 
006190
 
006200
 
006210
 
006220
 
006230
 
006240'
 

http:5200.0.0.00
http:520,61.60.12.1.I1
http:480,61.15.01


616. 

617. 

618. 

619. 

620. 

621. 

622. 

623. 

624. 

625. 

626. 

627. 

628. 

629. 

630. 

631. 

632. 

633. 

634. 

635. 

636. 

637. 

638. 

639. 

640. 

641. 

642. 

643. 

644. 

645. 

646. 

647. 

648. 

649. 

650. 

651. 

652. 

653. 

654. 

655. 

666. 

657; 

658. 

659. 

660. 

661. 

662. 

663. 

664. 

665. 

666. 

667. 

660. 


669. 

670. 

671. 

672. 

673. 

674. 

675. 

676. 

677. 

678. 

679. 

680. 


530,0.120.1,0,O 

530,61.1,15.0-1 

531.1.O.0,1.-I 

531,10,0.t1,0 

532,210,.Otl. 

532,OG,1,1.-I 

530.60.10.0,2.-1 

539,10,0.,90.-

Sl,.0.I.90,1l 

530.61.60,12.1,' 

530.0,0,0,0.0 

540,0.120.1,00 

540,61#115.0,-l 

641,1,0,0.-ll 

541,10,0.l1,10 

542.21.0.0,!.-I 

542,10,0.1.l1 

564060,t0.0,2t-I 

549,10#0.0,90.-1 

649,l.0,1.90.-1 

540,61,60,12,1.-1 

540,00,0.00 

550o,0.10.1,0,0 

650,6101015,0.-600 

550,61,1,15,0.I 

65l,1.0.0,1,-I 

Sb1,I0.0,1.1.0 

552,21.0.0.ltI 

552,10,0,11,-l 

550.60,10,0.20-1 

558,100,0.2.-1 

S58,I.0..2.-l 

550.61.60,12,.'l

550.01.0.0,0 

560,0.120,1.0,0 

S60,61.15.0,-600 

60,61.1,15.0.-300 


660,61,l15.09-1 

661,l.OG.1..I 

561,I0.0,I,1,O 

562,21,0..1.-1 

562.10.0.l.1r.1 

560,60.10.0,2.-1 

568.100,0.2o.-1 

56B.1.0,1i2-1 

560,61,60,I2,l.-1 

560,0.0,0,0,0 

570,0.120,l,0.0 

570,61,115,01-1 

5l1.0.0.1,.1 

571,1001,1O 0 

572,21.0.0.1,-l 

572,10,0.1,,-1 


570,60olO,0,2,. 

67Sl0,0.0,2,-I 

578Ts1,0,1,2-

570,61.60.12.1.-l 

570,0,0,0,0.0 

580,0,120,10,0 

580,61#1.15.0,-600 

580.6,1,15.0.,l 

581.1.0.0.1.-1 

5810I,0.1l,,O 

582,21I,0,l-

582,10.0,1,-l 


MODEL I-INTERARRIVAL TIME MEAN OF 120 5E006250 
SPS COMPILATION OF SOURCE CODEsi SEC. 006260 
FILEI-LOAD MODULE 15K: SPS <-- DSK. 006270 
FILE! DSK (.-> FMP. 006280 
FILFE-CONFIGATION IOK; ORE 4-1 USK. 006290 
FILE2 0SK <..> FMP. 006300
 
FMP FLOW CODE PROCESSING - 10 SEC. 006310
 
FILE9-DEBUG DUMP FILE 3MB FMP <--> DSK.006320
 
FILE9 OSK c-.> SPS. 006330 
SPS'POST-PHOCESSING;40 SEC-25 LOAD. 006340 
JOB RUN COMPLETE. 006350 
MODEL I-INTERARRIVAL TIME MEAN OF 120 SE006360 
SPS COMPILATION OF SOURCE CODE-I SEC. 006370 
FILEI-LOAD MODULE 15K; SPS 4.-, OSKa 006380 
FILE! 1SK 1--> EMP. 006390 
FILEa-CONFIGATION 1OK; ORF <-- OSK. 006400 
FILE2 0SK 4.-, FMP. 006410 
FMP FLOW CODE PROCESSING - 10 SEC. 006420 
FILE9-DEBUG DUMP 3M1 FMP <--> DSK. 006430 
FILE9 0SK -.> SPS. 006440 

SPS POST-PROCESSINGI40 SeC.05% LOAD. 006450 
JOB RUN COMPLETE. 006460 
MODEL I-INTERARRIVAL TIME MEAN OF 120 SE006470 

I SEC ABORTED SPS COMPILIN - WAIT 10 M0064680 
SPS RECOMPILATION OF SOURCE CODE,! SEe. 006490 
FILEI-LOAD MODULE 15KI SPS 4o- OSK. 006500 
FILEt DSK <- S 006510
FP. 
FILE2-CONF'IGATION 1OK; GRF 4--> OSK. 006520 
FILEt OSK 4.o- FMP. 006530 
F4P FLOW CODE PROCESSING - 10 SEC. 006540 
FILES-RESULTS FILE 60KI FMP <--, DSK. 006550 
FILES DSK 1.-> SPS. 006560
 
SP5 POST-PROCESSING4O SEC-25% LOAD. 006570
 
JOB RUN COMPLETE. 006680
 
MODEL I-INTERARRIVAL TIME MEAN OF 120 SE006590
 

I'SEC ABORTED SPS COMPILIN - WAIT 10 k006600
 
ABORTED COMPILIN AGAIN - WAIT 5 MIN, T006610
 

SPS RECOMPILATION OF SOURCE CODE-1 SEC. 0066a0
 
FILEI-LOAD MODULE 15KI SPS D--S051. 006630 
FILEI DSK C.., FMP. 006640 
FILE2-CONEIGATION 10KI ORFG -. DSK, 006650 
FILE2 DSK < FMP. 006660 
FMP FLOW CODE PROCESSING - 10 SEC. 006670 
FILES-RESULTS FILE 6OK; FMP d--> OSK. 006680 
FILES DSK < - SPS. 006690 
SPS POST-PROCESSINOJ40 SEC-25% LOAD. 006700 
JOB RUN COMPLETE. 006710 
MODEL I-INTERARIVAL TIME MEAN OF 120 SE006720 
SPS COMPILATION OF SOURCE CODE.! SEC. 006730 
FILEI-LOAD MODULE 115K SPS 4--, 05. 006740 
FILEI DSK <.-I FMP. 006750 
FILE2-CONFIGATION IOKIRF 4.-> OSK. 006760 
FILEZ OSK 4-.> FMP. 006770 
FMP FLOW CODE PROCESSING - 30 SEC. 006780 
FILES-RESULTS FILE 60KB FMP <-.> OSK. 006790 
FILES USK <.-, SP8. 006800 
SPS POST-PROCESSINGI40 SEC-25% LOAD. 006810 
JOB RUN COMPLETE. 006820 
MODEL I-INTERARRIVAL TIME MEAN OF 120 SE006830 

I SEC ASORTED SPS COMPIL'N - WAIT 10 M006840 
SPS RECOMPILATION OF SOURCE CODE-1 SEC. 006850 
FILEI-LOAO MODULE ISKI SPS C-- DSK 006860 
FILEI DSK '.-> FMP. 006870 
FILE2-CONFIGATION IOKi GRF -> 05K. 006880 
FILE2 DSK c., FMP. 006890 

http:540,00,0.00
http:542,10,0.1.l1


681.
682. 

550,60.10O.2.|
589.10.O,9o0-I 

FMP FLOW CODE PROCESSING - 10 SEC. 
FILE9-DEBUO DUMP FILE 3MI FMP <--

006900 
0SK.006910 

683. 
684. 
685. 
686. 
687. 
688. 
689. 
690; 
691. 
692. 
693. 
694. 
*95. 
696. 

589,I.0.,l90.41 
80.6l,60.12i'l.I 
580,0.O.0OO, 
590.0,120.1.010 
590,61.1, 150-600 
590,61*,15,01-1 
591.1.0.o,*It-
591,10.0.1!t,, 
592,21.0.0.1.I1 
592,10.0,1.1,rl 
590,60.1002I 
598,10O.0.2.'1 

59 8,lDI,2rAL 
590.61.60,12,1-l 

FILE9 DSK <--> SPS. 006920 
SpS POST-PROCESSINGI40 SEC'25% LOAD. 006930 
JOB RUN COMPLETE. 006940 
MODEL 1-INTERARRIVAL TIME MEAN OF 120 5E006950 
I SEC ABORTED SPS COMPILIN - WAIT 10 M006960 

SPS RECOMPILATION OF SOURCE CODE-I SEC. 006970 
FILEI-LOAD MODULE SK; SPS '-- OSK. 006980 

FILEt OSK C--> FMP. 006990 
FILE2-CONFIGATTON IKI 0?F <--> <SK. 007000 
FILE2 DSK <-- FRP. 007010 
FMP FLOW CODE PROCESSING - 10 SEC. 007020 
FILES-RESULTS FILE 60KI FMP <--> 0SK. 007030 
FILES USK 4--1 SPS. 007040 
SPS POST-PHOCESSINGI40 SEC-25 LOAD. 007050 

697. 590.0.0.0.0.0 JOB HUN COMPLETE. 007060 
698. 
699. 

610.0.303.2.,0 
610.61,1:S -0600 

MODEL 2-INTERARRIVAL TIME MEAN OF 300 SECOOT070 
1 SEC ABORTED SPS COMP'LN - WAIT 10 HIN. 007080 

700. 
701. 

610,61.1,25Ot0 
611.1.0.02.i 

SPS RECOMPILATION OF SOURCE CODE - I SEC.007090 
FILEI-LOAD MODULE 60KI SPS --, USK. 007100 

702. 
703. 
704. 

611,I0,0..2.O 
612.21.O0,2.1l 
612,10.0,.2,0 

FILEI DSK --> FMP. 
FILE2-CONFIGURATION 50KI ORF 
FILE2 USK -fl FMP. 

-> OSK. 
007110 
007120 
007130 

705. 
706. 

613,1,0.0.19. 1 
613.10.0.1.19'-1 

FILE3-GRID 600KI SIS 
FILE3 DSK --- FMP. 

O-ASK. 007140 
00710 

707. 610,bO.60.0.3-I FMP FLOW CODE PROCESSING-6OSECIA4ATT 3 F1007160 

708. 619,10,0,0.12.-1 FILE9-DEBUG DUMP AMI FMP - > OSK. 007170 

709. 
710. 

619.1.0.1,12510 
61980.0.12b.-i 

FILE9 USK -f SPS. 
FILE9 ANOTHER 4M WORDS; FMP -> DSK. 

007180 
007190 

711. 619,1.0.1.125.- FILE9 USK - > SPS. 007200 

712. 
713. 
714. 
715. 
716. 
717. 

610.00.0,0,OO 
620.0,300.1.0T0 
620.611,25,0-k 
61,1.0.0,2-'i 
621,10, Ol.2,O 
622,20.0.1,2i-l 

JOB RUN COMPLETED. 007210 
MODEL 2-INTERARRIVAL TIME MEAN OF 300 SECOO7220 
SPS COMPILATION OF SOURCE CODE - I SEC 007230 
FILEI-LOAD MODULE 60KI SPS -> OSK. 0D7240 
FILEI DSK -) FMP. 007250 
FILE2-CONFIGURATION 50KI ORF -> SPS. 007260 

718. 620,61.80.2011.1 SPS CONFIGURSN MANIPULAIN170 SEC-30% L0AOO7270 
719. 6 2elO00.Z1-L FILE2-CONFIGURATION $OKI SPS -> USK. 007280 

720. 622.10.0,1,2,0 FILE? OSK -". FMP. 007290 

721. 623,10.0.19,1 FIUE3.GRIO 600KI SPS --I OSE. 007300 
722. 623,10,01il, FILE3 USK - > FMP. 007310 
723. 
724o 

620,60,60,0.3.-1 
628,Ot0,O,,61I 

FMP FLOW CODE PROCESSING-6OSECIAWAIT 3 F1007320 
FILER-RESULTS FILE 1OKI FMP - > USK. 007330 

72b. 6 
2 
8.,,I,6rIi- FILER USK - > SPS. 007340 

726. 620,bl1BO135.1I,-1 SPS POST PROCESSING-120 SEC;7O LOAD. 007350 

727. 
728. 

627,20,0,0.4.-I 
620.0,0,0,0,0,, 

FILE7-OUTPUT FILE 120K$ SPS 
JOB RUN COMPLETED. 

-> ORF. 007360 
007370 

729. 
730. 

630,0,300,1,0.0 
630,61.l,250'0-bO0 

MODEL 2-INTERARRIVAL TIME MEAN OF 300 5EC0073H0 
I SEC ABORTED SPS COMPOLN - WAIT 10 MIv. 007390 

731. 630,6l1,25,0'd300 ABORTED COMPILATION AGAIN-WAIT 5 MIN. 007400 
7328 630. Z,,5,6-1 SPS RECDAMILATION OF SOURCE CODE - I SEC.007410 
733. 631,1,0,0,2.- FILEI-LOAO MODULE 60K1 SPS . > DSK. 007420 

734. 631,l0.0.I.2;d . FILEt DSK -> FMP. 007430 
735. 
736. 

632.21,0.2 -1I 
632.1O.0.1,2;0 

FILE2.CONFIGURATION 503KI 
FILEP DSK --I FMP. 

F - > OSK. 007440 
007450 

737. 633.l.0.0.19;-l FILE3-GRID 600K SPS -> ASK. .007460 
738. 633.10,0.1.19.-1 FILE3 DSK .> FMP. 007470 

739. 
740. 
741. 
742. 

6JO.b0,60,03v-I 
638.10.E.0,12t-I 
63S,1,0.I,121-I 
630,61,360.35.,-l 

FMP FLOW COVE PROCESSING-6OSEC;AWAIT 3 F1007480 
FILE8.RESULTS FILE 3hOI FMP -* OSK. 007440 
FILES OK -> SPS. 007500 
SPS POST PROCESSING-24O SECO70% LOAD. 07510 

743. b37,20,0,0.8-I FILE-UUTPUT FILE 240KI SPS -> GOF. n07520 

744. 630,0,0,0,0,0 JOB RUN COMPLETED. 007530 
745. 640,0300.1.00 MODEL 2-ICTEARRIVAL TIME MEAN OF 300 5ECI07540 



746. 

747. 

748. 

749. 

750. 

7s1. 

752. 

753. 

754. 

755. 

756. 

787. 

758. 

759. 

760. 

761. 
762. 

763. 
764. 

765. 

766. 

767. 
768. 

769. 

770. 

771, 

772. 

773. 

774. 

. 775. 
776. 

777. 


D> 778. 
I 779. 

780. 

781. 

782. 

783. 

784. 

765. 

786. 

78. 
788 

709.

790. 

791. 

792. 

793. 

794. 


T95. 

796. 

797. 

798. 

799. 
800. 

801. 

802. 

803. 

804. 

808. 

806, 

807. 

808. 

809. 

810. 


640.6I.1,25,O-t00 

640,61,.,25.01-

641.1.0,0,2,-l 

641.10,0,1,2.0 

642,23"1.0,21 

642,10.0,1,2.l 

643.l00O0,19.-I 

643,10.0,l,19. 

640,60,60,0,39-1 

648.10-0,0,6.-1 

648.1.0.1,6,-l 

640.61.180.35.l,-1 

647,20.0.0.4.-I 

640,0.0.0,0,0 

650,0,300,1,0.0 

650,61,1,25.01-600 

650,61.1,25,OrI1 

651.1,0.0,2.-1 

651.10.0,11.20 

652,2110.0,2.-1 

652,100,.1.2,0 

653,l0Q,09,-I 

653,10,0.1,19,l 

650,60,60,0,3.-I 

658,10,0,0,6.-1 

658,1.0,1,6.-1 

650,61.180.35.1,-1 

657,20.0,0,4*-

650000 00.0 

660.0,300,1.0.0 

660,61.1.25.0.-600 

660.6101,25.0.-1 

661..OO2,-j 

661.10,0#1,2.0 

662.21.0,0.2,-1 

662.10.0,1..0 

663,1.0,0,19,-l 

663,10,01.19.-1 

660,60.60.0,31-

669,10,0,0,125.-1 

669.1.0,1,125.0 

669,10.0,012b--1 

669.1.0.125.-I 

66000.0,0,0.0

670,0.300,1.0,0 

670,61,1#25,0,Il 

67111000.2,-I 
671,10,011,2.0 

672.20,0,1,2.1-


670,61,60,20,I.-I
67201,0,0.2,-

672,I0.0,1,2,0 
673.10,0.19,1l

673.10.0,1,19.--

670.60,60.0.3,-I 

679110.0.0,125.1-

619,1.0.1,125t0 

679,1010,0.125.-1 

679,1.0,1,125.-I 

670.0.010.0.0 

680,0,300.1#0.0 

680061,1 !5,0.-600 

680,61.125,0-300 

680i,611.25.0,-1 

681,1.0.0.2.-1 


I SEC ABUNTED CUMPOLN-WAIT 10 MIN. 007550
 
SPS RECONPILATION OF SOURCE CODE - I SEC.007560
 
FILEI-LOALYMODULE 60KI SPS -- > ASK. 007570
 
FILEX DSK --> FMP. 007580 
FILE?-CONFIbIIATION 5OKi OF --I 1ISK. A07590 
FILE2 DSK .-> FMP. 807600 
FILE3-GRID 600K$ SPS -.- OSK. 007610
 
FILE3 DSK -- FMP, 007620
 
FMP FLOW CODE PROCESSING-6OSECIAWAIT 3 F107630
 
FILES-RESULTS FILE 1ROKI FMP --> OSK. 007640
 
FILES OSK --I SPS. 007650
 
SPS POST PRUCESSIG-120 SECI70 LOAD. 007660
 
FILE7OUTPUT FILE 120Ki SPS -- > GRF. 007670 
JOB RUN COMPLETED. 007680
 
MODEL 2-INTERARRIVAL TIME MEAN OF 300 SECD07690
 
I SEC ABORTED COMPLIN - WAIT 10 MIN. 007700
 
SPS RECOMPILATION Of SOURCE CODE - I SEC.007710 
FILEI-LOAD NODULE 60KF SPS -'0 nSK. 007720 
FILEI DSK --I FMP. 007730 
FILE2-CONFIGUHATION SOKI GRF --> 0K. 007740
 
FILE2 DSK -- FMP. 007750
 
FILE3-GRID 600GR SPS -- 0SK. 007760
 
FILE3 DSK -0 FMP, 007770 
FHP FLOW CODE PROCESSING-6OSECIAWAIT 3 F1007780
 
FILES-RESULTS FILE ISOKI FMP --> DSK. 007790
 
FILES DSK -- > SPS. 007800
 
SPS POST PROCESSING-120 SECS70% LOAD. 007810 
FILE7-OUTPUT FILE 120K$ SPS .- > GAF. 007820 
JOB RUN COMPLETED. 007830
 
MODEL 28INTEARRIVAL TIME MEAN OF 300 SECO7840
 
I SEC ABORTED SPS COWPILN - WAIT 10 MIN. 007850 
SPS RECOMPILATION OF SOURCE CODE - I SEC.007860 
FZLEI-LOAD MODULE 60K; SP -- 0SK. 007870 
FILEI DSK .> FHP, 007880 
FILE2-CONFIGURATION O8KIGF -- 0SK 007890 
FILE2 DSK -. FMP. 007900 
FILE3-GRID 600KI SPS -- OSK. 007910 
FILE3 DSK --> FMP. 007920
 
FMP FLOW CODE PROCESSIN.6OSECBAWAIT 3 Fl00T930
 
FILE9-DEBUS DUMP 4MB FMP --> aSK, 007940
 
FILE9 OSK --> SPS. 07950 
FILE9 ANOTHER 4M WORDS! FHP -- > DSK, 007960 
FILE9 0SK -.- SPS 007970 
JD8 RUN COMPLETED. 007980
MODEL 2-INTERARRIVAL TIME MEAN OF 300 SECDOT990
 
595 COMPILATION OF SOURCE CODE - I SEC 009000
 
FILEI-LOAD NODULE 60KI SPS --, 0SK. 008010
 
FILE 0SK -- > FMP. 008020 
FILE2-CONFIGURATION 50K GRF --I SPS. 008030 
SPS CONFIGURIN HANIPULA'N#7O SEC-30S L040008040 
FILE2-CONFIGURATION 50KI SPS -'0 DSK. 008050
 
FILE2 DSK -> FMP. 008060
 
FILE3-GRID 600KB SPS --I 05K. 008070
 
FILE3 0SK --> FMP. 008080
 
FRP FLOW CODE PRDCESSING.6OSECIAWAIT 3 FIOO80o90
 
FILE9-DEBUG DUMP AM$ FMP --> DSK. 008100
 
FILE9 DSK --> SPS. 008110
 
FILE9 - ANOTHER 4M WORDS FMP --> OSK. 008120 
FILE9 0SK -> SPS. 008130 
JOB RUN COMPLETED. 008140 
MODEL. 2-INTERARRIYAL TIME MEAN OF 300 SEC008150 
1 SEC ABORTED SPS COMPILN - WAIT 10 MIN. 008160 
ABORTED COPILATION AGAIN.WAIT S MIN, 008170
 
SPS RECOMPILATION OF SOURCE CODE - I SEC.08180
 
FILEI-LOAD MODULE 60K$ SPS --> OSf. 006190
 

http:651.10.0,11.20
http:640,61,.,25.01


811. 601.l0,,1,2.Q0 
812. 682.21.0,O,2,1' 

813. 682,10.0.1,2,0, 

814. 603.1,0#0.19,-i 

815. 683,10o01,19";l 

816. 680.60,60,0,3r1| 

817. 688.10,0,,6*l 

818. 6881lOt1,6roI 

89. 680,61.180.35.1,-

620. 687,O.0,0,4,-I 

821. 6BOQ.O.0.0,0 

822. 690,O.300,I.010 

823. 690.61.1l25,00600 

824. 690,61,l.25,O6 I 

825. 691.11t00.4,-

826. 691,1O,0,1,2O, 

827. 692,2110,0,2,-l 

82B. 692,10.0,1.20. 

829. 693,1,0,0,19,-1 

830. 693,10.0.,19,1I 

831. 690,60,60,0,31-1 

83Z. 698.1010.,6,'I 

833. 698,1.0,1,6.-l 

834. 690,61,180,35"'16-1 

03S. 697,20,0,0,4,-I 


836. 69000,0,0,0,0 

837. 700,0.306,900 

838. 0o0s61,1I2S.o.-600 

839. 700.61.l,25,0-l 

840. 701.0.0.2,-1 

841. 701,10001,2.0 

842. 702,21.0,0,2,-l 

843. 702,10,01,2,0 

844. 703,1.09019,-l 

845. 703.1010.1.19,-1

846. 700,60.60.0.3--I 

847. 708110O,0. 2 1 

848. 708,10 1,12,l 

849. 700.61,360.35,-1 

850. 707,20,0,0,8,-I 

851. 700,000.0,0,0 

852. 710,0,300,1,0.0 

853. 710.61.1,25:0,:600 

854. 710,61.1.25,0 1 

855s 711,1.0,0.2.-1 

856, 7111 001,2,0 

857, 712,21.0,0,2,"I 

858. 712,10,l,,2 0 

859. ?139100,19,-I

860. ?13.10,0.1,19.'l 

861. 710,60,60,0,30-1 

862. 719,10.0,0.1251-1 

863. 71t.1.0.1.125.O 

864. 719,10.0,0.125.-

865. ?19,1,0.1.125,-L 

866, 7100.0.0.00 

867. 720,0,300,1.0,0

868. 7k,61,1,25.0,1 


869. 7911.0.0 2.-1 

870. T2I.10.0.i.2.V 

871. 722.20.0,1.2,-1 

872. 720,61,80,20,1,-]

873. 722.1.0.2.-I 

874. 722.10.0,l.2,0 

875. 723110.,19,-1 

FILEI 0SK --. FMP. 008200
 
FILE2-CONFIOURATION SOKI ORF --, DSK. 008210
 
FILE2 DSK --N F4P. 008220
 
FILE3-GRID 600KI SPS -1 05K. 00A230
 
FILE3 0SK .> FMP. 008240
 
FHP FLOW CODE PROCESSIN.6OSECIAWAIT 3 F1008250
 
FILES.RESULTS FILE I80KI FMP --, 06K. 008260
 
FILES DSK --- SPS. 008270
 
SPS POST PROCESSINO-120 SECTO7% LOAD. 008280
 
FILE?-OUTPUT FILE 120KI SPE -- GRF. 008290
 
JOB RUN COMPLETEDO 008300
 
MODEL 2-INTERARRIVAL TIME MEAN OF 300 SECOO310
 
I SEC ABORTED COMPOLN-WAIT 10 MIN. 008320 
SPS RECOMPILATION OF SOURCE CODE - I SEC.006330 
FILE1-LOAD MODULE 60KI SPS --> DSK. 008340 
FILEI DSK .-i FAP, 008350 
FILE2-CONFIOURATION 50K GRf -. > DSK. 008360 
FILE2 DSK --. FMP. 008370 
FILE3-GRIO 600KS SPS --> OSK. 008380 
FILE3 DSK --I FMP. 008390 
FMP FLOW CODE PROCESSING-6OSECIAWAIT 3 F1008400 
FILES-RESULTS FILE 1801 FMP --> DSK, 008410 
FILES DK --I SPS. 008420 
SPS POST PROCESSING-120 SEC;T0% LOAD. 008430 
FILEI-OUrUr FILE 12oKf 5PS --> SAP. 008440
 

JOB RUN CUPLETED. 0084650
 
MODEL 2-INTERARRIVAL TIME MEAN OF 300 SECO08460
 
I SEC ABORTED COMPLIN - WAIT 10 KIN. 008470
 
SPS RECOMPILATION OF SOURCE CODE - I SEC.008480
 
FILEI-LOAD MODULE 60KB SPS .-, DSK. 008490
 
FILEI DSK --x FMP. 008500
 
FILE2-CONFIGURATION 50X1 OAF -- OSK. o8osto
 
FILE2 0SK --> FMP. 008520
 
FILE3-GRID 600KI SPS -> DSK. 008530
 
FILE3 DSK --> FMP. 008540
 
FMP FLOW CODE PROCESSING-6OSECIAWAIT 3 F OORSSO
 
FILES-RESULTS FILE 360KI FMR .- OSK. 008560
 
FILES DSK --> SPS. 006570
 
SPS POST PROCESSING-240 SECI70 LOAD. 000580
 
FILCT-OUTPUT FILE 240Kf SPS .- GRF. 008590
 
JOB RUN COHPLETED, 008600
 
MODEL 2-INTERARRIVAL TIME MEAN OF 300 SECO08610
 
I SEC ABORTED SPS COMP'LN - WAIT 10 MIN. 008620
 
SP RECOMPILATION OF SOURCE CODE - I SEC.008630
 
FILEI-LOAU MODULE 60KB SPS -. > OK. 008640
 
FILEt 0SK --* FMP. 008650
 

FILE2.CONFIGURATION 60KB GRE --, DSK. 008660
 
FILE? DSK --> FHP. 008670
 
FILE3-GRID 600KB SPS --N DSK. 008680
 
FILE3 OSK .- FMP. 008690
 
FMP FLOW CODE pROCESSING-6OSECIAWAIT 3 FOOB870
 
FILE9-DEBUG DUMP 4MI FMP --I OSK. 008710
 
FILE9 OSK --> SPS. 008720
 
FILE9 ANOTHER 4H ORD1 FMP --> USK. 008730
 
FILE9 0K .--I SPS. 008740
 
JOB RUN COMPLETED. 008750
 
MODEL 2-INTERARRIVAL TIME MEAN OF 300 SECO08760
 
SPS COMPILATION OF SOURCE CODE - I SEC. 008770 
FILEI-LOAD MODULE 60KI SPS -> DSK. 008780
 
FILE10SK -0, FMP. 008790
 
FILE2-CONFPIURATION SOKI OAF .. SPS. 008800
 
SPS CONFIGURON MANIPULAINITO SEC-30 LDADO008810
 
FILE2-CONFIGURATION 80KI SPS - osK. 008820
 
FILE2 DSK --> FMP. 008830
 
FILE3-ORID 60OKS SPS -->DSK. 008840
 

http:710,61.1.25
http:692,10.0,1.20
http:601.l0,,1,2.Q0


FILE3 DIK _., FP. 08850
 
FMP FLOW CODE PROCESSING-6OSECIAWAIT 3 F100A60
 
FILE8.RESULTS FILE 180KI 1P .- > OSK. 008870
FILES 0SK -. , SPS. 008880

SOS POST PROCESSINGO-120 SECI7O% LOAD. 008890
 
FILET-OUTPUT FILE 120KI SPS -. > GRF. 008900
 
JOB RUN COMPLETED. 008010
 
MODEL 2-INTERARRIVAL TIME MEAN OF 300 SECO008920
 
I SEC ABORTED SPS COMP'LN - WAIT 10 NIN. 008930
 
ABORTED COMPILATION AGAIN-WAIT 5 MIN. 008940
 
SPS RECOMPILATION OF SOURCE CODE - I SEC.008950
 
FtLEI-LOAD MODULE 60KI SPS --. OSK. 00960
 
FILEI OSK --. FMP, 008970
 
FILE -CONFIGURATION BOKI gRF .-> DS. 008980
 
FILE2 DSK .. 
 FMP. 008990
 
FILE3-08IO 600KI'SPS -.-
 DSK. 009000
 
FILE3 OSK .- > FNP. 009010
 
F4P FLOW CODE PROCESSING-6OSECIAOAIT 3 F1009020
FILES-RESULTS FILE 180KI FMP --> DSK. 
 009030
 
FILER DSK --> SPS. , 009040
 
SPS POST PHOCESSINO-12O SECI70% LOAD.' 009050
 
FILET-OUTPUT FILE 1OKg SPS ..> GRF. 009060
 
JOB RUN COMPLETED. 009070
 
MODEL 2.INTERARRIVAL TINE MEAN OF 300 SECO09080
 
I SEC ABORTED COMPILN.WAIT 10 HIN. 009090

SPS RECCPILATION OF SOURCE CODE - I SEC.009100
 
FILEI-LOAO MODULE 60KI SPS -> aSK. 009110
 
FILEI OSK .-> FMP. 009120
 
FILE2-CONFIGURAIION 5OKI GRF --> OSK. 009130
 
FILE2 OK -., PMP, 009140

FILE3-GRID 60OKS SPS --> DSK. 
 009150

PILE3 OSK ..> FHP. 009J60
 

FMP FLOW CODE P9gCESSING-SOSECIAWkIT 3 F009160
 
FILES-RESULTS FILE 360KI F14P-- OSK. 009180
FILES DSK --, SPS. 809190
 
SPS POST PROCESSING-240 SECI170 LOAD. 009200
 
FILET-OUTPUT FILE 280K; SPS --I O6F. 009210
 
JOB RUN COMPLETED. 009220
 
MODEL 2-INTERARRIVAL TIME MEAN OF 300 SEC009230
 
1 SEC ABORTED COMPL'N - WAIT 1O MIN. 009240
 
ABORTED COMPIL-N AGAIN * WAIT 5 MIN... 009260 
SPS RECOMPILATION OF SOURCE CODE - I SEC.009 60 
FILEI-LOAD MODULE 60KI SPS --> OSK. 009270 
FILEt .OSK --> FP. OO2aO 
FILE2-CONFIOURATION S0KI GkF --I OK. 
 009290
 
FILE2 0SK -- > FmP. 
 009300
 
FILE3-GRID 600KI SPS -.> SK. 009310
 
FILE3 DSK .- FHP. 
 009320
 
FNP FLOW CODE PPOCESSING-60SEcIAWATT 3 F1009330
 
FILER-RESULTS FILE IROKI FMP .-, OSK. 009340
 
FILES OSK -- > 5PS. 
 009350
 
SPS POST PROCESSING-120 SECI70% LOAD. 009360
 
FILE7-OUTPUT FILE IOKg SP --I GRF. 009370
 
JOB RUN'COMPLETED. 
 009380 
MODEL 2-INTERARPIVAL TIME MEAN OF 300 SECO09390
1 SEC ABURTED SPS COMP-LN - WAIT 10 MIN, 009400 
SPS RECOMPILATION OF SOURCE COOF - I SEC.009410 
FILEI-LOAD MODULE 60K'gSPS --> SK. 009420
 
FILEI DSK --> FMP. 
 009430
 
FILE2-CONFIGURATION 50K# 1GHF 
--> 0SK. n09440 
FILE2 0SK 
--> FHP. n09450
 
FILE3-GRID 600Kg SPS --I OSK. 009460 
FILE3 DSK -7> FMP. 9470 
FlP FLOW CODE PPOCESSING-6OSEC;AWAIT 3 FIOOG94O 
FILE9-DEUG DUMP 4M1 FMP .-> OSK. 009490 

876. 

817. 

878. 

879. 

,880. 

881. 

882. 

883. 

884. 

885. 

886. 

887. 

888. 

889. 

890. 

691. 

892. 

893.

894. 

895. 

896. 

897. 

age. 

899. 


900. 

901. 

902. 

903. 

904. 

905. 

906. 

907. 


908. 


909.

91P. 


723,0Od,19.-

720960.60,03 -1 


0

7284I 

1
O
0 1
96,l


7289..01,6,1

720,61,I80,351..-I 

727,20,O,004..l 

720,0.0,0.0.0 

730,0.300,1.0.0 

730,61,'126.0,-600 

730.61.L,25,0.-300 

730.61.1,25.0,-1 

731,1.0,0.2.-I 

731,100091,2.0 

7322.0,0,2.-1

732,10.0.1.2,0 

7331.00,S19.-I 

733.1O.O.1.I9.-I 

730,60,60,0.3-I

738,1010.0.6,-l 

738e0.I,6,-1 

730,61.160.3511,-

37.20.010.4,-I 

730.0,0,0.0,0 

740.0.300,1.0,0 


740,61.1,25,0, 600 

740,61 ,25,0.-1 

741 .1.0,2,. 1 

741,1O.0.1,2,0 

742.21080.2,-j 

742,10.0,1,2,0

743NI.00.19,-0 

743.10,0.1,19.-1 


74060g60,0,3,-t 


748.10,0.0,12.-1

7?481*0.II2.-


S911.?40,61,360.3S5,.-1

0' 912. 747.20,0.0,8.-I 


913. 7400.0,0,OO 

914. 750,0.300,1.0.0 

915. 70,61,1,25,01-600 

916. 750.61.1.25.0-300 

917, 750.6l.1,25,0O-r


5

910. 7 1*OeO-1 

919"; 75Il010.1,2.0

920. 


921. 

922. 

923. 

924. 

925. 

926. 


927: 

928. 

929. 

930. 

931. 

932. 

933. 

934. 

935. 

936. 

937. 

938. 

939. 

940. 


752021.0,02,2-. 

752.10.0.1;2.0 

75311.016, 9l-I 

753.1O.0,1,19,-

750,0.60,0,3-

T58l10,00o.6'.I 

75B O1l.,6,-

TSO.61180.35,1,-I 

70,2000.11.4,-I 

750,0,0.0,0,0 

760,03000,1O.O

760,61.1,25.,01600 

760.61,1.2S0O.-I 

761.10.,O2-.I 

761,10.0. 2.0 

762,21,0,0.2.fl 

762.10.0.1.2'0 

763,1 .. 0,19-l1 

763,10,0,1,19,1t 

76,6O000 O03,-I 

769.10,0,1251.I 


http:762,21,0,0.2.fl


941. 7b9,.,1,1,25?0 

942. 769.10O,0,Ibg.1 

943. 769..01.125'-I 

944. ?60,0.,0.0.0
945. 770,0.300,1,.D

946. 770.61,1.25.O,-l 


947. 771,I.0,-2 

948. 771.100.1.2.0 

949. 772.20,0,I,2~l 


950. 770,b1,80,20,l,-1 

951. 772,1.0,0,2.-k 

952. 71?tIOSOdl.0 
953. 7?3.1I0.0 ,9t1 
954. 773,I0.0,II9.l 

955. 770.6O,60O.Oo,-I 
956. 778,100,0,6,-l 

957. 77,aI.0.I,6,.j 

958. 7?0.61.I80.35ol,-

959.. 777,20.0,004.-I 

960. 770,0.0.0,00 

961. 780.0.300.1.0.0 

962. 780.61.I,25.0,-600 

963. 780.61,1.2501-300 

964. 780.61,1.25,-O1 

965. 781,t.0,0,2,-

966. T8.1O,o.2.o 

967?. 782,210,02,1l 

968. 742,10,0.1,2,0
8

969. 7 3.1.O.019.l 

970. 783101 '.19-1 


971. 780,6060,0.3iS1 

972. 78,10,0,06.-

973. 788,1.O,1.6.-i 

974. 780.61.180,35.l,-I 

975. 787t.20,0,0,4.i 

976. 780.0.0.8,0.0 

977. 790,0.300.1,0.0 

978. 790.61,1.25:,0600 

979. 790.61,1.25,11 

980. 791.1.0.0.2.-t 

981. 791,10,0.1,2,0 

982. 792,21,0,0,2 , 

983. 792.10,0.1.2.0 

9804. 793,l.0.0.19,fl 

985. 793,10,0,.19.-1 

986. 790,60,60., 13 

987. 798,10.000,6,-1 

988. 798.1.0.1.6.-1 

989. 790.61,180.351,-I 

990. 797,20,0.0.4.-k 

991. 790,00.0.0,0 

992. B00..30Ol.00 

993. 800.61,1.25.01-600 

994. 800,61,1.2S,0-1 
995. 80l.I0.,2-1 

996. 801.1000,1,0 

997. 802.21,O#0,2,-l

998. 802,l00,1.20 
999. 803,1.0,0,19.1 

1000. 803,100,.1190-1 
1001. 800,60.60,0.3*-1 
1002. 809lO.O.6,-I 
1003. 808.1oI.6.-1 
1004. B00,61.180.35.1,-l 
1005. 8072OO O,0.4.-1 
1006. 800OoD0*0.O.0 

FILE9 OSK --> SPS. 009500
 
FILEO ANOTHER 4H WORDSI FMP --. 0SK. 009SO
 
FILE9 0SK -- , SPS. 009520
 
JOB RUN CUHPLETED. 009530
 
MODEL 2-INTERARRIVAL TIME MEAN OF 100 hECO09540
 
SPS COMPILATION OF SOURCE CODE - I SEC 009550
 

FILEI-LOAD MODULE 60K; SPS -- > nK, 009560 
FILEI USK --> FMP. 009570 
FILE2-CONFIGURATION 5OKI GRF --> SPS, 009500
 

SPS CONFIGUIN MANIPULA'NI70 SEC-30% LiAT00540
 
FILE2-CONFIGURATION 50KI SPS .-I OSK. 009600 
FILE2 DSK --> FMP, 009610 
FILE3-RID 600KI SPS --I aSK. 0096P0 
FILE3 DSK -> FMP. 009630
 
FMP FLOW CODE PROCESSING-6OSECIAWAIT 3 F1009640
 
FILES-RESULTS FILE 180KI FMP --> aSK. 009650 
FILES DSK --> SPS, 009660 
SPS POST PROCESSING-IZO SEC170A LOAD. 009670 
FILET-OUTPUT FILE 120XI SPS --> 63F. 009680 
JOB RUN COMPLETED. 009690 
MODEL 2-INTERARRIVAL TIME MEAN OF 100 SECOOTOO 
I SEC ABORTED SOS COMPILN - WAIT 10 MIN. 009710 
ABORTED COMPILATION AGAIN-WAIT S MN. 009720 
SPS RECOMPILATION OF SOURCE CODE - I SPC.009730 
FILEI-LOAD MODULE 60K SPS --> SK. 009740 
FILEI OSK _-, FHP. OOq750 
FILE2-CONFIGURATION SOKI ORF -I DSK. 009760 
FILEZ OSK -. FP. 009770 
FILE3-GRID 600KS SPS --> DSK. 009780
FILE3 05K .- FMP. 009700 
FMP FLOW CODE PROCESSINO-6OSECiAWAIT 3 FIO09SO0
 
FILES-RESULTS FILE 180 1 FMP --I DSK. 009810
 
FILES DS --, SPS. 009820
 
SPS POST PROCESSING-t20 SECl70 LOAD. 009830
 
FILET-OUTPUT FILE 12OK; SPS --x GRF. 009840
 
JOB RUN COMPLETED. 009850
 
MODEL 2-INTERARRIVAL TINE MEAN OF 300 SECO09860
 
I SEC ABORTED COMPILN-WAIT 10 HIN. 009870
 
SPS RECOMPILATION OF SOURCE CODE - I SEC.009880
 
FILEI-LOAD NODULE 60K3 SPS .- > nSK. 609890 
FILEI 05K --> FMP. 009900 
FILE2-CONFIGURATION 50KI 1RF --> USK. 009910 
FILE2 OSK --> FIP. o0o920 
FILE3-GRID 600KI SPS --> OSK. 009930 
FILE3 OSK -- >FMP. 009940 
FMP FLOW CODE PROCESSING-6OSECIAWAIT 3 FIO09950 
FILES-RESULTS FILE 1801 FMP --> 0SK. 009960 
FILES DSK --, SPS. 009970 
SPS POST PROCESSING-lO SECI7O% LOAD. 009960 
FILET.OUTPUT FILE IOKI SPS --- OF. 009990 
JOB RUN COMPLETEO. 010000 
MODEL 2-INTERARRIVAL TIME MEAN OF 300 SECOIOOIO 
1 SEC ABORTED COMPL'N - WAIT 10 HIN. 010020 
SOS RECOMPILATION OF SOURCE COOF - I SEC.010030 
FILEI-LOAD NODULE 6OK SPS --I DSK. 010040 
FILEI OSK .-> FHP. n10050 
FILE2-CONFIGURATION 50KI 8F -- DOSK. 010060 
FILE2 DSK .- FMP. 010070 
FILE3-GRIO 600KI SOS --> OSK 010080 
FILE3 OSK .-> FPP, 010090 
FP FLOW CODE PROCESSING-60SECIA$AIT 3 FIOIOIO 
FILES-RESULTS FILE 180KI FP --b OSK. 010110 
FILES 0SK -- > SPS, 010120 
SPS POST PROCESSING-120 SEC970t LOAD. n1l30 
FILET-OUTPUT FILE IOK; SPS --> GRF. 010140 
JOB RUN COMPLETED. 010150 

http:802,l00,1.20


1007. 

1008. 

1009. 

t0l. 

loll. 

1012. 

1013. 

1014: 

1015. 

1016o 

1017. 

1018. 

1019. 

1020. 

1Ol. 

1022. 

1023. 

1024. 

1025. 

1026. 

1027. 

1028. 

1029. 

1030. 

1031. 

1032. 

1033. 

1034. 

1035. 

1036. 

1037. 

1038. 

1039. 

1040. 

1041. 


co 1042. 

1043. 

1044. 

1045. 

1046. 

1047. 

1048. 

1049. 

1050. 

1051. 

1052. 

1053. 

1054. 

1055. 

1056. 

1057. 

1058. 

1059. 

1060. 

1061. 

1062. 

1063. 

1064. 

1065. 

1066. 

1067. 

1068. 

1069. 


010.0,300.1.0*0 

8l0,61,l,25.0,-600 

S10.61.1.25Ot-l 

8lll,0.o..-I 

811,O.00I.2,0 

812,21,0.0.2i-I 

Bl2.i0,0 2.o
l 

813:l09.0.19,.l 

813a1,0o111,-1 

810,60.60,0,3.-l 

819.1000,tlo25,.l 

8l9,1.1 lst0 

819.10.0.0,125,.1 

819;10o,16,259-1 

81000,00,00 

820O0.300,l.0,O 

820,61u1,250,-1i 

81t,000,2-l 

B21110.01,2,0 

822,20.0,1.2,-I 

820,61,80,20,1,-l 

822.1,000.2, l 

822,000,1.a20 

823#1,0.0.19,-1 

823,l0.O,ll9.-1 

82060,60,0,0.-1 

828,100,6.-1 

028.t.t1.6,-1 

82o,61lOl8O,3S,,l 

827,20.0,0&4,-l 

82O.O.0,0.0.0 

830,00300,10iO 

830,61,1,25.0,-600 

830,6l,1,25.0,-300

830,61,1.25,0,-l 

831,1,0.2.-1

53100.l.2,0 

832,21,0.0.2.-1 

832.10,0,1.2,0 

833,10.0,19.-1 

833910,0,1,19,-t 

630,60,60,0.31-1 

618,100,0.1a.-I 

836,0t1,12io 

850,61,36005h-I1 

837,20,0.0,8,-I 

8300.00,00,0 

850.0,1200@2.0,o 

aS1l, ,O.4.-

851,10.0,1,4,0 

852,2000.t14.-l 

050,61,360,3592,-1 

05301,0,0,46o-1 

a 3,10.0,146,0 

86361.090,46,-1 

853.10,0.1.46,-I 

850.60,60.0.2,-1 

8
5
8,1O.0,O030.l 


890,190,193,-1 

850,61,300,301,-1 

857.20.0,0,2,-1 

850,000.0.0,0

660,0,1200,1#0,0 


MODEL 2-INTERARRIVAL TIME MEAN OF 300 SECO10160
 
I SEC ABORTED SPS COMPtLN - WAIT 10 IN. 010170
 
SPS RECOMPILATION OF SOURCE CODE - I SEC.oO1BO
 
FILEI-LOAD MODULE 60K$ SPS 
-- DSK. 010190 
FILEt 0SK --> FM?. 010200 
FILE2-CONFIGURATION 50KI 01F --, USK. 010210 
FILE2 05K --I FMP. 010220 
FILE3-GRID 600KI SPS --) 0SK. 010230
 
FILE3 DSK --> FM?. 010240
 
FMP PLOW CODE PROCESSING-60SECIAWAIT 3 F1010250
 
FILEQ-DEBUG DUMP 4MB FMP --, USK. 010260'
 
FILE9 0SK .., SPS. 010270

FILE9 ANOTHER 4M WORDSS FMP .. DSK. 010280
 
FILE9 USK Z.> SPS. 
 010290
 
JOB RUN COMPLETED. 
 010300
 
MODEL 2-INTERARRIVAL TIME MEAN OF 300 SECO10310 
SPS COMPILATION OF SOURCE CODE - I SEC 010320 
FILEt-LOAD MODULE 60KI SPS --> DSK. 010330 
FILEI USK -- , FMP. 010340 
FILE2-CONFI0URATION 50KB ORF .. > BPS. 010350
 
SPS CONFIGUAIN MANIPULAVNITO SEC-30% LOAD010360
 
FILE2-CONFIGURATION 601K SPS --I USK. 010370
 
FILE2 0SK -- FMP. 010380
 
FILE3-ORID 600KI SPS 
-" USK. 010390
 
FILE3 0SK --I FMP. 
 010400
 
FRPFLOW CODE PROCESSINO-60SECIAWAIT 3 F1OI0410
 
FILES-RESULTS FILE I8OKI FMP --> USK. 010420
 
FILES DSK --> SPS. 010430
 
SPS POST PROCESSING-1o SECI709 LOAD. 010440

FILET-OUTPUT PILE 120Kt 
SPS --i GRF. 010450
 
JOB RUN'COMPLETED. 
 010460
 
MODEL 2-INTERARRIVAL TIME MEAN OF 300 SECOI047O
 
I SEC ABORTED SPS CONPOLN - WAIT 10 WIN. 010480
 
ABORTED COMPILATION AGAIN-WAIT 5 MIN. 010490
SPS'RECOMPILATION OF SOURCE CODE - I SEC.010500 
FILEI-LOAD MODULE 60KI SPS --I USK. 010510 
FILEI DSK .-. FMP. 010520 
FILE2-CONFIGURATION 50K GAF --I USK. 010530
 
FILE2 USK *-> FMP. 010540
 
FILE3-GRID 60051SPS --> DSK. 
 510550
 
FILE3 0SK .-, FMP. 010560
 
FMP FLOW CODE PROCESSIhI-6OSECIAWAIT 3 F1010570
 
FILES-RESULTS FILE 360KI FMP --> OSK. 010580
 
FILES DSK --> SPS. 
 010590
 
SPS POST PROCESSING-240 SECTO7% LOAD. 010600
 
FILETOUTPUT FILE 240K; SPS -.> GRF. 010610
 
JOB RUN COMPLETED. 010620 
MODEL 3-INTERARRIVAL TIME MEAN OF 20 41N.010630 
FItEI-LOAD MODULE 1201 SPS -- 0SK. 010640 
FILE) DSK --i FMP. 010650 
FILE2-PATCH AND GRID SETUP OOKIGRF--SPS0t0660 
SPS PATCH AND GRID PROCESSING-240S.70% 010670 
FILE3-RESULTINO TRANSFORMED FILE SPS--OS010680 
FILE3 USK .- i FMP. 010690
 
REST OF FILE3- 3M TOTAL0 SPS.->DSK, 010700
 
REST OF FILE3 USK --> FMP. 010710
 
FMP FLOW CODE PROCESSING - 60 SEC. 010720
 
FILES-RESULTS FILE 90K$ FMP 
--> DSK. 010730
 
FILEB0SK --I SPS. 010740
 
SBPSPOST-PROCESSINGI200 SECo60%LOAD. 010750
 
FILET-DISPLAY FILE 505 SBPS -> 
ORF 010760
 
JOB RUN COMPLETE. 010770

MODEL 3-INTERARRIVAL TIME MEAN OF 20 MIN.010780
 

http:PROCESSING-240S.70
mailto:850.0,1200@2.0,o


1070. 
1071. 

1072. 

1073. 

1074. 

1075. 


3076. 

1077 

107a. 

1079. 

3080O 

3081. 

1082. 

1083. 

1084. 

1085. 

1086. 

1087. 

1086. 

1089. 

1690. 

1091. 

1092. 

1093. 

1094. 

1095. 

1096. 

1097. 

1096; 

1099. 

1100. 

1101. 

102. 

1103. 

1104. 

1105. 

1106. 

1107. 

1108. 

1109. 

1110. 

1,111. 

1112. 

1113. 

1114. 

111 .
 
1116. 

1117. 


8061,1.O0,401 
861,10,0.1,4,0 

862,I,0.0,4,-1 

862 10.0,1.4,fl 

860,60,10,02r41 

860,60.60,OO.'1 


869,10.6.0#160.1-

869,1.01l.160,0 

868.l0.00,03,f-

868,101,3o-

8B6061.30.3011.-1 

67,2o.oo.2,-i 

860,0.0,0.0 

870#0.1200,e,0,0 

871,1.0,0.4..1 

671,10,0,1.4.0 

872,20.0.1.4 1 

870,61.360.3S.2-1 

873,1,0.0,92.-l 

873,10,0,1.92,-l 

870.60.60.02,-1 

878,10.0.03,-I 

8781.0.1.3iF1 

70O.61.300.30.1t.-

8T7,20,00,2.-1 

87O,0.,0.0,0 

880,0.1200.10.0 

881,1,0,.4_,-L 

881,10.0,1,4,0 

882.1,0,0.4; 1 

882,30,0,4 'l 

880#60.l0O.2,-

880,60.60,0'pO 

889,10.010.220.-1 

888.10b.0.,-1 

88.1.01,3-1 

880,61#300,30.1.-1 

887,20,0.0,2.-1 

880.0.0,0000 

6,90.0.1200110,0 

890.61.3,3,O,,-1 

891i.0.0.4-l 

891.10.0 14!0 

892.1,0.0.4;-I 

892.10,0.3,4,-I 

890,60,60.0.2.-

B99,l0.0.,16010 

898.10.01,0,,3. 


,118. 898.101,3,.I 1

1119. 

1120. 

1121. 

1122. 

1123. 

1124. 

1126. 

1126. 

1127. 

1128. 

1129. 

1130. 

1131. 

1132. 


890,61I300.30 3.-

897,20.0,0.2'.1 

89000.0,00.0 

900,I200,0IJ,0 

90l.1,0.0,4.-P 

901,l 0,1 4U0 

902.20. .tIA-1 

900.61, 

3
60.35.2.-1 


903.1.0 02,-1 

903.10.0.1.92.-1 

900.60',60,0,2.-I 

908.10.,0.3 ,1 

908.1.0,1.3,-I 

900,61,300,30.1,-


FILE.-LOAD MODULE 120KI SPS -- 0SK. 010790
 

FILEI DSK -' FMP. 
 010800
 
FILE2-PAICH AND GRID SETUP 100IKSPS--,0SK0I081O
 
FILE2 DSK -. > FMP. 

FMP PATCH AND GRID PROCESSING - 10 SEC. 

FMP FLOW CODE PROCESSING - 60 SEC. 


FILE9-RAW RESULTS FILE 6MI FNP -->DSK. 

FILE9 0SK -- SPS. 

FILE8-RESULTS FILE 9OK FMP --> 0SK. 

FILES DSK -- S
SPS. 

SPS POST-PROCESSINGIZOO SECpbO LOAO. 

FILE7-DISPLAY FILE 5OKI SPS -- ORF. 

JOB RUN COMPLETE'. 


010820
 
010830
 
010840
 
010850
 
510860
 
010870
 
010880
 
010890
 
010900
 
010910
 

MODEL 3-INTERARRIVAL TIME MEAN OF 20 1IN.010920
 
FILEI-LOAD MODULE 120KI BPS6 -- OSK. 010930
 
FILEI DSK --> FMP. 010940
 
FILEa-PATCH AND GRID SETUP IOOKIGRF--SPS010950
 
SPS PATCH AND GRID PROCESSINOI24OS,70% 010960
 
FILE3-PATCH AND GRID TRANSFORMEOI 3H.TO D010970
 

FILE3 DSK -> FMP. 010980
 
FlP FLOW CODE PROCESSING - 60 SEC. 010990
 
FILER-RESULTS FILE 90KI FlP --> DK. 012000
 
FILES DSK --I SPS. 011010
 
SPS POST-PROCESSIN4Q200 SEC,6G%LOA.. 011020
 

FILET-DISPLAY FILE 50(I SPS --> ORF. 011030
 

JOB RUN COMPLETE. 011040
 
MODEL 3-INTERARRIVAL TIME MEAN OF 20 MIN.01l050
 
FILEI-LOAD MODULE 120KB SPS --> 0SK. 

FILE! 5SK --I FMP. 

FILE2.PATCH AND GRID 100K; SPS --I OSX. 

FILE2 OSK w'1-FMP. 

FMP PATCH AND GRID PROCESSING- 30 SEC. 

FMP FLOW CODE PROCESSING - 60 SEC. 

FILE9-RESTART FILE 7HI FMP .-> DS. 

FILEB-RESULTS FILE 90KI FMP -- DS°. 

FILES 0SK --> SPS. 

SPS POST-PROCESSING;200 SEC,60LOAO. 

FILE7-DISPLAY FILE 50K) SPS -> GRF. 

JOB RUN COMPLETE. 


033060
 
011070
 
033080
 
011090
 
011100
 
013130
 
011120
 
011130
 
011140
 
01160
 
011160
 
012170
 

MODEL 3-IOTERARRIVAL TIME MEAN OF 20 HIM.011180
 
SPS COMPILATION OF SOURCE COOE-2 SEC. 011190
 
FILEI-LOAD MODULE 120KI 
SPS --> OS. 011200
 

FILEI DSK --> FMP. 011210
 
FILE2-PATCH AND GRID SETUP l00KISPS--IDSK01I220
 
FILE? 0SK -- > FMP. 011230
 

FMP FLOW CODE PROCESSING - 60 SEC. 011240
 
FILEO-OAW RESULTS SMI FMP --> OSK. 0325O
 
FILES-RESULTS FILE 90K; FHP "-> SK. 011260
 
FILES DS -- SPS. 011270
 
GPS POST-PAOCESSINO;200 SEC,60%LOAn. 011280
 
FILE7-DISPLAY FILE 50KI SPS --> GRF. 011290
 
JOB RUN COMPLETE. 
 011300
 
MODEL 3-INTERARRIVAL TINE MEAN OF 20 MIN.013310
 
FILEt-LOAD MODULE 120KI SPS 
--> OSK. 011320
 
FILEI DSK --> FMP. 011330
 
FILE-VATCH AND GRID SETUP l00fl1W-5PS0U34O
 
SPS PATCH AND GRID PROCESSINOIE2OS,70% 011350
 
FILE3-PATCH AND GRID TRANSFORMED; 3M.TO D011360
 
FILE3 DSK --> FMP. 

FMP FLOW CODE PROCESSING - 60 SPC. 

FILER-HESULTS FILE 90KI FMP --> OSK. 

FILER DSK --, SPS. 

SPS POST-PROCESSING1200 SEC,6OSLO&D. 


011370
 
033380
 
0)1390
 
011400
 
031410
 

http:890,61I300.30
http:70O.61.300.30.1t


1133. 
1134. 
1135. 
1136. 
1137. 
1138. 

9071,20.0,0.2.-1 
900,0.0.0.o00 
920t0.900,2,1,0 
921.1,0.0.4,-I 
921,O.0,1,4,0 
922,20.0,1,4.-1 

FILET-DISPLAY FILE 50K8 SP. --> GRF, 011420 
JON RUN COMPLETE. 011430 
MODEL 4-INIERARRIVAL TIME MEAN OF 15 MIN A11440
FILEI-LOAO MODULE 120K SPS - > DSK. 011450 
FILEI DSK --I FNP, 011460 
FILE2-PATCH AND GRID SETUP IOOK$GRF-->SPS0II47O 

1139. 920,61,360.35.2.-j SPS PATCH AND GRID PMUCESSINGI24OS.70% 011480 
1140. 923.11,0,92,-I FILE3-PATCH AND GRID TRANSFORmEnI 3M.Ti 0011490 
1141. 923.10.0.1.92.-1 FILE3 DSK -.> FMP. 011500 
1142. 
1143. 
1144. 

920,60.600,0.2,-1 
928,10.0,0,8,-I 
92811.0,1.8,-I 

FMP FLOW CODE PROCESSING  600 SEC. 
FILER-RESULTS FILE 2251 FMP --I 0SK. 
FILES DSK -> SPS. 

011510 
011520 
011530 

1145. 
1146. 
1147. 

920,61,360,30,1.-1 
920.61,360,30,0,.-
927,20,0,0,3.-1 

SPS POST-PROCESSINGI24O SEC,60%LOAD.
" . ' 

FILET-DISPLAY FILE 75KI SPS - > GMF. 

011540 
011550 
011560 

1148. 
1149. 
1150. 
1151. 

920,0,0,0.0,0 
930.0,900,1,0.0 
931,1.0,0.4,-1 
931l.0,,.4,0 

JOB NUN COMPLETE. 011570
MODEL 4-INTERARRIVAL TIME MEAN OF IS HIN 011580 
FILEI-LOAD MODULE 120K3 SPS -> 05K. 011590 
FILEI DSK - > FMP. 011600 

1152. 
1153. 

932,.,..I 
932,10.0,,4,- l 

FILE2-PATCH AND GRID IOOKI SPS 
FILE2 DSK --> FMP, 

-. DK. 011610 
011620 

1154. 
1155. 

930,60,I0.0.2,-1 
930,60,600.0,0,-1 

FHP PATCH AND GRID PROCESSING. 10 SEC. 
FMP FLOW CODE PROCESSING  600 SEC. 

011630 
011640 

-. 

1156. 
1157. 
1158. 
1159. 
1160. 
1161. 
1162. 
1163. 
1164. 

939,10,0.0.31U.-. 
9
3
8,10,O,0,8,-

938.l.0.1,0.-1
9JO6l.360,30,1,-I 
930,01,360,30,0o-1 
937,20,O.00-1 
930,0.000,0.0 
940,0.900. 0.o 
940,61,3,35,0,-I 

FILE9RESTART FILE lOMI FMP - > DSK. 011650 
FILE8-RESULTS FILE 225KI FMi -fl DSK. 011660 
FILEA DSK -. SPS. 011670
SPS POST-PROCESSINGS240 SEC,60%LOAO. 011680 

0 . 11 011690 
FILET-DISPLAY FILE 75KI SPS -> GRF, 011700 
JOR RUN COMPLETE. 011710 
MODEL 4-INTERARRIVAL TIME MEAN OF 15 MIN 011720SPS COMPILATION OF SOURCE CODE-2 SEC. 011730 

1165. 
1166s 

941,1,0.0,4,-1 
941,10tO,1,4O 

FILEI-LOAD MODULE 120KI 
FILEI DSK -> FMP. 

SPS -. 1 0SK. 011740 
A7llSO 

C 
1167. 
1168. 

942.1.0,04,-I 
942.10,0,1,4,-I 

FILE2-PATCH AND GRID SETUP IOOKISPS-->DSKOII760 
FILE2 DSK -., FMP. 011770 

1169. 
1170. 
1171. 
1172. 
1173. 
1174. 

940,60.600,0,2,-1 
949.10.0,0,160.0 
948,10,0.018,-I 
948.1.1,110-I 
940,61,360.3011,-1
9400,360,30.0,-1 

FMP FLOW CODE PROCESSING - 600 SEC. 
FILE9-RAW RESULTS SMI F1P -.> DSK, 
FILES-RESULTS FILE 22SKI FMP -- DSK. 
FILES DSK --, SPS. 
SPS POST-PROCESSIN0I24O SEC,60%LOAD.1. .. .. " "830 

011780 
011790 
011800 
011810 
011820 

1175. 
1176. 

947.20.0,0,3,-1 
940,0,0.0,0,0 

FILET-DISPLAY FILE 75KI SPS -. 
JOB RUN COMPLETE. 

> GMF. 01)840 
011860 

1177?. 
1178. 
1179. 
1180. 

950,0,900.1,0.0 
951,10,4.-1 
9b1,I0.O,1,4,0 
952,20,0.1,4,-I 

MODEL 4-INTERARRIVAL TIME MEAN OF IS MIN 011860 
FILEI-LOAD MODULE 120KI SP -> OSK. 011870 
FILE) DSK -> FMP. 011880 
FILE2-PATCH AND GRID SETUP IOOKIGRF--lSPS011890 

1181. 
1182. 
1183. 

950,61.360,35,2.-1
953,1.O,0,46,-l 
953.10,011,46,0 

SPS PATCH AND GRID PROCESSING.240S,70% 011900
FILE3-RESULTING TRANSFORMED FILE SPS--D>SOI910 
FILE3 0SK -- FMP. 011920 

1184,
1185. 

953,1,0.0,46.-1 
953,1000,1,46.-

REST OF 
REST OF 

FILE3. 3M TOTALS SPS-->DSK. 
FILE3 DSK -> FMP. 

011930 
011940 

1186. 950.60.600,0,2,-I FHP FLOW CODE PROCESSING - 600 SEC. 011950 
1187. 
1188. 
1189. 

958,1O0.0.8,..
958,1.0,1.8,-I
950.61,360,30,1,-l 

FILER-RESULTS FILE 225KI FHP --I DSK6 
FILES 0SK - SPS.
SPS POST-PROCESSING124O SEC609SLOAD. 

011960 
011970 
011980 

1190. 950,61,360,30,0.-1 1 ".11 011990 
1191. 
1192. 

95T,200,0,3,-l 
950.0,0,0,0,D 

FILET-DISPLAY FILE 75KI 
JOB RUN COMPLETE. 

SPS --> GRF. 012000 
012010 

1193. 
1194. 
1195. 

960.,900,IO0 
961,1,0,0.4,-I 
961.10.0.1.4,0 

MODEL 4-INTERARRIVAL TIME MEAN OF 15 MIN 012020 
FILEI-LOAD MODULE 12OK; EPS - > DSK. 012030 
FILEt OSK -. FIP, 012040 



1196. 

1107. 

1198. 


.1199. 

1200. 

1201. 

1202. 

1203. 

1204. 

1205. 


1206. 

1207. 

1208. 

1209. 

1210. 

1211. 

1212. 

1213. 

1214. 

1215. 

1216. 

1217. 

1218. 

1219. 

1220. 

1221. 

12R2. 

1223. 

1224. 

1225. 

1226. 

1227. 

1228. 

1229. 

1230. 

1231. 


1232. 

1233. 

1234. 

1235. 

1236. 

1237. 

1238. 

1239. 

1240. 

1241. 

1242. 

1243. 

1244. 

12456. 

1246. 

1247. 

1246. 

1249. 

1250. 

1251. 


962.1,.0,4,l 

962:10,6.1.4.-

960.60.10,0,2.-1 

960,60.600.0.0.-1 

069.1O.0,0,160.-1 

969.,1O;I:1&O.0 

968,IO,0,0,8.-l 

96:1*0,1.l.8,-1

960,61.360.30.1.-I

960,61,360.3000,-I 


967,20 .0.3.1-

960.0.0;0,0,0 

970,0,900,1O.00 

971,1,0,4.-

971.10.O,1.4,0 

972.1,O.0.4,-1 

972.10.0,1.,.l 


O0,21-1 

970,60600.0.01t-1 

979.10,0,0,310-1 

97a,10.01081O-1 


970,601. 


9F8.1,0.1.8,4 

970,61.

3 6
0,

3 
0,1',-1 


970,61,360.300..lO1 

977,20,0., 3-

970,0,0 0.0,0.0 

9800.900,1,010 

951,1.0,0.4.-I 

981.100 11.40 

982.20.1.4.-1 

980,61,360.35,2.-1 

983,1.0,0,46.-1 

983,10.0,1.46,0 

983,1,00,46.-1 

983.10,-11,461-1 

98O,60.00.3.2.-1 


988,10.O0,0-

988,I.D01,8.1

980.61,360,30,1,1 

980,61360,30,0.-1 

987,20.0.0,3.-1 

98O.0,600,00 

990,0,900,1#0.0 

991,1.6040:4,1 

991,10,0,1.4,0 

992.1,0,0.4.-1 

992.l0,0,1,4r1 

990,60,10.0,2.-1 

990,60,600.0,0--1 

998.10.0,0,81-1 

998.1,0.16,8-l 

990,61.360,3011.-1 

990,61,360,30,0.-1 

997,20.0,0.3,-I 

99060,0,0.0 0 

0 0.0.0.0,0 


FILE2-PATCH AND GRID SETUP I00KISPS--IDSK012050 
FILE2 ASK --I FMP. 012060 
FMP PATCH AND GRID PROCESSING - 10 SEC. 012070 
FMP FLOW CODE PROCESSING - 600 SEC. 012080
 
FILEO-RAW RESULTS FILE SH! FMP -->DSK. 012090
 
FILES DEK -- > BPS. 012100
 
FILEB-RESULTS FILE 225KI FMP --> DSK. 012110
 
FILES DSK --. SPS. 012120
 
SPS POST-PROCESSINGI240 SEC,60LOAD. 012130
 

.. .. 1, .5 012140 

FILEl-DISPLAY FILE TOKI SPS - GRF. 012150 
JOB RUN COMPLETE. 012160 
MODEL 4-INTERARRIVAL TIME MEAN OF 15 MIN 012170 
FILEI-LOAD MODULE 120KI BPS --I DSK. 012180 
FILE1tDSK --> FMP. 012190 
FILE2-PATCH AND GRID lOOKI BPS --> OSK. 012200 
FILE2 DSK -- FHP. 012210 
FMP PATCH AND GRID PROCESSING- 10 SEC. 012220 
FMP FLOW CODE PROCESSING - 600 SEC. 012230
 
FILEO-RESTART FILE IOI FlP --> OSK. 012240
 
FILES-RESULTS FILE 225K; FMP --I OSK. 012250
 
PILES OSK --> BPS. 012260
 
SPS POST-PROCESSINGI24O SEC,60%LDAD. 012270
 

" - 1. 012280 
FILEl-DISPLAY FILE 75KI SPS --> eRF. 012290 
JOB RUN COMPLETE. 012300 
MODEL 4-INTERARRIVAL TIME MEAN OF 15 MIN 012310 
FILEI-LOAD MODULE IOKI SPS -> 0SK. 012320
 
FILEI DSK --I FMP. 012330
 
FILE2-PATCH AND GRID SETUP IOOKIGRF--ISPS012340
 
BPS PATCH AND GRID PROCESSING-2405,70%. 012350
 
FILE3-RESULTING TRANSFORMED FILE SPS-.>DSOIf360
 
FILE3 USK -> FiMP. 012370
 
REST OF FILE3- 3M TOTALI SPS..>DSK. 012380
 
REST OF FILE3 DSK --I FHP. 012390
 
FlP FLOW CODE PROCESSING - 600 SEC. 012400
 

FILEG-RESULTS FILE 225KI FMP .-> DSK. 012410
 
FILESUSK0 -- SPS. 012420
 
SPS POST-PROCESSINGI24O SEC,60%LOAO. 012430
 

" ' 11 012440 

FILEI-DISPLAY FILE 75KI SPS --> ORF. 012450 
JOB RUN COMPLETE. 012460 
MODEL 4-INTERARRIVAL TIME MEAN OF 15 hIN 012470 
FILEI-LOAD MODULE 120KI SPS .., DSK. 012480 
FILEI DSK --> FMP. 012490 
FILE2-PATCH AND GRID IOOKI SPS -- OSK. 012500 
FILE2 DSK --> FMP. 012510 
FMP PATCH AND GRID PROCESSING- 10 SEC. 012520 

FMP FLOW CODE PROCESSING - 600 SEC. 012530
 
FILES-RESULTS FILE 225KS FMP --I DSK. .012540
 
FILES DSK --I SPS. 012550
 
SPS POST-PROCESSINGI240 SEC,60%LOAD. 012560
 

. . 012570 
FILET-DISPLAY FILE TSKI SPS -.> GRF. 012580 
JOB RUN COMPLETE. 012590 
END SIMULATION. 012600 

http:970,0,900,1O.00


ARRIVAL TINE FOR INDIVIDUAL JOBS
 

JOB NO. ASSIGNED ARRIVAL TIME AT
 
SPS DEVICE SPS EXECUTE QUEUE (SEC)
 

92 LEAD 
 0
 

1 BACKUP 157
 

2 BACKUP 251
 

3 BACKUP 354
 

4 LEAD 390
 

as LEAD 396
 

5 BACKUP 745
 

6 BACKUP 775
 

61 LEAD 813
 

7 LEAD 940
 

8 BACKUP 1n32
 

9 BACKUP 1087
 

93 BACKUP 1102
 

10 BACKUP 1106
 

94 BACKUP 1171
 

11 BACKUP 1297
 

62 BACKUP 1349
 

63 BACKUP 1355
 

12 BACKUP 1481
 

13 BACKUP 1686
 

14 LEAD 1801
 

is LEAD 1816
 

64 LEAD 
 2014
 

16 LEAD 
 2039
 

17 LEAD 2n51
 

18 LEAD 
 2148
 

19 LEAD 2P23
 



20 

21 


22 


65 


23 


66 


24 


67 


25 


95 


26 


68 


69 


70 


86 


71 


27 


96 

LA)
 

72 


97 


?a 


73 


29 


67 


88 


98 


30 


31 


32 


33 


34 


35 


LEAD 2262 

LEAD 2646
 

LEAD 2831
 

LEAD 2882
 

LEAD 2950
 

LEAD 2965
 

LEAD 3n31
 

LEAD 3077
 

LEAD 320B
 

LEAD 3227
 

BACKUP 3231
 

BACKUP 3280
 

BACKUP 3338
 

BACKUP 3530
 

BACKUP 3682
 

BACKUP 3729
 

BACKUP 3750
 

BACKUP 3754
 

LEAD 3799
 

LEAD 3926
 

LEAD 3932
 

LEAD 4152
 

LEAD 4532
 

LEAD 4576
 

BACKUP 4889
 

BACKUP 4900
 

LEAD 4992
 

LEAD sn3S
 

LEAD 5038
 

LEAD 5102
 

LEAD 5257
 

LEAD 5366
 



36 LEAD 5518 

37 LEAD 5523 

38 LEAD 5590 

39 LEAD 5656 

40 LEAD 5690 

74 LEAD 5879 

41 LEAD SRS9 

99 BACKUP 5944 

42 BACKUP 6078 

43 BACKUP 6088 

7S BACKUP 6148 

76 BACKUP 6215 

44 BACKUP 6157 

77 BACKUP 6486 

78 BACKUP 6q22 

45 BACKUP 6530 

79 BACKUP 6767 

46 LEAD 6926 

47 LEAD 7n89 

48 LEAD 7148 

80 LEAD 702 

49 LEAD 7347 

so LEAD 7154 

89 LEAD 7357 

SI BACKUP 7358 

52 LEAD 7535 

81 LEAD 7f95 



SUMMARY OF JOB $ 1 

FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT nIRATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TTF (SEC)... OF TRANSFER ISEC) 

REQUESTED THE SPS2 PROCESSOR AT MEL. CLK. 157 SEC.. AND HAS SETZED IT AT RFL. rLK. Is? FUR I SECONDS. 

REQUEbTED THE SPS? PROCESSOR iT REL. CLK. 758 SEC., AND HAS SEIZED IT AT RFL CLK. 758 FOR I SFCONOS. 

I I SPS DSC 761 0 

1 1 OSC FP 762- 0 

2 1 GP2 DSC 764 1 

2 1 )SC FNP 765 0 

REQUEbTEO THE FHP PROCESSOR AT REL. CLK. 766 SEC.. AND HAS SEIZEO 11 AT REL. CLK. 999 FOR 10 SECONDS. 

a 2 FHP OSC 110 0 

2 0SC SPS 1012 0 

REQUESTED.THE SPS2 PROCESSOR AT REL. CLK. 1013 SEC., AND HAS SEIZED IT AT RFL. CLK. 1013 FOR 60 SECONDS. 

JOB I COMPLETE AT RELATIVE CLOCK 12074 SEC. 

N SUMMARY OF JOB 0 2 

ILE NO.' NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TIME (SEC)... OF TRANSFER (SEC) 

REQUESTED THE SPS2 PROCESSOR AT MEL. CLK. 261 SEC.. AND HAS SEIZED IT AT RFL. CLK. 231 FOR I SECONDS. 

REQUESTED THE SPSZ PROCESSOR AT REL. CLK. 852 SEC., AND HAS SEIZED IT AT REL. CLK. 852 FOR 1 SECONDS. 

REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 1153 SEC.. AND HAS SEIZED IT AT RFL. CLK. 1153 FOR I SECONDS. 

I*I SOS 050 1156 

I~ I DSC FMP 1156 0 

q 1A 2 1 OPHI 050 11571 
a I 050 FHP 1159 0 

REQUESTED THE FMP PROCESSOR AT REL. CLK. 1160 SEC., AND HAS SEIZED IT AT RFL. CLK. 1719 FOR 1o SECONDS. 

f 2 FMP 0SC 1130 0 

8 2 DSC SPS 1732 0 

REQUESTED THE SPSZ PROCESSOR AT REL. CLK. 1733 SEC., AND HAS SEIZED IT AT REL. eLK. 1733 FOR 60 SECONDS. 

JOB N 2 COMPLETE AT RELATIVE CLOCK . 1794 SEC. 



SUMMARY OF JOB # 3
 

FILE No. NUMBER OF FROM TO 
 TRANSFER COMPLETED AT DURATION
BLOCKS TRANSFERRED RELATIVE CLOCK TIME (SEC ... OF TRANSFER ISECI
 

REQUESTED THE SPS2 PROCESSOR AT REL. CLK, 354 SEC.. 
AND HAS SEIZED IT AT RFL, OLK. 354 FOR I SECONDS. 

I I SPS OSC 356 0 

I I DSC FHP 357 0
 

2 1 GPHI DSC 359 
 I
 

2 DSC FMP 360 
 o
 

REQUESTEo THE FP PROCESSOR AT REL. CLK, 361 
 SEC.. AND HAS SEIZED IT AT RVL. CLK. 361 FOR 10 SECONDS. 

a 2 FMP DSC 372 0 

a 2 DSC SPS 374 0 

REQUESTEO THE SPS2 PROCESSOR AT REL. ELK. 375 SEC.. AND HAS SEIZED IT AT RFL. ELK. 375 FOR 60 SECONDS.
 

JOR 0 3 COMPLETE AT RELATIVE CLOCK - 436 SEC.
 

SUMMARY OF JOB 0 4
 

FILE NO, NUMBER OF FROM 
 TO TRANSFER COMPLETED AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TIME (SEC).., OF TRANSFER (SEC) 

REQUESTED THE SPSI PROCESSOR AT REL. CLK, 390 SEC., AND HAS SEIZED IT AT RFL, CLK, 390 FOR I SECONDS, 

REQUEbTED THE SPSI PROCESSOR AT REL. ELK. 991 SEC., AND HAS SEIZED IT AT RFL, ELK. 991 FOR I SECONDS. 

I I SPS OSC 993 0 

1 1 OSC FMP 994 0 

2 1 OPHI OSEC 996 I 

a1 DSEC FmP 997 0
 

REQUESTED THE FRP PROCESSOR AT REL. CLK, 998 SEC.. AND HAS SEIZED IT AT RrL. CLK. 1079 FOR 10 SFCONnS.
 

9 90 FMP OSC 1093 3
 

9 90 DSC SPS 1170 26
 

REQUESTED THE SPSI PROCESSOR AT REL. 
ELK, 1171 SEC., AND HAS SEIZED IT AT RFL. ELK. 1171 FUR 60 SECONDS.
 

JOB 0 4 COMPLETE AT RELATIVE CLOCK . 1232 SEC.
 



SUHARY OF JOB N 5 

FILE NO. NUMRE
R 

OF 
BLOCKS TRANSFERRED 

FROM TO TRANSFER COMPLETED AT 
RELATIVE CLOCK TIME (SEC) ,. 

DURATION 
OF TRANSFER (SEC) 

REQUESTED THE SPS2 PROCESSOR AT NEL. CLK, 745 SEC., AND HAS SEIZED IT AT RFL. CLK. 745 FUR I SECONIS. 
REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 1346 SEC.. AND HAS SEIZED IT AT RFL. CLK. 1346 FUR I SEFCONDS. 

I SPS DOSC 1349 0 

SOSC' FMP 1350 0 
a GPH2 DSC 1351 1 

2 CISC FMp 1352 0 

REQUESTED THE FKP PROCESSOR AT REL. CLK. 1353 SEC., AND HAS SEIZED IT AT RFL. CLK. 2319 FUR 10 SECONnS. 
8 p FAP DSC 2350 0 

8 2 8SC SPS 2352 0 
REQUEhTED THE SPS2 PROCESSOR AT REL. CLK. 2353 SEC.. AND HAS SEIZED IT AT RFL. CLK. 2372 FUR 60 SErONDS. 

JOB 0 5 COMPLETE AT RELATIVE CLOCK - 2433 SEC. 

SUMMARY OF JOB 66 

FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION 

BLOCKS TRANSFERRED RELATIVE CLOCK TIME (SEC)... OF TRANSFER (SEC) 

REQUEbTED THE SPSZ PROCESSOR AT REL. CLK. 775 SEC.. AND HAS SEIZED IT AT REL. CLK, 775 FUR I qECON'S. 
REQUE4TED THE SPS2 PROCESSOR AT REL. CLK. 1376 SEC.. AND HAS SEIZED IT AT RFL. CLK. 1376 FUR I SqCONDS. 
REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 1677 SEC.. AND HAS SEIZED IT AT RFL. CLK. 1677 FOR I SECONDS. 

I I $PS OSC 1680 0 

I I DSC FMP 16RI 0 

2 1 6PI DSE 1682 1 

2 1 OSC FRP 1683 0 

REOUEbTED THE FMP PROCESSOR AT REL. CLK. 1684 SEC.. AND HAS SEIZED IT AT RFL. CLK. 2479 FUR I SECONDS. 
a FMP DSC 2490 0 
a 2 DSC SPS 2519 0 

REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 2520 SEC., AND HAS SEIZED IT AT RFL. CLK. 2fRO FOR 60 SFCOWI.S. 

JOB # 6 COMPLETE AT RELATIVE CLOCK . 2641 SEC. 



SUMMARY OF JOB N 7
 

FILE NO, NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION
 
BLOCKS TRANSFERRED RELATIVE CLOCK TIME tSEC).,, nF TRANSFER (SEC)
 

REQUESTED THE SPS1 PROCESSOR AT REL. CLK. 940 SEC.. AND HAS SEIZED IT AT RFL. CLX. 940 FOR I SECONDS.
 

1 SPS OSC 942 0
 

1 1 05C FMP 943 0
 

2 G OSC I
OPH2 945 


2 1 DSC FNP 946 0
 

REQUESTED THE FMP PROCESSOR AT REL. CLK, 947 SEC., AND HAS SEIZED IT AT RFL, CLK. 1069 FUR 10 SacONDS.
 

6 2 FNP 05C 1080 0
 

2 D0C SPS lose 0
 

REQUESTED THE SPSI PROCESSOR AT REL. CLK. 1083 SEC., AND HAS SEIZED IT AT RFLe CLX, 1O3 FOR 60 SECONDS,
 

JOB # 7 COMPLETE AT RELATIVE CLOCK . 1144 SEC.
 

SUMMAHY OF JOB 0 8
 

FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION 

BLOCKS TRANSFERRED RELATIVE CLOCK TIME (SEC).. nF TRANSFER (SEC) 

REQUESTED THE SPS2 PROCESSOR AT REL, CLK, 1032 SEC., AND HAS SEIZED IT AT RELO CLK. 1032 FOR I SPCON'S. 

REQUESTED THE SPS2 PROCESSOR AT MEL. CLK, 1633 SEC.. AND HAS SEIZED IT AT RFL (LK. 1633 FOR I SECONDS. 

1 SPS DC 1635 0 

IOSC FMP 1636 0 

A 1 GPH2 05C 1637 1 

I DC FMP 1639 0 

REQUESTED THE FMP PROCESSOR AT REL. CLK. 1640 SEC., AND HAS SEIZED IT AT RFL. CLK. 2469 FUR 10 SECONDS. 

9 90 FMP DSC 2486 S 

990 bc SPS 2518 26 

REQUESTED THE SPS2 PROCESSOR AT MEL. CLK 2519 SEC., AND HAS SEIZED IT AT RFL, CLK, 2520 FUR 60 SECONDS. 

JOB N 8 COMPLETE AT RELATIVE CLOCK a 2581 SEC. 



SUMMARY OF JOB N 9 

FILE NO. NUMRER OF 
BLOCKS TRANSFERRED 

FROM TO TRANSFER COMPLETED AT 
RELATIVE CLOCK TIME (SEC)... 

DURATION 
OF TRANSFER (SEC) 

REQUESTED THE SPS2 PROCESSOR AT BEL. CLK. 1087 SEC., AND HAS SEIZED IT AT RFL. CLK. lOST FUR I SFCONFIS. 

REQUESTED THE SPS2 PROCESSOR AT MEL. CLK. 1688 SEC., AND HAS SEIZED IT AT RFL. CLK. 1688 FUR I SECONDS. 

1 I SPS DSC 1690 0 

1 1 DSC FMP 1692 0 

2 1 GPH2 OSC 1693 1 

2 I OSC FMP 1694 0 

REQUESTED THE FMP PROCESSOR AT REL. CLKO 1695 SEC.. AND HAS SEIZED I AT RFLe CLK. 2489 FOR 10 SECONDS. 

a 2 FMP OSC 2500 0 

b 2 Osc SPS 2520 0 

REOUESIED THE SPS2 PROCESSOR AT REL. CLK. 2521 SEC.. AND HAS SEIZED IT AT RAFL.CLK. 2640 FUR 60 SECOmS. 

JOB 0 9 COMPLETE AT RELATIVE CLOCK - 2701 SEC. 

SUMMARY OF JOB N I0 

FILE NO. NUMBER OF 
BLOCKS TRANSFERRED 

FROM TO TRANSFER COMPLETED AT 
RELATIVE CLOCK TIME ISEC)... 

DURATION 
OF TRANSFER (SEC) 

REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 1106 SEC., AND HAS SEIZED IT AT RFL. CLK. 1106 FUR I SECOnDS. 

REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 1707 SEC.. AND HAS SEIZED IT AT RFL, CLK. 1707 FUR I SECONDS. 

REQUESTED THE SPSE PROCESSOR AT REL. CLK. 2008 SEC.. AND HAS SEIZED IT AT RFL. CLK. 2008 FUR I SECOMNS. 

1 1 SPS DSC 2011 0 

1 1 DSC FMP 2012 0 

2 1 OPKI DSC 2013 1 

2 1 DSC FMP 2015 0 

REQUESTED THE FMP PROCESSOR AT REL. CLK. 2016 SEC.. AND HAS SEIZED IT AT AFL, CLK. 2509 FUR 10 SECONDS. 

a 2 FMP DSC 2520 0 

b 2 OSC SPS 2657 1 

REQUESTED THE SPSZ PROCESSOR AT REL. CLIO.2658 SEC., AND HAS SEIZED It AT RFL. CL. 2661 FOR 60 SECONDS. 

JOB # 10 COMPLETE AT RELATIVE CLOCK . 2722 SEC. 



SUMARY OF JOB * 11 

FILE NO. NUMBER OF FROM 
BLOCKS TRANSFERRED 

REQUESTED THE SPS2 PROCESSOR AT 

TO 

EL. CLK. 

TRANSFER COMPLETED AT 
RELATIVE CLOCK TIME (SEC).,. 

1297 SEC., AND HAS SEIZED IT AT 

DURATION 
OF TRANSFER (SEC) 

EL. CLK. 1297 FOR I SECONDS. 

I I SPS 0SC 1299 0 

2 

2 

I 

1 

1 

REQUESTED THE 

DOSC FMP 

0PH2 OSC 

DSC FMP 

FMP PROCESSOR.AT MEL, CLK. 1304 

1300 

1301 

1303 

SEC., AND HAS SEIZED IT AT RFL. CLK. 

0 

1 

0 

2329 FOR 18 SECONDS. 

9 

9 

90 FMP 0SC 

90 OSC SPS 

REQUESTEO THE 6PS2 PROCESSOR AT REL. CLK. 2373 

2343 

2372 

SEC.. AND HAS SEIZED IT AT RFL. ELK. 

3 

27 

2432 FOR 60 SECONDS, 

JOB # 11 COMPLETE AT RELATIVE CLOCK - 2493 SEC. 

I 

'-'3 
0 

SUMMARY OF JOB 0 12 

FILE NO. NUMRER OF FROM TO TRANSFER COMPLETED AT DURATION 

BLOCKS TRANSFERRED RELATIVE CLOCK TINE (SEC)... OF TRANSFER (SEC) 

REUUESTEO THE 5R52 PROCESSOR AT REL. CLK. 148T SEC., AND HAS SEIZED IT AT RFL. ELK. 1487 FUR I SECONDS. 

REOUEbTEO THE SPS2 PROCESSOR AT MEL. CLK. 2088 SEC., AND HAS SEIZED IT AT RFL. CLK. 2088 FOR I SECONDS. 

I I SPS OSC 2090 0 

1 OC FMP 2091 0 

2 1 GPH2 0sC 2093 1 
2 1 0Ds FMP 2094 0 

REQUESTED THE FMP PROCESSOR AT REL. CLK. 2095 SEC.. AND HAS SEIZED IT AT RFL. CLK. 2519 FOR 10 SECONDS. 

9 90 FNP 0SC 2533 3 

9 9o 0SC SPS 2687 31 

REQUEbTED THE SPS2 PROCESSOR AT REL. CLK, 2688 SEC., AND HAS SEIZED IT AT RFL, CLK. 26R8 FOR 60 SECONDS. 

JOB N 12 COMPLETE AT RELATIVE CLOCK . 2749 SEC. 



SUMMARY OF JOB 0 13 

FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TIME (SEC)... OF TRANSFER (SEC) 

REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 1686 SEC.. AND HAS SEIZED IT AT RFL. ClK, 16R6 FOR I SECONDS. 

REQUESTED THE SPS2 PROCESSOR AT REL. cLK. 2287 SEC., AND HAS SEIZED IT AT RFL. CLK. 2287 FOR I SECONDS. 

I I SPS CDC 2209 0 

I1 OSC FHP 2291 0 

2 1 OPHIH DSC 2292 I 

2 1 DSEC FHP 2293 0 

REQUESTED THE FMP PROCESSOR AT REL. CLK. 2294 SEe.. AND HAS SEIZED IT AT RFL, ELK, 2599 FUR 10 SECONDS. 

8 2 FMP OSE 2610 0 

8 2 DSC SPS 2661 1 

REQUESTED THE SPS2 PROCESSOR AT REL. CLK, 2662 SEC., ANO HAS SEIZED IT AT AFL. ELK. 26A4 FUR 60 SECONDS. 

JOB 0 13 COMPLETE AT RELATIVE CLOCK . 2725 SEC. 

-S 

wSUMMARY OF JOB 0 14 

FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION 

BLOCKS TRANSFERRED RELATIVE CLOCK TIME 4SEC)... OF TRANSFER (SEC) 

REQUESTED THE SPSI PROCESSOR AT REL. CLK. 1801 SEC., AND HAS SEIZED IT AT RFL. CLK. 1801 FOR I SECONDS. 

REQUESTED THE SPSI PROCESSOR AT REL. CLK. 2402 SEC.. AND HAS SEIZED IT AT RFL. CLK. 2402 FUR I SECONDS. 

REQUESTED THE SPSI PROCESSOR AT REL. CLK. 2703 SEC.. AND HAS SEIZED IT AT REL. CLK. 2703 FOR I SECONDS. 

I 1 SPS DSC 2706 0 

I I osc FMP 2708 0 

2 1 OPH2 DSEC 2710 2 

2 1 RSC FNP 2711 0 

REQUESTED THE FNP PROCESSOR AT REL. CLK. 2712 SEC., AND HAS SEIZED IT AT RFL. CLK. 27PI FUR 10 SECONDS. 

a 2 FMP OSC 2732 0 

B 2 osEC SPS 2734 0 

REQUESTED THE SPSI PROCESSOR AT REL. CLK. 2735 SEC., AND HAS SEIZED IT AT RFL. CLK. 2736 FUR 60 SECONDS. 

JOB 0 14 COMPLETE AT RELATIVE CLOCK - 2797 SEC. 



SUMMARY OF JOB 15S 

FILE NO. NUMBER OF FROM TO TRANSFER COMPLETEn AT DURATIONBLOCKS TRANSFERRED RELATIVE CLOCK TIME (SECI,. OF TRANSFER (SEC) 
REQUEbTEO THE SPSI PROCESSOR AT PEL. CLK. 1816 SEC., AND HAS SEIZED IT AT RFL. CLK, ,1816 FUR 

1 1 SPS OSC 1819 0 

1 SECONDS. 

2 

I 

1 

OSC 

OPH2 

FMP 

DSC 

182O 

1821 

0 

1 

2 

B 

1 

REOUEbTEO THE 

2 

OSC FMP 

FMP PROCESSOR AT REL. CLK. 1824' 

FMP DSC 

1823 

SEC., AND HAS SEIZED IT AT PrL. CLK. 

2510 

a 

2499 FOR 

0 

10 SECO~nS. 

8 2 DSC SPS 
REUUE4TEO THE SPSi PROCESSOR AT REL, CLK, 2513 

2512 

SEC.. AND HAS SEIZED IT AT RFL. CLK. 

0 

2513 FOR 60 SECONDS. 

JOB I 5 COMPLETE AT RELATIVE CLOCK - 2574 SEC. 

I 
SUMMARY OF JOB * 16 

FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TIME (SEC) ... OF TRANSFER (SEC)
REQUEbTED THE SPSI PROCESSOR AT REL. CLK. 2039 SEC.. AND HAS SEIZED IT AT REL. CLK. 2039 FOR 
REQUESTED THE SPSI PROCESSOR AT BEL. CLK, 2640 SEC.. AND HAS SEIZED IT AT REL. CLK. 2640 FOR 

1 

I 

SECONnS. 

SECONOS. 

I 

1 

2 

2 

I 

1 

1 

SPS 

DsC 

OPHI 

DSC 

DSC 

FMP 

OSC 

FMP 

2642 

2644 

2645 

2646 

0 

0 

I 

0 

9 

9 

REUUEbTEO THE FMP PROCESSOR AT REL. CLK. 2647 

90 FMP DSC 

90 DsC SPS 

REQUEbTED THE SPSI PROCESSOR AT REL. CLK, 2737 

SEC.. AND HAS SEIZED IT AT REL. CLK. 

2705 

2736 

SEC,, AND HAS SEIZED IT AT REL. CLK, 

2691 FUR 

3 

30 

2776 FUR 

10 

60 

SECONDS, 

SECONnS. 

JOB 8 16 COMPLETE AT RELATIVE CLOCK * 2837 SEC. 



SUMMARY OF JOB 4 17
 

FILE NO. NUMREN OF FROM TO TRANSFER COMPLETED AT DURATION
 
BLOCKS TRANSFERRED RELATIVE CLOCK TIMF (SEC).., OF TRANSFER (SEcl 

REQUESTED THE SP51 PROCESSOR AT REL. CLK. 2051 SEC.. AND HAS SEIZED IT AT RFL. CLK. 20 FUR I SECONnS. 

REQUESTED THE SPSI PROCESSOR AT kEL. CLK. 2652 SEC., AND HAS SEIZED IT AT RFL. eLK. 26S2 FUR I SECONDS. 

II SPS OSC 2654 0 

1 oSC FMP 2656 0 

2 GPH? OSC 2658 a 

a DSC FMP 2659 0 

REQUESTEO THE FMP PROCESSOR AT REL, CLK. 2660 SEC.. AND HAS SEIZED IT AT RFL. CLK, 2711 FOR 10 qECDNDS. 

b 2 FMP DSC 2722 0 

a 2 0sc SPS 2725 1 

REQUESTED THE SPS1 PROCESSOR AT REL. CLK. 2726 SEC., AND HAS SEIZED IT AT RFL. CLK, 2726 FOR 60 SECONDS. 

JOB 0 II COMPLETE AT RELATIVE CLOCK - 287G SEC. 

wSUMMARY OF JOB 0 18 

FILE NO. NUMBER OF 
BLOCKS TRANSFERRED 

FROM TO TRANSFER COMPLETED AT 
RELATIVE CLOCK TIME 4SEC)... 

DURATION 
OF TRANSFER (SEC) 

REQUEbTED THE SPSI PROCESSOR AT REL. CLK. 2148 SEC., AND HAS SEIZED IT AT RL. CLK. 2148 FOR I SECONDS. 

REQUEbTED THE SPSI PROCESSOR AT REL; CLK. 2749 SEC., AND HAS SEIZED IT AT RFL. CLK. 2786 FOR I SECONDS. 

REQUESTED THE SPS1 PROCESSOR AT REL. CLK. 3087 SEC.. AND HAS SEIZED IT AT RFL. CLK. 3087 FOR I SECONDS. 

I SPS DSC 3089 0 

I I OsC FMP 3090 0 

2 I GPH2 DSC 3091 1 

2 1 DC FMP 3092 0 

REOUE TEO THE FR? PROCESSOR AT REL. CLK, 3093 SEC.. AND HAS SEIZED IT AT RFL. CLK. 3093 FOR 10 SECoNnS. 

8 2 FMP DSC 3105 a 

8 2 OSC SPS 3106 0 

REQUESTED THE SPSI PROCESSOR AT REL. CLK. 3107 SEC.. AND HAS SEIZED IT AT RFL. CLK. 3107 FUR 60 SECONDS. 

JOB 4 18 COMPLETE AT RELATIVE CLOCK  3168 SEC. 



SUMMARY OF JOB N 19 

FILE NU. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TIMF (SEC).,. OF TRANSFER (SEC) 

REQUESTED THE SPSI PROCESSOR AT MEL. CLK. 2223 SEC.. AND HAS SEIZED IT AT RFL. CLK, 2223 FOR I SECONDS, 

I! SPS DSC 22?5 0 

I 

I 

DSC 

GPH2 

FHP 

OSC 

2226 

2228 

0 

! 

2 

9 

9 

1 OsC FMP 

REQUESTED THE FMP PROCESSOR AT REL. CLK. 2230 

90 FMP DSC 

90 DSC SPS 

REQUESTED THE SPSI PROCESSOR AT REL. CLK. 2572 

2229 

SEC., AND HAS SEIZED IT AT AFLt CLK. 

2543 

2571 

SEC., AND HAS SEIZED IT AT AFL, CLK, 

0 

2529 FOR 

3 

26 

2572 FOR 

10 

60 

SECONDS, 

SECONDS. 

JOB N 19 COMPLETE AT RELATIVE CLOCK - 2633 SEC. 

w 
In SUMMARY OF JOB 0 20 

FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TIME (SEC).,. OF TRANSFER (SEC) 

REQUESTED THE SPSI PROCESSOR AT MEL. CLK. 226a SEC.. AND HAS SEIZED IT AT REL, CLK. ZeAR FUR 
REQUESTED THE SPS1 PROCESSOR AT REL. CLK, 2863 SEC., AND HAS SEIZED IT AT AFL. CLK, 2863 FOR 

I 

I 

SpCO~ns. 

SECO~nS. 

I 

I1 

2 

2 

9 

I 

1 

1 

REQUESTED THE 

90 

SPS DSC 

DSC FMP 

OPHI DC 

DSC FMP 

FMP PROCESSOR AT HEL, CLK. 

FMP DEC 

2871 

2866 

2867 

2868 

2870 

SEC.. AND HAS SEIZED IT AT RFL, CLKa 

2885 

0 

0 

1 

0 

2871 FOR 

3 

10 SFCONPS. 

9 

REQUESTED 

90 

THE SPSI 

05C SPS 

PROCESSOR AT REL, CLK, 2913 

2912 

SEC.. AND HAS SEIZED IT AT RFL. CLK. 

26 

2913 FOR 60 SECONDS, 

JOB N 20 COMPLETE AT RELATIVE CLOCK - 2974 SEC. 



SUMMARY OF JOB 0 21 

FILE NO. NUHBER OF FROM TO TRANSFER COMPLETED AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TIME (SEC)... OF TRANSFER (SEC) 

REQUESTED THE SPSI PROCESSOR AT REL. CLK. 2646 SEC., AND HAS SEIZED IT AT ArFL. CIK. 2646 FOR I SFCO-ihS. 

I SIPS OSC 2648 0 

1 1 DSC FMP 2649 0 

2 1 GIH! OSC 2650 3 

2 1 DSC FMP 2652 0 

REQUESTED THE FMP PROCESSOR AT REL. CLK. 2653 SEC., AND HAS SEIZED IT AT RFLs CLK. 270I FUR 10 SFCOMPS. 

a 2 FMP DSC 2712 0 

a 2 DSC SPS 2715 1 

REQU bTEU THE SPSI PROCESSOR AT REL. CLK. Z716 SEC.. AND HAS SEIZED IT AT NFL. CLK. 2716 FUR 60 SECONDS. 

JOB # 21 COMPLETE AT RELATIVE CLOCK . 2777 SEC. 

, 

Ln 

SUMMARY OF JOB M 22 

FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION 

BLOCKS TRANSFERRED RELATIVE CLOCK TIME (SEC... OF TRANSFER (SEC) 

REQUEbTED THE SPS1 PROCESSOR AT BEL. CLK. 2831 SEC.. AND HAS SEIZED IT AT REL. CLK. 2831 FOR 1 SECONDS. 

I I SF'S OSC 2033 0 

1 1 AC FMP 2834 0 

2 1 OPII DSC 2835 1 

2 1 DSC FMP 283? 0 

REQUEbTED THE FMP PROCESSOR AT REL. CLK. 2838 SEC.. AND HAS SEIZED IT AT AFLt. CLK. 2838 FOR 10 SECONDS. 

2 FHP OSC 2849 0 

a 2 DSC SPS 2850 0 

REQUEbTED THE SPSI PROCESSOR AT REL. CLK. 2851 SEC.. IND HAS SEIZED IT AT RFL. CLK. 2851 FOR 60 SECONDS. 

JOB * 22 COMPLETE AT RELATIVE CLOCK - 2912 SEC.
 



SUMMARY OF JOB M 23 

FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TIME (SEh,.. OF TRANSFER (SECI 

REQUESTED THE SPSI PROCESSOR AT REL, CLK. 2958 SEC.. AND HAS SEIZED IT AT RFL. CLK, 2958 FOR I SECONDS. 

I I SPS DSC 2961 0 

1 1 bSC F$P 2962 0 

2 1 OPHI OSC 2963 1 

2 1 OSC FMP 2964 a 

REQUESTED THE FIP PROCESSOR AT REL. CLK. 2965 SEC.. AND HAS SEIZED TT AT RFL, CLK. 2965 FUR IO SEOOwnS. 

a 2 FMP DSC 2977 a 

b 2 OSC SPS 2976 

REQUESTED THE SPSI PROCESSOR AT REL. CLK, 2979 SEC.. AND HAS SEIZED IT AT AFL. CLK. 2979 FOR 60 SECOnS. 

JOB 0 23 COMPLETE AT RELATIVE CLOCK - 3040 SEC. 

SUMMARY OF JOB 0 24 

FILE NO, NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION 

BLOCKS TRANSFERRED RELATIVE CLOCK TIME (SEC)... OF TRANSFER (SEC) 

REQUESTED THE SPSI PROCESSOR AT REL. CLK. 3031 SEC.. AND HAS SEIZED IT AT RFL. CLK, 3031 FOR I SECONDS. 

1 I SPS DSC 3034 0 

1 1 OSC FMP 3035 0 

2 1 DAN2 OSC 3036 I 

2 1 DSC FMP 3037 0 

REQUESTED THE FMP PROCESSOR AT REL. CLX. 3038 SEC., AND HAS SEIZED IT AT RFL. CLK, 3038 FOR 10 SECONDS. 

9 go FMP OSc 3063 3 

9 90 DSC SPS 3081 26 

REQUESTED THE SPSI PROCESSOR AT REL. CLK. 3082 SEC., AND HAS SETZED IT AT RFLo CLK. 3062 FOR 68 SECONnS. 

JOB 0 24 COMPLETE AT RELATIVE CLOCK . 3143 SEC. 



SUMMARY OF JOB # 25 

FILE NO. NUMBER OF 
BLOCKS TRANSFERRED 

FROM TO TRANSFER COMPLETED AT 
RELATIVE CLOCK TIME (SEC),. nF 

DURATION 
TRANSFER (SEC) 

REQUESTED THE SPSI PROCESSOR AT REL. OLK. 3208 SEC.. AND HAS SEIZED IT AT RFL. El'K. 3208 FUR I SECONfS. 

REOUESTEO THE SPSI PROCESSOR AT REL. CLK. 3609 SEC.. AND HAS SEIZED Ir AT PFL. CLK. 3809 FURu SECOndS. 

I SPS DSC 3811 0 

1 j DSC FMP 3812 0 

2 1 OPHI OSC 3814 1 

2 1 0SC FMP 3815 0 

REQUEbTED THE FMP PROCESSOR AT REL. eLK. 3316 SEC.. AND HAS SEIZED IT AT AFL. eLK. 4305 FUR I SECOwnS. 

2 FMP OSC 4317 0 

a a5C SPS 4318 0 

REQUEbTED THE SPS1 PROCESSOR AT REL. CLK. 4319 SEC.. AND HAS SEIZED IT AT REL. CLK. 4319 FOR 60 SECONDS. 

JOB 0 25 COMPLETE AT RELATIVE CLOCK . 4380 SEC. 

SUMMARY OF JOB N 26 

FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TIME (SE0)... OF TRANSFER (SEC) 

REQUESTED THE SPSZ PROCESSOR AT REL. CLK. 3231 SEC., AND HAS SEIZED IT AT ARFL. CLK. 3231 FOR I SECONDS. 

REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 3832 SEC., AND HAS SEIZED IT AT RFL. CLK. 3832 FOR I RECoDnS. 

REQUE5TED THE SPS2 PROCESSOR AT BEL. CLK. 4133 SEC.. AND HAS SEIZED IT AT RFL. CLK. 4133 FOR I SECONDS. 

I I SFs DC 4135 0 

I A DSC FNP 4137 0 

2 1 GPH2 OSC 4138 1 

2 1 OSC FIP 4139 0 

REQUESTEO THE FMP PROCESSOR AT REL. ELK. 4140 SEC.. AND HAS SEIZED IT AT RFL. eLK. 4445 FOR 10 SECOnDS. 

a 2 FMP OSC 4457 O 

a 2 DSC SPS 4458 0 

REQUEbTED THE SPS2 PROCESSOR AT MEL. CLK. 4459 SEC.. AND HAS SEIZED IT AT RFL. eLK. 44q9 FUR 60 SCONnS. 

JOB 0 26 COMPLETE AT RELATIVE CLOCK . 4520 SEC. 



SUMMARY OF JOB 0 27 

FILE NO. NUMBER OF 
BLOCKb TRANSFERRED 

FROM TO TRANSFER COMPLETED AT DURATION 
RELATIVE CLOCK TIME (SEh... OF TRANSFER (SEC) 

REQUESTED THE SPSZ PROCESSOR AT BEL. CLK. 3750 SEC., AND HAS SEIZED IT AT RFL. CLX. 3750 FOR I SECONDS. 

I SPS DSC 3752 0 

DSQC FHP 3T4a 

2 1 OPHI OSC 3756 2 

2 1 DbC FAP 375T 0 

REQUESTED THE FAP PROCESSOR AT REL. CLK. 3758 SEC., AND HAS SEIZED IT AT RFL. CLK. 4285 FOR 10 SFCOMDS. 

a 2 F14P OSC 4297 0 

a a OSC SPS 4248 0 

REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 4299 SEC.. AND HAS SEIZED IT AT RFL. CLK. 4299 FOR 60 SFCONfS. 

'JOB 27 COMPLETE AT RELATIVE CLOCK - 4360 SEC. 

SUMMARY OF JOB 0 28 

FILE NO. NUMBER OF FROM TO TRANSFER COMPLETEO AT OURATION 

BLOCKS TRANSFERRED RELATXVE CLOCK TIME (SEC),.. OF TRANSFER (SEC) 

REQUESTED THE SPS1 PROCESSOR AT REL. CLK. 3932 SEC., AND HAS SEIZED IT AT REL. CLK. 3932 FOR I SECONDS. 

REQUESTED THE SPSI PROCESSOR AT BEL. CLK. 4533 SEC.. AND HAS SEIZED IT AT RFL. CLK. 4533 FOe I SECONDS. 

I I SPS OSC 4536 0 

II OSC FMP 4537 0 

2 SPHI DSC 4538 1 

2 DSC FMP 4540 0 

REQUE4TEO THE FAP PROCESSOR AT BEL. CLK, 4541 SEC.. AND HAS SEIZED IT AT AFL. CLK. 5895 FUR 10 SECONDS. 

9 90 FAP DSC 5913 6 

9 90 OSC SPS 5942 26 

REQUESTED THE SPSI PROCESSOR AT MEL. CLK. 5943 SEC.. AND HAS SEIZED IT AT RFL, CLK. 5943 FOR 60 SECONDS. 

JOB N 28 COMPLETE AT RELATIVE CLOCK a 6004 SEC. 



SUMMARY OF JOB N 29
 

FILE NO. NUMBER OF 
BLOCKS TRANSFERRED 

FROM TO TRANSFER COMPLETED AT 
RELATIVE CLOCK TIME (SEC)... 

DURATION 
nF TRANSFER (SEC) 

REQUESTED THE SPSI PROCESSOR AT HEL. CLK. 4532 SEC.. AND HAS SEIZED IT AT RFL. CLK. 4532 FOR I SECONDS. 

REQUESTED THE SPSI PROCESSOR AT REL. CLK. 5133 SEC., AND HAS SEIZED IT AT RFL. CLK. 5133 FUR I SECONDS. 

I I SPS OSC 5136 0 

1 1 DSC FHP 5137 0 

1 OPH2 DSC 5130 1 

2 I D$C FMP 5139 0 

REUUEbTEU THE FMP PROCESSOR AT REL. CLK. 5140 SEC.. AND HAS SEIZED IT AT AFL. CLK. 59R5 FOR 10 SECONDS. 

a 2 FP DSC 5997 0 

4 a aSC SPS 6004 0 

REQUESTED THE SPSI PROCESSOR AT REL. CLK. 6005 SEC.. AND HAS SEIZED IT AT RFL. CLK. 6005 FOR 60 SECONDS. 

JOB 229 COMPLETE AT RELATIVE CLOCK * 6066 SEC. 

L1 SUMMARY OF JOB 0 30 

FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TINE (SEO .. DF TRANSFER ISEC) 

REQUESTED THE SPSI PROCESSOR AT REL. CLK. 4992 SEC., AND HAS SEIZED IT AT RFL. Cix. 4992 FOR I SeCOmnS. 

REQUESTED THE PPSI PROCESSOR AT REL. CLK. 5593 SEC.. AND HAS SEIZED IT AT REL. CLK. 5593 FOR I SECONDS. 

REQUESTED THE SPS1 PROCESSOR AT REL. CLK. 5894 SEC.. AND HAS SEIZED IT AT RFL. CLK. 5894 FOR I SECOmS. 

I I SPS DC 5897 0 

1 I DSC FMP 5898 0 

2 1 OPHI DSC 5899 1 

a I OSC FMP 5901 0 

REQUESTED THE FMP PROCESSOR AT REL. CLK. 5902 SEC., AND HAS SEIZED I AT RFL. CLK. 6705 FOR 10 SECONDS. 

9 90 FMP OSC 6723 6 

9 90 DSC SPS 6765 40 

REQUESTED THE SPSI PROCESSOR AT REL. CLK. 6766 SEC., AND HAS SEIZED IT AT RFL. CLK. 6766 FOR 60 SECONDS. 

JOB * 30 COMPLETE AT RELATIVE CLOCK - 6827 SEC. 



SUMMARY OF JOB 0 31 

FILE NO. NUMHEH OF FROM TO TRANSFER COMPLETED AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TINE (SEC)... OF TRANSFER (SEC) 

REQUESTED THE SPSI PROCESSOR AT MEL. CLK. 5035 SEC.. AND HAS SEIZED IT AT RFL. CLK. 5035 FUR I SECONDS. 

I I SPS DSC 5037 0 

I OSC FMP 5038 0 

2 I OPH2 0SC 5040 1 

2 1 0SC FMP 5041 0 

REQUESTED THE FHP PROCESSOR AT REL. CLK. 5042 SEC.o AND HAS SEIZED IT AT RFL. CLK, 5975 FUR i SFCONS. 

a 2 FP DSC 5987 0 

8 2 Dsc SPS 6004 1 

REQUEbTED THE SPSI PROCESSOR AT REL. CLK. 6005 SEC.. ANO HAS SEIZED IT AT RFLo CLK. 6065 FOR 60 SECONDS. 

JOB 0 31 COMPLETE AT RELATIVE CLOCK . 6126 SEC. 

SUMMARY OF JOB N 32 

FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TINF (SEC)... OF TRANSFER (SECI 

REQUESTED THE SPSI PROCESSOR AT REL. CLK. 5038 SEC.. AND HAS SEIZED IT AT PEL. CLK, 5038 FOR I SFCONOS. 

REQUESTED THE SPSI PROCESSOR AT REL. CLK. 5639 SEC.. AND HAS SEIZED IT AT RFL. CLK. 6639 FOR 1 SECONDS. 

I I SPS DSC 5641 0 

I 1 DSC FMP 6643 0 

2 1PHI DSC 5644 1 

a I nSO FP 5645 0 

REQUESTED THE FMP PROCESSOR AT REL. CLK. 5646 SEC., AND HAS SEIZED IT AT RFL. eLK. 6665 FOR i SECONDS. 

9 go F14P DSC 6680 3 

9 90 OSC SPS 6730 49 

REQUESTED THE SPS1 PROCESSOR AT REL. CLK, 6731 SEC.. AND HAS SEIZED IT AT REL, CLK. 6731 FOR 60 SECONDS. 

JOB M 32 COMPLETE AT RELATIVE CLOCK . 6792 SEC. 



SUMMARY OF JOB 0 33
 

FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION
 
BLOCKS TRANSFERRED RELATIVE CLOCK TIME (SEC... OF TRANSFER (SEC) 

REQUESTED THE SPSI PROCESSOR AT REL. CLK. 5102 SEC., AND HAS SEIZED IT AT RFL. CLK. 5102 FUR I SFCONnS. 

REQUESTED THE SPS1 PROCESSOR AT REL. ELK. 6703 SEC.. AND HAS SEIZED IT AT RFL. CLK. 5703 FUR I SECONnS. 

1 I SPS 0SC 5705 0 

I DSC FMP 5706 0 

2 I GPHI SC 5708 1 

2 1 0SC FM? 5709 0 

REQUESTEO THE FMP PROCESSOR AT REL. CLK. 5710 SEC., AND HAS SETZED IT AT RFL. CLK. 66R5 FUR 10 SECONrS. 

8 2 FNP OSc 6697 0 

8 2 0SC SPS 6700 2 

REQUESTED THE SPSI PROCESSOR AT REL. CLK. 6701 SEC., AND HAS SEIZED IT AT REL. CLK. 6701 FUR 60 SECONDS. 

JOB 4 33 COMPLETE AT RELATIVE CLOCK . 6762 SEC. 

SUMMARY OF JOB 0 34 

FILE NO. NUNREH OF FRO6 TO TRANSFER COMPLETED AT DURATION 

BLOCKS TRANSFERRED RELATIVE CLOCK TIME (SEC)... OF TRANSFER (SEC) 

REQUESTED THE SPSI PROCESSOR AT REL. ELK. 5257 SEC., AND HAS SEIZED IT AT RFL. Cl.K. 5257 FOR I SECOmNS. 

REQUESTEU THE SPS1 PROCESSOR AT REL. CLK. 5858 SEC.. AND HAS SEIZED IT AT RFL. ELK. 5858 FOR I SECONDS. 

MEUUESTE THE SPSI PROCESSOR AT REL. CLK. 6159 SEC.. AND HAS SEIZED IT AT RFL. CLK. 61g FOR I qECONDS. 

II SPS OSC 6161 0 

1 1 hsc FMP 6163 0 

2 1 uPHe DSC 6164 1 

2 1 D0C FMP 6165 0 

REQUESTED THE FMP PROCESSOR AT REL. CLK. 6166 SEC., AND HAS SETZED IT AT RFL. CLK. 6825 FUR 10 SECONDS. 

8 2 FNP DSC 6837 0 

8 2 Osc SPS 6839 1 

REQUEbTED THE SPSI PROCESSOR AT REL. ILK. 6840 SEC., AND HAS SEIZED IT AT RFL. CLK. 6840 FOR 60 SECONDS. 

JOB 4 34 COMPLETE AT RELATIVE CLOCK . 6901 SEC. 



SUMMARY OF JOB # 35
 

FILE NO. NUMBER OF 
BLOCKS TRANSFERRED 

FROM TO TRANSFER COMPLETED AT 
RELATIVE CLOCK TIME (SEC)... 

DURATION 
nF TRANSFER (SEC) 

REQUESTED THE SPSI PROCESSOR AT MEL. CLK, 5366 SEC., AND HAS SEIZED IT AT REL. CLK. 5366 FUR I qFCON'S. 

I I SPS. DSC 5368 0 

1 1 OSC FMP 5369 0 

2 1 OPHI OSC 5373 4 

2 1 DSC FMP 5375 0 

REQUESTED THE FMP PROCESSOR AT REL. CLK. 5376 SEC.. AND HAS SEIZED IT AT REL. CLK. 66S5 FOR 10 SECONDS, 

8 2 FP DSC 6667 0 

8 2 DSC SAS 6668 a 

REQUESTED THE SPS1 PROCESSOR AT REL. CLK, 6669 SEC., AND HAS SEIZED IT AT RFL. CLK. 6669 FOR 60 SECONDS. 

JOB 0 35 COMPLETE AT RELATIVE CLOCK . 6730 SEC. 

SUMMARY OF JOB 0 36 

FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TIME (SEC),, nF TRANSFER (SEC) 

REQUEbTED THE SPSI PROCESSOR AT REL. CLK, 5518 SEC., AND HAS SEIZED IT AT REL. CLK, 5518 FOR 

REQUEbTED THE SPSI PROCESSOR AT NEL. CLK, 6119 SEC., AND HAS SEIZED IT AT RFL. CLK, 6127 FUR 

1 1 SPS BSC 6129 0 

I 

I 

SECONDS. 

SFCONDS. 

1 1 DSC FMP 6131 0 

2 1 0PH2 OSC 6132 1 

2 1 DSC FMP 6133 0 

9 

REUUESTED THE 

90 

FHP PROCESSOR AT REL. CLK. 6134 

FHP DSC 

SEC., AND HAS SEIZED 

6820 

IT AT RFL. eLK. 6805 FUR 

3 

10 qECOnOS. 

9 90 OSC SPS 

REQUEbTED THE SPSI PROCESSOR AT REL. CLK, 6850 

6849 

SEC.. AND HAS SEIZED IT AT RFL. CLK. 

28 

6880 FOR 60 SECONDS. 

JOB 0 36 COMPLETE AT RELATIVE CLOCK - 6911 SEC. 



SUMMARY OF JOB 0 37 

FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TINE (SECt... OF TRANSFER (SECI 

REQUESTED THE SPSI PROCESSOR AT REL. CLK. 5523 SEC.. AND HAS SEIZED IT AT RFL. ELK. SS23 FOR I SECONDS. 

REQUE6TED THE SPSI PROCESSOR AT REL. ELK. 6124 SEC.. AND HAS SEIZED IT AT RFL. CLK. 6128 FOR I SECONAS. 

1I SPS DSC 6130 0 

I I DSC FNP 6132 0 

2 1 SPHl OSC 6133 1 

2 1 DSC FMP 6134 0 

REQUEbTED THE FNP PROCESSOR AT REL. ELK. 6135 SEC.. AND HAS SEIZED IT AT REL. CLK. 6815 FUR 10 SECONDS. 

a 2 FMP DSC 6827 0 

a 2 OSC SPS 6829 1 

REQUEbTED THE SPSI PROCESSOR AT HEL. CLK. 6830 SEC.. AND HAS SEIZED IT AT RFL. CLK, 6830 FOR 60 SECONDS. 

JOB x 37 COMPLETE AT RELATIVE CLOCK - 6891 SEC. 

~1 

J:= 
LA) 

SUMMARY OF JOB N 38 

FILE NO. NUMREN OF FROM TO TRANSFER COMPLETED AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TIME (SEC... OF TRANSFER (SEC 

REQUESTED THE SPSI PROCESSOR AT MEL. eLK. 5590 SEC., AND HAS SEIZED IT AT RFL. C,'K. 5590 FOR I SECONDS. 

REQUEbTEO THE SPSI PROCESSOR AT REL. eLK. 6191 SEC.. AND HAS SEIZED IT AT RFL. eLK. 6191 FOR I SECONOS. 

REQUEbTED THE SPSI PROCESSOR AT REL. eLK. 6492 SEC.. AND HAS SEIZED IT AT RFL. eLK. 6492 FOR I SECONDS. 

I I SPS OSC 6494 0 

I1 SEc FMP 6495 0 

2 1 GPHI DSC 6497 1 

d OSC FMP 6498 0 

REQUE$TED THE FMP PROCESSOR AT REL. eLK. 6499 SEC., AND HAS SEIZED IT AT RFL. ELK. 6915 FOR 10 SECONDS. 

2 FMP DSC 6927 0 

a 2 DSC SPS 6928 0 

REQUEbTED THE SPSI PROCESSOR AT REL. eLK. 6929 SEC., AND HAS SEIZED IT AT RFL. eLK. 6929 FOR 60 SECONDS. 

JOB 38 COMPLETE AT RELATIVE CLOCK - 6990 SEC. 



SUMMARY OF JOB N 39 

FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TIME (SEC)., nF TRANSFER (SEC) 

REQUESTED THE SPSI PROCESSOR AT REL. CLK. 5656 SEC.. AND HAS SEIZED IT AT RFL. CLK. 5666 FOR I SECONDS. 

I I SP6 DSC 5658 0 

1 1 OSC FMP 5659 0 

2 1 OPHI DSC 5661 1 

a I SC F4P 5662 0 

REQUESTED THE FMP PROCESSOR AT REL. CLK. 5663 SEC., AND HAS SEIZED IT AT REL. CLK. 6675 FOR 10 SFCONDS. 

9 90 FMP 05C 6691 4 

9 90 OSC SPS 6749 57 

REQUESTED TtE SPSI PROCESSOR AT REL. CLK. 6750 SEC., AND HAS SEIZED 17 AT RFL. CLK 67W0 FOR 60 SCONnS. 

JOB $ 39 COMPLETE AT RELATIVE CLOCK . 6811 SEC. 

X= SUMMARY OF JOB 0 40 

FILE NO. NUMBER OF
BLOCKS TRANSFERRED 

FROM TO TRANSFER COMPLETED AT DURATIONRELATIVE CLOCK TIME (SEC),e. OF TRANSFER (SEC) 

REQUESTED THE SPSI PROCESSOR AT REL. CLK, 5690 SEC., ANO HAS SEIZED IT AT RFL, CLK, 5690 FOR I SECONDS. 

REQUESTED THE SPSI PROCESSOR AT MEL. CLK. 6291 SEC., AND HAS SEIZED IT AT RL. CLK. 6291 FOR I qECONnS. 

1 I SPS DSC 6294 0 

I DSC FNP 6295 0 

2 1 OPH2 OSC 6296 1 

I DSc FMP 6297 0 

REQUESTED THE F$P PROCESSOR AT REL. CLK. 6298 SEC., AND HAS SEIZED IT AT REL. CLK. 6835 FOR 10 SECONDS. 

9 90 FMP DSC 6850 4 

9 90 OSC SFs 6896 44 

REQUEbTEO THE SPSI PROCESSOR AT REL. CLK. 6897 SEC.. AND HAS SEIZED IT AT RFL. CLK. 6897 FUR 60 SECONDS. 

JOB A 40 COMPLETE AT RELATIVE CLOCK - 6958 SEC.
 



SUMMARY OF JOB 0 41 

FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TIME ISEC)... OF TRANSFER (SEC) 

REUUESTEO THE SPSI PROCESSOR AT REL. CLK. 5880 SEC., AND HAS SEIZED IT AT RFL. ClK. 5880 FUR I SECONDS. 

I I SPS OSC 5882 0 

1 i nSC FMP 5803 0 

2 1 GPH2 DSC 5884 1 

I 0sc FNP 5886 0 

REQUESTEO THE FHP PROCESSOR AT REL. CLK. 5887 SEC., AND HAS SEIZED IT AT AFL. CLK. 6695 FOR 10 SECOmnS. 

d 2 FMP DSC 6707 0 

2 OSC SPS 6709 1 

REQUEbTED THE SPSI PROCESSOR AT REL. CLK. 6710 SEC., AND HAS SEIZED IT AT RFL. CLK. 6710 FOR 60 SECONDS. 

JOB H 41 COMPLETE AT RELATIVE CLOCK - 6771 SEC. 

SUMMARY OF JOB N 42 

FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TINE ISECI,., OF TRANSFER ISEC) 

REQUESTED THE SPS2 PROCESSOR AT PEL. CLK. 6078 SEC.. AND HAS SEIZED IT AT RFL. CLK. 6078 FOR I SECONDS. 

1 1 SPS DSC 6080 O 

1 DSC F4P 6082 0 

2 1 BPHI DSC 6093 1 

2 1 Osc FMP 6084 0 

REQUESTED THE FMP PROCESSOR AT REL. CLK. 6085 SEC., AND HAS SEIZED IT AT RFL. CLK. 6785 FOR 10 SECONDS. 

8 2 FMP 05C 6797 0 

8 2 05C SPS 6798 0 

REQUESTED THE SPSZ PROCESSOR AT HEL. CLK. 6799 SEC.. AND HAS SEIZED IT AT REL. CLK. 6799 FOR 60 SECONDS. 

JOB N 42 COMPLETE AT RELATIVE CLOCK - 6860 SEC. 



SUMMARY OF JOB # 43 

FILL NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TIME (SEC)... OF TRANSFER (SEC) 

REQUEbTEo THE SPS2 PROCESSOR AT REL. CLK. 6088 SEC.. AND HAS SEIZED IT AT REL. CLK. 6088 OR I SECONDS. 

I I SPS DSC 6090 0 

1 DSC FMP 6092 0 

a 1 0PH2 0SC 6093 1 

2 1 DOC FMP 6094 0 

REQUESTEO THE FMP PROCESSOR AT REL. CLK. 6095 SEC., AND HAS SEIZED IT AT AFL. CLK. 6795 FUR 10 SECONDS. 

9 90 FIP osC 6810 3 

9 90 D5C SPS 6913 53 

REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 6914 SEC.. AND HAS SEIZED IT AT RFL. CLK. 6915 FOR 60 SECONDS 

JOB f 43 COMPLETE AT RELATIVE CLOCK - 6976 SEC. 

SUMMARY OF JOB 0 44 

FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION 

BLOCKS TRANSFERRED RELATIVE CLOCK TIME (SEC)... OF TRANSFER (SECI 

REQUESTED THE SPS2 PROCESSOR AT REL. CLK, 6357 SEC.. AND HAS SEIZED IT AT RFL. CLK. 6357 FOR I qFCOmIS. 

I 1 SPS USC 6359 0 

I DSC FMP 6361 0 

2 1 OPHI B5C 6362 1 

2 1 DSC FRP 6363 0 

REQUESTED THE FNP PROCESSOR AT REL. CLK. 6364 SEC.. AND HAS SEIZED IT AT RFL. CLK. 6845 FOR 10 SECOnS. 

9 90 FNP DSC 6862 5 
9 90 OSC SPS 6915 52 

REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 6916 SEC., AND HAS SEIZED IT AT RFLA CLK. 6975'FUR 6D SECONDS. 

JOB a 44 COMPLETE AT RELATIVE CLOCK . 7036 SEC. 



SUMMARY OF JOB 0 45 

FILE NO. NUMSER OF FROM TO TRANSFER COMPLETED AT DURATION 
eLOCKS TRANSFERRED RELATIVE CLOCK TIME ISEC)... OF TRANSFER (SEC) 

REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 6530 SEC., AND HAS SEIZED IT AT REL. CLK. 6530 FOR I SFCOMnS. 

REQUEbTED THE SPSR PROCESSOR AT REL. CLK. 7131 SEC., AND HAS SEI2ED 17 AT RFL. CLK. 711 FOR I SECONnS. 

I I SPS OSe 7133 0 

I I OSC FMP 7134 0 

2 1 OPHI DC 7136 1 

2 1 nSC FNP 7137 0 

REQUESTED THE FHP PROCESSOR AT REL. CLK. 7138 SEC., AND HAS SETZED IT AT RFL. eLK. 7655 FUR Iq SECOmnS. 

22 FMP 05C 7667 0 

u 2 DC SPS 7670 2 

REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 7671 SEC.. AND HAS SEIZED IT AT RFL. CLK. 7671 FOR 60 SECONAS. 

SUMMARY OF JOB 0 46 

FILE NO. NUMBER OF 
BLOCKS TRANSFERRED 

FROM TO TRANSFER COMPLETED AT 
RELATIVE CLOCK TIME (SEC)... 

DURATION 
OF TRANSFER ESEC) 

REQUESTED THE SPSI PROCESSOR AT REL. CLK. 6926 SEC.. AND HAS SEIZED IT AT REL. CLK. 6926 FOR I SECONDS. 

REQUESTED THE SP51 PROCESSOR AT REL. CLK. 7527 SEC.. AND HAS SEIZED 17 AT R1L. CLK. 7527 FOR I SECONDS. 



SUMMARY OF JOB N 47
 

FILE NO. NUMBER OF 
BLOCKS TRANSFERRED 

FROM TO TRANSFER COMPLETEn AT 
RELATIVE CLOCK TIME (SEC).., 

nURATION 
OF TRANSFER (SEC) 

REQUESTED THE §PS1 PROCESSOR AT REL. CLKo 1080 SEC., AND HAS SEIZED IT AT REL. CLK. 70B9 FUR I SWCONnS. 

I I SPS OSC 7092 0 

I I DSC FHP 7093 

2 I OPHI DSC 7094 I 

2 1 OSC FMP 7095 0 

REQUE TEO THE FMP PROCESSOR AT REL. CLK. 7096 SEC.. AND HAS'SEIZED IT AT RFL. CLK, 7645 FOR 10 SECON11S 

2 FMP DSC 7657 0 

2 OSC SPS 7659 0 

REQUESTED THE SPSI PROCESSOR AT REL. CLK. 7660 SEC.. AND HAS SEIZED IT AT RFL. CLK. 7660 FOR 60 SFCONDS, 

SUMMARY OF JOB 0 48
 

FILE NO, NUMBER OF FROM TO TRANSFER CDMHPLETEn AT DURATION
 

BLOCKS TRANSFERRED . RELATIVE CLOCK TIME (SE0... OF TRANSFER (SEC)
 

SEC.. ANO HAS SEtZED IT AT RFL, CLK. 
 7148 FUR I SEONDnS.
 
REQUESTEo THE SPMI PROCESSOR AT REL. CLK. 7148 


SUMMARY OF JOB 9 49
 

FILE NO. 1UMAER OF FROM 10 TRANSFER COMPLETED AT DURATION
 

BLOCKS TRANSFERRED RELATIVE CLOCK TIME ISEC)... OF TRANSFER (SEC)
 

RECUSSTEO THE §PSI PROCESSOR AT REL. CLK. 7347 SEC.. AND HAS SEIZED IT AT REL. CLK. 7347 FOR I SFCONnS.
 



SUMMARY OF JOB # SO 

FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION 
BLOCKS TRANSFERRED . RELATIVE CLOCK TIME (SEt ... OF TRANSFER (SEC) 

REQUESTED THE SPSI PROCESSOR AT REL. CLK. 7354 SEC., AND HAS SEIZED IT AT RFL. ELK. 734 FUR I SECONDS. 

SUMMARY OF JOB a 51 

FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION 

BLOCKS TRANSFERRED RELATIVE CLOCK TIMF (SEt)... OF TRANSFER (SEC) 

REQUESTED THE SPS2 PROCESSOR AT REL. ELK. 7358 SEC., AND HAS SEIZED IT AT RFL. CLK. 7358 FOR I SECONDS. 

I I SS asc 7360 0 

1 1 DSC FMP 7361 0 

2 OPHi DSC 7363 1 

a 1 DSC FMP 7364 0 

SUMMARY OF JOB 0 52 

FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION 

BLOCKS TRANSFERRED RELATIVE CLOCK TIME (SEC)... Of TRANSFER (SEC) 

REQUESTED THE SP51 PROCESSOR AT REL. ELK. 7535 SEC.. AND HAS SEIZED IT AT REL. eLK. 7535 FOR I SFCONOS. 

I SPS OSC 7537 0 

I I DSC FMP ISI8 0 

2 BRIl DSC 7540 1 

2 1 OSC FMP 7541 0 



SUMMARY OF JOB N 61 

FILE NO. NUMHER OF FROM TO TRANSFER COMPLETEn AT nURATTON 
BLOCKS TRANSFERRED RELATIVE CLOCK TIME (SEC).., OF TRANSFER (SEC) 

REQUESTED THE SPSI PROCESSOR AT REL. CLKh 813 SEC.. AND HAS SEIZED IT AT REL, CLK. 813 FOR 

REQUESTED THE SPSI PROCESSOR AT REL. ELK, 1414 SEC.. AND HAS SETZED IT AT RFL. CLK. 1414 FOR 

1 2 SPS DSC 141? 0 

I 

I 

SECONDS. 

qECONDS. 

1 

2 

2 

2 

2 

2 

DOC 

GPH2 

DSC 

FMP 

OSC 

FMP 

1418 

1421 

1422 

0 

2 

0 

3 

3 

19 

19 

REQUESTED THE 

SPS DC 

DSC FMP 

FP PROCESSOR AT REL, CLK, 1430 

1427 

1429 

SEC.. AND HAS SEIZED IT AT AFL, CLK. 

S 

0 

2349 FOR 60 srcEOnS. 

9 125 FMP OSC 2415 4 

9 

9 

9 

125 

126 

125 

FMP 

nSC 

DSC 

OSC 

SPS 

SPS 

2421 

2485 

2490 

5 

69 

67 

U1 

C) 



SUMMARY OF JOB # 62 

FILE NO. NUMHER OF FROM TO TRANSFER COMPLETED AT DURATION 
4 BLOCKS TRANSFERRED RELATIVE CLOCK TIME (SEC).. OF TRANSFER (SEC) 

REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 1349 SEC.. AND HAS SEIZEO IT AT RFL, CLK. 1349 FOR I SECONOS. 

I 2 SPS OSC 1351 

1 . 2 DSC FIP 1353 

2 ; oPHI SPS 1354 1 

REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 1355 SEC., AND HAS SEIZED IT AT AFL, CLK. 1355 FUR Ba SEroDnS. 

2 2 SPS DOC 1436 0 

2 2 USC FMP 1438 0 

3 14 SPS DC 1443 5 

3 19 DSC FHP 1445 0 

REQUESTED THE FPP PROCESSOR AT REL. CLK. 1446 SEC., AND HAS SEIZED IT AT RFL. CLK. 2409 FUR 60 SECONnS. 

a 6 FMP DC 2471 0 

a 6 DEC SPS 2475 2 

"I REQUESTED THE SPS2 PROCESSOR AT AEL. CLK. 2476 SEC.. AND HAS SEIZED IT AT RFL. CLK. 2476 FOR 180 SECONDS. 

7 4 SPS OPHI 2660 2 

JOB f 62 COMPLETE AT RELATIVE CLOCK 22661 SEC. 



SUMMARY OF JOB 8 63 

FILE NO. NURER OF FROM TO TRANSFER COMPLETED AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TIME ISEC.,. OF TRANSFER (SEC) 

REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 1355 SEC.. AND HAS SEIZED IT AT RL. CLK. 1355 FOR I SECONDS. 

REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 1956 SEC.. AND HAS SEIZED IT AT AFL, CLK. 1956 FOR I qECONnS. 

REQUESTED THE SPSZ PROCESSOR AT BEL. CLK. 2257 SEC., AND HAS SEIZED IT AT AFL, CLK. 2257 FOR I SECONDS. 

1 2 SPS SC 2260 0 

1 2 oSC FMP 2261 0 

2 2 OPH2 OSc 2264 3 

2 2 OSC FHP 2265 0 

3 19 SPS DSC 2271 5 

3 19 DSC FMP 2272 0 

REOUEbTED THE FRP PROCESSOR AT BEL. CLK. 2273 SEC., AND HAS SEIZED IT At RFL. CLK. 2539 FOR 60 SECONDS. 

a 12 FMP DSC 2601 0 

a 12 Os SPS 2664 8 

REQUE5TED THE SPS2 PROCESSOR AT REL. CLK. 2665 SEC.. AND.HAS SEIZED IT AT RFL. CLK. 27?4 FOR 360 SECONDS. 

7 8 SPS OPH2 3090 4 

l JOB # 63 COMPLETE AT RELATIVE CLOCK * 3091 SEC. 



SUMMARY OF JOB N 64 

FILE NO. NUMBER OF FROM TO TRANSFER COHPLETED AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TIME (SEC)... OF TRANSFER (SEC) 

REQUESTED THE SPSI PROCESSOR AT REL. OLK. 2014 SEC., AND HAS SEIZED IT AT AFL. CLK. 2014 FOR I SECO~nS. 

REQUESTED THE SPSI PROCESSOR AT MEL. CLK. 2615 SEC.. AND HAS SEIZED IT AT RFL. CLK. 2615 FOR I qFCONI'S. 

1 2 SPS OSC 2618 0 

1 2 OSC FMP 2619 0 

d 2 GPH2 OSC 2622 2 

2 2 DSC FMP 2623 0 

3 19 SPS DSC 2628 5 

3 19 OSC FMP 2630 0 

REQUESTED THE FNP PROCESSOR AT REL. CLK. 2631 SEC., AND HAS SEIZFD IT AT RFL. CLK. 2631 FOR 60 SECONDS. 

8 6 FMP OSc 2692 0 

8 6 DSC SPS 2695 2 

REQUEbTEO THE SPSI PROCESSOR AT REL. CLK. 2696 SEC., AND HAS SEIZED IT AT REL, CLK. 2696 FOR k0O SECONDS. 

7 4 SPS OPH2 2880 2 

JOB 0 64 COMPLETE AT RELATIVE CLOCK s 2881 SEC. 



SUMMARY OF JOB A 65 

FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TIME (SEC)... OF TRANSFER (SEC) 

REQUESTED THE SPSI PROCESSOR AT REL. CLK, 2862 SEC.. AND HAS SEIZED IT AT REL. CLK. 2882 FOR I SFCONS. 

REQUESTED THE SPSI PROCESSOR AT REL. CLK. 3483 SEC., AND HAS SEIZED IT AT RFL. ELK. 3463 FOR I SECONDS. 

1 2 SPS OSe 3465 0 

1 2 OSC FNP 3487 0 

2 2 6PH? 0SC 34689 2 

Z 2 D5C FHP 3491 0 

3 19 SPS DSC 3496 s 

3 19 DSC FP 3498 a 

REQUESTED THE FMP PROCESSOR AT REL. CLK. 3499 SEC., AND HAS SEIZED IT AT RFL. eLK. 3499 FOR 60 SECONDS. 

a 6 FP DSC 3S60 0 

8 6 DS SPS 3563 2 

REQUESTED THE SPSI PROCESSOR AT REL. CLK. 3564 SEC., AND HAS SEIZED IT AT RFL. CLK. 3564 FUR 1SO %ECONPS4 

7 4 SPS 6PH2 3747 2 

JOB N 65 COMPLETE AT RELATIVE CLOCK - 3748 SEC. 



SUMMARY OF G8 V 66 

FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TIME (SEC ... OF TRANSFER (SEC). 

REQUEbIED THE SPSI PROCESSOR AT REL. CLK. 2965 SEC.. AND HAS SEIZED IT AT REL. CLK. 2965 FOR I SECONDS. 

REQUESTEO THE SPSI PROCESSOR AT REL. CLK. 3566 SEC., AND HAS SEIZED IT AT AFL, CLK. 3592 FOR I SECONnS. 

1 2 SPS DSC 3595 0 

2 DSC FMP 3596 0 

2 OPHI DSC 3599 3 

2 2 DSC FMP 3601 0 

3 19 SPS OSC 3612 1I 

3 19 DSC FMP 3614 1 

REQUEbTED THE FMP PROCESSOR AT REL. CLK. 3615 SEC., AND HAS SETZED IT AT RFL, CLK. 3615 FOR 60 SECONnS 

9 125 FMP DSC 3681' 4 

9 125 FMP OSC 3689 7 

125 DSC SPS 3751 69 

9 125 DSC SPS 3758 67 
UJ ',J'lJOB N 66 COMPLETE AT RELATIVE CLOCK - 3759 SEC. 



SUMMARY OF JOB 0 67 

FILE NO. NUMRER OF 
BLOCKS TRANSFERRED 

FROM TO TRANSFER COMPLETED AT 
RELATIVE CLOCK TIME (SEC).. 

DUQATION 
OF TRANSFER (SEC) 

REQUESTED THE SPSI PROCESSOR AT REL. CLK. 3077 SEC., AN() HAS SEIZED IT AT RFL. CLK. 3077 FUR I SECONnS. 

1 2 SPS DSC 30a0 1 

2 DSC FRP 3081 0 

2 OPH2 SPS 3082 1 

REQUESTED THE SPSI PROCESSOR AT REL. CLK. 3063 SEC.. AND HAS SEIZED IT AT RFL. CLK. 3083 FUR an SECONOS. 

2 2 SPS OSC 3165 0 

2 2 DSC FMP 3166 0 

3 19 SPS DSC 3172 5 

3 19 Osc FRP 3174 0 

REQUESTED THE FMP PROCESSOR AT REL. CLK, 3175 SEC., AND HAS SEIZED IT AT RFL. CLK, 3175 FUR 60 SECONOS. 

9 125 FMP OSC 3240 4 

9 125 FHP OSC 3247 5 

9 125 DSC SPS 3309 68 

U1 9 126 Osc SPS 3315 67 
OO 0 67 COMPLETE At RELATIVE CLOCK s 3316 SEC. 



SUMMARY OF JOB 0 68 

FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TIME (SEC)... nF TRANSFER (SEC) 

REQUEbTED THE SPSZ PROCESSOR AT REL,. CLK. 3280 SEC.. AND.HAS SEIZED IT AT RPL. CLC. 3280 FUR I SECONDS. 

REQUESTED THE SPS2 PROCESSOR AT MEL. CLK. 3881 SEC.. AND HAS SEIZED IT AT RFL. ELK. 38A1 FUR 1 SECONDS. 

REQUESTED THE SPSZ PROCESSOR AT REL. CLK. 4182 SEC.. AND HAS SETZED IT AT RFL. CLK. 41A2 FUR 1 qECONnS. 

1 2 SPS DSC 4185 0 

1 2 DSC FNP 4186 0 

2 2 OPHI DSC 4189 3 

2 2 OSC FHP 4190 0 

3 19 SPS DC 4195 5 

3 19 DSC FMp 4197 0 

REQUESTED THE FHP PROCESSOR AT REL. ELK. 4198 SEC., AND HAS SEIZED IT AT RFL. CLK. 4515 FUR 60 SECONDS. 

a 6 FMP DC 4577 0 

8 6 D5 SPS 4580 2 

REQUEbTED THE SPS2 PROCESSOR AT REL. CLK. 45B! SEC., AND HAS SEIZED IT AT RFL. CLK. 4631 FOR ISO SECONDS. 

7 4 SPS 6PHi 4814 2 

JOB # 68 COMPLETE AT RELATIVE CLOCK - 4815 SEC. 



SUMMARY OF JOB 0 69 

FILE NO. NUMBER OF 
BLOCKS TRANSFERRED 

FROM TO TRANSFER COMPLETED AT 
RELATIVE CLOCK TIME (SEC),. 

DURATION 
OF TRANSFER (SEC) 

REQUESTED THE SPSR PROCESSOR AT REL, CLK. 3338 SEC., AND HAS SEIZED IT AT REL. CLK. 3336 FOR I SECONDS. 

REQUESTED THE SPS2 PROCESSOR AT REL. CLK, 3939 SEC.. AND HAS SEIZED IT AT REL. CLK. 3939 FOR I SECONDS. 

1 2 SPS DSC 3942 0 

1 2 DSC FMP 3944 0 

2 2 OPH2 OSC 3946 2 

2 2 OSC FNP 3947 0 

3 19 SPS DSC 3953 S 

3 19 OSC F4P 3955 0 
REQUESTED THE FHP PROCESSOR AT REL. CLK, 3956 SEC.. AND HAS SEIZED IT AT RL. CLK. 43R5 FOR 60 SECONDS. 

6 FMP OSC 4447 0 

0 6 DSC SPS 4450 1 

REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 4451 SEC.. AND HAS SEIZED IT AT RL. CLK. 4451 FOR 180 SECONDS. 

7 4 SPS GPH2 4634 2 

JOB N 69 COMPLETE AT RELATIVE CLOCK 44635 SEC. 
U', 
00 



SUMMARY OF JOB N 70 

FILE NO. NUHMER OF FROM TO TRANSFER COMPLETED AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TIME (SEC)... nF TRANSFER (SEC) 

REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 3530 SEC., AND HAS SEIZEO IT AT RFL, CLK. 3530 FOR I SECONDS. 

REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 4131 SEC., AND HAS SEIZED IT AT REL. CLK. 4131 FOR I qECON"S. 

1 2 SPS OSC 4134 0 

1 2 OSC FMP 4135 0 

2 2 OPHI OSC 4130 3 

2 2 05C FMP 4140 0 

3 19 SPS DSC 4145 S 

3 19 DC FMP 4147 0 

REUUESTEO THE FMP PROCESSOR AT REL. CLK. 4148 SEC., AND HAS SEIZED IT AT REL. CLK. 445 FOR 60 SECONDS. 

8 12 FHP DSC 4517 a 

a 12 DSC SPS 4521 3 

REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 4522 SEC., AND HAS SEIZED IT AT REL CLK. 4522 FOR 360 SECONDS. 

7 a sPS OPHI 4888 4 

JOJ8 TO COMPLETE AT RELATIVE CLOCK 9 48a9 SEC. 



SUMMARY OF JOB # 71 

FILE NO. NUMRER OF FROM TO TRANSFER COMPLETED AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TIME (SEC)... OF TRANSFER (SEC) 

REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 3729 SEC.. AND HAS SEIZED IT AT RFL. CIK. 3729 FUR I SECONDS. 

REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 4330 SEC., AND HAS SEIZED IT AT RFL. CLK. 4330 FUR I SFCOmIlS. 

1 SPS DSC 4333 0 

2 DSC FHP 4334 0 

a 2 OPH2 OSC 4336 2 

2 2 OSC FMP 4336 0 

3 19 SP OOSC 4343 5 

3 19 OSC FMP 4345 0 

REQUESTED THE FAP PROCESSOR AT REL. CLN, 4346 SEC., AND HAS SEIZED IT AT RFL. CLK, 6235 FOR 60 SECONrS. 

9 125 FMP DSC 5309 12 

9 125 FHP OSC 5320 9 

9 125 OSC SPS 5398 87 

9 125 fSC SPS 5402 80 

JOB 0 71 COMPLETE AT RELATIVE CLOCK a 5403 SEC. 
0c. 



SUMMARY OF JOB 0 72 

FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT OURATION 
BLOCKS TRANSFERRED HELATIVE CLOCK TIME fSEC),... OF TRANSFER (SEC) 

REQUESTED THE SPS1 PROCESSOR AT REL. CLK. 3799 SEC.. AND HAS SETZFD IT AT RFL. ELK. 3799 FOR I SECONDS. 

1 2 SPS DSC 3802 0 

2 OSC FMP 3803 0 

2 2 GPHI SPS 3804 1 

REQUESTED THE SPSI PROCESSOR AT IEL. CLK. 3805 SEC.. AND HAS SEIZED IT AT RFL. CLK. 3805 FOR 60 SECONiS. 

2 SPS DSC 3886 0 

2 2 DSC FMP 3888 0 

3 19 SPS DSC 3893 5 

3 19 DSC FMP 3895 0 

REQUESTED THE FHP PROCESSOR AT MEL. ELK. 3896 SEC.. AND HAS SEIZED IT AT RFL. CLK. 431S FUR 60 SECO.nS. 

a 6 FHP DSC 4377 0 

a 6 O5C SPS 4380 1 

REQUESTED THE SPSI PROCESSOR AT REL. CLK. 4381 SEC.. AND HAS SEIZED IT AT REL. ELK. 4381 FOR LBO SECONDS. 

7 4 SFS OPHI 4564 2 

JOB * 72 COMPLETE AT RELATIVE CLOCK . 4565 SEC. 



SUMMARY OF JOB 0 73 

FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TIME ESEC... OF TRANSFER (SEC) 

REQUESTED THE SPS1 PROCESSOR AT REL. CLK. 4152 SEC., AND HAS SEIZED IT AT'RFLO r'K. 4152 FOR I SECOlNS. 

REQUEbTED THE SPS1 PROCESSOR AT REL. CLK. 4753 SEC.. AND HAS SEIZED IT AT RFLo CLK. 4942 FOR I SECONnS. 

REQUEbTED THE SPSI PROCESSOR AT REL. CLK. 5243 SEC., AND HAS SETZEO IT AT RFL. CLK. 5243 FOR I SECONDS. 

1 2 SPS 05C 5246 0 

1 2 DSC FMP 5247 0 

2 2 OPHI DSC 5254 6 

2 2 DC FMP 5255 0 

3 19 SPS OSC 6262 6 

3 19 DSC FMP 5264 1 

REQUESTED THE FMP PROCESSOR AT REL. CLK. 5265 SEC., AND HAS SEIZED IT AT RFL, CLK, 5995 FUR 60 SFCOmdDS. 

a 6 FHP DSC 6057 0 

6 DSC SPS 6127 1 

REQUESTED THE SPS1 PROCESSOR AT REL. CLK. 6128 SEC., AND HAS SETZED IT AT AFL. CLK. 6279 FOR 180 SECONDS. 

7 4 SPS OPHI 6462 2 

JOB 0 73 COMPLETE AT RELATIVE CLOCK * 6463 SEC. 



SUMMARY OF JOB m 74 

FILE NO. NUMBER OF FROM TO TRANSFER COMPLETEO AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TINE (SECI),. OF TRANSFER ISEC) 

REQUESTED THE SPSI PROCESSOR AT REL. CLK. 5879 SEC., AND HAS SEIZED IT AT RFL. CLK. 3679 FOR I SECONDS. 

REQUESTED THE SPSI PROCESSOR AT REL. CLK. 64680 SEC.. AND HAS SEIZED IT AT REL. CLK. 6480 FOR I SECONfS. 

1 2 SPS OSC 6482 0 

1 2 osc FMP 6483 0 

2 2 OPHI OSC 6486 2 

2 2 DSC FMP 6487 0 

3 19 SPS DSC 6493 6 

3 19 OSC FOP 6495 0 

REQUESTED THE FP PROCESSOR AT REL. CLK. 6496 SEC.. AND HAS SEIZED IT AT REL. CLK. 6855 FOR 60 SECONDS. 

12 FMP OSC 6917 0 

a 12 DSC SPS 6922 3 

REQUESTED THE SPSI PROCESSOR AT REL. CLK. 6923 SEC., AND HAS SEIZED IT AT AFL. CLK. 6923 FOR 360 SECONDS. 

7 a SPs OPHI 7289 4 

aJOB 0 74 COMPLETE AT RELATIVE CLOCK . 7290 SEC. 
WA 



SUMMARY OF JOB # 75 

FILE NO, NUMBER OF FROM TO TRANSFER COPLETED AT DURATIONBLOCKS TRANSFERRED RELATIVE CLOCK TIME (SEC.,. nF TRANSFER (SEC) 

REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 6148 SEC., AND HAS SEIZED IT AT RFL. eLK. 6148 FOR 

REQUESTED THE SPS2 PROCESSOR AT REL. CLKo 6749 SEC., AND HAS SEIZED IT AT RFL. CLK. 6749 FUR 

REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 7050 SEC., AND HAS SEIZED IT AT RFL. CLK. 7268 FUR 

I2 SPS DSC 7271 a 

1 2 DSC FMP 7273 a 

2 2 OPHI DSC 7275 2 

2 2 DSC FMP 7276 0 

3 Iy SPS DSC 7282 5 

3 19 DSC FNP 7283 a 

REQUEbTED THE FMP PROCESSOR AT REL. CLK, 7284 SEC., AND HAS SEIZED IT AT RFL. CLK. 7665 FUR 

I 

I 

I 

60 

SFCO~nS. 

SFCONnS. 

SECONDS. 

SECONDS. 

I 

1= 



SUMMARY OF JOB 0 76 

FILE NO. NUMBER OF 
BLOCKS TRANSFERRED 

FROM TO TRANSFER COMPLETED AT 
RELATIVE CLOCK TIME (SEC)..; 

DURATION 
OF TRANSFER (SEC) 

REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 6215 SEC.. AND HAS SEIZED IT AT RFL. CLK. 6215 FOR I SrCO~nS. 

REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 6816 SEC., AND HAS SEIZED IT AT RFL. CLK. 70PI FOR I SECONDS. 

.1 2 SPS OSC 7024 0 

1 a DSC FMP 7025 0 

2 2 OPHI DSC 7028 2 

2 2 DSC FlP 7029 0 

3 19 SPS DSC 7041 5 

3 .l DSC FMP 7042 0 

REQUESTED THE FHP PROCESSOR AT REL. CLK. 7043 SEC.. AND HAS SEIZED IT AT RFL. CLX. 75R5 FOR 60 SECONn. 

9 12S FMP DSC 76BI 4 

9 125 FlP OSC 7658 6 

0"' 
u-I 



SUMMARY OF JOB M 77 

FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TIME (SEC)... OF TRANSFER (SEC) 

REQUESTEO THE 5PS2 PROCESSOR AT REL. CLK, 6486 SEC., AND HAS SEIZED IT AT REL. CLK. 6486 FOR I SECONDS. 

1 2 SPS DSC 6489 0 

2 

2 

2 DSC FMP 

2 OPHi SPS 

REQUEbVEO THE SPSZ PROCESSOR AT REL. CLK. 6492 

2 SPS DSC 

6490 

6491 

SEC.. AND HAS SEIZED IT AT RFL, CLK. 

6574 

0 

1 

6492 FOp 

0 

80 SECONS. 

a 2 OSC FPP 6575 0 

3 19 SAS DSC 6581 5 

3 

REQUEbTEO THE 

nlSC FMP 

FMP PROCESSOR AT REL. CLK, 6584 

6583 

SEC., AND HAS SEIZED IT AT RFLO CLK. 

0 

6925 FOR 60 SECONDS. 

6 FMP CSC 69A7 0 

. 6 DSC SPS 7023 

0 

mJOB 

7 

REQUEbTED THE SPS2 PROCESSOR AT REL. CLK. 7024 SEC., AND HAS SEIZED IT AT REL. CLK. 

4 SPS OPHI 7272 

N 7 COMPLETE AT RELATIVE CLOCK . 7273 SEC. 

70S 

2 

FOR ISO SECONhS. 



SUMMARY OF JOB N TB 

FILE NO. NUMBER OF 
BLOCKS TRANSFERRED 

FROM TO TRANSFER CdHPLETED AT 
RELATIVE CLOCK TIME SEC)... 

DURATION 
OF TRANSFER ?SEC) 

REQUESTED THE 5PS? PROCESSOR AT REL. CLK. 6522 SEC., AND HAS SEIZED IT AT REL. CLK. 6522 FOR I SECONDS. 

REQUESTED THE SPS2 PROCESSOR AT REL. CLK, 7123 SEC., AND HAS SEIZED 17AT RAL. CLK. 7269 FOR I SECONDS. 
REQUESTED THE SPS? PROCESSOR AT REL. CLX. 7570 SEC., AND HAS SEIZED 17 AT RFL. CLX. 7570 FOR I SECONOS. 

1 2 SP5 DSc 7573 0 

1 2 DSC FMP 7574 0 

2 2 OPHI DEC 7577 2 

2 a OsC FHP 7578 0 

3 19 SM5 DEC 7584 5 

3 19 0SC FHP 7586 0 

SUMMARY OF JOB N 79 

FILE NO. NUNBER OF FROM TO TRANSFER COMPLETED AT DURATION 

BLOCKS TRANSFERRED RELATIVE CLOCK TIME (IEC)... nF TRANSFER (SEC) 

REQUEbTED THE SPS2 PROCESSOR AT REL. CLK. 6767 SEC., AND HAS SEIZED IT AT AL. eLK. 6767 FOR I spCONnS. 

REQUESTEO THE SPS2 PROCESSOR AT REL. CLK. 7368 SEC., AND HAS SEIZED IT AT RFL. CLK. 73&8 FUR I SECONDS. 

2 SPS DSC 7371 0 

1 2 o5C FNP 7372 0 

2 2 GPHI DEC 7375 2 

2 2 DSC FHP 7376 a 

3 19 SPS DEC 7382 5 

3 19 DEC FMP 73A3 0 



SUMMARY OF JOB 0 80
 

FILE NO, NUMBER OF FROM TO TRANSFER CONPLETED AT DURATION
 
BLOCKS TRANSFERRED RELATIVE CLOCK TIME (SEC)... OF TRANSFER (SEC) 

REQUESTED THE SPSI PROCESSOR AT REL. CLM. 7302 SEC.. AND HAS SEIZED IT AT R£L CLK. 7302 FOR 1 SECONDS. 

SUMMARY OF JOB 0 81 

FILE NO, NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TIME (SEC),,o rF TRANSFER (SEC) 

REUUEbTEO THE SPSI PROCESSOR AT REL. CLK. 7595 SEC.. AND HAS SEIZED IT AT REL. CLK. 7595 FOR 1 SrCOmNS. 

I SUMMARY OF JOB 6 85 

__ 
c 

FILE NO, NUMBER OF 
BLOCKS TRANSFERRED 

FROM TO TRANSFER COMPLETED AT 
RELATIVE CLOCK TIME (SEC... 

DURATION 
nF TRANSFER (SEC) 

1 4 SPS OSC 397 1 

1 4 DSC FMP 398 0 

2 4 OPHI SPS 401 2 

REQUESTEO THE !PSI PROCESSOR AT REL. CLK, 402 SEC.. AND HAS SEIZED IT AT REL. CLK. 402 FOR 360 SECONDS. 

3 46 SPS DSC 777 14 

3 46 OSc FMP T80 2 

3 46 ses OSc 792 14 

3 4 DSC FMP 795 1 

I REUEbTED THE FMP PROCESSOR AT REL, CLK, 796 SEC.. AND HAS SEIZED IT At RFL. CLK. 1009 FOR 60 SECOnDS. 

a 3 FMP OSc 1070 0 

3 DSC SPS 1072 1 

REQUESTEO THE SPSZ PROCESSOR AT REL. CLK. 1073 SEC.. AND HAS SEYZED IT AT RFL. CLK. 1073 FOR 300 SECONDS. 

7 2 SPS GPHI 1375 1 

JOB 0 85 COMPLETE AT RELATIVE CLOCK - 1376 SEC. 



SUMMARY OF JOB 0 86 

FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DIuRATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TIME (SEC)... F TRANSFER (SEC) 

44 SPS DSC 3684 2 

1 4 DSC FlP 3686 0 

z 4 SPS DSC 3687 1 

4 DSC FMP 3689 0 

REQUEbTED THE FlP PROCESSOR AT REL. CLK. 3690 SEC.. AND HAS SEIZED IT AT RFL, CLK. 4273 FOR '10 SECONDS. 

REQUESTED THE FMP PROCESSOR AT HEL. CLK. 4286 SEC., AND HAS SEIZED IT AT RFL. CLK. 4575 FOR 60 4ECOnDS. 

9 160 FMP OSC 4642 5 

B 3 FRP OSC 4643 0 

9 160 DSC SPS 4689 46 

8 3 oSC SPS 4690 0 

REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 4691 SEC.. AND HAS SEIZED IT AT RFL. CLK, 4811 FOR 300 SECONDS. 

7 2 SPS GPH2 5113 1 

J08 A 86 COMPLETE AT RELATIVE CLOCK a 5114 SEC. 



SUMMARY OF JOB 0 87 

FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TIME (SECI.,. OF TRANSFER (SEC) 

4 SPS OSC 4578 1 

4 DSC FNP 4579 0 

2 4 GPH2 SPS 4581 2 

REQUESTED THE SPSI PROCESSOR AT MEL. CLK, 4582 SEC.. AND HAS SEIZED IT AT RFL. CLK. 4582 FOR 

3 92 SPS DSC 4970 26 

3 92 fSC FMP 4974 3 

REQUESTED THE FMP PROCESSOR AT REL. CLK. 4975 SEC.. AND HAS SEIZED IT AT RFL. eLK. 5915 FOR 

a 3 FMP 0sc 5977 a 

a 3 OSc SPS 5979 1 

REQUEbTED THE SPSM PROCESSOR AT MEL. CLK, 5980 SEC., AND HAS SETZFD IT AT RFL. CLK. S9O FOR 

7 2 SPS GPN2 6282 1 

JOB # 87 COMPLETE AT RELATIVE CLOCK . 6283 SEC. 

360 

60 

300 

SECONDS. 

SECONnS. 

SECONnS. 

I 

a 



SUMMARY OF JOB 0 88
 

FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TIME (SEC)... OF TRANSFER ISEC) 

1 A SPs OSC 4890 1 

1 4 DSC FMP 4892 0 

2 4 SPS DSC 4892 1 

2 4 OSC FMp 4894 0 

REQUEbTED THE FMP PROCESSOR AT REL. CLK. 4895 SEC.. AND HAS SEIZED 1I AT REL. eLK, 5905 FOR 10- SECONDS. 

REQUESIED THE FMP PROCESSOR AT REL. CLK. 59t6 SEC., AND HAS SEIZED 17 AT REL. CLK. 6715 FOR 60. SECONDS. 

9 220 FlP DSC 67A4 7 

8 3 FMP DSC 6785 0 

a 3 DSC SPS 6787 

REQUEbTED THE SPS2 PROCESSOR AT REL.'CLK. 6788 SEC., AND HAS SEIZED IT AT RFL. CLK, 678 FOR 300 SECONDS. 

T 2 SPS GPHI 7091 1 

JOB 888 COMPLETE AT RELATIVE CLOCK a 7092 SEC. 

SUMMARY OF JOB N 89
 

FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION
 

BLOCKS TRANSFERRED RELATIVE CLOCK TIME (SEC)... OF TRANSFER (SEC)
 

REQUESTED THE SPSI PROCESSOR AT REL. CLK. 7357 SEC., AND HAS SEIZED IT AT REL. CLK. T397 FOR S SECONDS. 

1 4 SPS DSC 7363 1 

1 4 OSC FlP 7364 0 

2 4 SPS DSC 7366 1 

2 4 OSC FMP 7367 8
 



SUMMARY OF JOB N 92
 

FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION
 
BLOCKS TRANSFERRED RELATIVE CLOCK TINE 
(SEC)... OF TRANSFER (SECI
 

1 4 SPS DSC I 
 I
 

1 o FNP 2 a
OSC 


2 4 OPH2 SPS 4 
 2
 

REQUESTED THE SPSI PROCESSOR AT REL. CLK. S SEC.. AND HAS SEIZED IT AT RFLa CLK. 5 FOR 360 SFCOnOS.
 

3 92 SPS DSC 393 
 27
 

3 92 OSC FHP 398 
 3
 

REQUESTED THE FMP PROCESSOR AT REL. CLK, 399 SEC.. 
AND HAS SEIZED IT AT RFL, CLK. 399 FUR 600 SECONDS.
 

8 8 FHP DSC 1000 0
 

a8 DSC SPS 1004 2
 

REQUESTED THE SPS1 PROCESSOR AT REL. CLK. 1005 SEC., AND HAS SEIZED IT AT RL, CLK. IOnS FUR 360 SECONDS.
 

REQUESTED THE SPSI PROCESSOR AT REL. CLK. 1366 
 SEC.. AND HAS SETZED IT AT RFLO CLK. 1366 FUR 360 qECOMf'S.
 

7 3 SPS 6PH2 1728 1
 

JOB 0 92 COMPLETE AT RELATIVE CLOCK * 1729 SEC. 



SUMMARY OF JOB b 93 

FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TIME (SEC ... OF TRANSFER (SEC) 

I 4 SPS DSC 11064 

1 4 DSC FNP 1105 0 

2 4 SPS oSC 1106 1 

2 4 DSC FMP 1107 0 

REQUEbTED THE FMA PROCESSOR AT MEL. CLK. 1108 SEC.. AND HAS SEIZED IT AT RFL. ClK. 3108 FOR in SECOmnS. 

REaUEsrED THE FMP PROCESSOR AT REL. CLK. 1119 SEC., AND HAS SEIZED IT AT REL. CLK. 1119 FOR 600 SECONrS. 

9 310 PAP DSC 1731 10 

8 8 FMP DSC 1732 0 

8 8 DSC SPS 1736 2 

REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 1737 SEC., AND-HAS SEIZED IT AT RFL. CLK. 1737 FUR 360 SFCONnS. 

REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 2098 SEC.. AND HAS SEIZED IT AT ArFL. CLK. 2098 FUR 360 SECOnS. 

7 3 SPS OPH2 2461 1 

JOB 0 93 COMPLETE AT RELATIVE CLOCK . 2462 SEC. 

W-21 



SUMMARY OF JOB 94
 

FILE NO. NUMBER OF 
 FROM TO TRANSFER COMPLETED AT DURATION
BLOCKS TRANSFERRED RELATIVE CLOCK TIME (SEC),, OF TRANSFER (SEC)
 

REQUESTED THE SPS2 PROCESSOR AT REL. CLK 
 1171 SEC., AND HAS SEIZED IT AT REL. eLK, 1171 FOR 3 SFCONDS.
 

1 
 SPS DSC 1177 1
 

1 4 DSC FNP l178 0
 

2 4 
 SPS OSC 1179 1
 

2 4 OSC FHP I180 D
 

REQUESTED THE FHP PROCESSOR AT REL. CLK. 
1181 SEC., AND HAS SEIZED IT AT RFL CLK. 
 1729 FUR 600 SECONDS.
 

Sa FMP 
 DSC 2331 
 0
 

8 8 
 OSC SPS 2335 3
 

REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 2336 SEC.. AND HAS SEIZED IT AT RFL. CLK. 
 2316 FOR 360 SECONnS.
 

9 160 FMP DSC 2337 
 6
 

REQUE§TED THE SPS2 PROCESSOR AT REL. CLK. 2697 
 SEC., AND HAS SEIZED IT 
AT RFL. CLK. 2697 FOR 360 SECONDS. 

7 3 SPS OPH2 3060 1 

JOB 0 94 COMPLETE AT RELATIVE CLOCK S 3061 SEC. 



SUMMARY OF JOB 0 95 

LJI 

FILE NO, NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION
BLOCKS TRANSFERRED RELATIVE CLOCK TIME (SEC)... OF TRANSFER ISEC) 

1 SPS OSC 3228 1 

1 4 OSC FMP 3229 0 

2 4 OPHI SPS 3231 2 
REQUESTED THE $PSI PROCESSOR AT REL. CLK, 3232 SEC.. AND HAS SEIZED IT AT REL. CLK. 3232 FOR 

3 46 SPS DSC 3615 21 

3 46 DSC FHP 3619 2 

3 46 SPS DSC 3630 14 

3 46 OSC FHP 3633 1 
REQUESTED THE FMP PROCESSOR AT REL. CLK, 3634 SEC., AND HAS SEIZED IT AT RFLE CLK. 3675 FOR 

8 a FHP DSC 4277 0 

8 8 OSC SPS 4280 2 
REQUESTED THE SPS1 PROCESSOR AT REL. CLK, 4281 SEC., AND HAS SEIZED IT AT RFL, CLK, 4201 FOR 

REQUESTED THE SPSI PROCESSOR AT MEL, CLK, 4642 SEC.. AND HAS SEIZED IT AT RFL. CLK. 4642 FOR 

7 3 SPS OPHI 5005 1 

JOB N 95 COMPLETE AT RELATIVE CLOCK * 5006 SEC. 

360 

600 

360 

360 

SECONDS. 

SECONnS. 

SECONnS. 

qECONDS. 

0~ 

'IL 



SUMMARY OF JOB N 96 

FILE NO. NUHRER OF FROM To TRANSFER COMPLETED AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TIME (SEC)... OF TRANSFER (SEC) 

1 4 SPS DSC 3755 1 

1 4 DSC FMP 3757 0 

2 4 SPS DSC 3758 1 

2 4 OSC FNP 3759 0 

REQUESTED THE FRP PROCESSOR AT REL. CLK. 3760 SEC., AND HAS SEIZED IT AT RFL, CLK. 4295 FOR 10 SECONDS. 

REQUESTED THE FlP PROCESSOR AT REL. CLK. 4306 SEC., AND HAS SEIZED IT AT RFL. CLK. 4635 FOR 600 SECONDS. 

9 160 FrM DSC 5242 5 

8 8 FNP DSC 5244 0 

a 8 DSC SPS 5249 4 

REQUEbTED THE 5PS2 PROCESSOR AT REL. CLN, 5250 SEC.. AND HAS SETZED IT AT RPL. CLK. 5250 FOR 360 SECONDS. 

9 160 OSC SPS 5343 99 

-s REQUESTED THE SPS2 PROCESSOR AT REL. CLX. 5611 SEC.. AND HAS SEIZED IT AT RFL. CLK. 5611 FOR 360 SECONDS. 

7 3 SPS 0PH2 5974 1 

JOB 0 96 COMPLETE At RELATIVE CLOCK . 5975 SEC. 
0N 



SUMMARY Of JOB 0 97
 

FILE NO. NUMER OF FROM TO TRANSFER COMPLETED AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TIME (SEC)... OF TRANSFER (SEC) 

1 4 SPS DSC 3927 1 

1 4 DSC FMP 3929 0 

2 4 SPS DSC 3930 1 

2 4 DSC FRP 3931 0 

REQUESTED THE FP PROCESSOR AT REL. CLK. 3932 SEC.. AND HAS SEIZED IT AT AFL. CLK. 4375 FOR 10 SECO~nS. 

REQUESTED THE FHP PROCESSOR AT REL. CLK. 4366 SEC.. AND HAS SEIZED IT AT AFL. CLK. 3295 FOR 600 SECOnAS. 

9 310 FMP DSC 5911 14 

a B FMP DSC 5912 0 

a a DSC SPS 5918 4
 

REQUESTED THE SPSI PROCESSOR AT REL. CLK. 5919 SEC.. AND HAS SEIZED IT AT RFL. CLK. 5919 FOR 360 SFCON"S.
 

REQUESTED THE SPSI PROCESSOR AT REL. CLK. 6280 SEC., AND HAS SEIZED IT AT RFL. CLK. 6280 FUR 360 SECOnS.
 

7 3 SPS OPHZ 6643 1
 

JOB 0 97 COMPLETE AT RELATIVE CLOCK * 6644 SEC.
 



SUMMARY OF JOB 0 98 

FILE NO. NUMREM OF FROM TO TRANSFER COMPLETED AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TIME (SECI... OF TRANSFER (SEC) 

1 4 SPS DSC 4901 1 

A 4 OSC FHP 4902 0 

4 6PH SPS 4905 2 

REQUEbTEO THE SPS2 PROCESSOR AT REL. CLK. 4906 SEC.. AND HAS SEIZED IT AT PPL. CLK. 4906 FOR 360 SECONDS. 

3 46 SPS OSC 5295 28 

3 46 nSC FMP 5303 6 

3 46 SPS DSC 5337 40 

3 46 DSC FlP 5343 4 

REQUESTED THE FMrPPROCESSOR AT MEL. CLK, 5344 SEC., AND HAS SEIZED IT AT RFL. CLK. 6055 FUR 600 SECONDS. 

a8 FHP SC 6657 0 

a a OSC SPS 6660 2 

REQUESTED THE SPS2 PROCESSOR AT MEL. CLK. 6661 SEC.. AND HAS SEIZED IT AT AFL. CLK. 6661 FOR 360 SECONDS. 

REQUESTED THE SPSZ PROCESSOR AT REL. CLK. T022 SEC.. AND HAS SEIZED IT AT RFL. CLK. 7024 FOR 360 9ECONS. 

17 3 SPS 6PH 7387 1 

dO # 98 COMPLETE AT RELATIVE CLOCK - 7388 SEC. 



SUMMARY OF JOB 0 99 

FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TIME (SEC)... OF TRANSFER (SEC) 

1 4 SPS OSC 5946 1 

1 4 OSC FMP 5947 0 

2 4 SPS DSC 5948 1 

2 4 DSC FMP 5949 0 

REQUEbTEU THE FMP PROCESSOR AT REL. CLK. 5950 SEC., AND HAS SEIZED IT AT RFLo CLK. 6775 FOR 10 SComnS. 

REQUESTED THE FHP PROCESSOR AT REL. CLK. 6786 SEC.. AND HAS SE1ZEO IT AT REL. CLK. 6985 FOR' 600 SWOWOS. 

a a FNP oSC 7587 a 

8 a OSC SPS 7590 2 

REQUESTEO THE SP5S PROCESSOR AT MEL. CLK. 7591 SEC., AND HAS SEIZED IT AT RFL, CLK. 7591 FOR 360 SECONDS. 



SUMHARY OF FILE TRANSFER REQUESTS
 

JOB NO. FILE NO. NUMBER OF FROM TO TRANSFER COMPLETEn AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TINFISECI... OF TRANSFER (SFC.) 

92 1 4 SPS DSC 1 I 

92 1 4 DSC FlP 2 0 

92 2 4 OPH2 SPS 4 2 

JOB 092 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 5 SEC.. AND HAS SEIZED IT AT AFL. CLK. b FOR 360 SECONDS. 

JOB v I REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 157 SEC., AND HAS SEIZED IT AT REL. CLK. 157 FOR I ECnmoS. 

JOB 0 2 REQUESTED THE SPS2 PROCESSOR AT REL. CLK, 251 SEC., AND HAS SEIZED IT AT REL. CLK. 251 FOR I' ECONDS. 

dUB 0 3 REQUESTED THE SPS2 PROCESSOR AT REL. CLK, 354 SEC., AND HAS SEIZED IT AT REL. CLK. 354 FOR I SECntOS. 

3 I 1 SPS OSC 356 0 

3 1 1 DSC FMP 357 0 

3 2 1 OPHI DSC 359 1 

3 2 1 DSC FHP 360 0 

JOB N 3 HEQUESTED THE FMP PROCESSOR AT REL. CLK. 361 SEC., AND HAS SEIZED IT AT REL. CLK. 361 FOR I0 SECONDS. 

3 8 2 FNP OSC 372 0 

Co 3 8 2 DSC SPS 374 0 

o dUB N 3 REQUESTED THE SPSZ PROCESSOR AT REL. CLK. 375 SEC.. AND HAS SEIZED IT AT REL. CLK. 375 FOR 60 SECONDS. 

JOB 9 4 REQUESTED THE SPSI PROCESSOR AT RELt. CLK. 390 SEC.. AND HAS SEIZED IT AT RELt. CLK. 390 FOR I SECONDS. 

92 3 92 SPS DSC 393 27 

85 1 4 SPS 05C 397 I 

92 3 92 DSC FNP 398 3 



FILE 	TRANSFER SUMMARY - PAOE 2
 

FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION
 

BLOCKS TRANSFERRED RELATIVE CLOCK TIHE(SEC)... OF TRANSFER ISEC.)
 
JOB NO. 


0
85. 	 44 DSC FNP 398 


JOB * 92 REQUESTED THE FMP PROCESSOR AT REL. CLK. 
 399 SEC.. AND HAS SEIZED IT AT RFL. CLK. 399 FOR 600 SECO"OS. 

a5 2 4 ORHI SPS 401 2
 

402 SEC.. AND HAS SEIZED IT AT REL. CLK. 402 FOR 360 SVCONOS.
JOB E 8 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 


JOB 0 3 COMPLETE AT RELATIVE CLOCK . 436 SEC.
 

JOB 0 S REQUESTEDTHE SPS2 PROCESSOR AT REL. CLK. 745 SEC., AND HAS SEIZED IT AT REL. CLK. 745 FOR ' I SFCnADS. 

JOB 0 1 HEQUESTED THE SPS2 PROCESSOR AT REL. CLK. 758 SEC., AND HAS SEIZED IT AT RFL. CLX. 758 FOR I SFCnO'OS.
 

I I I SPS OSC 161 0
 

1 1 1 CSC FMP 762 
 0
 

1 2 1 GPHZ DSC 764 	 1
 

0
2 1 0sc F14P 765 

6 NEUUESTED THE SPS2 PROCESSOR AT REL. CLK. 775 SEC., AND HAS SEIZED TT AT RFL. CLK. 77tSFOR I qFCn)AS. 

1 


JOB 0 


5 3 46 SPS DSC 777 
 14
 

85 3 46 DSC FMP 780 2
 

85 3 46 SPS DSC 792 
 14
 

85 3 46 DSC FMP 795 I 

61 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 813 SEC., AND HAS SEIZED IT AT RFL.'CLK. 813 FOR I SFCnNDS.JOB 0 


852 SEC.. AND HAS SEIZED IT AT REL. CLK. 852 FOR I SECOnDS.
JOB 0 2 REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 


JOB 0 7 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 
 940 SEC.. AND HAS SEIZED IT AT REL. CLK. 940 FOR I SECONOS.
 

7 1 1 SPS DSC 942 0
 

7 1 1 DSC FMP 943 0
 

7 2 1 OPH2 DSC 945 
 1
 



FILE TRANSFER SUMMARY - PAGE 3
 

JOB NO. FILE NO. NUMBER OF FROM TO TRANSFER COMPLETEn AT OURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TIMFISFCi... OF rHANSFER (SFC.l 

7 2 1 DSC FMP 946 0 

JOB 0 4 REQUESTED THE SPSI PROCESSOR AT REL. ELK. 991 SEC.. AND HAS SEIZED IT AT RFL. CLK. 99L FOR I SEcN'IIS. 

4 1 1 SPS DSC 993 0 

4 1 1 0SO FMP 994 0 

4 2 1 OPHI OSC 996 1 

4 2 O0SC FHP 997 0 

JOB N 1 REQUESTED THE FHP PROCESSOR AT REL. ELK. 766 SEC,. AND HAS SEIZED IT AT RFL. eLK. 999 FOR In SECONDS. 

92 a 8 FMP DSC 1000 D 

92 a 8 DSC SPS 1004 2 

JOB 0 92 REQUESTED THE SPSM PROCESSOR AT REL. CLK. 1005 SEC., AND HAS SEIZED IT AT RFL. OLK. 100 FOR 360 SFCOND, 

JOB 0 85 REQUESTED THE FMP PROCESSOR AT REL. CLK. 796 SEC.. AND HAS SEIZED IT AT RFL. CLK. 1009 FOR 60 SECOInIR 

1 8 2 FMP DSC 1010 0 

"1 I 8 2 OSC SPS 1012 0 

JOB 0 1 REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 1013 SEC.. AND HAS SEIZED IT AT REL. CLK. 1013 FOR 60 SFCONDS. 

00 JOB N 8 REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 1032 SEC.. AND HAS SEIZED IT AT RFL. CLK. 1032 FOR I SECONDS. 

JOB 0 7 HEQUESTED THE PFP PROCESSOR AT REL. CLK. 947 SEC.. AND HAS SEIZED IT AT REL, CLK. 1069 FOR 10 SECONDS. 

85 8 3 FMP 0SC 1070 0 

85 8 3 DSC SPS 1072 1 

JOB 0 85 REQUESTED THE SPS1 PROCESSOR AT REL. 0LK. 1073 SEC., AND HAS SEIZED IT AT REL. CLK. 1073 FOR 300 qECOIDS. 

JOB N 1 COMPLETE AT RELATIVE CLOCK . 1074 SEC. 

JOB 0 4 REQUESTED THE FKP PROCESSOR AT REL. CLK. 998 SEC.. AND HAS SEIZED IT AT REL. CLK. 1079 FOR 10 SECONDS. 

7 8 2 FpP DSC 1080 0 

7 a 2 OSC SPS 1082 0 

JOB 0 7 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 1083 SEC.. AND HAS SEIZED IT AT REL. CLK. 1083 FOR 60 SECONDS. 



FILE TRANSFER SUMMARY - PAGE
 

JOB NO. FILE NO. NUMBER OF FROM 10 
 TRANSFER COMPLETEn AT )URATION
 
BLOCKS TRANSFERRED RELATIVE CLOCK TIMEISEC)... fF TRANSFER (SEC.)
 

JOB N 9 REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 1087 SEC., AND HAq SEIZED IT AT RFL. CLK. 1087 FOR I qECnr aS. 

4 9 90 FlP DSC 1093 3 

93 1 4 SPS OSC 1104 1 

93 1 4 DSC FMP 1105 0 

93 2 4 SPS OSC 1106 1 

JOB 0 10 REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 1106 SEC., AND HAS SEIZED IT AT RFL. CLK, I6 FOR -l SFCONDS. 

93 2 4 DSC FMP 1107 0 

JOB 1 93 REQUESTED THE FMP PROCESSOR AT REL.'CLK. 108 SEC., AND HAS SEIZED IT AT RFL. CLKI. 10$ FOR 10 sFCInINS. 

JOB 8 93 REQUESTED THE FHP PROCESSOR AT REL. CLK. 1119 SEC., AND HAS SEIZED IT AT RFL. CLK. 1119 FOR 600 SECONDS. 

JOB 0 7 COMPLETE AT RELATIVE CLOCK . 1144 SEC. 

JOB 0 2 REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 1153 SEC., AND HAS SEIZED IT AT RFl . CLK. 113 FOR 1 SFCO 'S. 

2 1 1 SPS OSC 1155 0 

2 1 1 DSC FMP 1156 a 

2 2 1 OPHI DSC 115 1 

2 2 1 DSC FlP 1159 0 

4 9 90 DSC SPS 1170 26 

JOB 0 4 REQUESTED THE SPSI PROCESSOR AT REL. CLK, 1171 SEC.. AND HAS SEIZED IT AT AFL. CLK. 1171 FOR 60 SECNoS. 

JOB 0 94 REQUESTED THE SPS2 PROCESSOR AT REL. CLK, 1ll7 SEC.. AND HAS SEIZED IT AT REL. CLK. 1171 FOR 3 SECONDS. 

94 1 4 SPS DSC 1177 1 

94 1 4 DSC FPP 1178 a 

94 2 4 SPS DSC 71T9 1 

94 2 4 OSC FIP 1180 0 

JOB 0 4 COMPLETE AT RELATIVE CLOCK . 1232 SEC. 



FILE TRANSFER SUMMARY - PAGE 5 

JOG NO. FILE NO. NUMBER OF 
BLOCKS TRANSFERRED 

FROM TO TRANSFER COMPLETED AT 
RELATIVE CLOCK TIHEISECI... 

DURATION 
OF TRANSFER (SEC.) 

JOB 0 11 REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 129? SEC.. AND HAS SEIZED IT AT REL. CLK. 1297 FOR I SECONDS. 

II 1 I SPS DSC 1299 0 

11 1 1 DSC FRP 1300 0 

II 2 1 OPH2 DSC 1301 1 

11 2 1 DSC FMP 1303 0 

JOB 0 5 REQUESTED THE SPS2 PROCESSOR AT REL. CLK, 1346 SEC., AND HAS SEIZED IT AT REL. CLK, 1346 FOR I SECONDS. 

JOB 0 62 HEQUESTEO THE SPS2 PROCESSOR AT REL. CLK, 1349 SEC., AND HAS SEIZED IT AT REL. CLK. 1349 FOR I SECONDS. 
5 1 1 SPS DEC 1349 0 

5 I 1 DSC FMP 1350 0 

S 2 1 OPH2 DSC 1351 1 

62 1 2 SPS DSC 1351 0 

5 2 1 DSC FMP 1352 0 

62 1 2 DSC FRP 1353 a 

62 2 2 OPHI SPS 1354 1 

JOB N 62 REQUESTEDTHE SPS2 PROCESSOR AT REL. CLK. 1355 SEC.. AND HAS SEIZED IT AT REL. CLK. 1355 FOR 80 SECONDS. 
JOB 0 63 HEQUESTED THE SPS2 PROCESSOR AT REL. CLK. 1355 SEC., AND HAS SEIZED IT AT REL. CLK. 1355 FOR I SECnNDS. 

JOB 0 92 REQUESTED THE SPS1 PROCESSOR AT REL. CLK. 1366 SEC.. AND HAS SEIZED IT AT REL. CLK. 1366 FOR 360 SECONOS. 

a5 7 2 SPS OPHI 1375 1 

JOB 0 6 REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 1376 SEC., AND HAS SEIZED IT AT REL. CLK. 1376 FOR I SECONDS. 

JOB 0 85 COMPLETE AT RELATIVE CLOCK . 1376 SEC. 

JOB N 61 HEQUESTED THE SPSI PROCESSOR AT REL. CLK. 1414 SEC., AND HAS SEIZED IT AT REL. CLK, 1414 FOR I SECONDS., 

61 1 2 SPS DSC 1417 0 

61 1 2 OSC FMP 1418 0 



FILE TRANSFER SUMMARY - PAGE 6 

JOB NO. FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TIMF(SEC)... OF TRANSFER (SEC.I 

61 2 2 OPH2 DSC 1421 2 

61 2 2 OSC FMP 1422 0 

61 3 19 SPS DC 1427 5 

61 3 19 DC FMP 1429 0 

62 2 2 SPS DC' 1436 0 

62 2 2 03C FMP 1438 0 

62 a 19 SPS DSC 1443 5 

62 3 19 DC FMP 1445 0 

JOB 0 12 REQUESTED THE 5PS2 PROCESSOR AT REL. CLK. 1487 SEC.. AND HAS SEIZED IT AT REL. CLK. 1487 FOR I SECCNOS. 

JOB 0' 8 HEQUESTED THE SP52 PROCESSOR AT REL. CLK. 1633 SEC., AND HAS SEIZED IT AT REL. CLK. 1633 FOR I SECONDS. 

8 I I SPS DSC 1635 0 

8 I I DSC FP 1636 0 

I 2 1 GPH2 05C 1637 1 

8 2 1 05C FP 1639 0 

uI 
JOB 0 6 REQUESTED THE 5PS2 PROCESSOR AT REL. CLK. 1677 SEC.. AND HAS SEIZED IT AT REL. CLK. 1677 FOR I SECONDS. 

6 1 1 SPS 05C 1680 0 

6 1 1 DC FP 1681 0 

6 2 1 OPHI 05C 1682 1 

6 2 1 03C FMP 1683 O 

JOB 0 13 REQUESTED THE SPS2 PROCESSOR AT REL. LK. 1686 SEC.. AND HAS SEIZED IT AT REL. CLM 1686 FOR I SECONDS. 

JOB # 9 HEQUESTED THE 5P2 PROCESSOR AT REL. CLK. 1688 SEC.. AND HAS SEIZED IT AT REL. CLK. 1688 FOR I SECONDS. 

9 1 1 5PS DSC 1690 0 

9 1 I OSC FMP 1692 0 

9 2 1 6PH2 05c 1693 1 



FILE TRANSFER SUMMARY - PAGE 7
 

JOB HO. FILE NO. NUMBER OF FROM To TRANSFER COMPLETED AT IOURATION
 
BLOCKS TRANSFERRED RELATIVE CLOCK TIMEISECI., OF TRANSFER (SEC.)
 

9 I 05c FMP 1694 0 

JOB 0 10 MEQUESTED THE SPS2 PROCESSOR AT REL. CLK. 1707 SEC.. AND HAS SEIZED IT AT REL. CLK. 1707 FOR I SECONDS. 

JOB 0 2 REQUESTED THE F4P PROCESSOR AT REL. CLK. 1160 SEC.. AND HAS SEIZED IT AT REL. CLK. 1719 FOR 10 SECONDS. 

92 7 3 SPS OPH2 1728 1 

JOB a 94 REQUESTED THE FNP PROCESSOR AT REL. CLK. 1181 SEC.o AND HAS SEIZED IT AT REL. CLK. 1729 FOR 600 SECOt'OS. 

JOB 0 92 COMPLETE AT RELATIVE CLOCK . 1729 SEC. 

8 2 FP OSC 1730 0
 

93 9 310 FMP DSC 1731 10
 

2 8 2 050 SPS 1732 0
 

93 8 8 F14P DSC 1732 0
 

JOB N 2 HEQUESTED THE SPS2 PROCESSOR AT REL. CLK, 1733 SEC.. AND HAS SEIZED IT AT RFL, CLK. 1733 FOR 60 qFCO ,DS. 

93 8 8 OSC SPS 1736 2 

JOB 0 93 REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 1737 SEC., AND HAS SEIZED IT AT RPFL. CLK. 1737 FOR 360 qECONOS. 

JOB # 2 COMPLETE AT RELATIVE CLOCK . 1794 SEC. 

JOB N 14 HEQUESTED THE SPSI PROCESSOR AT REL. CLK, 1801 SEC.. AND HAS SEIZED IT AT RFL. CLK. 1801 FOR I SECONDS. 

JOB 0 15 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 1816 SEC.. AND HAS SEIZED IT AT PFL. CLK. 1816 FOR I SECnNOS. 

15 1 1 SPS DSC 1819 0
 

15 1 1 OSC FMP 1820 0
 

1s 2 1 OPH2 DSC 1821 1
 

15 2 1 0SC FMP 1823 0
 

JOB 0 63 REQUESTED THE SPSZ PROCESSOR AT REL. CLK. 1956 SEC.. AND HAS SEIZED IT AT RFL. CLK. 1906 FOR I SECO"O)S. 

JOB U 10 REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 2008 SEC.. AND HAS SEIZED IT AT RFL. CLK, 2008 FOR I qFCn-OS. 

10 1 1 SPS DSC 2011 0 

10 1 1 DSC FMP 2012 0 



FILE TRANSFER SUMMARY - PAGE 8 

JOB NO. FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION
 
RELATIVE CLOCK TIIE(SEC)I... OF TRANSFER ISEC.)
BLOCKS TRANSFERRED 


10 2 1 GPHI DSC 2013 1 

JOB 0 64 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 2014 SEC., AND HAS SEIZED IT AT REL. CLK. 2014 FOR I SECONDS. 

10 a I DSC FmP 2016 0 

JOB * 16 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 2039 SEC.. ANO HAS SEIZED IT AT RFL. CLK. 2039 FOR I ECONDS. 

JO 0 17 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 2051 SEC.. AND HAS SEIZED IT AT REL. CLK. 2051 FOR I SECODOS. 

J06 0 12 REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 2008 SEC.. AND HAS SEIZED IT AT REL. CLK. 2088 FOR I SECONDS. 

12 1 1 SPS DSC 2090 D 

12 1 i OSC FMP 2091 0 

12 2 1 OPH2 OSC 2093 1 

12 2 1 DSC FMP 2094 0 

'JOB N 93 REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 2098 SEC.. AND HAS SEIZED IT AT RFL. CLK. 2098 FOR 360 SECONDS. 

JOB 0 18 REQUESTED THE SPMI PROCESSOR AT REL. CLK. 2148 SEC., AND HAS SEIZED IT AT REL. CLK. 2148 FOR I SECONDS. 

JOB 19 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 2223 SEC., AND HAS SEIZED IT AT REL. CLK. 2223 FOR 1 SECONIS. 

19 1 1 SPS OSC 2225 0 

19 1 1 DSC FMP 2226 0 

19 2 1 OPH2 DSC 2228 1 

19 2 1 OSC FMP 2229 0 

J08 0 63 REQUESTED THE 5PS2 PROCESSOR AT REL. CLK. 2257 SEC.. AND HAS SEIZED IT AT RFL. CLK. 2257 FOR I SECnNDS. 

63 1 2 SPS DSC 2260 0 

63 1 2 DSC FMP 2261 0 



FILE TRANSFER SUMMARY - PAGE 9 

10B NO. FILE NO. NUMBER OF FROM To TRANSFER COMPLETED AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TINE(SECO... Of TRANSFER ISEC.) 

JOB # 20 REQUESTED THE SPS1 PROCESSOR AT REL. CLK. 2262 SEC., AND HAS SEIZED IT AT REL. CLK. 2262 FOR I SECONDS. 

63 2 2 OPH2 Dsc 2264 3. 

63 2 2 DSC FHP 2265 0 

63 3 19 SPS DSC 2271 5 

63 3 19 oSC FMP 2272 0 
JOB N 13 HEQUESTED THE SPS2 PROCESSOR AT REL. CLK. 2287 SEC., AND HAS SEIZED IT AT REL. CLK. 2287 FOR I SECONDS. 

13 1 1 SPS 0SC 2289 0 

13 1 I 0SC FMP 2291 0 

13 2 1 OPHI OSC 2292 1 

13 2 1 DSC FHP 2293 0 

JOB 0 11 REQUESTED THE FHP PROCESSOR AT REL, CLK. 1304 SEC., AND HAS SEIZED IT AT REL. CLK. 2329 FOR tO SECONDS. 
. 94 a 8 FMP DSC 2331 0 

1 94 8 8 DSC SPS 2335 3 
I JOB 94 REQUESTED THE SPS2 PROCESSOR AT REL. CLK, 2336 SEC., AND HAS SEIZED It AT REL. CLK 2336 FOR 360 SECONDS. 

03 94 9 260 FHP 0sc 2337 6 

JOB N 5 REQUESTED THE FMP PROCESSOR AT REL. CLK. 1353 SEC.. AND HAS SEIZED IT AT REL. CLK. 2339 FOR 10 SECnNOS. 

11 9 90 FlP oSC 2343 3 

JOB 0 61 REQUESTED THE FMP PROCESSOR AT REL. CLK. 1430 SEC.. AND HAS SEIZED IT AT REL. CLK. 2349 FOR 60 SECONDS. 

5 8 2 FMP DSC 2350 0 

5 8 ? DC SPS 2352 0 

11 9 90 DSC SPS 2372 27 
JOB a 5 HEQUESTEO THE SPSZ PROCESSOR AT REL. CLK. 2353 SEC.. AND HAS SEIZED IT AT REL. CLK. 2372 FOR 60 SECONDS. 

JOB 0 14 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 2402 SEC.. AND HAS SEIZED IT AT REL. CLK. 2402 FOR I SECONDS. 

JOB N 62 REQUESTED THE FMP PROCESSOR AT REL. CLK, 1446 SEC.. AND HAS SEIZED IT AT REL. CLK. 2409 FOR 60 SECONDS. 

61 9 125 FIP 5sc 2415 4 

61 9 125 FMP 0SC 2421 5 



FILE TRANSFER SUMMARY - PARE 10 

JOB NO. FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION
 
BLOCKS TRANSFERRED RELATIVE CLOCK TXmE(SEC).. OF TRANSFER (SEC.I
 

JUB # 11 REGVESTED THE SPS2 PROCESSOR AT REL. CLK. 2373 SEC., 
AND HAS SEIZED IT AT REL. CLK. 2432 FOR 60 SECO ,DS.
 

JOB 0 5 COMPLETE AT RELATIVE CLOCK . 2433 SEC.
 

93 7 3 SPS OPH2 2461 1
 

JOB 0 93 COMPLETE AT RELATIVE CLOCK . 2462 SEC.
 

JOB 0 8 REQUESTED THE FR4PPROCESSOR AT REL. CLK. 1640 SEC.. AND HAS SEIZED IT AT REL. CLK. 2469 FOR 
 10 SECONDS.
 

62 8 6 
 FMP DSC 2471 0
 

62 9 6 DSC SPS 247S a
 

JOB # 62 REQUESTED THE SP52 PROCESSOR AT REL. CLK. 2476 SEC., 
AND HAS SEIZED IT AT REL. CLK. 2476 FOR 180 SECONDS'
 

JOB 0 REQUESTED THE FMP PROCESSOR AT REL. CLK. 16B4 SEC.. 
AND HAS SEIZED IT AT REL. CLK. 2479 FOR 10 SECONDS.
 

61 9 125 DSC SP5 4485 69
 

a 9 90 FAR DSC 2486 5
 

JOB 0 9 REQUESTED THE FRP PROCESSOR AT REL. CLK. 1695 SEC.. 
AND HAS SEIZED IT AT RFL. CLK. 2489 FOR 10 SECONDS.
 

6 a 2 FP 05C 2490 0
 

61 9 125 
 oSC SPS 2490 67
 

JOB 0 61 COMPLETE AT RELATIVE CLOCK . 2491 SEC.
 

JOB 0 11 COMPLETE AT RELATIVE CLOCK . 2493 SEC.
 

JOB N 15 REQUESTED THE FRP PROCESSOR AT REL. CLK. 024'SEC., AND HAS SEIZED IT AT 
 REt. CLK. 2499 FOR 10 SECONDS.
 

9 a 
 2 FHP DSC 2500 a
 

JOB 0 10 REQUESTED THE FNP PROCESSOR AT REL. CLK. 2016 SEC., 
AND HAS SEIZED IT AT REL. CLK. 2509 FOR 10 SECONDS.
 

15 8 2 FlP DSC 2510 0
 

15 8 2 DSC SPS 2512 0
 

JOB 0 IS REQUESTED T14ESPSI PROCESSOR AT REL. CLK. 2513 SEC., 
AND HAS SEIZED IT AT REL. CLK. 2513 FOR 60 SECONDS.
 

a 9 
 90 DSC SPS 2518 26
 

JOB 0 12 REQUESTED THE FMP PROCESSOR AT REL. CLK. 2095 SEC.. AND HAS SEIZED IT 
AT REL. CLX. 2519 FOR 20 SECONDS.
 

6 
 8 2 0oC SPS 2519 0
 

9 8 2 
 DSC SPS 2520 0
 



FILE TRANSFER SUMMARY - PAGE 11 

JOB NO. FILE NO. NUMBER OF 
BLOCKS TRANSFERRED 

FROM TO TRANSFER COMPLETEn AT 
RELATIVE CLOCK TINE(SEC)... 

DURATION 
OF TRANSFER (SfC.1 

JOB # 8 REQUESTED THE SPS2 PROCESSOR AT REL. CLK, 2519 SEC.. AND HAS SEIZED IT AT REL. CLK. 2520 FOR 60 SECOfDS. 

10 8 2 FHP DSC 2520 0 

JOB N 19 REQUESTED THE FMP PROCESSOR AT REL. CLK. 2230 SEC.. AND HAS SEIZED IT AT REL. CLK. 2529 FOR 10 SECONDS. 

12 9 90 FMP DSC 2533 3 

JOB 0 63 REQUESTED THE FMP PROCESSOR AT REL. CLK. 2273 SEC.. AND HAS SEIZED IT AT RFL. CLK. 2S39 FOR 60 SECONDS, 

19 9 90 FMP DSC 2543 3 

19 9 90 OSC SPS 2571 26 

JOB 0 19 REQUESTED THE SPS1 PROCESSOR AT REL. CLK. 2572 SEC.. AND HAS SEIZED IT AT REL, CLK. 2572 FOR 60 SECONDS. 

JOB U IS COMPLETE AT RELATIVE CLOCK . 2574 SEC. 

JOB 0 6 REQUESTED THE SPSZ PROCESSOR AT REL. CLK. 2S20 SEC., AND HAS SEIZED IT AT REL. CLK. 2S8O FOR 60 SECONDS. 

JOB 0 8 COMPLETE AT RELATIVE CLOCK . Z681 SEC. 

JOB 1 13 REQUESTED THE FHP PROCESSOR AT REL. CLK. 2294 SEC.. AND HAS SEIZED IT AT REL. CLK. 2S99 FOR to SECONDS. 

63 a 12 FlP DSC 2601 0 

a 13 8 2 FNP OSC 2610 0 

0 o JOB 0 64 REQUESTED THE SPS1 PROCESSOR AT REt, CL. 2615 SEC.. AND HAS SEIZED IT AT REL, CLX. 2615 FOR I SECONDS. 

64 1 2 SPS OSC * 2618 0 

64 1 2 DSC FMP 2619 0 

64 2 2 OH2 oSC 2622 2 

64 2 2 ISO FKP 2623 0 

64 3 19 SPS DEC 2628 6 

64 3 19 DC FRP 2630 0 

JOB 0 64 REQUESTED THE' FHP PROCESSOR AT REL. CLK. 2631 SEC., AND HAS SEIZED IT AT REL. CLK. 2631 FOR 60 SECONDS'. 

JOB f 19 COMPLETE AT RELATIVE CLOCK - 2633 SEC. 

JOB 0 16 REQUESTED THE SPS1 PROCESSOR AT REL. CLK. 2640 SEC.. AND HAS SEIZED IT AT REL, CLK. 2640 FOR I SECONDS. 

JOB # 9 REQUESTED THE SPSZ PROCESSOR AT REL. CLK. 2521 SEC.. AND HAS SEIZED IT AT REL. CLK. 2640 FOR 60 SECONDS. 

JOB # 6 COMPLETE AT RELATIVE CLOCK . 2641 SEC. 



FILE TRANSFER SUMMARY - PAGE 12 

JOB NO. FILE NO. NUMBER OF FROM TO TRANSFER COMPLETEO AT DURATION
 
BLOCKS TRANSFERRED RELATIVE CLOCK TIHEISECI . OF TRANSFER (SEC.)
 

16 1 I SPS DSC 2642 0
 

[6 1 1 OSC FMP 2644 0
 

16 1 2 I SPHI OSC 2645 1
 

JOB # 21 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 2646 SEC.. AND HAS SEIZED IT AT REL. CLK. 2646 FOR I SECONDS.
 

16 2 I JSC FMP 2646 0
 

21 1 1 SPS DSC 2648 0
 

21 1 I DSC FHP 2649 0
 

21 2 1 SRI DSO 2650 1
 

21 2 1 OSC FHP 2652 0
 

JOB 0 17 REQUESTED THE SPS1 PROCESSOR AT REL. CLK. 2652 SEC.. AND HAS SEIZED IT AT RFL. CLK. 2652 FOR I SFCOr.S. 

17 1 1 SPS DSC 2654 0 

17 1 1 DSC FAP 2656 0 

10 8 2 DSC SPS 2657 1
 

17 2 1 GPHZ SC 2658 2
 

17 2 1 DSC FMP 2659 0
 

62 7 4 SPS BRI 2660 2
 

JOB S 62 COMPLETE AT RELATIVE CLOCK - 2661 SEC. 

13 8 2 DSC SPS 2661 1 

JOB 0 10 REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 2658 SEC.. AND HAS SEIZED IT AT REL. CLK. 2661 FOR 60 SErC'DS. 

63 8 12 DSC SPS 2664 a 

JOB 5 13 REQUESIED THE SPS2 PROCESSOR AT REL. CLK. 2662 SEC., AND HAS SEIZED IT AT RFL. ELK. 2664 FOR 60 SECnO"lS. 

12 9 90 DSC SPS 26A7 31 

JOB 0 12 REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 2688 SEC.. AND HAS SEIZED IT AT AFL. CLK. 268b FOR 60 SFCONDS. 

JOB 5 16 HEQUESTED THE FMP PROCESSOR AT REL. CLK. 2647 SEC., AND HAS SEIZED IT AT RFL. CLK. 2691 FOR 10 SECONOS.
 

64 8 6 FPA SC 2692 0
 



FILE TRANSFER SUMMARY - PAGE 13
 

TO TRANSFER COMPLETEn AT OURATION
 

BLOCKS TRANSFERRED 

JOB NO. FILE NO. NUMBER OF FROM 


RELATIVE CLOCK TINE(SEC)... OF TRANSFER (SEC.)
 

8 6 OSC SPS 2696 	 2
64 


64 REQUESTED THE SPSI PROCESSOR AT RELt. CLK. 2696 SEC.. AND HAS SEIZED IT AT RL. CLK. 266-FOR lAO SFCnO'nS.
JOB 0 


360 FFCOCND.
JOB # 94 REQUESTED THE SPS2 PROCESSOR AT REL. CLK, 2697 SEC.. 	AND HAS SEIZEn IT AT RFL. CLK. 2697 FOR 


AND HAS SEIZED IT AT REL. CLK. 2701 FOR 10 SECnl'DS.
JOB 0 21 REQUESTED THE FMP PROCESSOR AT REL. CLK. 2653 SEC.. 


JOB 0 9 COMPLETE AT RELATIVE CLOCK . 2701 SEC.
 

I SECnNOS.
JOB # 14 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 2703 SEC.. AND HAS SEIZED IT AT REL. CLK. 2703 FOR 


9 90 FNP OSC 2T05 3
16 


SPS DSC 2706 0
14 1 1 


0SC FRP 2708 0
14 1 1 


2
OPHa OSC 2710 


JOB 0 1? REQUESTED THE FRP PROCESSOR AT REL, CLK. 


14 	 2 I 

2660 SEC.. AND HAS SEIZED IT AT RFL. CLK. 271I FOR 10 SECONDS.
 

2 1 DSC FMP 2711 0
14 


8 2 FRP DSC 2712 0

21 


DSC SPS 2715 	 1
21 8 2 

JOB N 21 REQUESTED THE SPS1 PROCESSOR AT REL. CLK. 2716 SEC.. AND HAS SEIZED IT AT RFL. CLK. 2716 FOR 60 SECnNDS. 

AND HAS SEIZED IT AT REL. CLK. 2721 FOR 10 SECONDS.JOB N 14 REQUESTED THE FHP PROCESSOR AT REL. CLK. 2712 SEC.. 


JOB U 10 COMPLETE AT RELATIVE CLOCK . 2722 SEC.
 

2 FRP DSO 2722 O
 

AT REL. CLK. 2724 FOR 360 qFCONDS.
 

17 	 B 


JOB U 63 REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 2665 SEC.. 	AND HAS SEIZED IT 


8 2 DSC SpS 2726 	 1
17 


JOB 0 13 COMPLETE AT RELATIVE CLOCK . 2725 SEC.
 

60 SECnNoS.
JOB 0 17 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 2726 SEC.. AND HAS SEIZED IT AT REL. CLK. 2726 FOR 


2 FMP OSC 2732 0
14 	 8 


8 2 OSC SPS 2734 O
14 


9 90 DS5 SPS 2T36 	 30
16 


60 SECONDS.
JOB U 14 REQUESTED THE SPS1 PROCESSOR AT REL. CLK. 2T35 SEC., 	AND HAS SEIZED IT AT REL. CLK. 2736 FOR 



FILE TRANSFER SUMMARY - PAGE 14 

JOB NO. FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TINE(SECh... OF TRANSFER (SEC.) 

JOB N 12 COMPLETE AT RELATIVE CLOCK . 2749 SEC. 

JOB # 16 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 2737 SEC.. AND HAS SEIZED IT AT REL. CLK. 2776 FOR 60 SECONDS. 

JOB 0 21 COMPLETE AT RELATIVE CLOCK - 2777 SEC. 

JOB 0 18 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 2749 SEC.. AND HAS SEIZED IT AT REL. CLK. 2786 FOR I SECONDS,. 

JOB N 17 COMPLETE AT RELATIVE CLOCK . 2787 SEC. 

JOB N 14 COMPLETE AT RELATIVE CLOCK . 2797 SEC, 

JOB N 22 HEQUESTtO THE SPS1 PROCESSOR AT REL. CLK. 2831 SEC.. AND HAS SEIZED IT AT REL. CLK. 2831 FOR I SECONDS. 

22 I 1 SPS DSC 2833 0 

22 1 1 DSC FMP 2834 0 

22 2 1 OPHI DSC 2835 1 

JOB 0 16 COMPLETE AT RELATIVE CLOCK - 2837 SEC. 

22 2 1 DSC FMP 2837 0 

JOB N 22 HEUUESTED THE FMP PROCESSOR AT REL. CLK. 2838 SEC.. AND HAS SEIZED IT AT REL. CLK. 2838 FOR 20 SECONDS. 

22 8 2 FMP ODSC 2849 0 

' 22 8 2 DSC SPS 2850 0 

JOB * 22 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 2851 SEC.. AND HAS SEIZED IT AT RFL. CLK. 2851 FOR 60 SECOHDS. 

JOB 0 20 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 2863 SEC., AND HAS SEIZED IT AT REL CLK. 2863 FOR I SECONDS. 

20 1 1 SPS OSC 2866 0 

20 1 I DSC FMP 2867 0 

20 2 1 OPHI DSC 2868 1 

20 2 1 OSC FHP 2870 0 

JOB N 20 REQUESTED THE FMP PROCESSOR AT REL. CLK. 2871 SEC.. AND HAS SEIZED IT bT RFL. CLK. 2871 FOR 10 SECONDS. 

64 7 4 SPS OPH2 2880 2 

JOB 664 COMPLETE AT RELATIVE CLOCK - 2881 SEC. 



VILE TRANSFER SUN*ARY - PAGE 15
 

JOB NO. FILE NO. NUMBER OF FROM To TRANSFER CO$PLETEn AT O)URATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TIMFISEC)... OF TRANSFER (SEC.) 

JOB' 65 REQUESTED THE SPSI PROCESSOR AT'REL. CLK. 2862 SEC.. AND HAS SEIZED IT AT REL. CLK. 2882 FOR I SECONDS. 

20 9 90 FHP DSC 2885 3 

20 9 90 OSC SPS 2912 26 

JOB # 22 COMPLETE AT RELATIVE CLOCK . 2912 SEC. 

JOB 0 20 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 2913 SEC., AND HAS SEIZED IT AT RFL. CLK. 2913 FOR 60 SECO'DS. 

JOB N 23 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 2958 SEC.. AND HAS SEIZED IT AT REL. CLK. 2958 FOR I SECONDS. 

23 1 1 SPS DSC 2961 0
 

23 1 1 DSC FHP 2962 0
 

23 2 1 GPHj DSC 2963 1
 

23 2 1 DSC FMP 2964 0
 

JUB 0 23 REQUESTED THE FMP PROCESSOR AT REL. CLK. 2965 SEC., AND HAS SEIZEDOIT AT REL. CLK, 2965 FOR 10 SECONDS. 

JOB A 66 REQUESTED THE SASL PROCESSOR AT REL. CLK. 2965 SEC.. AND HAS SEIZED IT AT REL. CLK. 2965 FOR I SECONS. 

JOB 0 20 COMPLETE AT RELATIVE CLOCK . 2974 SEC.
 

23 8 2 FHP DSC 297? 0
 

23 a 2 OsEC SPS 2978 0
 

JOB * 23 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 2979 SEC., AND HAS SEIZED IT AT RFL. CLK. 2979 FOR 60 SECONDS. 

JOB N 24 IEQUESTEO THE SPSI PROCESSOR AT REL. CLK. 3031 SEC.. ANDOHAS SEIZED IT AT REl, CLK. 3031 FOR I SECONDS. 

24 1 1 SAS DSC 3034 0 

24 1 1 DSC FMP 3035 0 

24 2 1 GPH2 DSC 3036 1 

24 2 1 DSC FmP 3037 0 

JOB 0 Z4 HUIESTEO THE FMP PROCESSOR AT REL. CLK. 3038 SEC., AND HAS SEIZED IT AT REL. CLK. 3038 FOR 10 SECONDS. 

JOB 0 23 COMPLETE AT RELATIVE CLOCK . 3040 SEC. 



FILE TRANSFER SUMMARY - PAGE 16 

JOB NO. FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION 
BLOCKS TRANSFERRED RLLATIVE CLOCK TIMF(SEC)... OF TRANSFER (SFC. 

24 9 90 FMP DSC 3053 3 

94 7 3 SPS OPH2 3060 1 

JOB # 94 COMPLETE AT RELATIVE CLOCK - 306L SEC. 

JOB 0 67 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 3077 SEC., AND HAS SEIZED IT AT RFL. CLK. 307? FOR I SECONDS. 

67 1 2 SPS D0C 3080 1 

24 9 90 DC SPS 3081 26 

67 1 2 DSC FMP 3081 0 

JOB # 24 REQUESTED THE SPS1 PROCESSOR AT REL. CLK. 3082 SEC.. AND HAS SEIZED IT AT REL. CLK. 30$2 FOR 60 SECONDS. 

67 2 2 GPH2 SPS 3082 1 

JOB 0 67 HEQUESTED THE SPSI PROCESSOH AT REL. CLK, 3083 SEC., AND HAS SEIZED IT AT REL. CLK. 3043 FOR AS SECONDS. 

JOB # 18 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 3087 SEC.. AND HAS SEIZED IT AT REL. CLK, 3087 FOR I SECONDS. 

I I SPS OC 3089 0 

63 7 a SPS OPH2 3090 4 

I IS I 1 Osc FMP 3090 0 

'.0 JOB 0 63 COMPLETE AT RELATIVE CLOCK . 3091 SEC. 
U] 

18 2 1 OPH2 DC 3091 

18 2 1 D5C FMP 3092 0 

JOB 0 18 REQUESTED THE FP PROCESSOR AT REL. CLK. 3093 SEC.. AND HAS SEIZED IT AT RFL. CLK. 3093 FOR 10 SECONDS. 

18 8 2 FP DC 3105 0 

18 8 2 DSC SPS 3106 0 

JOB 0 18 REQUESTED THE SP51 PROCESSOR AT REL. CLK. 3107 SEC., AND HAS SEIZED IT AT RFL. CLK. 3107 FOR 60 SECONDS. 

JOB 0 24 COMPLETE AT RELATIVE CLOCK . 3143 SEC. 

67 2 2 SPS DC 3165 0 

67 2 2 D5C FPP 3166 0 

JOB 0 1 COMPLETE AT RELATIVE CLOCK A 3168'SEC. 



FILE TRANSFER SUMMARY - PAOE IT
 

JOB NO. FILE NO, NUMBER OF FROM TO TRANSFER COMPLETEO AT DURATION
 
BLOCKS TRANSFERRED RELATIVE CLOCK TIME(SECI... OF TRANSFER (SEC.)
 

67 3 19 SPS DSC 3172 5
 

6T 3 19 DSC FMP 3174 0
 

JOB 0 67 REQUESTED THE FMP PROCESSOR AT REL. CLK. 3175 SEC.. AND HAS SEIZED IT AT REL. CLK. 3175 FOR 60 SECONDS.
 

JOB N 25 EQUESTED THE SPSI PROCESSOR AT REL. CLK. 3208 SEC.. AND HAS SEIZED IT AT RFL. CLK. 3208 FOR I SECO OS.
 

95 1 4 SPS DSC 3228 1
 

95 1 4 OSC FRP 3229 0
 

JOB 0 26 REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 3231 SEC., AND HAS SEIZED IT AT REL. CLK. 3231 FOR I SECONDS. 

95 2 tOPHI SPS 3231 2 

JOB A 95 REQUESTED THE SPSI PROCESSOR AT REL. OLK. 3232 SEC., AND HAS SEIZED IT AT REL. CLK. 3232 FOR 360 SECONDS. 

67 9 125 FMP DC 3240 4 

67 9 125 FRP OSC 3247 5 

JOB N 68 REQUESTED THE 5PS2 PROCESSOR AT REL. CLK. 3280 SEC.. AND HAS SEIZED IT AT REL. CLK. 3280 FOR I qErnODS. 

67 9 125 DSC SPS 3309 68 

67 9 125 0SO SPS 3315 67 

JOB 0 67 COOPLETE AT RELATIVE CLOCK - 3316 SEC. 

JOB S 69 REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 3338 SEC.. AND HAS SEIZED IT AT RFL. CLK. 3338 FOR I SECONDS. 

JOB N 65 HEQUESTED THE SPS1 PROCESSOR AT REL. CLK. 3483 SEC.. AND HAS SEIZED IT AT REL. CLK. 3403 FOR 1 SECONDS. 

65 1 2 SPS DSC 3485 0
 

65 1 2 OSC FP 3487 0
 

65 2 2 GPH2 0SC 3489 2
 

65 a 2 DSC FP 3491 0
 



FILE TRANSFER SUMMARY - PAGE 18 

JOB NO. FILE NO. NUMBER OF 
 FROM TO TRANSFER COMPLETEn AT DURATION
 
BLOCKS TRANSFERRED RELATIVE CLOCK TIE(SEC)... OF TRANSFER 4SEC)
 

65 3 19 SPS DSC 3496 5
 

65 3 19 DSC FRP 3498 0
 

JOB 0 65 REQUESTED THE FNP PROCESSOR AT REL. CLK. 3499 SEC., 
AND HAS SEIZED IT AT REL. CLX. 3499 FOR A0 qFCONPq. 

JOB 0 70 REQUESTED THE SPS2 PROCESSOR AT REL. CLX. 3530 SEC.. 
AND HAS SEIZED IT AT RFL. CLK. 3530 FOR I SECONDS.
 

65 a 6 
 FHP DSC 3560 0
 

65 8 6 
 DSC SPS 3563 2
 

JOB 0 65 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 3564 
SEC., AND HAS SEIZED IT AT REt, CLK. 3564 FOR 1O0 SECONDS. 

JOB 0 66 REQUESTED THE 5PSI PROCESSOR AT REL. CLX. 3566 SEC,* AND HAS SEIZED IT AT REL. CLK. 3592 FOR ' I SECONDS,
 

66 
 2 2 SPS DSC 3595 0
 

66 1 2 DSC F4P 3596 0
 

66 a 2 
 OPHI DSC 3599 
 3
 
66 
 2 2 SC FRP 3601 0
 

66 3 
 19 SPS DSC 3612 11
 

66 3 19 DSC FIP 3614 1
 

JOB 0 66 REQUESTED THE FIP PROCESSOR AT REL. CLX. 
3615 SEC., AND HAS SEIZED IT AT REL. CLK, 3615 FOR 60 SECONDS.
 
95 3 46 
 SPS 0Se 3616 21
 

95 3 
 46 DSC FRP 3619 2
 
95 
 3 46 SPS DS 3630 14
 

95 3 
 46 DSC FMP 3633 1
 

JOB N 95 REQUESTED THE FRP PROCESSOR AT REL. CLK. 3634 SECo 
 AND HAS SEIZED IT AT REL. CLK. 3675 FOR 600 SECONDS.
 

66 9 125 FHP 05C 3681 4
 

86 
 4A SPS DSC 3684 2
 

06 4 05C FRP 3686 c
 

86 2 4 SPS CSC 3607 I
 



FILE TRANSFER SUMMARY - PAGE 19 

08 NO. FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT JIURATION
 
BLOCKS TRANSFERRED RELATIVE CLOCK TIME(SFCI.., OF TRANSFER (SEC.l
 

86 2 4 OSC FMP 3689 0
 

66 9 125 FMP DSC 3689 7
 

JUB H 71 REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 3729 SEC.. AND HAS SEIZEO IT AT REL. CLK. 3729 FOR I SECONDS.
 

65 7 4 SPS GPH2 3747 2
 

JOB 0 65 COMPLETE AT RELATIVE CLOCK - 3748 SEC.
 

JUB $ 27 HEUUESTED THE SPS2 PROCESSOR AT RELt. CLK. 3750 SEC.. AND HAS SEIZED IT AT REL. CLK, 3750 FOR 1 SECONDS. 

66 9 125 DSC SPS 3751 69 

27 1 1 SPS DSC 3752 0 

27 I 1 DSC FMP 3754 0 

96 . 4 SPS DSC 3755 1
 

27 2 1 OPHI oSC 3756 2
 

96 1 4 OSC FMP 3757 0
 

27 2 1 OSC FMP 3757 0
 

96 2 4 SPS DSC 3758 1
 

66 9 125 OSC SPS 3758 67
 

JOB 0 66 COMPLETE AT RELATIVE CLOCK . 3759 SEC.
 

96 2 4 DSC FMP 3759 0
 

JOB # 72 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 3799 SEC., AND HAS SEIZED IT AT REL. CLK. 3799 FOR I SFCONOS.
 

72 1 2 SPS OSC 3802 0
 

72 1 2 DSC FMP 3803 0
 

72 2 2 OPHI SPS 3804 1
 

JOB N 72 REQUESTED THE SPS1 PROCESSOR AT REL. CLK. 3805 SEC.. AND HAS SEIZED IT AT REL. CLK. 3805 FOR 80 SECONDS.
 



FILE TRANSFER SUMMARY - PAGE 20
 

JOB NO. FILE NO, NUMBER OF FROM TO TRANSFER COMPLETED AT IURATION
 
BLOCKS TRANSFERRED RELATIVE CLOCK TINE(SEC)... OF TRANSFER (SFC.)
 

JOB 0 25 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 3809 SEC.. AND HAS SEIZED IT At RFL. CLK. 3809 FOR I qEC4NOS.
 

51 1 SPS DSC 3611 0
 

25 1 OOSC FMP 3812 0
 

26 2 1 OPHI DSC 3814 1
 

25 2 1 DSC FMP 381S 0
 

JOB # 26 REQUESTED THE SP52 PROCESSOR AT REL. CLK. 3832 SEC., AND HAS SEIZED IT AT RFL. CLK. 3832 FOR I scotmn.
 

JOB # 68 HEQUESTED THE SPS2 PROCESSOR AT REL. CLK. 3881 SEC.. AND HA SEIZED IT AT PFL. CLK. 3880 FOR I SECONDq.
 

72 2 2 SPS DSC 3886 0
 

72 2 2 DSC FMP 3888 C
 

i2 3 19 SPS DSC 3893 5
 

72 3 19 OSc FMP 3895 0
 

97 1 4 SPS DSC 3927 1
 

97 1 4 DSC FMP 3929 0
 

97 2 4 SPS DSC 3930 1
 

97 2 4 DSC FMP 3931 0
 

JOB N 28 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 3932 SEC.. AND HAS SEIZED IT AT RFL. CLK. 3932 FOR I SeCONDS.
 

JOB 0 69 HEQUESTED THE 5PS2 PROCESSOR AT REL. CLK. 3939 SEC., AND HAS SEIZED IT AT REL. CLK. 3939 FOR I SECONDS.
 

69 1 2 SPS DSC 3942 0
 

69 1 2 OSO FMP 3944 0
 

69 2 2 8PH2 DSC 3946 2
 

69 2 2 OSC FMP 3947 0
 

69 3 19 SPS OSC 3953 5
 

69 3 19 DSC FMP 3955 0
 

JOB * 70 REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 4131 SEC., AND HAS SEIZED IT AT RL. CLK. 4131 FOR 1 SECONDS.
 



FILE TRANSFER SUMMARY - PAGE 21 

JOB NO. FILE NO. NUMBER OF 
BLOCKS TRANSFERRED 

FROM TO TRANSFER COMPLETED AT 
RELATIVE CLOCK TIME(SEC ... 

DURATION 
OF TRANSFER ISFC.) 

JOB 0 26 REQUESTED THE SPS PROCESSOR AT REL. CLK. 4133 SEC.. AND HAS SEIZED IT AT REL, ELK. 4133 FOR I SECOCDs. 

70 1 2 SPS DSC 4134 0 

26 1 1 SPS DSC 4135 0 

70 

26 

?6 

70 

26 

70 

1 

1 

2 

2 

2 

2 

1 

11 

2 

1 

2 

DSC 

DSC 

OPH2 

OPHI 

0sc 

DSC 

FHP 

FMP 

DSC 

DSC 

FMP 

FMP 

4135 

4137 

4138 

4138 

4139 

4140 

0 

0 

1 

3 

0 

0 

70 3 19 SPS DSC 4145 5 

70 

JOB 0 

3 19 DSC 

73 REQUESTED THE SPSI PROCESSOR AT REL. CLKO 

FMP 

4152 SEC., 

4147 

AND HAS SEIZED IT AT REL. ELM. 4152 FOR 

0 

I SECnNOS. 

68 

JOB U 68 REQUESTED THE SPS2 PROCESSOR AT REL. ELK. 4182 SEC.. AND HAS SEIZED IT AT 

1 2 SPS OSC 4185 

REL. eLK. 4142 FOR 

0 

I qEcnnIq. 

o 
0 

68 
68 

1 
2 

2 

a 

DSC 

OPHI 

FMP 

DSC 

4186 

4189 

0 

3 

68 

68 

68 

JOB U 

2 

3 

3 

66 REQUESTED THE 

a Osc FNP 4190 

19 SPS D5C 4195 

19 DSC FMP 4197 

FMP PROCESSOR AT REL. CLK, 3690 SEC.. AND HAS SEIZED IT AT REL. CLK. 4275 FOR 

0 

5 

0 

10 sECONDS. 

95 8 8 FMP DSC 4277 0 

95 a 8 DSC SPS 

JOB A 95 REQUESTED THE SPSI PROCESSOR AT REL. CLK, 4281 SEC., 

JOB U 27 REQUESTED THE FMP PROCESSOR AT REL. CLK, 3758 SEC.. 

JOBS' 96 REQUESTED THE FMP PROCESSOR AT REL. eLK. 3760 SEC., 

4280 

AND HAS SEIZED IT AT REL. CLK. 4281 FOR 

AND HAq SEIZED IT AT Rf * CLK. 42N5 FOR 

AND HAS SEIZED IT AT RFL. CLK. 42QS FOR 

2 

360 SECnOS. 

10 EONDS. 

10 RECONDS. 



FILE TRANSFER SUMMARY - PAGE 22 

JOB NO. FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION
 
BLOCKS 'TRANSFERRED RELATIVE CLOCK TIMFtSEC)... OF FRANSFER (SEC.I
 

27 a 2 FMP oSC 4297 O
 

27 8 2 DSC SPS 4298 A
 

JOB N 27 REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 4299 SEC., AND HAS SEIZED IT AT RFL. CLK. 4299 FOR 60 SECON{)S.
 

JOB N Z5 REGUESTED THE FMP PROCESSOR AT REL. CLK. 3816 SEC.. AND HAS SEIZED 17 AT RAL. CLK. 4305 FOR 30 SECONDS.
 

JOB 0 72 qEQUESTED THE FlP PROCESSOR AT REL. CLK. 3896 SEC.. AND HAS SEIZED 17 AT AFL. CLK. 4315 FOR 60 SECONS.
 

25 8 2 FKP 0SC 4317 0
 

25 8 2 DSC SPS 4318 0
 

JOB U 25 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 4319 SEC., AND HAS SEIZED IT AT REL. CLK, 4319 FOR 60 SFCnlS.
 

JOB 0 71 HEQUESTED THE SPS PROCESSOR AT REL. CLK. 4330 SEC., AND HAS SEIZED IT AT RFL. CLK. 4330 FOR I SECON[)S.
 

T7 1 2 SPS DSC 4333 0
 

70 1 2 0SC FMP 4334 0
 

71 2 2 OPHE DSC 4336 2
 

71 2 2 DSC FMP 4338 0
 

71 3 19 SPS DSC 4343 5
 

7 3 19 05C FMP 4345 0
 

JOB 0 27 COMPLETE AT RELATIVE CLOCK v 4360 SEC.
 

JOB N 97 REQUESTED THE FAP PROCESSOR AT REL. CLK. 3932 SEC.. &ND HAS SEIZED IT AT RFL, CLK. 4375 FOR 10 SECnNnS.
 

72 8 6 FMP OSC 4377 0
 

72 B 6 SC S5PS 4380 1
 

JOB 0 25 COMPLETE AT RELArIVE CLOCK - 4380 SEC.
 

JOB 72 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 4380 SEC., AND HAS SEIZED IT AT REL, CLK. 4381 FOR 100 SECONDS.
 

JOB 0 69 REQUESTED THE FMP PROCESSOR AT REL. CLi. 3956 SEC., AND HAS SEIZED IT AT REL. CLK. 4385 FOR 60 SECONDS.
 

JOB N 26 REQUESTED THE FMP PROCESSOR AT REL. CLK, 4140 SEC., AND HAS SEIZED IT AT REL. CLK. 4445 FOR 10 SECONDS.
 

69 0 6 FHP OSC 4447 0
 

69 a 6 DSC SPS 4450 1
 

JOB 69 REQUESTED THE SPSZ PROCESSOR AT REL. CLK. 4451 SEC., AND HAS SEIZED IT AT REL. CLK. 4451 FOR 180 SECONDS.
 



FILE TRANSFER SUMMARY - PAGE 23 

JOB NO. FILE NO. NUMBER OF FROM TO TRANSFER COMPLETEO At OURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TIMEISEC)... OF TRANSFER (SrC.) 

JOB 0 70 REQUESTED THE F4P PROCESSOR AT REL. CLK, 4148 SEC.. AND HAS SEIZED IT AT AFLo CLK. 4455 FOR 60 5ECn.OS. 

26 8 2 FMP DSC 4457 0 

26 8 2 DC SPS 4458 0 

JOB 0 26 REQUESTED THESPS2 PROCESSOR AT REL. CLK. 4459 SEC.. AND HAS SEIZED IT AT REL. CLK. 44S9 FOR 0 SFrONDS,. 

JOB 0 68 REQUESTED THE FIP PROCESSOR AT REL. CLK. 4198 SEC., AND HAS SEIZED IT AT RFL. CLK. 4515 FOR 60 qECnObI. 

70 a 12 FAP DSC 4517 0 

JOB 0 26 COMPLETE AT RELATIVE CLOCK . 4520 SEC. 

70 8 12 DSC SPS 4521 3 

JOB 0 TO REQUESTED THE SPSZ PROCESSOR AT REL. CLK. 4522 SEC., AND HAS SEIZED IT AT AFLo CLK. 4522 FOR 360 SECDH'S. 

JOB 4 29 REQUESTED THE SPSI PROCESSOR AT REL. CLK, 4532 SEC., AND HAS SEIZED IT AT RFL. CLK. 4532 FOR I qFCDN .O 

JOB 0 28 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 4533 SEC.. AND HAS SEIZED IT AT REL. CLK. 4533 FOR I qFC0NO.q 

. 28 1 SPS OSC 4536 0 

" 28 1 DSC FMP 45370 0 

28 2 OPHI DSC 4538 

o28 2 I05C FliP 4540 0 

72 7 4 SPS OPHI 4564 2 

JOB U 72 COMPLETE AT RELATIVE CLOCK * 4566 SEC. 

JOB 0 86 REQUESTED THE FHP PROCESSOR AT REL. CLK. 4286 SEC.. AND HAS SEIZED IT AT RL. CLK. 4575 FOR 60 SE~nIOS. 

68 8 6 FMP USC 4577 0 

B7 1 4 SPS DSC 4578 1 

8 I 4 aSc FMP 4579 0 

68 8 6 OsO SPS 4560 P 

87 2 4 OPH2 SPS 4581 2 

JOB 0 87 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 4582 SEC., AND HAS SEIZED IT AT RFL. CLK, 4582 FOR 360 sEC0nlns. 



FILE TRANSFER SUMMARY - PAGE 24 

JOB NO. FILE NO. NUMER OF PROM TO TRANSFER COMPLETED AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TIM!ISEC)... OF TRANSFER (SEC.) 

JOB 0 68 REQUESTEO THE SS2 PROCESSOR AT REL. CLK. 4581 SEC., AND HAS SEIZED IT AT REL. CLK. 4631 FOR 180 SECONDS. 

69 7 4 SPS GPH2 4634 2 

JOB 0 69 COMPLETE AT RELATIVE CLOCK i 4635 SEC. 

JOB 6 96 REQUESTED THE FMP PROCESSOR AT REL. CLK. 4306 SEC., AND HAS SEIZED IT AT REL. CLK. 4635 FOR 600 SECONDS. 

88 9 160 FMP DSC 4642 5
 

JOB N 95 HEQUESTED THE SPSI PROCESSOR AT 
REL. CLK. 4642 SEC.. AND HAS SEIZED IT AT REL. CLK. 4642 FOR 360 SECONDS.
 

86 a 3 FMP DSC 4643 0
 

86 9 160 DSC SPS 46689 46
 

86 a 3 DSC SPS 4690 0 

JOB 0 86 HEQUESTED THE SPSZ PROCESSOR AT REL. CLK. 4691 SEC., AND HAS SEIZED IT AT REtI CLK. 4811 FOR 300 SECONDS. 

6a 7 4 SPS OPHi 4814 2
 

JOB S 68 COMPLETE AT RELATIVE CLOCK . 4816 SEC.
 

To 7 8 SPS GPH1 4888 4
 

JOB # 70 COMPLETE AT RELATIVE CLOCK - 4889 SEC.
 

88 1 4 SPS DSC 4890 1 
8B 1 4 
 DSC FmP 
 4892 
 0
 

8a 2 4 SPS DSC 4892 1
 

8B 2 4 D5C FlP 4894
 

93 1 4 SPS DSC 4901 1
 

98 1 4 DSC FlP 4902 0
 

98 2 4 OPH2 SPS 4905 2
 

JOB U 98 REQUESTEO THE SPSZ PROCESSOR AT RELt CLK. 4906 SEC.. AND HAS SEIZED IT AT REL. CLK. 4906 FOR 360 SECONDS. 

JUB 0 73 HEQUESTED THE SPSI PROCESSOR AT REL. CLK. 4753 SEC.. AND HAS SEIZED IT AT REL. CLK. 4942 FOR I SECONDS. 

87 3 92 SPS DSC 4970 26
 



FILE TRANSFER SUMMARY - PAGE 26
 

JOB NO. FILE NO. NUMBER OF FROM To TRANSFER COMPLETED AT DURATION.
 
BLOCKS TRANSFERRED RELATIVE CLOCK TIMEISEC... OF TRANSFER (SrC.)
 

87 3 92 DEC FMP 4974 3
 

JOB 0 30IEQUESTEO THE SPSI PROCESSOR AT REL. CLK. 4992 SEC., AND HAS SEIZED IT AT REL. CLK. 4992 FOR I SECONDS.
 

95 7 3 SPS OPHI 5005 1
 

dO3 # 95 COMPLETE AT RELATIVE CLOCK . 6006 SEC.
 

JOB # 31 HEQUESTED THE SPSI PROCESSOR AT REL. CLK. 5035 SEC., AND HAS SEIZED IT AT REL. CLK. 5035 FOR I SECONDS.
 

31 1 1 SPS DSC 5037 0
 

JOB 0 32 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 5038 SEC., AND HAS SEIZED IT AT REL. CLK. 5038 FOR I SECONDS.
 

31 1 1 DSC FMP 5038 0
 

31 2 1 OPH2 DSC 5040 1
 

31 2 1 DSC FMP 5041 0
 

JOB N 33 REQUESTED THE SPSI PROCESSOR AT REL. CLK, 5102 SEC.o AND HAS SEIZED IT AT REL. CLK. 5102 FOR I SECONDS.
 

86 7 2 SPS OPH2 5113 1
 

JOB 0 86 COMPLETE AT RELATIVE CLOCK a 5114 SEC.
 

JOB 4 29 REQUESTED THE SPSI PROCESSOR AT REL. CLK, 5133 SEC., AND HAS SEIZED IT AT REL. CLK. 5133 FOR I SECONDS. 

29 1 1 SPS OsC 5136 0 

29 1 1 DSC FMP 5137 0 

29 2 OPH2 DC 5138 1 

29 2 1 DSC FMP 5139 0 

JO 4 71 REQUESTED THE FMP PROCESSOR AT REL, CLK. 4346 SEC.. AND HAS SEIZED IT AT REL. eLK. 5235 FOR 60 SECONDS. 

96 9 160 FMP DsC 5242 5 

JOB 0 73 REQUESTED THE SPS1 PROCESSOR AT REL. CLK. 5243 SEC.. AND HAS SEIZED IT AT REL. CLK. S243 FOR I SECONDS. 

96 a 8 FRP DSC S244 0
 



FILE TRANSFER SUMMARY - PAGE 26 

JOB NO. FILE NO. NUMBER OF 
BLOCKS TRANSFERRED 

FROM TO TRANSFER COMPLETEn AT 
RELATIVE CLOCK TINF(SECI... 

DURATION 
OF TRANSFER ISEC* 

73 1 2 SPS DSC 5246 0 

73 1 2 DSC FHP 5247 0 

96 8 8 DSC SPS 5249 4 

JOB U 96 IEQUESTED THE SPS2 PROCESSOR AT REL. OLK. 5250 SEC.. AND HAS SEIZED IT AT REL. CLK. 5250 FOR 360 SFCONOS. 

73 2 2 OPHI DSC 5254 

73 2 2 DSC FMP 5255 0 

JOB N 34 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 5257 SEC., AND HAS SEIZED IT AT RFL. CLK. 5257 FOR I 5FCDA'DS. 

73 3 19 SPS Use 5262 6 

73 3 19 DSC FNP 5264 1 

98 3 46 SPS DSC 5295 28 

JOB 0 97 REQUESTED THE FMP PROCESSOR AT REL. CLK. 4386 SEC.. AND HAS SEIZED IT AT AFL. CLK. 5245 FOR 600 qFC"'OS. 

98 3 46 DSC FHP 5303 6 

71 9 125 FRP OSC 5309 12 

71 9 125 FNP DSC 5320 9 

o 
.-I 

98 
98 

04 
3 
3 

46 
46 

SPS 
DSC 

DSC 
FMP 

5337 
5343 

4 

4 

96 9 160 DSC SPS 5343 99 

JOB 0 35 REQUESTED THE SPSI PROCESSOR AT RFL. ELK, 5366 SEC., AND HAS SEIZED IT AT RFL. CLK. 5366 FOR I SFCOnnq. 

35 1 1 SPS DSC 5368 0 

35 1 1 DSC FMP 5369 0 

35 2 1 BPHI DSC 5373 4 

35 2 1 OSC Flip 5375 0 

71 9 125 DSC SPS 5390 07, 

71 9 125 DSC SPS 5402 80 



FILE TRANSFER SUMMARY - PAGE 27 

JOB NO. FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT '-URATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TIMF(SFC)... OF TNANSFER tSFr.) 

JOB N TI COMPLETE AT RELATIVE CLOCK - 5403 SEC. 

JOB 0 36 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 5518 SEC.. AND HAS SEIZED IT AT RFL. CLK. 5SI FOR I SEC OO. 

JUB N 37 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 5523 SEC.. AND HAS SEIZED IT AT RFL. CLK. 5523 FOR I SFCOr'DS. 

JOB # 38 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 5590 SEC., AND HAS SEIZED IT AT RFL. CLK. 559U FOR I qECnO.,l 

JOB N 30 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 5593 SEC., AND HAS SE'IZED IT AT RFL. CLK. 55'L FOR I SECONLS. 

09 0 96 REQUESTED THE SPS2 PROCESSOR AT REL. CLX. 56)1 SEC., AND HAS SEIZED IT AT AFL. CLK, 5611 FOR 360 SECnNOS. 

JOB N 32 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 5639 SEC.. AND HAS SEIZED IT AT RFL. CLK. 5639 FOR I SECONDS. 

32 1 1 SPS OSC 5641 0 

32 1 I D$C FMP 5643 0 

32 2 1 OPHI DSC 5644 1 

32 2 1 DSC FMP 5645 0 

JOB 0 39 REQUESTED THE SPSI PROCESSOR AT REL. CLK, 5656 SEC., AND HAS SEIZED IT AT RFL. CLK. 5656 FOR I SECnOOS. 

39 1 1 SPS DSC 5658 ) 

39 1 1 OSC FMP 5659 0 

c 39 2 1 GPHI 0SC 5661 1 

C; 39 2 1 OSC IMP 5662 0 

JOB # 40 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 5690 SEC.. AND HAS SEIZED IT AT RFL. CLK. 5690 FOR I SFCWtIS. 

JOB N 33 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 5703 SEC., AND HAS SEIZEO IT AT AFL. CLK. 57')j FOR I SFcn I)I. 

33 1 1 SPS DSC 5705 0 

33 1 1 osc FMP 5706 

33 z I OPHI DSC 5708 1 



FILE TRANSFER SUMMARY - PAGE 28 

JOB NO. FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TIMEISEC)... OF TRANSFER (SEC.) 

33 2 1 DSC FMP 5709 0 

JOB u 34 REQUESTED THE $PSI PROCESSOR AT REL. CLK. 5858 SEC.. AND HAS SEIZED IT AT RFL. CLK. 5858 FOR I SFCONDS. 

JOB N 74 REQUESTED THE SPS1 PROCESSOR AT REL. CLK. 5879 SEC., AND HAS SEIZED IT AT REL. CLK. 5879 FOR I SECONDS. 

JOB 0 41 HEQUESTED THE SPSI PROCESSOR AT REL. CLK. 5880 SEC., AND HAS SEIZED IT AT REL. CLK. 5880 FOR I SECnNDS. 

41 1 1 SPS C 5882 a 

41 1 1 DSC FlP 5883 0 

41 2 1 GPN2 DSC 5884 1 

41 2 1 OSC FMP 5886 0 

JOB 8 30 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 5894 SEC.. AND HAS SEIZED IT AT RFL. CLK. 5894 FOR I qFr,'-d)q. 

JUB N 28 REUESTED THE iMP PROCESSOR AT REL. CLK. 4541 SEC.. AND HAS SEIZED IT AT REtL. CLK. 5895 FOR 10 sFcO'ls'. 

30 1 1 BPS DSC 5897 0 

30 1 1 uSC FHP 5898 a 

-. 30 a I OPHI SC 5899 1 

30 2 1 OSC FRP 5901 

JOB 8 88 REQUESTED THE FMP PROCESSOR AT REL. CLK. 4895 SEC., AND HAS SEIZED IT AT REL. CLK. 59"1b FOR 10 qFCnrl). 

"- 97 9 310 FMP DSC 5911 14 

97 8 a FMP OSC 5912 0 

28 9 90 FMP DSC 5913 6 

JOB 0 87 REQUESTEO THE FMP PROCESSOR AT REL. CLK. 4975 SEC., AND HAS SEIZED IT AT RFg * CLK. 591b FOR 60 qFln*'nq. 

97 8 8 USC SPS 5918 4 

JOB 0 97 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 5919 SEC.. AND HAS SEIZED IT AT AFL. 'CLK. 5919 FOR 360 qFCONDS. 

28 9 90 DSC SPS 5942 28 

JOB 8 28 REQUESTED THE 5PSI PROCESSOR AT REL. CLK. 5943 SEC.. AND HAS SEIZED IT AT RFL. CLK. 5943 FOR 60 SW ,DS. 



FILE TRANSFER SUMMARY - PAGE 29 

JOB NO. FILE NO. NUMBER OF FROM TO TRANSFER COHPLETED AT :)URATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TIHEISECh... OF TRANSFER ISEC.) 

99 1 4 SPS OSC 5946 1 

99 1 4 OSC FHP 5947 0 

99 2 4 SPS DSC 5948 I 

99 2 4 OSC FMP 5949 0 

96 7 3 SPS OPH2 5974 1 

JOB 0 96 COMPLETE AT RELATIVE CLOCK - 5975 SEC. 

JOB a 31 REQUESTED THE FMP PROCESSOR AT REL. CLK. 5042 SEC.. AND HAS SEIZED IT AT REL. CLK, 5975 FOR 10 Ser~flnS. 

87 a 3 FMP OSC 5977 0 

aT 8 3 DSC SPS 5979 1 

JOB a aT REQUESTED THE SPSI PROCESSOR AT REL. CLK. 5980 SEC.. AND HAS SEIZED IT AT RFL. CLK. 596U FOR 300 SFCO ns. 

JOB a 29 REQUESTED THE FNP PROCESSOR AT REL. CLK. 5140 SEC., AND HAS SEIZEn IT AT AFL. CLK. 59b FOR 10 qFC0flrf. 

31 a 2 FMP DSC 5987 0 

JOB N 73 REOUESTEO THE FMP PROCESSOR AT REL. CLK. 5265 SEC., AND HAS SEIZED IT AT RFL. CLK. 59q5 FOR 60 SE(n0'S. 

29 a 2 FMP DSC 59qT 0 

0 
29 8 2 0SC SPS 6004 0 

co JOB a 28 COMPLETE AT RELATIVE CLOCK . 6004 SEC. 

31 8 2 OSC SPS 6004 1 

JOB a 29 REQUESTED THE SPS1 PROCESSOR AT REL. CLK, 6005 SEC.. AND HAS SEIZED IT AT RFL. CLK. 6001b FOR 60 qFCnI)q. 

JOB a 98 HEQUESTED THE FMP PROCESSOR AT REL. CLK. 5344 SEC.. AND HAS SEIZED IT AT RFL. CLK. 608S FOR 600 SECd'Otq 

?3 8 6 FMP DSC 6057 0 

JOB 0 31 REQUESTEO THE SPS1 PROCESSOR AT REL. CLK. 6005 SEC.. AND HAS SEIZED IT AT RFL. CLK. 6065 FOR 60 SFCnIDS. 

JOB 0 29 COMPLETE AT RELATIVE CLOCK . 6066 SEC. 

JOB a 4A REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 6078 SEC.. AND HAS SEIZED IT AT AFL. CLK. 6078 FOR 1 qFrn-(I. 

42 1 1 SPS OSC 6080 0 

42 1 1 DSC FMP 6082 0 



FILE TRANSFER SUMMARY - PAGE 30
 

JOB NO. FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT OURATION
 
BLOCKS TRANSFERRED RELATIVE CLOCK TIMF(SErl... OF TRANSFER SFr.)
 

4Z 2 I OPHI DSC 6083
 

42 2 1 DC FHP 6084 0
 

JOB * 43 REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 6088 SEC., AND HAS SEIZED IT AT PEL. CLK. 608 FOR SECO"DS. 

43 1 1 SPS OSC 6090 0 

43 1 1 0SC FMP 6092 0 

43 2 1 GPH2 DSC 6093 1 

43 2 I DSC FMP 6094 0 

JOB N 31 COMPLETE AT RELATIVE CLOCK a 6126 SEC.
 

73 8 6 DSC SPS 6127 1
 

JOB * 36 REQUESTED THE 5PSI PROCESSOR AT REL. CLK. 6119 SEC.. AND HAS SEIZED IT At RFL, CLK. 6127 FOR I qFCr'([.
 

JOB N 37 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 6124 SEC.. AND HAS SEIZED IT AT QFL. CLK. 6128 FOR I SECO'OS.
 

36 1 1 SPS DSC 6129 0
 

3? 1 1 SPS 0SC 6130
 

36 1 1 OSC FMP 6131 0
 

37 1 11 DS FMP 6132 0 

36 2 1 OPH2 0SC 6132 1 

3? 2 1 OPHI DSC 6133 1 

36 2 I OSC FMP 6133 0 

3? 2 1 0SC FMP 6134 0 

JOB N 75 REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 6148 SEC.. AND HAS SEIZED IT AT RFL. CLK. 614" FOR 1 SECONDS. 

JOB N 34 HEQUESTED THE SPSI PROCESSOR AT REL. CLK. 6159 SEC.. AND HAS SEIZED IT AT RFL. CLK. 61S9 FOR I SECONI)S. 

34 1 1 SPS OSC 6161 a 

34 1 1 OSC FMP 6163 0
 

34 2 1 GPH2 SC' 6164 1
 



FILE TRANSFER SUMMARY - PAGE 31 

JOB NO. FILE NO. NUMBER OF FROM 
 TO TRANSFER CORPLETEn AT DURATION
 
BLOCKS TRANSFERRED RELATIVE CLOCK TIHE(SEC)... OF TRANSFER (SEC.)
 

34 2 
 1 OsC FRP 6165 0
 

JOB A 38 REQUESTED THE SPS PROCESSOR AT REL. CLK, 6191 SEC., AND HAS SEIZED IT AT RFL. CLK. 6191 FOR I RECnNOS.
 

JOB S 76 REQUESTED THE SPS2 PROCESSOR 
AT REL. CLK. 6215 SEC., AND HAS SEIZED IT AT REL. CLK. 6215 FOR I SECONDS.
 
JOB 0 T3 REQUESTED THE SPSI PROCESSOR AT REL. CLK, 6126 SEC.# 
AND HAS SEIZED IT AT RAL. CLK. 6279 FOR )RD SECONDS. 

JOB # 97 REQUESTED THE SAS1 PROCESSOR 
AT REL. CLK. 6280 SEC., AN6 HAS SEIZED IT AT REL. CLK. 62BO FOR 360 SECnNOS.
 

87 7 2 SPS OPH2 6282 1 

JOB N 87 COMPLETE AT RELATIVE CLOCK . 6283 SEC. 

JOB 4 40 REQUESTED THE SPS1 PROCESSOR AT REL. CLK, 6291 SEC.. AND HAS SEIZED IT AT AFL. CLK, 6291 FOR I SECnNOS., 

40 1 2 SPS DSC 6294 0 

40 1 r DSC' FMP 6295 0 

40 2 1 OPH2 DEC 6296 1 

40 2 3 DC FlP 6297 0 

JOB # 44 REQUESTED THE SPS2 PROCESSOR AT PEL. CLK, 6357 SEC., AND HAS SEIZED IT AT REL. CLK. 6357 FOR I SECONDS, 

44 I 1 SPS DSC 6359 0 

44 1 DSeC FRP 6361 0 
44 2 1 GPHI DSC 6362 1 

44 2 1 DEC FMP 6363 0 
73 7 4 SPS BPHI 6462 2 

JOB 73 COMPLETE AT RELATIVE CLOCK . 6463 SEC. 

JOB 0 74 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 6480 SEC., AND HAS SEIZED IT AT REL. CLK. 6460 FOR I SECONDS. 

74 1 2 SPS DSC 6482 0 

74 1 2 DSC FMP 6483 a 

74 2 2 GPHS DSC 6486 2 



FILE TRANSFER SUMMARY - PAGE 32 

JOB NO. FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TIME(CEC)... OF TRANSFER ISEC.) 

JOB 777 HEQUESTED THE SPSZ PROCESSOR AT REL. CLK. 6486 SEC.. AND HAS SEIZED 1T AT REL. ELK. 6486 FOR I SECONDS. 

74 2 2 OSC FHP 6487 0 

77 1 2 SPS DEC 6489 0 

77 1 2 DSC PMP 6490 0 

77 a 2 OPHI SPS 6491 1 

JOB # 38 REOUESTED THE SPSI PROCESSOR AT AEL. CLK. 6492 SEC.. AND HAS SEIZED IT AT AFL. CLK. 6492 FOR I SECONDS. 

JOB M 77 HEQUESTED THE SPS2 PROCESSOR AT AEL. CLK. 6492 SEC., AND HAS SEIZED IT AT REL. ELK. 6492 FOR 80 SECONDS. 

74 3 19 SPS DSC 6493 6 

38 1 1 SPS DSC 6494 0 

14 3 19 DSC FMP 6495 0 

38 1 DOSC FMP 6495 0 

38 2 I GPH| 05C 6497 1 

38 2 1 OSC PIP 6498 0 

IO> JOB N 78 HEQUESTED THE SPS2 PROCESSOR AT REL. CLK. 652 SEC., AND HAS SEIZED IT AT RFL. CLK. 6522 FOR I SECONDS. 

JOB A 45 HEQUESTED THE SPS2 PROCESSOR AT REL. CLK. 6530 SEC.. AND HAS SEIZED 17 AT REL. CLK. 6530 FOR I SECONDS. 

77 2 2 SPS DSC 6574 0 

77 2 2 DSC FlP 657S 0 

77 3 19 SPS DSC 6581 5 

77 3 19 DOSC FP 6583 0 

97 7 3 SPS GPH2 6643 1 

JOB 0 97 COMPLETE AT RELATIVE CLOCK . 6644 SEC. 

JOB N 35 REUUESTED THE FMP PROCESSOR AT REL. CLK. 5376 SEC., AND HAS SEIZED IT AT AFL, ELK. 6655 FOR 10 qECNDS. 

98 0 8 FMP 0sc 6657 0 

98 8 8 DSC SPS 6660' 2 



XI.EIHNSI FM SU4M ARY- 'AaE .3 J7-%JY-ION 
q~ k St k~ At~ L I h k k k L :k k q -4 1 gfi. (SEC.)I. -k k t L k *nzSjFER 

J1.8 40. FILl N. NJHELP OF FR)M TO 'IRAI4SFEII COIIPLTEO IT? 
*I I *3 I I EILICKS IIAHlSFrRARED I I ? Ri.LAIIIE IILO$K3I(hUECJ..ct I itee4R 360 SECO"lDS. 

e:Ft oq 10 sECONDJS. 
J( 01 8 HEVUE;TEO 1HE SPi2 -RtCE!;SO AT I EL, CK, 61161 SEC ., AID '4A SI IZ"D IT AT Re C -- :I 

tB ) 32 NEIIUEITE) IRE FIP OR(CE!aSOI AT IEL., CLK, 51,46 SEC., At D 4A9 SIiZ:D IT AT RE.. C--= -a' 
0 

a 2 F IP DS: t 6A 
a;~~~ 8 2s- IP S 6A ' FlR 60 SECONDS. 

3. a 2 1 .AI- 01AC1t SP.3 1663 ( _$~FOR DSCNS 

i A 35 Ei UFl!E) 1Hf SPI P1R(M.SOI AT I.IEL C.K. 61,69 SEC., A110 A5 SI IZ D IT AT RE._, C-..
3 

h I 19 E(UE'VTJ 1HEI' rip PR(COS&I IT IEL' CLK? 5',63:S(C. AID A SI'IZtD TC- S• 

9 90 F4P DS: -. 6N0 

it B '3 1E(UE.TEj AHE ftF 4P ',RCE;Sd4t I 'EL'\, ILK, 5I0'llSEC. 1' AN) 4A5 Shitl 20.D 7T mATR 
3 t 

-. 

9 4 3 ( 3 ' F, - FOR 10 SECONDS. 

HUE) '4P PR(4CE AT EL 5087 4.0 SII.D AT RE.HA C-J(R 1 41 WEIUE 1 HE SOB I
1 CLK SEC, 1A IT 

cE ;S . 1E . f8 3 E . I T ATtR - 2 

60 SECONDS." ) t ISFOR; ( L~ U.;k 1F P I R Ct;. I FL C 6 0 SE , A,. SIIA!IE[D iT TR:*-. t 4=, 

R " 3 ' -' ' S FOR 10 SECONDS.
1


it B '33 'EI'IUE';TEJ 1HE'SP'il 'O 'RCE'(S4 h IEL', CLK, 6:'01SEC. A ID OAJ SIC'ZD 'T T1 AT, RF:.. " ,', l 

' 
I 00J(HLEIiUL , HE FlP PR('CE'(SO AT I'EL, C K' SD02 SIC.' AID AI, SrIMED IT AT RE'.. C-" -71 3 

i I I r r DS I 33 t I I 
- ' I FOR 60 SECON.is 

1N)4. 8 1,2 Dic F sp Isle17960SCN.
 

I~it,1 t Lflc4JUlj06) 1HE'SP';lI PR(lCE S&i ; I EL', CLK 6 1io SEt. A 4 1
'D Rt . a4f 4D SIZ 'IT 'AT. -C5 1L1 

it(8 1; 18 NEIUEIT) 1IHE $iP P81 CE;SIB AT 1EL CLK,1 5:46 S1EC., AIM44A SI'IZ D IT AT RE-. C
3 t13 I. , 3 ' 49 

t

3J 9 q50 IIP oS I 3 

3 i 9 g 0 t I r DU It 5p33 I' &70 
OR 60 SECONDS.
RE'FI#ol,J('83" ~ MfL ~I A - 471.SC 3 

I '0( 3I COILU IO~ , 31 I C I tT ESTT~E 

it68 1 32 hElHUEjE IREE) ,5 PAI' 0S~AT I'EL1 CLK! 6!031 Sf C.'A4D0NAI Sh.IZ'D IT AT RE-. 41I! - 2?4 
* ~ ~ ~S.~~~ ''- .CX1HP1 FOR I SECONDS. 

31 9 90 D.C i.SPS - 7" - -- C-FR69SCNS 
- I FO 603ECODS 

016 it 75$'EIIUE'iTE0 THE' SF032 BPRO'CEI;5dR IT IEL', CLK. 6'f4liSC'Aq A l~-DW T t
1


(a A 3)9LE 'TE 1 HE SF uVRCESdIIT I EL, CLK.' 6 'IS SIC.' AD HMA.S. tO a'T AT' p. :Q--
E HI~~ IEII

I~~~ ~~ 
J(.3?pCO,D'LEjE 1 RE1'ATIVE dCI'O4 k761 SC. 

http:SECON.is


FILE TRANSFER SUMMARY - PAGE 3A 

JOB NO. FILE NO. NUMBER OF FROM To TRANSFER COMPLETED AT I)URATION 
BLOCKS TRANSFERRED RELATIVE CLOCK TIME(5C)... OF TRANSFER (SEC.) 

30 9 90 OSC SPS 6765 40 

JOB 0 30 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 6766 SEC.. AND HAS SEIZED IT AT REL. CLK. 6766 FOR 60 SECONDS. 

JUG v 79 REQUESTED THE SPSZ PROCESSOR AT REL. CLK. 6767 SEC.. AND HAS SEIZED IT AT PFL, CLK. 6767 FOR I SECO-DS. 

JOB 0 41 COMPLETE AT RELATIVE CLOCK . 6771 SEC. 

JUB X 99 REQUESTED THE FMP PROCESSOR AT REL. CLK. 5950 SEC.. AND HAS SEIZED IT AT REL, CLK. 6775 FOR 10 StCnNDS. 

88 9 220 FF4 DSC 6784 7 

88 8 3 FMP 05C 6785 0 

JOB 442 REQUESTED THE FMP PROCESSOR AT REL. CLK. 6085 SEC.. AND HAS SEIZED IT AT REL, CLK. 6785 FOR 10 SECnNDS. 

88 8 3 OSC SPS 6787 2 

JOB 0 88 REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 6788 SEC.. AND HAS SEIZED IT AT REL, CLK. 6788 FOR 300 SECONDS. 

JOB 0 32 COMPLETE AT RELATIVE CLOCK . 6792 SEC. 

JOB N 43 REQUESTED THE FMP PROCESSOR At REL. CLK. 6095 SEC., AND HAS SEIZED IT AT REL. eLK. 6795 FOR 10 SECONDS. 

42 8 2 FHP DSC 6797 0 

42 8 2 OSC SPS 6798 0 

JOB * 42 REQUESTED THE SP52 PROCESSOR AT REL. CLK. 6799 SEC., AND HAS SEIZED IT AT REL. CLK. 6799 FOR 60 SECO DS. 

JO 0 36 REQUESTED THE FMP PROCESSOR AT REL. CLK. 6134 SEC., AND HAS SEIZED IT AT REL, CLK. 6805 FOR 10 SECONDS. 

43 9 90 FMP DSC 6810 3 

JOB 0 39 COMPLETE AT RELATIVE CLOCK . 6811 SEC. 

JOB N 37 REQUESTED THE FMP PROCESSOR AT REL. CLK. 6135 SEC., AND HAS SEIZED IT AT REL. CLK. 6815 FOR 10 SECONDS. 

36 9 90 FMP DC 6820 3 

JOB 0 34 REQUESTED THE FHP PROCESSOR AT REL. CLK. 6166 SEC.. AND HAS SEIZED IT AT REL. CLK. 6825 FOR 10 SECONDS. 

37 8 2 FKP DEC 6827 0 

JOB 0 30 COMPLETE AT RELATIVE CLOCK . 6827 SEC. 

37 a 2 DSC SPS 6829 1 

JOB N 37 REQUESTED THE $PS1 PROCESSOR AT REL. CLK. 6830 SEC., AND HAS SEIZED IT AT REL. CLK. 6830 FOR 60 SECONDS. 



FILE TRANSFER SUMMARy - PAGE 35 

JOB NO. FILE NO. NUMSER OF FROM TO TRANSFER COMPLETED AT DURATION
 
BLOCKS TRANSFERRED RELATIVE CLOCK TIME(SECI,., OF TRANSFER (SErC.
 

JOB A 40 REQUESTED THE FlP PROCESSOR AT REL. CLK* 6298 SEC.. AND HAS SEIZED IT AT AFL. CLK. 6835 FOR 10 SECnODS.,
 

34 8 2 FMP DC 6837 0
 

34 8 2 05C SPS 6839 1
 

JOB A 34 REQUESTED THE SPSI PROCESSOR AT REL, CLK. 6840 SEC.. AND HAS SEIZED IT AT REL. CLK. 6840 FOR 60 SECnOOS.
 

JOB 4 44 REQUESTED THE FHP PROCESSOR AT REL. CLK, 6364 SEC.. AND HAS SEIZED IT AT RFL. CLK. 6845 FOR 10 qFCA-1S.
 

36 9 90 DSC SPS 6849 28
 

JOB 4 36 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 6850 SEC.. AND HAS SEIZED IT AT AFL. CLK. 6850 FOR 60 SFCANDS.
 

40 9 90 FMP DSC 6850 4
 

JOB 0 74 REQUESTED THE FMP PROCESSOR AT REL. CLK. 6496 SEC.. AND HAS SEIZED IT AT RAL. CLK. 6855 FOR 60 qFCOnOq.
 

JOB W 42 COMPLETE AT RELATIVE CLOCK . 6860 SEC.
 

44 9 90 FlP DC 6862 5
 

JOB N 37 COMPLETE AT RELATIVE CLOCK - 6R91 SEC.
 

40 9 90 OSC SPS 6896. 44
 

JOB f 40 REQUESTEO THE SPS1 PROCESSOR AT REL. CLK. 6897 SEC., AND HAS SEIZED IT AT REL. CLK, 6847 FOR 60 5FcnOnS.
 

JOB N 34 COMPLETE AT RELATIVE CLOCK . 6901 SEC.
 

JOB A 36 COMPLETE AT RELATIVE CLOCK . 6911 SEC.
 

43 9 90 DSC SPS 6913 53
 

44 9 90 D0C SPS 6915 52
 

JOB $ 43 REQUESTED THE SPS2 PROCESSOR AT REL. CLX, 6914 SEC., AND HAS SEIZED IT AT AFL. CLK. 691b FOR 60 qFr'OS.
 

JUB 0 38 HEUUESTEO THE FMP PROCESSOR AT REL. CLK. 6499 SEC., AND HAS SEIZED IT AT AFL. CLK. 691b FOR 30 qFEOnOS,
 

74 
 a 12 FMP DC 6917 0
 

74 a 12 DSC SPS 6922 3
 

JOB * 74 HEQUESTEO THE SPS1 PROCESSOR AT REL. CLK. 6923 SEC., AND HAS SEIZED IT AT AFL. CLK. 6923 FOR 360 SFC-,"DS.
 

JOB 4 77 REQUESTED THE FHP PROCESSOR AT REL. CLK, 6584 SEC., AND HAS SEIZED IT AT AFL, CLK. 6925 FOR 60 SFC-OS.
 

JOB A 46 REQUESTED THE 5PS PROCESSOR AT REL. CLK. 6926 SEC.. 
AND HAS SEIZED IT AT AFL. CLK, 692b FOR I SECONrI,. 



FILE TRANSFER SUMMARY - PAGE 36 

NU48ER OF - 9ROjz TO TPANSFER COMOLETE AT DURATION 

C.OCKS TPAN5FE-RED qELATVE CLOCI TIRFISEC),... OF TRANSFER (SEC.) 

joqJ N9. :FL4.ENOt a ,- FP S 	 6f 

OSC SPS 6929 o 

38 --E .PSI PROCESSOR AT REL, CLK. 6929 SEC, AND HAS SEZZES 'T AT REL. CLK. 6929 FOR 60 qECnNOS. 

38 - 4C COMP ETE AT RELATIVE CLOCK * 6958 SEC. 

JOE N 33 REOthES [ED 7I. 
-E $PS2 ESSOR AT AFL. 6916 SEC., ANG HAS SEIZE0 T AT CLK. 6975 FOR 60 SECO'DS.-RO CLK. 	 REL. 

4 4ZA COMPLETE AT RELATIVE CLOCK = 6976 SEC.
 
JUF 0 41 AEOLIESrEC , - -


PRO ESaORSO NPAT REL. CLK. 6786 SEC., ANI H;S SEIZED IT AT RFL. CLK. 6985 FOR 600 q CnNq. 

e FMP - DSC 698" 0 
JOE 0 99 hEOLIESrED T' 6CMPE~A RLTV 

i 1 60 3 CUMP ETE AT RELATVE CLOCK - 6990 SEC. 
TE;77 5PC 2 PRO ESOR AT REL. CLK. Ea16 SEC., AND HAS SEIZED IT AT REL CLK. 7021 FOR I SF.CnDQ. 

DSC SPS 7023 2 

JOEI N 76 frEGIiESrEO T:~72S"SPS" 	 DSC 702- 0
 

77I 1a I I HE SPSZ CREO AT REL. CLK. -022 SEC.. AND HAS SEIZED IT AT REL. ClLK.7024 FOR 360 SFCO"OS. 

"IP76 1 


.6 AP 998 E ';4! 
 2
 
IOPHI SC
 

76 1 P??2 0SC 


76 -. 2L
 
I )'= a4 C HPLETE AT RELATIVE CLOCK 7036 SEC. 

,, 6219 	 SS DSC 7W4 s 

19 OSC FHP 7042 0 

76 3 1, 
T-E SP 0'RC-CESOR AT PEL. CLI. 7024 SEC., AND HAS SEIZED IT AT REL. CLK, 7088 FOR 180 SECONDS. 

76 3 7HE SlPI "ROCESSOR AT REL. CLK. 7089 SEC., AND HAS SEIZED IT AT RFL. CLK. 7089 FOR I qECO,.S. 

J011 P. 77 FIEQUESTEGTI'- - - - -- --	 1 
2 -SPS 8PHM 	 n
 

"
 
Joll , 47 lIEOJESTE T- - -

S IA N 8 CZMFLEVE AT RELATIVE CLOCK a 7092 SEC. 

I SPS FSC ?092 a 
* 	 c- zI zd- - '- -

I 05C - PP V093 0 
41 1 

47 



FILE TRANSFER SUMMARY - PAGE 37 

JOB NO. FILE NO. NUMBER OF FROM TO TRANSFER COMPLETED AT DURATION 

BLOCKS TRANSFERRED RELATIVE CLOCK TTME(SECI... OF TRANSFER (SEC.) 

47 2 1 GPHI DSC 7094 1 

47 2 1 DSC FMP 7095 0 

JUB N 465REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 7131 SEC., AND HAS SEIZED IT AT REL. ,CL. 7131 FOR I SFCONOS. 

45 1 1 SPS DSC 7133 0 

45 1 1 OSC FMP 7134 0 

45 2 1 GPHI OSC 7136 1 

45 2 1 DSC FMP 7137 0 

JUG V 48 REQUESTED THE SPSI PROCESSOR AT REL. CLK4 7148 SEC.. AND HAS SEIZED IT AT REL, CLK. 7148 FOR I SECONDS. 

JOB 0 75 REQUESTED THE 3PS2 PROCESSOR AT REL. CLK. 7050 SEC., AND HAS SEIZED IT AT REl', CLK. 7268 FOR I SECONDS. 

JOB 0 78 HEQUESrED THE SPSB PROCESSOR AT REL. CLK. 7123 SEC.. AND HAS SEIZED IT AT REL. CLK. 7269 FOR I SECnNOS. 

75 1 2 SPS DSC 7271 

77 7 4 S9 GPHl 7272 2 

75 1 2 OSC FMP 7273 0 

JOB 0 77 COMPLETE AT RELATIVE CLOCK s 7273 SEC. 

75 2 2 OPHI DSC 7275 2 

0' 75 2 2 OSC FF1 7276 0 

75 3 19 SP5 0SC 7282 s 

75 3 19 DSC FRP 7283 0 

74 7 8 SPS GPH1 7289 4 

JOB f 74 COMPLETE AT RELATIVE CLOCK - 7290 SEC. 

JOB f 80 HEQUESTED THE 551 PROCESSOR AT REL, CLK, 7302 SEC.. AND HAS SEIZED IT AT REL, CLK, 7302 FOR I SECONDS. 

JOB 0 49 REQUESTED THE SPS1 PROCESSOR AT REL. CLK. 7347 SEC.. AND HAS SEIZED IT AT REL, CLK. 7347 FOR I SECONDS. 



FILE TRANSFER SUMMARY - PAGE 	38
 

JOB NO. FILE NO. NUMBER OF FROM TO TRANSFER COMPLETEn AT DURATION
 

OLOCKS TRANSFERRED 
 RELATIVE CLOCK TIMF(SECI... 	 OF TRANSFER tSEF.)
 

JOB M 79 NEIUESTED THE SPS2 PROCESSOR AT REL. CLK. 7368 SEC., AND HAS SEIZED IT AT REL. eLK. 7368 FOR 


JOB # 50 HEQUESTED THE SPSI PROCESSOR AT REL. CLK. 7354 SEC.. AND HAS SEIZED IT AT PEL. CLK. 7354 FOR I SECNi)S. 

JOB 0 99 HEQUESTED THE SPSI PROCESSOR AT REL. CLK. 7357 SEC.. AND HAS SEIZED IT AT PFL; CLK, 7357 FOR 3 qECnii)S. 

JUG0 51 HEQUESTED THE SPSz PROCESSOR AT REL. CLK. 7358 SEC., AND HAS SEIZED IT AT RFL. CLK. 73 5a FOR I qFrnri)S. 

51 1 1 SPS DSC 7360 

51 1 1 DSC FMP 7361 

51 2 1 OPHI DSC 7363 

89 1 4 SPS DSC 7363 I 

S1 2 1 DSC FHP 7364 

09 1 4 DSC FMP 7364 

89 2 4 SPS DSC 7366 1 

89 2 4 DSC FMP 7367 0 

I SECNDOS. 

1 2 SPS DSC 7371 0
 

79 1 2 DSC FNP 7372 0
 

79 


2
GPHI DSC 7375 


DSC FMP 7376 0
 

79 	 2 2 


79 2 2 


19 SPS DSC 7382 5
79 	 3 


3 19 DSC FMP 7383 0
79 


98 7 
 3 SPS GPH2 7387 1
 

JOB 0 98 COMPLETE AT RELATIVE CLOCK - 7388 SEC.
 

I SECONDS.
AND HAS SEIED IT AT RFL. CLK. 7527 FOR
JOB 0 46 HEOUESTED THE SPSI 	PROCESSOR AT REL. eLK. 7527 SEC.. 


ANO HAS SEIZED IT AT RFL. CLK. 753b FOR I SECONDs.
JOB 0 52 HEUUESTED THE SPSI 	PROCESSOR AT REL. CLK. 7535 SEC.* 


1 SPS DSC 7537 0
52 	 1 




FILE TRANSFER SUMMARY - PAGE 39
 

JOB flO. FILE NO, NUMBER OF FROM TO TRANSFER COMPLETEn AT 41URATION
 
BLOCKS TRANSFERRED RELATIVE CLOCK TI4(SFC)... nF TRANSFER (SEC.1
 

52 1 1 DSC FMP 7538 0 

52 2 1 OPHI DC 7540 1 

52 2 1 0C FAP 7641 0 

JOB # 78 REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 7570 SEC.. AND HAS SEIZED IT AT REL. CLK. 7570 FOR I SErnONS. 

78 1 2 SPS 0SC 7573 0
 

7 1 2 D0C FMP 757?4 0
 

78 2 2 OPHI DC 7577 2
 

78 2 2 OSC FM 7578 0
 

78 3 19 SPS DC 7584 5
 

JOB 0 76 REQUESTED THE FMP PROCESSOR AT REL. CLK. 7043 SEC.. AND HAS SEIZED IT AT REL CLK. 7585 FOR 40 SECONDS.
 

78 3 19 OSC FMP 7686 0
 

99 8 8 FRP DC 7587 0
 

99 8 8 0C" SPS 7590 2
 

JOB # 99 HEQUESTED THE SPSt PROCESSOR AT REL. CLK. 7591 SEC., AND HAS SEIZED IT AT REL. CLK. 7591 FOR 360 SECONDS.
 

JOB 0 81 REQUESTED THE SPS1 PROCESSOR AT REL. CLK. 7595 SEC.. AND HAS SEIZED IT AT REL, CLK. 7595 FOR I SECONDS.
 

JOG 0 47 kEQUESTED THE FMP PROCESSOR AT REL. CLK. 7096 SEC., 
AND HAS SEIZED IT AT REL. CLK. 7645 FOR 10 SECONDS. 

76 9 125 FAP DC 7661 4 

JOB # 45 REQUESTED THE FMP PROCESSOR AT REL. CLK. 7138 SEC., AND HAS SEIZED IT At RFL, CLK. 7655 FOR 20 SECONDS. 

47 a 2 FmP DSC 7657 0
 

76 91 125 FRP DC 7658 6
 

47 8 2 DC SPS 7659 0
 

JOB0 47 REQUESTED THE SPSI PROCESSOR AT REL. CLK. 7660 SEC., AND HAS SEIZED IT AT RFL. CLK. 7660 FOR 60 SECONOS.
 

JUB 0 75 REQUESTED THE FHP PROCESSOR AT REL. CLK. 7284 SEC., AND HAS SEIZED IT AT REL. CLK. 7665 FOR 60 SFcONDS.
 

45 a 2 FIP Dc 7667 0
 

45 8 2 0SC SPS 7670 2
 



FILE TRANSFER SUMMARY - PAGE 40
 

NUMBER OF FROM TO TRANSFER COMPLETEn AT UURATION
 

BLOCKS TRANSFERRED RELATIVE CLOCK TIME(SECI.,. OF TRANSFER (SFC.)
 

AND HAS SEIZED IT AT RFL. CLK. 7671 FOR 60 SECONDS.
 

JOB NO. FILE NO. 


JOB 0 45 REQUESTED THE SPS2 PROCESSOR AT REL. CLK. 7671 SEC., 




I 

SIMULATION COMPLETE. SUMMARY STATISTICS --

THE FOLLOWING STATISTICS SUMMARIZE THE UTILIZATION OF THE PROPOSED NASF HANiOWANE. 

I THE TIME UNIT IS 10-ICHOSECONDS UNLLSS OTHERWISE NOTED U1 

QUEUING STATISTICS FOR THE FMP AND SPSIS
 

,QUEUE MAAIMUM AVERAGE 
 TOTAL ZERO PERCENT AVERAbE $AVFHAGE

CONTENTS CONTENTS ENTRIES ENTRIES 
 ZEROS TIME/THAN TIME/THAN
 

FMPQ is 5,266 86 13 15.1 41169699.837 56341585.917
 
SPSQ 2 0.067 Mfl 
 113 91.9 .417593.496 5136400.000
SPS2Q 3 0.154 95 78 
 82.1 1246734.474 696704S.588
 

UTILIZATION OF THE FMP
 

FACILITY AVERAGE' 
 NUMBER AVERAGE
 

K) UTILIZATION ENTRIES TIME/TRAN
 

UTILIZATION OF THE SPS AND SRF DEVICES
 
I CONTENTS ARE PERCENTAGES I
 

STORAGE AVERAGE ENTRIES 
 AVERAGE CURRENT NAXIMUv

I UTILIZATION TIME/TRAN CONTENTS CONTENTS
 

SPSI 0.469 3508 1029041.105 32 100
P:2 
 U.4564 3049 11472069.764 82 10
 
ORFI 
 0.054 1535 2726690.16b 
 5 35
GRF? 0.053 1295 3173179.564 S 35
 



1.2 PSR 453 03/17/79 15.03.53. PAGE 35n
 
AMULN HILLS CYULR 175 GPSS V/6000 CHM GPSS V/6000 VER. 


UTILIZATION Of THE BIT SERIAL DATA THUNKS
 

NUMBER AVEHAGE
 
UTILIZATION ENTRIES 


FACILITY AVERAGE 

TIME/THAN
 

1 0.021 2907 5593.985
 

! 0.021 
 2901 5580.226
 

0.021 2930 5530.615
3 

2929 5573.453
4 0.021 


5 0.006 797 5929.868
 

6 0.093 5633 12781.175 
1 0.069 4149 12752.913
 

TRUNK
MESSAGE TURNAROUND STATISTICS FOR EACH 


UUEUE MAXIMUM AVERAGE TOTAL AVERAGE 

CONTENTS CONTENTS ENTRIES TIME/TRAN 

1 
2 

2 
2 

0.026 
0.026 

2658 
2630 

7591.124 
7619.799 

3 2 0.026 2660 74417933 

4 2 0.027 2666 7682.457 

5 2 0.006 750 6321.996 

6 3 0.130 5152 19513.780 

7 4 0.106 3781 21659.589 

http:15.03.53


AHDEN HILLS CYBER 175 GPS V/6000 CR GPSS V/6000 VER, 1.2 PSR 453 03/1717q 15.03.53. PAGE 351
 

UTILIZArION OF !HE POO UNITS 

STORAGE AVERAGE 
CONTENTS 

AVERAGE 
UTILIZATION 

ENTRIES AVERAGE 
TIME/TRAN 

I 
4 
5 
6 
T 

13 
14 
17 
is 
22 
23 
24 
25 
26 
27 
28 
29 
3' 
38 

0.000 
O.02l 
0.041 
0.021 
0.021 
0.003 
0.09 
0.003 
0.062 
0.021 
0.041 
0.021 
0.040 
O.O|
0.041 
0.041 
0,040 
0.010 
0.000 

0.000 
0.021 
0.021 
0.021 
0.021 
0.003 
00069 
0.003 
0.062 
0.021 
0.041 
0.021 
0.040 
0.021 
0.041 
0.021 
0.040 
0.010 
0.008 

286 
2907 
2901 
2930 
2929 
409 

5348 
308 
3753 
2907 
2447 
2901 
2432 
2930 
2469 
2929 
2482 
656 
542 

1.934 
5593.985 
5500.226 
0530.615 
5573.463 
5801.85 

12782.166 
6064.778 

12771.041 
5593.9B5 
12753.39S 
5580.226 
12818.886 
5530.615 
12739.771 
5573.453 

12518.376 
11249.959 
11005.589 

N) 

Nl) 

http:15.03.53


AHUEN HILLS CYUER 175 GPbS V/6000 CRH GPSS V/6000 VER. 1.2 PSR 453 03/17/79 15.03.53. PAGE 352 

HISTOGRAM OF DISC ACCESS TIMES 

25 

20 

PERCENtAGE 
15 

OF THE 

ITABLE-b TOTAL 

I ENTRIES 10 

ro ..... 

LA) .. 0 . 

0 30 60 90 12 150 

ACCESS TIME IN MILLESECUNDS 

http:15.03.53


I 

AHUEN HILLS CYSER 175 GPbS V/6000 CHN GPSS V/S000 VER, 1.2 PSR 453 03/17/79 15.03.53. PAGE 3%1
 

HISTOGRAM OF BLOCK TRANSFER TIMES
 

PERCENTAGE •
 

[ ~OF •e
THE 


TABLES TOTAL
 

i'o 

TRANSFER TIME IN SECONDS
 

NOTES ABOUT 50 PERCENT OF THIS TABLE'S ENTRIES ARE CONTAINED IN THE FIRST BIN I.ILT. .02 SEV).
 
THEY ARE THE SHORT MESSAGE REQUESTS AND RESPONSES AND ARE THEREFORE LEFT OFF THIS GRAPH.
 
CONSEQUENTLY. THE Oyl-AXIS SHOULD BE READ AS TWICE THE NOTED VALUE.
 

http:15.03.53


w
 

a in
 

C
 

m
e, 

N
 

F
-

N
 C
, 

S
 * 

-
N

 
S

 


-J 
*
 

-.5
 
C

, 
-

S

 

in
 

s 
S

 
-* 

in
 

. 
* * 

~0 
a-

S
 

0
 

* 
in

 
a 

I&
tn

 
S

 
C

5-
z 

N
 

5 
0 

U
, 00 

S
 

U
 

.1
 

-.J
L

'2
 

S
 

Iji 
-a 

a
 

*-~ 
in

 
-

S 
a 

00 
5
 

Z
 

i.e 
S

 


a 
4 

k. 
Z

 
S

 
iaJ 

in 
.~

 o. 
r 

S
 

o 
4~

IL 
*.0 


o 

a 
S

 
o 

F
-tq

w
 

S
 

a 
0 

S
 

It 
N

 
i&

la
J
-

5. 
0
.4

 
S

 
in

 
S

 
Z

 
to 

1
-U

, 
* 

4 
C

e, 
4 

L
It 

54 
a 

S
 

-
C

, 
S 

0-n
.j 

a 
I 

S
.
 

I 
in

tL
 

S

 

U
 

* 
I 

S* 
-

N
S

 S
 

S
 5

5
5
5
* 

55555 
*S

S
a.S

S
S

*S
.S

S
S

S
*S

S
S

 
55 

* 
55** 

55555555555*5555555-c 
o 

a 
a
 

0
 

0 

o 
0 

0
 

5 
N

 

o 
-5 

0
 

4 
N

 
iii 


0 

0
 
4
 

U
S

 
-

in
 

in
 

I-. 
I 

C
a 

in 
I 

-
to 

-. 
a 

Ill 
-

a 
o 

0 
C

L
 

U
S 

a 
a 

.a 
I 

In
 

'L
i 

0 
U

J 
F-. 

0. 
4C

-. 

a a C
.) 

-5 

-I 

I I "A
 

0 I 

1
1

-A
-i 25 



ARDEN HILLS CYBER 175 GPSS V/600O CR4 GPSS V/6000 VER. 1.2 PSR 453 03/17/79 15.03.53. PAGE 955
 

HISTOGRAM OF TRANSFER TIMES FOR INTERMEDIATE 
SIZE FILES (MORE THAN 9 RLOCKtS. LESS THAN 1DI 

BETWEEN THE FMP ARC DSC 

100 

80* 

PERCENTAGE * 

60 * 

OF THE 

TABLE'S TOTAL 

ENTRIES 40 * 

20 0 A, 

0... 0 .. ...... .. 

0 5 10 is 2o 25 

TRANSFER TIME IN SECONDS 

http:15.03.53


AhUEN HILLS CYUER 175 GPb5 V/6000 CAM GPSS V/6000 YEN. 1.2 PSR 453 03/17/79 15.03.53. PAGE 36 

HISTORHAM OF TRANSFER TIMES FUR ALL FILES 

BETWEEN THE FHP ANO DSC 

100 * 

* 

I. 

N) 

. PEHCENTAGE 

OF THE 

TABLE'S TOTAL 

ENTRIES 

o. 
4* 

*4 

*4 

60 *4 

.4 

40 *4 

e44 

to 
44 

20 *4 
4* 

44 
*0 

.. . .. . . ............................... 

0 10 20 30 40 50 

TRANSFER TIME IN SECONDS 

NOTE* THIS GRAPH IS THE APPROPRIArE SUM OF TABLES '1FMPA4, "FMPB'., AND IFMPC"'. 



ARDEN HILLS CYBER 175 GPSS V/6000 CHN 6PSS V/6000 VER. 1.2 PSR 453 03/17/179 15.03.54. PAGE 357
 

too 

HISTOGRAM OF TRANSFER TIMES FOR SMALL 
FILES ( LESS THAN 10 BLOCKS ) 
BETWEEN THE SPS AND OSC 

so 

-

-

PERCENTAGE 

OFIHE 

TABLE'S TOTAL 

ENTRIES 

60 

40 

* 

* 

00

20 

me 

A,.............. 

t 

0 5 

S 

10 

........ 

I 

15 

S 

20 25 

TRANSFER TIME IN SECONDS 

http:15.03.54


ARDEN HILLS CYUER 175 GPSS V/6000 CNN GPSS V/6000 VER. 1.2 PSR 453 01/17/79 15.03.54. PAGE 19R 

100 

HISTOGRAM OF TRANSFER TIMES FOR INTERMEDIATE 
SIZE FILES (MORE THAN 9 BLOCKS, LESS THAN 1001 

BETWEEN THE SPS AND iiSC 

-~~ 

PERCENTAGEf 

OF THE 

TABLEPS TOTAL 

ENTRIES 

00 

60 

40 

• 

i 

•f 

0)..... 20 10 .................... 24 

TRANSFER TIME IN SECONDS 



AhUEN HILLS CyVER 17S GPbS V/6000 CHN GPSS V/6000 VEA. 1,2 PSR 453 03/17/79 15.03.54. PAGE 359
 

HISTOGRAM OF TRANSFER TIMES FUR ALL FILES 
BETWEEN THE SPS AND DSC 

100 

* 

* 

80 
* go 

-..j PERCENTAbE *e 

60 * 
"I OF THE 

e0* 

TA8LE'b TOTAL *' 

ENTRIES 40 

0 C)* 0 *0 
0* 
*0 

20 
*0 

.0 

0* 

0 20 40 60 s0 100 

TRANSFER TINE IN SECONDS 

NOTE, THIS GRAPH IS THE APPROPRIATE SUM OF TABLES, *SPSA0' "SPSB", AND "SPSC". 

http:15.03.54


AMOEN HILLS CYBER 
UPPER 

175 OPSS V/6000 
0OSERVED PER CENT 

CRM OPSS V16000 
CUMULATIVE 

YEW. I.? PSR 453 03/17/79 15.03.54. 
CUMULArIVF MULTIPLF DEVIATION 

PAGE 36P 

LIMIT FREQUENCY OF TOTAL PERCENTAGE REMAINOER OF MEAN FRnM MEAN 

820 15 0.08 99.77 0.23 6.230 4.339 
830 3 0.02 99.79 0.21 6.306 4.402 
840 1 0.01 99.79 0.P1 6.382 4.46 
Bb0 40 0.21 100.00 0.00 6.45R 4.528 

TABLE DISC 
ENTRIES IN TABLE MEAN ARGUMENT STANDARD DEVIATION SlIMOF ARGLMENTSI 

9773 27.442 29.074 268191.0001 

UPPER UUSERVEO PER CENT CUMULATIVE CUULATIVE sIJLTIPLE DEVIATION 
LIMIT FHEQUENCY OF TOTAL PERCENTAGE REMAINDER OF MEAN FhnM MEAN 

3 
6 

1094 
856 

11.19 
8.76 

11.19 
19.95 

98.R1 
80.08 

0.109 
0.219 

-.,840 
-0.737 

9 875 8.95 28.91 71,09 0.328 -0.633 
12 831 8.50 37.41 62.59 0.437 -0.530 
1 848 8.68 46.09 53.91 0.547 -0,427 
18 
21 

871 
834 

8.91 
8.53 

55.00 
63.53 

45.00 
36.47 

0.656 
0.765 

.0.324 
-0.221 

24 
27 

92j 
68 

9.42 
0.70 

72.96 
73.65 

27.04 
26.35 

0.875 
0.984 

-0.117 
.0.014 

30 75 0.77 74.42 26.58 1.093 0.088 
33 101 1.03 78.45 24.59 1.203 0.191 
36 93 0.95 76.40 23.60 1.312 0,294 
39 03 0.85 77.25 22.73 1,421 0.398 
4z 92 0.94 78.20 21.80 1.530 0.501 
45 
48 

102 
104 

1.04 
1.06 

79.24 
80.30 

20.76 
19,70 

1.640 
1.749 

0,604 
0.707 

> 
* 

51 
54 
57 

lob 
91 
95 

1.11 
0.93 
0.97 

81.41 
82.34 
83.31 

18,59 
17.66 
16.69 

1.858 
1.968 
2.077 

0.810 
0.913 
1.017 

- 0 86 0.88 84.19 15,81 2.186 1.120 
L 63 90 0.92 85.11 14.89 2.296 1.223 

66 81 0.83 85.94 14.06 2.405 1.326 
69 
72 

86 
99 

0.88 
1.01 

86.82 
87.83 

13.18 
12.17 

2.514 
2.624 

1.429 
1.533 

75 91 0.93 88.76 11.?4 2.r33 1.636 
78 78 0.80 89.56 10.44 2.842 1.739 
81 91 0.93 90.49 9.51 2.952 1.842 
84 102 1.04 91.54 8.46 3.061 1.945 
87 93 0.95 92.49 7.51 3.170 2.049 
90 
93 

a8 
99 

0.90 
1.01 

93.39 
94.40 

6.61 
5.60 

3.280 
3.389 

2.152 
2.255 

96 90 0.92 95.32 4.68 3.498 2.358 
99 83 0.85 96.17 3.83 3.608 2.461 

102 79 0.81 96.98 3.02 3.717 2,564 
105 67 0.69 97.67 2.33 3.826 R.668 
108 70 0.72 98.38 1,62 3.936 2.771 
111 
114 

61 
33 

0.62 
0.34 

99.01 
99.3S 

0.99 
0.65 

4.045 
4.184 

2,874 
2.977 

117 33 0.34 99.68 0.32 4.264 3.080 
120 24 0.25 99.93 0.07 4.373 3.184 
123 7 0.07 100.00 0.00 4.462 3,287 

TABLE OPHA 



ARDEN HILLS CYBER 175 GPS V/6000 CR4 GPSS V/60O0 VER. 1.2 PSR 453 
 03/I/77 15.03.S4. PAGE 360 

TURNAROUND STATISTICS FOR MESSAGES AND FILES
 
TABLE TUTOP
ENTRIES IN TABLE 


1107 


UPPER 

LIMIT 


100 

200 

300 

400 

500 

boo 

700 

d00 

900 


TABLE TOTAL
 
ENTRIES IN TABLE 


19189 


UPPER 

LIMIT 


10
CA) 
 20 

30 


40 

b0 


bO 

70 

80 

90 

100 

Ito 

120 

130 

140 

150 

160 

170 

180 

190 

200 

210 

220 

230 

240 

250 


MEAN AHGUMENT 


130.061 


V$SERVED PER CENT 

FHEQUENCY OF TOTAL 


520 46.97 

256 23.13 

286 25.84 

26 2.35 

2 0.18 


l3 2.27 

1 0.09 

1 0.09 

2 0.18 

MEAN ARGUMENT 


OBSERVED 

FREQUENCY 


8237 

13 

20 


17 

I 


14 

9 


16 

14 


119 

1119 

1345 

1645 

577 

389 

160 

58 

41 

31 

IJ 
Id 
IT 

19 

17 

5 


131.626 


PER CENT 

OF TOTAL 


42.93

0.07 
0.10 


0.09 
0.06 


0.07 
0.05 

0.08 

0.07 

0.62 

5.83 

7.01 

8.5T 

3.01 

2.03 

0.83 

0.30 

0.21 

0.16 

0.10 

0.09 

0.09 

0.10 

0.09 

0.03 


STANDARD DEVIATION 


122.197 


CUMULATIVE CUMULATIVE 

PERCENTAGE REMAINDER 


46.97 53.03 

70.10 29.90 

95.93 4.07 

98.28 1.72 

98.46 1.54 

99,64 0.36 

99.73 0.27 

99.82 0.18


100.00 0.00 

STANDARD DEVIATION 


158.653 


CUMULATIVE CUMULATIVE 

PERCENTAGE REMAINDER 


42.93 57.07 

42.99 57.01 

43.10 56,90 


43.10 56.81 

43.Z4 56.76 

43.32 56.68 

43.36 56.64 

43.45 56.55 

43.52 56.4R 

44.14 55.86 

49.97 50.03 

56.98 43.02 

65.55 34.45 

68.56 31.44 

70.59 29.41 
71.42 28.58 

TI.72 p8.a8 
71.93 28.07 

72.09 27.91 

72.19 27.81 

72.29 P7.7 

72.37 27.63 

72.47 27.53 

72.56 27.44 

72.59 27.41 

SUM OF ARGUMENTSi
 

143977.000t
 

MULTIPLE DFVIATION
 
OF MEAN FRH MEAN
 

0.769 -0.245
 
1.538 0.572
 
2.307 1.391
 
3.076 2.209
 
3.844 3.027 
4.613 3.846
 
5.382 4.664
 
6.151 5.482

6.920 6.301 

SUM OF ARGUMENTSi
 

25257710001
 

MULTIPLE DEVIATION
 
OF MEAN FROM MEAN
 

0.076 .0.766
 
0.152 -0.703
 
0.228 -0.640
 

0.304 -0.577 
0.380 -0.513
 
0.456 -0.450 
0.532 .0.387
 
0.608 .0.324
 
0.684 -0.261
 
0.760 -0.198
 
0.836 -0.135
 
0.912 .0.072
 
0.980 .0.009
 
1.064 0.063 
1.140 0.116 
1.216 0.179
 
1.292 0.242
 
1.368 0.305
 
1.443 0.368
 
1.519 0.431
 
1.595 0.44 
1.671 0.557 
1.747 0.620
 
1.823 0.683
 
1.B99 0.746
 

http:15.03.S4


AHUEN HILLS CYNEM 175 GPbS V/6000 
UPPER OBSERVED 
LIMIT FREUUENCY 

PEN CENT 
OF TOTAL 

CRH GPSS V/6000 
CUMULATIVE 
PERCENTAGE 

VEN. 1.2 PSR 451 03/17/79 15.03.54. 
CUMULATIVE MIILTIPLE nFVIATION 
REMAINDER OF MEAN FPi3 MEAN 

PAGE 363 

2o 432 2.25 74.84 25.16 1.975 0.809 

d7O B67 4.52 79.36 20.64 2.051 0.872 

250 1015 5.29 84.65 15.35 2.127 0.935 

290 764 3.98 88.63 11.37 2.203 0.998 

300 450 2.35 90.97 9.03 2.279 1.061 

310 243 1.7 92.24 7.76 2.355 1.124 

320 103 0.54 92.78 7.22 2.431 1.187 

330 65 0.34 93.12 6.80 2.507 1.250 

340 43 0.22 93.34 6.66 2.583 1.313 

350 25 0.13 93,47 6.53 2.659 1.376 

300 22 0.11 93.58 6.42 2.735 1.439 

370 27 0.14 93.73 6.27 2.811 1.502 
380 
390 

la 
a 

0.09 
0.04 

93.82 
93.86 

6.18 
6.14 

2.887 
2.963 

1.566 
1.629 

400 5 0.03 93.89 6.11 3.039 1.692 
410 4 0.02 93.91 6.09 3.115 1.755 
420 2 0.01 93.92 6.08 3.191 1.818 
430 3 0.02 93.93 6.07 3.267 1.881 
440 3 0.02 93.95 6.05 3.343 1.944 

4bO 6 0.03 93.98 6.02 3.419 2.007 

460 13 0.07 94.05 5.95 3.495 2.070 

470 14 0.07 94.12 5.88 3.571 2.133 

480 26 0.14 94.26 5.74 3.647 2.196 

490 23 0.12 94.35 5.62 3.723 2.259 

500 
610 

24 
41 

0.13 
0.21 

94.50 
94.72 

5.50 
5.28 

3.799 
3.875 

2.322 
2.3R5 

-. 520 
530 

51 
75 

0.27 
0.39 

94.98 
95.37 

5.02 
4.63 

3.951 
4.027 

2.448 
2.511 

540 
550 

103 
129 

0.54 
0.67 

95.91 
96.58 

4.09 
3.4? 

4.103 
4.179 

2.574 
2.637 

560 142 0.74 97.32 2.68 4.254 2.700 
510 128 0.67 97.99 2.01 4.330 2.763 

LA) 58O 
690 

lo 
72 

0.56 
0.38 

98.55 
98.93 

1.45 
1.07 

4.406 
4.482 

2.826 
2.889 

600 34 0.18 99.10 0.90 4.558 2.952 

630 28 0.15 99.25 0.75 4.634 3.015 

620 is 0.08 99.33 0.67 4.710 3.078 
630 A 0.04 99.37 0.63 4.766 3.141 

640 6 0.03 99.49 0.60 4.862 3.204 

650 7 0.04 99.44* '0.56 4.938 3.267 

660 3 0.02 99.45 0.55 5.014 3.330 

670 5 0.03 99.48 0.52 5.090 3.393 

680 3 0.02 99.49 0.51 5.166 3.456 
690 3 0.02 99.51 0.49 5.242 3.519 
t00 
710 
720 

I 
1 
3 

0.01 
0.0 
0.02 

99,52 
99.52 
99.54 

0.48 
0.48 
0.46 

5.310 
5.394 
5.470 

3.582 
3.646 
3.709 

730 
740 
750 

1 
1 
4 

0.01 
0.01 
0.02 

99,54 
99.55 
99.57 

0.46 
0.45 
0.43 

5.546 
5.622 
5o698 

3.772 
3.835 
3.898 

760 1 0.01 99.57 0.43 5.774 3.961 

770 
780 

3 
5 

0.02 
0.03 

99.59 
99.61 

0.41 
0.39 

5.850 
5.926 

4.024 
4.087 

790 6 0.03 99.65 0.35 6.002 4.150 
000 
810 

5 
4 

0.03 
0.02 

99.67 
99.69 

0.33 
0.31 

6.078 
6.154 

4.213 
4.276 



AMOEN HILLS CYBER 175 GPSS V/6000 CRM GPSS V/6000 VER. 
1.2 PSR 463 03/17/79 15.03.54. PAGE 363
 

ENTRIES IN TABLE 
 MEAN ARGUMENT STANDARD DEVIATION SUN OF ARGUNENTSI
 

63 1.460 
 0.805 92.0001
 

UPPER 
 OBSERVED PER CENT CUMULATIVE CUMULATIVE MULTIPLE DEVIATION
 
LIMIT FREQUENCY OF TOTAL PERCENTAGE REMAINDER OF MEAN FPnM MEAN
 

1 44 69.84 69.84 30.16 0.685 
 -0.513 
2 13 20.63 90.48 9.S2 1.370 0.603 
3 4 6.35 96.83 3.17 2.054 1.721
 
4 1 1.59 98.41 1.59 2.739 2.838 
5 0 0.00 98.41 1.59 3.424 3.9s5
6 1 1.59 100.00 0.10 4.109 5.073


TABLE FILE3
 

ENTRIES IN TABLE 
 MEAN ARGUMENT STANDARD DEVIATION SimwOF AROUMENTSI
 

63 1.460 
 0.895 92.0oo0
 

UPPER OBSERVED PEN CENT CUMULATIVE CUMULATIVE MIULTIPLE nFVIATION
 
LIMIT FREQUENCY OF TOTAL PERCENTAGE REMAINOER OF MEAN FP'I MEAN
 

5 62 98.41 98.41 k.59 3.424 3.955
 
T0 1 1.59 100.00 0.00 6.l48 9.543
TABLE FMPA
 

ENTRIES IN TABLE MEAN ARGUMENT 
 STANDARD DEVIATION SlImOF ARlUMFNTS1
 

205 280.756 
 150.624 57555.0001
 
UPPER USSERVEO PER CENT CUMULATIVE CUMULATIVE MULTIPLE DFVIATION 
LIMIT FREQUENCY OF TOTAL PERCENTAGE REMAINDER OF MFAN . FP MEAN 

250 144 70.24 70.24 29.76 
 0.890 -0.203 
500 33 16.10 86.34 13.66 1.781 1.456
750 27 13.17 99.51 0.49 2.671 3.115

1000 1 0.49 100.00 0,00 3.562 4.775
 
TABLE FMP8
 
ENTRIES IN TABLE 
 MEAN ARGUMENT STANDARD DEVIATION SlimOF ARGUMFNTSg 

46 2334.174 
 1823.707 107372.0001
 

UPPER OBSERVED PER CENT CUMULATIVE CUMULATIVE NILTIPLE DEVIATrON

LIMIT FREQUENCY OF TOTAL PERCENTAGE REMAINDER OF MEAN FROM MEAN
 

500 3 6.52 6.52 93.4A 0.214 -1.005 
1000 17 36.96 43.48 56.5? 0.428 -0.731
 
1500 2 4.35 
 47.83 52.17 0.643 -0.456
2000 
 2 4.35 52.1? 47.83 0.857 -0.282 
2500 2 4.35 56.52 43.48 1.071 0.0913000 
 0 0.00 56.52 43.48 1.285 0.365 
3500 11 23.91 80.43 |9.57 1.499 0.639 
4000 1 2.17 82.61 17.39 1.714 0.913

4500 2 4.3S 86.96 13.04 1.928 
 12180 
5000 ] 2.17 89.13 I0.7 2.242 1.462 
5500 1 2.17 91.30 8.70 2.356 1.736
6000 1 2.17 93.48 6.52 2.571 2.0306500 2 4.35 97.83 2.17 2.785 2.2847000 1 2.17 100.00 0.00 2.999 2.558 

TABLE FMPC
 

http:15.03.54


AHDEN HILLS CYBER 175 GPbS V/6000 CRM OPSS V/6000 WER. .2 PSR 451 03/17/79 15.03.54. PAGE 364
 
ENTRIES IN TABLE MEAN ARGUMENT STANDARD DEVIATION SIM OF ARGUMENTSi 

16 6.687 3.049 107.0001 

UPPER 
LIMIT 

OBSERVED 
FHEGUENCY 

PER CENT 
OF TOTAL 

CUMULATIVE 
PERCENTAGE 

CUMULATIVE 
REMAINDER 

MULTIPLE 
OF MEAN 

nFVIATION 
FPnM REAM 

5 
10 
15 

TABLE FILEI 
ENTRIES IN TABLE 

8 50.00 
6 37.50 
2 12.50 

MEAN AHGUMENT 

50.00 
R7.50 

100.00 

STANDARD OEVIArON 

SO.00 
14.50 
0.00 

0.748 
1.495 
2.243 

SUM Or ARGUHETS, 

-0.552 
1.086 
2.726 

267 0.15 1.981 191.0001 

UPPER 
LIMIT 

UBSERVED 
FREQUENCY 

PER CENT 
OF TOTAL 

CUMULATIVE 
PERCENTAGE 

CUMULATIVE 
REMAINDER 

MULTIPLE 
OF MEAN 

DEVIATION 
FROM MEAN 

1 
2 
3 
4 
5 
6 
7 
a 
9 

10 
11 
12 
13 
14 

TABLE SPSA 

229 
2 
12 
7 
6 
5 
2 
0 
1 
1 
0 
1 
0 
1 

85.77 
0.75 
4.49 
2.6? 
2.25 
1.87 
0.75 
0.00 
0.37 
0.37 
0,00 
0.37 
0.00 
0.37 

85.77 
06.52 
91.01 
93.63 
95.88 
97.75 
98.50 
98.50 
98.88 
99.25 
99.25 
99.63 
99.63 

100.00 

14.23 
13.48 
8.99 
6.37 
4.12 
2.25 
1.50 
1,50 
1.12 
0.75 
0.76 
0.37 
0.37 
0.00 

1.398 
2.796 
4.194 
5.592 
6.990 
8.387 
9.785 

11.183 
12.591 
13.979 
15.371 
16.775 
18.173 
19.571 

0.144 
0.648 
1.153 
1.658 
2.162 
2.667 
3.172 
3.676 
4.181 
4.686 
5.190 
5.695 
6.200 
6.704 

ENTRIES IN TABLE MEAN ARGUMENT STANDARD DEVIATION SUM OF ARGUMENTS: 

L) 142 988.993 767.398 14043T.0001 

UPPER 
LIMIT 

OUBSERVED 
FREQUENCY 

PER CENT 
OF TOTAL 

CUMULATIVE 
PERCENTAGE 

CUMULATIVE 
REMAINDER 

MULTIPLE 
OF MEAN 

DEVIATION 
FROM MEAN 

S00 
1000 
1500 
2000 
2500 
3000 
3500 
4000 
4500 

TABLE SPSD 
ENTRIES IN TABLE 

48 33.80 
43 30.28 
26 18.31 
9 6.34 
10 7.04 
3 2.11 
1 0.70 
0 O.OO 
2 1.41 

MEAN ARGUMENT 

33.80 
64.08 
82.39 
88.73 
95.77 
97.89 
98.59 
98.59 

100'00 

STANDARD DEVIATION 

66.20 
35.92 
17.61 
31.27 
4.23 
2.11 
1.41 
1.41 
0.00 

0.506 
1.0! 
1.517 
2.022 
2.528 
3.033 
3.539 
4.045 
4.SSO 

SUM OF ARGUMENTS, 

-0.636 
0.014 
0.666 
h31T 
1.969 
2.621 
3.27Z 
3.924 
4.575 

46 Wd.913 15.829 870.000t 

UPPER 
LIMIT 

OBSERVED 
FREQUENCY 

PER CENT 
OF TOTAL 

CUMULATIVE 
PERCENTAGE 

CUMULATIVE 
REMAINDER 

MULTIPLE 
OF MEAN 

DEVIATION 
FROM MEAN 

1 
2 

0 
0 

0.00 
0.00 

0.00 
0.00 

100.00 
100 00 

0.053 
0.106 

-1.131 
-1.067 

http:15.03.54


10 

20 

30 

40 

50 

ARUN HILLS CYBER 178 GPSS V/6000 CRM GPSS V/6000 VER. 1.2 PSR 453 03/17/79 15.03.54. PAGE 363
 
UPPER OBSERVED PER CENT CUMULATIVE CUMULATIVE MULTIPLE DEVIATION 
LIMIT FREQUENCY OF TOTAL PERCENTAGE REMAINDER OF MEAN F~nM MEAN 

3 2 4.35 4.35 95.65 0.159 -1.004 
4 0 0.00 4.35 95.65 0.211 -0.941 
5 16 34.78 39.13 60.87 0.264 -0.878 
6 2 4.35 43.48 56.52 0.317 -0.815 
7 0 0.00 43.48 56.52 0.370 -0.752 
8 1 2.17 45.65 54.35 0.423 -0.688 
9 0 0.00 45.65 54.35 0.476 -0.625 

0 0.00 45.65 54.35 0.529 -0.562 
It 1 2.17 47.83 52.17 0.582 -0.499 
12 0 0.00 47.83 52.17 0.634 -0.436 
13 0 0.00 47.83 92.17 0.667 -0.373 
14 
1 

3 
0 

6.52 
0.00 

54.35 
54.35 

45.6q 
45.65 

0.740 
0.793 

-0.309 
-0.246 

16 0 0.00 54.35 45.65 0.846 -0.183 
17 0 0.00 54.35 45.65 0.899 -0.120 
18 
19 

0 
0 
0 

0.00 
0.00 
0.00 

54.35 
54.35 
54.35 

45.65 
45,65 
45.65 

0.952 
1.005 
1.057 

-0.057 
0.005 
C.069 

21 1 2.17 56.52 43.48 1.110 0.132 
22 0 0.00 56.52 43.48 1.163 0.195 
23 0 0.00 56.52 43.48 1.236 0.268 
24 0 0.00 56.52 43.4R 1.269 0.321 
25 0 0.00 56.52 43.4R 1.322 0.3R5 
26 6 13.04 69.57 30.43 1.375 0.448 
27 2 4.35 73.91 P6.09 1.428 0.511 
28 3 6.52 80.43 19.57 1.480 0.574 

. 29 0 0.00 80.43 19.57 1.533 0.637 

31 
I 
1 

2.17 
2.17 

82.61 
84.78 

17.39 
15.2P 

1.586 
1.639 

0.700 
0.764 

32 0 0.00 A4.78 15.22 1.692 0.827 
S330 0.00 84.78 15.22 1.745 0.890 

343S5 00.00 0.00 84.7884.78 I5.215.22 1.7981.851 0.9531.016 

C. 36 0 0.00 84.78 15.02 1.903 1.079 
37 0 0.00 84.78 15022 1.956 1.143 
30 0.00 84.78 15.27 2009 1.206 
39 a 0.00 84.78 15.22 2.062 1.269 

2 4,35 89.13 10.87 2.115 1.332 
41 
42 

0 
0 

0.00 
0.00 

99.13 
89.13 

10.67 
10.R7 

2.168 
2.21! 

1.395 
1.458 

43 0 0.00 89.13 10.87 2.274 1.522 
44 1 2.17 91.30 8.70 2.326 1.585 
45 
46 

0 
0 

000 
0.00 

91.30 
91.30 

8.70 
8.70 

2.379 
2.432 

1.648 
1.711 

47 0 0.00 91.30 8.70 2.485 1.774 
48 0 0.00 91.30 8.70 2.538 1.838 
49 1 2.17 93.48 6.52 2.591 1.901 

3 6.52 100.00 0.00 2.644 1.964 

http:15.03.54


ARDEN HILLS CYBER 175 GPSS V/6000 CRM OPSS V/6000 VER. 1.2 PSR 453 03/17/79 15.03.64. PAGE 366 

FULLWORO SAVEVALUES 

NUMBER 
1? 
24 

CYLDV 
RvTx 
SPbNT 
BLUKO 
OSCN 
LAST 
IOPOR 
GLK3A 
GPMSZ 

........ CONTENTS 
63 

7671 
4500 
2501 
273 

27000 
I 
2 

30 
27000 

16 

NUMMER 
IU 
25 

ROTMN 
TRKRT 
BFSPS 
OBLK0 
ORIVE 
$LOK2 
GPHNT 
DBK2A 
COPYS 

........ CONTENTS 
7 

60 
I 

65 
3 

1500 
1 

42000 
1638 
2500 

4 

NUMBER ........ 
COMNT 

26 
ROTAV 
CLOCK 
DSCRT 
DOLKI 
PRIOR 
BLOK3 
GPHWT 
OSK3A 
BSIZE 

CONTENTS 
9 
2 

1251 
48943742 

156 
1500 

62 
108000 

5000 
2500 
64 

NUMBER 
22 

CYLMN 
R0TDV 
FNPRT 
BFOSC 
COUNT 
SLOP 
DOLK2 
DWAIT 
ILSPS 

........ CONTENTS 
45 

1000 
12S0 

65 
3 
1 

200 
10000 
Soo 
20 

NUMOER ......... CoTENTq 
23 7671 

CYLAV 55s0 
RLKI liOA 
BFIMP 3 
END 0ooon0o0o0 
CARO 12s) 
IOPEC 1 
DBLK3 100n 
BLK2A 10500 
ILOPH 9 

THROUGHHUTS BY JOB SIZE. 

FOR JOBS WITH FMP TIME LESS THAN OR EIUAL TO 120 

THROUGHPUT IS 29.44 PER HOUR 

SEC 

w FOR JUB5 WITH FMP TIlE BETWEEN 120 SEC AND 
THROUGHPUT IS 3.2T PER HOUR 

20 MIN 

FOR JUNS WITH FMP TIME BETWEEN 20 MIN AND ONE HOUR 
THHOUIHPUT IS 0,00 'PER HOUR 

FO JOURS WITH FMP TIME MORE THAN ONE 
THHOUbHPUT IS 0.00 PER HOUR 

HOUR 

http:15.03.64


REFERENCES
 

1. 	NASA CR-152059, Preliminary Study for a Numerical
 
Aerodynamic Simulation Faclity - Final Report. Oct. 1977.
 

2. 	NASA CR-152108, Preliminary Study for a Numerical
 
Aerodynamic Simulation Facility - Final Report - Phase 1
 
Extension. Feb. 1978.
 

3. 	Machenhauer, B.; and Rasmussen, E.: On the Integration of
 
the Spectral Hydrodynamical Equations by a Transform
 
Method. Institut for Teoretisk Meteorologi, Kobenhavns
 
Universitet, Copenhagen, 1972.
 

4. 	Hung, C. M.; and MacCormack, R. W.: Numerical Solution of
 
Supersonic Laminar Flow Over a Three-Dimensional
 
Compression Corner. AIAA 10th Fluids and Plasmadynamics
 
Conference, June 1977.
 

5. 	Lambiotte, J. S., Jr.; and Voigt, R. G.: The Solution of
 
Tridiagonal Linear Systems on the CDC STAR-100 Computer.
 
ACM Transactions on Mathematical Software, Dec. 1978.
 

6. 	Soil, D. B.; Habra, N. R.; and Russell, G. L.: Experience

with a Vectorized General Circulation Climate-Model on
 
STAR-IO0. High Speed Computer and Algorithm Organization,
 
Academic Press, Inc. Nov. 1977, pp. 311-312.
 

7. 	Lorenz, E. N.: Energy and Numerical Weather Prediction.
 
Tellus, vol. 12, no. 4, Nov. 1960,,pp. 364-373.
 

8. 	Peng, L.: A Simple Numerical Experiment Concerning the
 
General Circulation in the Low Stratosphere. Pure and
 
Applied Geophysics, vol. 61, no.2, May 1965, pp. 191-218.
 

9. Clark, J. H. E.: A Quasi-Geostrophic Model of the Winter
 
Stratospheric Circulation. Monthly Weather Review, vol.
 
98, no. 6, June 1970, pp. 443-461.
 

10. 	 Lindzen, R. S.; and Goody, R.: Radiative and Photo-Chemical
 
Proces ses in Mesopheric Dynamics: Rart 1, Models for
 
Radiative and Photochemical Processes. Journal of the
 
Atmospheric Science, vol. 22, no. 4, July 1965, pp.
 
341-348.
 

11. 	 McConnell, J. C.; and McElroy, M. B.: Odd Nitrogen in the
 
Atmosphere. Journal of the Atmospheric Science, vol. 30,
 
no. 8, Nov. 1973, pp. 1465-1480.
 

12. 	 Lorenz, E. N.: An N-Cycle Time-Differencing Scheme for
 
Stepwise Numerical Integration. Monthly Weather Review,
 

vol. 99, no. 8, Aug. 1971, pp. 644-648. 'trailer
 

R-I
 


