1,408 research outputs found

    Defective neural motor speech mappings as a source for apraxia of speech : evidence from a quantitative neural model of speech processing

    Get PDF
    This unique resource reviews research evidence pertaining to best practice in the clinical assessment of established areas such as intelligibility and physiological functioning, as well as introducing recently developed topics such as conversational analysis, participation measures, and telehealth. In addition, new and established research methods from areas such as phonetics, kinematics, imaging, and neural modeling are reviewed in relation to their applicability and value for the study of disordered speech. Based on the broad coverage of topics and methods, the textbook represents a valuable resource for a wide ranging audience, including clinicians, researchers, as well as students with an interest in speech pathology and clinical phonetics

    Controlled Contact to a C60 Molecule

    Get PDF
    The conductance of C60 on Cu(100) is investigated with a low-temperature scanning tunneling microscope. At the transition from tunneling to the contact regime the conductance of C60 adsorbed with a pentagon-hexagon bond rises rapidly to 0.25 conductance quanta G0. An abrupt conductance jump to G0 is observed upon further decreasing the distance between the instrument's tip and the surface. Ab-initio calculations within density functional theory and non-equilibrium Green's function techniques explain the experimental data in terms of the conductance of an essentially undeformed C60. From a detailed analysis of the crossover from tunneling to contact we conclude that the conductance in this region is strongly affected by structural fluctuations which modulate the tip-molecule distance.Comment: 4 pages, 3 figure

    Fractal-like hierarchical organization of bone begins at the nanoscale

    Get PDF
    INTRODUCTION: The components of bone assemble hierarchically to provide stiffness and toughness. Deciphering the specific organization and relationship between bone’s principal components—mineral and collagen—requires answers to three main questions: whether the association of the mineral phase with collagen follows an intrafibrillar or extrafibrillar pattern, whether the morphology of the mineral building blocks is needle- or platelet-shaped, and how the mineral phase maintains continuity across an extensive network of cross-linked collagen fibrils. To address these questions, a nanoscale level of three-dimensional (3D) structural characterization is essential and has now been performed. RATIONALE: Because bone has multiple levels of 3D structural hierarchy, 2D imaging methods that do not detail the structural context of a sample are prone to interpretation bias. Site-specific focused ion beam preparation of lamellar bone with known orientation of the analyzed sample regions allowed us to obtain imaging data by 2D high-resolution transmission electron microscopy (HRTEM) and to identify individual crystal orientations. We studied higher-level bone mineral organization within the extracellular matrix by means of scanning TEM (STEM) tomography imaging and 3D reconstruction, as well as electron diffraction to determine crystal morphology and orientation patterns. Tomographic data allowed 3D visualization of the mineral phase as individual crystallites and/or aggregates that were correlated with atomic-resolution TEM images and corresponding diffraction patterns. Integration of STEM tomography with HRTEM and crystallographic data resulted in a model of 3D mineral morphology and its association with the organic matrix. RESULTS: To visualize and characterize the crystallites within the extracellular matrix, we recorded imaging data of the bone mineral in two orthogonal projections with respect to the arrays of mineralized collagen fibrils. Three motifs of mineral organization were observed: “filamentous” (longitudinal or in-plane) and “lacy” (out-of-plane) motifs, which have been reported previously, and a third “rosette” motif comprising hexagonal crystals. Tomographic reconstructions showed that these three motifs were projections of the same 3D assembly. Our data revealed that needle-shaped, curved nanocrystals merge laterally to form platelets, which further organize into stacks of roughly parallel platelets separated by gaps of approximately 2 nanometers. These stacks of platelets, single platelets, and single acicular crystals coalesce into larger polycrystalline aggregates exceeding the lateral dimensions of the collagen fibrils, and the aggregates span adjacent fibrils as continuous, cross-fibrillar mineralization. CONCLUSION: Our findings can be described by a model of mineral and collagen assembly in which the mineral organization is hierarchical at the nanoscale. First, the data reveal that mineral particles are neither exclusively needle- nor platelet-shaped, but indeed are a combination of both, because curved acicular elements merge laterally to form slightly twisted plates. This can only be detected when the organic extracellular matrix is preserved in the sample. Second, the mineral particles are neither exclusively intrafibrillar nor extrafibrillar, but rather form a continuous cross-fibrillar phase where curved and merging crystals splay beyond the typical dimensions of a single collagen fibril. Third, in the organization of the mineral phase of bone, a helical pattern can be identified. This 3D observation, integrated with previous studies of bone hierarchy and structure, illustrates that bone (as a material, as a tissue, and as an organ) follows a fractal-like organization that is self-affine. The assembly of bone components into nested, helix-like patterns helps to explain the paradoxical combination of enhanced stiffness and toughness of bone and results in an expansion of the previously known hierarchical structure of bone to at least 12 levels

    Food activities and identity maintenance in old age: a systematic review and meta-synthesis

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Objectives: Services provided to older people should be developed based on active ageing policies. Nutrition is one aspect of active ageing, but little is known about how food activities contribute to psychological well-being in later life. This is a systematic review of qualitative and quantitative research that answers the question ‘What is known about the relationship between food activities and the maintenance of identities in old age?’

    Transport and nonequilibrium phase transitions in polygonal urn models

    Get PDF
    We study the deterministic dynamics of N point particles moving at a constant speed in a 2D table made of two polygonal urns connected by an active rectangular channel, which applies a feedback control on the particles, inverting the horizontal component of their velocities when their number in the channel exceeds a fixed threshold. Such a bounce-back mechanism is non-dissipative: it preserves volumes in phase space. An additional passive channel closes the billiard table forming a circuit in which a stationary current may flow. Under specific constraints on the geometry and on the initial conditions, the large N limit allows nonequilibrium phase transitions between homogeneous and inhomogeneous phases. The role of ergodicity in making a probabilistic theory applicable is discussed for both rational and irrational urns. The theoretical predictions are compared with the numerical simulation results. Connections with the dynamics of feedback-controlled biological systems are highlighted

    The Fractal Geometry of Critical Systems

    Get PDF
    We investigate the geometry of a critical system undergoing a second order thermal phase transition. Using a local description for the dynamics characterizing the system at the critical point T=Tc, we reveal the formation of clusters with fractal geometry, where the term cluster is used to describe regions with a nonvanishing value of the order parameter. We show that, treating the cluster as an open subsystem of the entire system, new instanton-like configurations dominate the statistical mechanics of the cluster. We study the dependence of the resulting fractal dimension on the embedding dimension and the scaling properties (isothermal critical exponent) of the system. Taking into account the finite size effects we are able to calculate the size of the critical cluster in terms of the total size of the system, the critical temperature and the effective coupling of the long wavelength interaction at the critical point. We also show that the size of the cluster has to be identified with the correlation length at criticality. Finally, within the framework of the mean field approximation, we extend our local considerations to obtain a global description of the system.Comment: 1 LaTeX file, 4 figures in ps-files. Accepted for publication in Physical Review

    Open-boundary reflection of quantum well states at Pb(111)

    Get PDF
    Using a scanning tunneling microscope, confined electron states are studied that exist above subsurface nanometer-sized voids at Pb(111), where potential barriers at the parallel vacuum–Pb(111) and Pb(111)–void interfaces establish a principal series of quantum well states that are further confined laterally by strong reflection at the open boundaries at the edges of the void. The influence of the size, depth and shape of the voids on the effectiveness of the lateral confinement is discussed. Standing wave patterns observed in differential conductance maps unravel the dispersion of the relevant underlying Pb electron states

    Modelling predictors of molecular response to frontline imatinib for patients with chronic myeloid leukaemia

    Get PDF
    BACKGROUND: Treatment of patients with chronic myeloid leukaemia (CML) has become increasingly difficult in recent years due to the variety of treatment options available and challenge deciding on the most appropriate treatment strategy for an individual patient. To facilitate the treatment strategy decision, disease assessment should involve molecular response to initial treatment for an individual patient. Patients predicted not to achieve major molecular response (MMR) at 24 months to frontline imatinib may be better treated with alternative frontline therapies, such as nilotinib or dasatinib. The aims of this study were to i) understand the clinical prediction 'rules' for predicting MMR at 24 months for CML patients treated with imatinib using clinical, molecular, and cell count observations (predictive factors collected at diagnosis and categorised based on available knowledge) and ii) develop a predictive model for CML treatment management. This predictive model was developed, based on CML patients undergoing imatinib therapy enrolled in the TIDEL II clinical trial with an experimentally identified achieving MMR group and non-achieving MMR group, by addressing the challenge as a machine learning problem. The recommended model was validated externally using an independent data set from King Faisal Specialist Hospital and Research Centre, Saudi Arabia. PRINCIPLE FINDINGS: The common prognostic scores yielded similar sensitivity performance in testing and validation datasets and are therefore good predictors of the positive group. The G-mean and F-score values in our models outperformed the common prognostic scores in testing and validation datasets and are therefore good predictors for both the positive and negative groups. Furthermore, a high PPV above 65% indicated that our models are appropriate for making decisions at diagnosis and pre-therapy. Study limitations include that prior knowledge may change based on varying expert opinions; hence, representing the category boundaries of each predictive factor could dramatically change performance of the models.Haneen Banjar, Damith Ranasinghe, Fred Brown, David Adelson, Trent Kroger, Tamara Leclercq, Deborah White, Timothy Hughes, Naeem Chaudhr

    Design and characterisation of the CLICTD pixelated monolithic sensor chip

    Get PDF
    A novel monolithic pixelated sensor and readout chip, the CLIC Tracker Detector (CLICTD) chip, is presented. The CLICTD chip was designed targeting the requirements of the silicon tracker development for the experiment at the Compact Linear Collider (CLIC), and has been fabricated in a modified 180 nm CMOS imaging process with charge collection on a high-resistivity p-type epitaxial layer. The chip features a matrix of 16×128 elongated channels, each measuring 300×30 ÎŒm2. Each channel contains 8 equidistant collection electrodes and analog readout circuits to ensure prompt signal formation. A simultaneous 8-bit Time-of-Arrival (with 10 ns time bins) and 5-bit Time-over-Threshold measurement is performed on the combined digital output of the 8 sub-pixels in every channel. The chip has been fabricated in two process variants and characterised in laboratory measurements using electrical test pulses and radiation sources. Results show a minimum threshold between 135 and 180 e‟ and a noise of about 14 e‟ RMS. The design aspects and characterisation results of the CLICTD chip are presented

    Starting from scratch: patient-reported outcome questionnaires & their role in an integrative medicine primary care minimum-dataset

    Get PDF
    Aim This research explored the use of patient questionnaires for evaluating integrative medicine (IM) clinics in the primary care setting. Background Integrative medicine (IM) combines traditional, complementary, and alternative medicine with conventional biomedicine. With more clinics in Australia offering IM, it is important to evaluate outcomes. Methods Mixed methods were used. This included a case study of an IM clinic in Sydney, Australia; interviews with 20 patients and 13 staff at the clinic; and a systematic literature review of patient questionnaires. Results Challenges for meausring IM outcomes limitations with routine clinical data collection, selecting appropriate questionnaires able to measure the wide range of IM outcomes whilst minimizing responder burden, patient recruitment and practitioner support. Electronic questionnaires have many advantages. Alternative formats such as paper are still needed. Not all interviewees were interested in cohort results or research and instead wanted to access their individual patient results. Discussion The results from the studies were synthesised and a set of recommendations are offered. Conclusions Patient questionnaires could be used to establish a minimum dataset for use in research, health service development, and informing and improving individual patient care. A bottom-up approach that adresses stakeholders’ needs for a dataset is essential
    • 

    corecore