123 research outputs found

    Incidence of HI 21-cm absorption in strong FeII systems at 0.5<z<1.50.5<z<1.5

    Full text link
    We present the results from our search for HI 21-cm absorption in a sample of 16 strong FeII systems (WrW_{\rm r}(MgII λ2796\lambda2796) 1.0\ge1.0 \AA\ and WrW_{\rm r}(FeII λ2600\lambda2600) or WFeIIW_{\rm FeII} 1\ge1 \AA) at 0.5<z<1.50.5<z<1.5 using the Giant Metrewave Radio Telescope and the Green Bank Telescope. We report six new HI 21-cm absorption detections from our sample, which have increased the known number of detections in strong MgII systems at this redshift range by 50\sim50%. Combining our measurements with those in the literature, we find that the detection rate of HI 21-cm absorption increases with WFeIIW_{\rm FeII}, being four times higher in systems with WFeIIW_{\rm FeII} 1\ge1 \AA\ compared to systems with WFeIIW_{\rm FeII} <1<1 \AA. The NN(HI) associated with the HI 21-cm absorbers would be 2×1020\ge 2 \times 10^{20} cm2^{-2}, assuming a spin temperature of 500\sim500 K (based on HI 21-cm absorption measurements of damped Lyman-α\alpha systems at this redshift range) and unit covering factor. We find that HI 21-cm absorption arises on an average in systems with stronger metal absorption. We also find that quasars with HI 21-cm absorption detected towards them have systematically higher E(BV)E(B-V) values than those which do not. Further, by comparing the velocity widths of HI 21-cm absorption lines detected in absorption- and galaxy-selected samples, we find that they show an increasing trend (significant at 3.8σ3.8\sigma) with redshift at z<3.5z<3.5, which could imply that the absorption originates from more massive galaxy haloes at high-zz. Increasing the number of HI 21-cm absorption detections at these redshifts is important to confirm various trends noted here with higher statistical significance.Comment: 17 pages, 10 figures, 8 tables, accepted for publication in MNRA

    Optical/near-infrared selection of red QSOs: Evidence for steep extinction curves towards galactic centers?

    Full text link
    We present the results of a search for red QSOs using a selection based on optical imaging from SDSS and near-infrared imaging from UKIDSS. For a sample of 58 candidates 46 (79%) are confirmed to be QSOs. The QSOs are predominantly dust-reddened except a handul at redshifts z>3.5. The dust is most likely located in the QSO host galaxies. 4 (7%) of the candidates turned out to be late-type stars, and another 4 (7%) are compact galaxies. The remaining 4 objects we could not identify. In terms of their optical spectra the QSOs are similar to the QSOs selected in the FIRST-2MASS red Quasar survey except they are on average fainter, more distant and only two are detected in the FIRST survey. We estimate the amount of extinction using the SDSS QSO template reddened by SMC-like dust. It is possible to get a good match to the observed (restframe ultraviolet) spectra, but for nearly all the reddened QSOs it is not possible to match the near-IR photometry from UKIDSS. The likely reasons are that the SDSS QSO template is too red at optical wavelengths due to contaminating host galaxy light and that the assumed SMC extinction curve is too shallow. Our survey has demonstrated that selection of QSOs based on near-IR photometry is an efficent way to select QSOs, including reddened QSOs, with only small contamination from late-type stars and compact galaxies. This will be useful with ongoing and future wide-field near-IR surveys such as the VISTA and EUCLID surveys. [Abridged]Comment: 74 pages, 6 figures. Accepted for for publication in ApJ

    Determining the fraction of reddened quasars in COSMOS with multiple selection techniques from X-ray to radio wavelengths

    Full text link
    The sub-population of quasars reddened by intrinsic or intervening clouds of dust are known to be underrepresented in optical quasar surveys. By defining a complete parent sample of the brightest and spatially unresolved quasars in the COSMOS field, we quantify to which extent this sub-population is fundamental to our understanding of the true population of quasars. By using the available multiwavelength data of various surveys in the COSMOS field, we built a parent sample of 33 quasars brighter than J=20J=20 mag, identified by reliable X-ray to radio wavelength selection techniques. Spectroscopic follow-up with the NOT/ALFOSC was carried out for four candidate quasars that had not been targeted previously to obtain a 100\% redshift completeness of the sample. The population of high AVA_V quasars (HAQs), a specific sub-population of quasars selected from optical/near-infrared photometry, is found to contribute 21%5+921\%^{+9}_{-5} of the parent sample. The full population of bright spatially unresolved quasars represented by our parent sample consists of 39%8+939\%^{+9}_{-8} reddened quasars defined by having AV>0.1A_V>0.1, and 21%5+921\%^{+9}_{-5} of the sample having E(BV)>0.1E(B-V)>0.1 assuming the extinction curve of the Small Magellanic Cloud. We show that the HAQ selection works well for selecting reddened quasars, but some are missed because their optical spectra are too blue to pass the grg-r color cut in the HAQ selection. This is either due to a low degree of dust reddening or anomalous spectra. We find that the fraction of quasars with contributing light from the host galaxy is most dominant at z1z \lesssim 1. At higher redshifts the population of spatially unresolved quasars selected by our parent sample is found to be representative of the full population at J<20J<20 mag. This work quantifies the bias against reddened quasars in studies that are based solely on optical surveys.Comment: 22 pages, 10 figures, accepted for publication in A&A. The ArXiv abstract has been shortened for it to be printabl

    Serendipitous discovery of a projected pair of QSOs separated by 4.5 arcsec on the sky

    Full text link
    We present the serendipitous discovery of a projected pair of quasi-stellar objects (QSOs) with an angular separation of Δθ=4.50\Delta\theta =4.50 arcsec. The redshifts of the two QSOs are widely different: one, our programme target, is a QSO with a spectrum consistent with being a narrow line Seyfert 1 AGN at z=2.05z=2.05. For this target we detect Lyman-α\alpha, \ion{C}{4}, and \ion{C}{3]}. The other QSO, which by chance was included on the spectroscopic slit, is a Type 1 QSO at a redshift of z=1.68z=1.68, for which we detect \ion{C}{4}, \ion{C}{3]} and \ion{Mg}{2}. We compare this system to previously detected projected QSO pairs and find that only about a dozen previously known pairs have smaller angular separation.Comment: 4 pages, 3 figures. Accepted for publication in A

    Discovery of a Perseus-like cloud in the early Universe: HI-to-H2 transition, carbon monoxide and small dust grains at zabs=2.53 towards the quasar J0000+0048

    Full text link
    We present the discovery of a molecular cloud at zabs=2.5255 along the line of sight to the quasar J0000+0048. We perform a detailed analysis of the absorption lines from ionic, neutral atomic and molecular species in different excitation levels, as well as the broad-band dust extinction. We find that the absorber classifies as a Damped Lyman-alpha system (DLA) with logN(HI)(cm^-2)=20.8+/-0.1. The DLA has super-Solar metallicity with a depletion pattern typical of cold gas and an overall molecular fraction ~50%. This is the highest f-value observed to date in a high-z intervening system. Most of the molecular hydrogen arises from a clearly identified narrow (b~0.7 km/s), cold component in which CO molecules are also found, with logN(CO)~15. We study the chemical and physical conditions in the cold gas. We find that the line of sight probes the gas deep after the HI-to-H2 transition in a ~4-5 pc-size cloud with volumic density nH~80 cm^-3 and temperature of only 50 K. Our model suggests that the presence of small dust grains (down to about 0.001 {\mu}m) and high cosmic ray ionisation rate (zeta_H a few times 10^-15 s^-1) are needed to explain the observed atomic and molecular abundances. The presence of small grains is also in agreement with the observed steep extinction curve that also features a 2175 A bump. The properties of this cloud are very similar to what is seen in diffuse molecular regions of the nearby Perseus complex. The high excitation temperature of CO rotational levels towards J0000+0048 betrays however the higher temperature of the cosmic microwave background. Using the derived physical conditions, we correct for a small contribution (0.3 K) of collisional excitation and obtain TCMB(z = 2.53)~9.6 K, in perfect agreement with the predicted adiabatic cooling of the Universe. [abridged]Comment: 24 pages, 24 figures, accepted for publication in A&

    Low-ionization iron-rich Broad Absorption-Line Quasar SDSS J1652+2650: Physical conditions in the ejected gas from excited FeII and metastable HeI

    Full text link
    We present high-resolution VLT/UVES spectroscopy and a detailed analysis of the unique Broad Absorption-Line system towards the quasar SDSS J165252.67+265001.96. This system exhibits low-ionization metal absorption lines from the ground states and excited energy levels of Fe II and Mn II, and the meta-stable 2^3S excited state of He I. The extended kinematics of the absorber encompasses three main clumps with velocity offsets of -5680, -4550, and -1770 km s1^{-1} from the quasar emission redshift, z=0.3509±0.0003z=0.3509\pm0.0003, derived from [O II] emission. Each clump shows moderate partial covering of the background continuum source, Cf[0.53;0.24;0.81]C_f \approx [0.53; 0.24; 0.81]. We discuss the excitation mechanisms at play in the gas, which we use to constrain the distance of the clouds from the Active Galactic Nucleus (AGN) as well as the density, temperature, and typical sizes of the clouds. The number density is found to be nH104cm3n_{\rm H} \sim 10^4\rm cm^{-3} and the temperature Te104KT_e \sim 10^4\rm\,K, with longitudinal cloudlet sizes of 0.01\gtrsim0.01 pc. Cloudy photo-ionization modelling of He I^{*}, which is also produced at the interface between the neutral and ionized phases, assuming the number densities derived from Fe II, constrains the ionization parameter to be logU3\log U \sim -3. This corresponds to distances of a few 100 pc from the AGN. We discuss these results in the more general context of associated absorption-line systems and propose a connection between FeLoBALs and the recently-identified molecular-rich intrinsic absorbers. Studies of significant samples of FeLoBALs, even though rare per se, will soon be possible thanks to large dedicated surveys paired with high-resolution spectroscopic follow-ups.Comment: Accepted for publication in MNRAS, 27 pages, 21 Figure

    Sub-millimeter galaxies as progenitors of compact quiescent galaxies

    Get PDF
    Three billion years after the big bang (at redshift z=2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3<z<6). Simulations show that gas-rich major mergers can give rise to such starbursts which produce dense remnants. Sub-millimeter selected galaxies (SMGs) are prime examples of intense, gas-rich, starbursts. With a new, representative spectroscopic sample of compact quiescent galaxies at z=2 and a statistically well-understood sample of SMGs, we show that z=3-6 SMGs are consistent with being the progenitors of z=2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42 (+40/-29) Myr (consistent with independent estimates), which indicates that the bulk of stars in these massive galaxies were formed in a major, early surge of star-formation. These results suggests a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star-formation through their appearance as high stellar-density galaxy cores and to their ultimate fate as giant ellipticals.Comment: ApJ (in press

    The High A(V) Quasar Survey: Reddened quasi-stellar objects selected from optical/near-infrared photometry - II

    Full text link
    Quasi-stellar objects (QSOs) whose spectral energy distributions (SEDs) are reddened by dust either in their host galaxies or in intervening absorber galaxies are to a large degree missed by optical color selection criteria like the one used by the Sloan Digital Sky Survey (SDSS). To overcome this bias against red QSOs, we employ a combined optical and near-infrared color selection. In this paper, we present a spectroscopic follow-up campaign of a sample of red candidate QSOs which were selected from the SDSS and the UKIRT Infrared Deep Sky Survey (UKIDSS). The spectroscopic data and SDSS/UKIDSS photometry are supplemented by mid-infrared photometry from the Wide-field Infrared Survey Explorer. In our sample of 159 candidates, 154 (97%) are confirmed to be QSOs. We use a statistical algorithm to identify sightlines with plausible intervening absorption systems and identify nine such cases assuming dust in the absorber similar to Large Magellanic Cloud sightlines. We find absorption systems toward 30 QSOs, 2 of which are consistent with the best-fit absorber redshift from the statistical modeling. Furthermore, we observe a broad range in SED properties of the QSOs as probed by the rest-frame 2 {\mu}m flux. We find QSOs with a strong excess as well as QSOs with a large deficit at rest-frame 2 {\mu}m relative to a QSO template. Potential solutions to these discrepancies are discussed. Overall, our study demonstrates the high efficiency of the optical/near-infrared selection of red QSOs.Comment: 64 pages, 18 figures, 16 pages of tables. Accepted to ApJ

    HI gas playing hide-and-seek around a powerful FRI-type quasar at z\sim2.1

    Full text link
    We present optical spectroscopic and milli-arcsecond scale radio continuum observations of the quasar M1540-1453 (zemz_{em} = 2.104±\pm0.002) that shows associated HI 21-cm absorption at zabsz_{abs} = 2.1139. At sub-kpc scales, the powerful radio source with 1.4 GHz luminosity of 5.9×10275.9\times10^{27} WHz1^{-1} shows Fanaroff-Riley (FR) class I morphology caused by the interaction with dense gas within 70 pc from the AGN. Interestingly, while there are indications for the presence of absorption from low-ionization species like FeII, SiII and SiIII in the optical spectrum, the expected strong damped Lyα\alpha absorption is not detected at the redshift of the HI 21-cm absorber. In comparison to typical high-zz quasars, the Lyα\alpha emission line is much narrower. The `ghostly' nature of the HI Lyα\alpha absorber partially covering the broad line region of extent 0.05 pc and the detection of widespread HI 21-cm absorption covering the diffuse radio source (extent >>425 pc) imply the presence of a large clumpy HI halo -- which may have been blown by the jet-ISM interaction. Further observations are needed to confirm the `ghostly' nature of the Lyα\alpha absorber, and obtain a better understanding of the role played by the jet-ISM interaction in shaping the radio morphology of this powerful AGN. The study showcases how joint radio and optical analysis can shed light on gaseous environment and origin of radio morphology in AGN at high redshifts, when these are still the assembly sites of giant galaxies.Comment: 8 pages, 3 figures, Accepted for Publication in ApJ Letter

    Absorption-selected galaxies trace the low-mass, late-type, star-forming population at z23z\sim2-3

    Full text link
    We report on the stellar content, half-light radii and star formation rates of a sample of 10 known high-redshift (z2z\gtrsim 2) galaxies selected on strong neutral hydrogen (HI) absorption (log(N(HI)/cm2)>19^{-2})>19) toward background quasars. We use observations from the {\it Hubble Space Telescope} (HST) Wide Field Camera 3 in three broad-band filters to study the spectral energy distribution(SED) of the galaxies. Using careful quasar point spread function subtraction, we study their galactic environments, and perform the first systematic morphological characterisation of such absorption-selected galaxies at high redshifts. Our analysis reveals complex, irregular hosts with multiple star-forming clumps. At a spatial sampling of 0.067 arcsec per pixel (corresponding to 0.55 kpc at the median redshift of our sample), 40% of our sample requires multiple S\'ersic components for an accurate modelling of the observed light distributions. Placed on the mass-size relation and the `main sequence' of star-forming galaxies, we find that absorption-selected galaxies at high redshift extend known relations determined from deep luminosity-selected surveys to an order of magnitude lower stellar mass, with objects primarily composed of star-forming, late-type galaxies. We measure half-light radii in the range r1/2r_{1/2} \sim 0.4 to 2.6 kpc based on the reddest band (F160W) to trace the oldest stellar populations, and stellar masses in the range log(M/M)\log (\mathrm{M}_{\star}/\mathrm{M}_{\odot}) \sim 8 to 10 derived from fits to the broad-band SED. Spectroscopic and SED-based star formation rates are broadly consistent, and lie in the range log(SFR/M_{\odot} yr1^{-1}) \sim0.0 to 1.7.Comment: 17 pages, Accepted for publication in MNRAS. This revision has minor text change
    corecore