11 research outputs found
Can current moisture responses predict soil CO2 efflux under altered precipitation regimes? A synthesis of manipulation experiments
As a key component of the carbon cycle, soil CO2 efflux (SCE) is being increasingly studied to improve our mechanistic understanding of this important carbon flux. Predicting ecosystem responses to climate change often depends on extrapolation of current relationships between ecosystem processes and their climatic drivers to conditions not yet experienced by the ecosystem. This raises the question of to what extent these relationships remain unaltered beyond the current climatic window for which observations are available to constrain the relationships. Here, we evaluate whether current responses of SCE to fluctuations in soil temperature and soil water content can be used to predict SCE under altered rainfall patterns. Of the 58 experiments for which we gathered SCE data, 20 were discarded because either too few data were available or inconsistencies precluded their incorporation in the analyses. The 38 remaining experiments were used to test the hypothesis that a model parameterized with data from the control plots (using soil temperature and water content as predictor variables) could adequately predict SCE measured in the manipulated treatment. Only for 7 of these 38 experiments was this hypothesis rejected. Importantly, these were the experiments with the most reliable data sets, i.e., those providing high-frequency measurements of SCE. Regression tree analysis demonstrated that our hypothesis could be rejected only for experiments with measurement intervals of less than 11 days, and was not rejected for any of the 24 experiments with larger measurement intervals. This highlights the importance of high-frequency measurements when studying effects of altered precipitation on SCE, probably because infrequent measurement schemes have insufficient capacity to detect shifts in the climate dependencies of SCE. Hence, the most justified answer to the question of whether current moisture responses of SCE can be extrapolated to predict SCE under altered precipitation regimes is 'no' - as based on the most reliable data sets available. We strongly recommend that future experiments focus more strongly on establishing response functions across a broader range of precipitation regimes and soil moisture conditions. Such experiments should make accurate measurements of water availability, should conduct high-frequency SCE measurements, and should consider both instantaneous responses and the potential legacy effects of climate extremes. This is important, because with the novel approach presented here, we demonstrated that, at least for some ecosystems, current moisture responses could not be extrapolated to predict SCE under altered rainfall conditions
Shrub Invasion Decreases Diversity and Alters Community Stability in Northern Chihuahuan Desert Plant Communities
BACKGROUND:Global climate change is rapidly altering species range distributions and interactions within communities. As ranges expand, invading species change interactions in communities which may reduce stability, a mechanism known to affect biodiversity. In aridland ecosystems worldwide, the range of native shrubs is expanding as they invade and replace native grassland vegetation with significant consequences for biodiversity and ecosystem functioning. METHODOLOGY:We used two long-term data sets to determine the effects of shrub encroachment by Larrea tridentata on subdominant community composition and stability in formerly native perennial grassland dominated by Bouteloua eriopoda in New Mexico, USA. PRINCIPAL FINDINGS:Our results indicated that Larrea invasion decreased species richness during the last 100 years. We also found that over shorter temporal scales species-poor subdominant communities in areas invaded by Larrea were less stable (more variable in time) compared to species rich communities in grass-dominated vegetation. Compositional stability increased as cover of Bouteloua increased and decreased as cover of Larrea increased. SIGNIFICANCE:Changes in community stability due to altered interspecific interactions may be one mechanism by which biodiversity declines in grasslands following shrub invasion. As global warming increases, shrub encroachment into native grasslands worldwide will continue to alter species interactions and community stability both of which may lead to a decline in biodiversity
Beta diversity and community differentiation in dry perennial sand grasslands.
The spatial variability of species composition was studied in perennial sand grasslands in Hungary at multiple scales. Three sites were
compared along an aridity gradient. Existing differences in climate along this ca. 200 km gradient correspond to regional climate changes predicted
for the next 20-30 years. Six stands of Festucetum vaginatae grasslands were selected at each site within 400 x 1200 m areas for representing the
coarse-scale within-site heterogeneity. Fine-scale compositional heterogeneity of vegetation within stands was sampled by recording the presence of
species along 52 m long circular belt transects of 1040 units of 5 cm x 5 cm contiguous microquadrats. This sampling design enabled us to study the
patterns of species combinations at a wide range of scales. The highest variability of plant species combinations appeared at very fine scales, between
10 cm and 25 cm. Differences in beta diversity along the gradient were scale-dependent. We found a decreasing trend of beta diversity with increasing
aridity at fine scale, and on the contrary, an increasing trend at landscape scale. We conclude that the major trend of the vegetation differentiation due
to aridity is the decrease of compositional variability at fine-scale accompanied by a coarse-scale diversification
BETA DIVERSITY AND COMMUNITY DIFFERENTIATION IN DRY PERENNIAL SAND GRASSLANDS
The spatial variability of species composition was studied in perennial sand grasslands in Hungary at multiple scales. Three sites were compared along an aridity gradient. Existing differences in climate along this ca. 200 km gradient correspond to regional climate changes predicted for the next 20-30 years. Six stands of Festucetum vaginatae grasslands were selected at each site within 400 x 1200 m areas for representing the coarse-scale within-site heterogeneity. Fine-scale compositional heterogeneity of vegetation within stands was sampled by recording the presence of species along 52 m long circular belt transects of 1040 units of 5 cm x 5 cm contiguous microquadrats. This sampling design enabled us to study the patterns of species combinations at a wide range of scales. The highest variability of plant species combinations appeared at very fine scales, between 10 cm and 25 cm. Differences in beta diversity along the gradient were scale-dependent. We found a decreasing trend of beta diversity with increasing aridity at fine scale, and on the contrary, an increasing trend at landscape scale. We conclude that the major trend of the vegetation differentiation due to aridity is the decrease of compositional variability at fine-scale accompanied by a coarse-scale diversification
High-Resolution Transect Sampling and Multiple Scale Diversity Analyses for Evaluating Grassland Resilience to Climatic Extremes
Diversity responses to climatic factors in plant communities are well understood from experiments, but less known in natural conditions due to the rarity of appropriate long-term ob-servational data. In this paper, we use long-term transect data sampled annually in three natural grasslands of different species pools, soils, landscape contexts and land use histories. Analyzing these specific belt transect data of contiguous small sampling units enabled us to explore scale dependence and spatial synchrony of diversity patterns within and among sites. The 14-year study period covered several droughts, including one extreme event between 2011 and 2012. We demonstrated that all natural grasslands responded to droughts by considerable fluctuations of diversity, but, overall, they remained stable. The plant functional group of annuals showed high resilience at all sites, while perennials were resistant to droughts. Our results were robust to changing spatial scales of observations, and we also demonstrated that within-site spatial synchrony could be used as a sensitive indicator of external climatic effects. We propose the broad application of high-resolution belt transects for powerful and adaptive vegetation monitoring in the future